NASA Astrophysics Data System (ADS)
Long, Roger E.; Matthews, Patricia A.; Graham, Daniel P.
1994-04-01
After a few seconds two-way traveltime, normal-incidence seismic reflection sections are composed mainly of assemblages of short reflections. Very rarely are seen continuous reflections that might correspond to the Moho or a mid-crustal discontinuity. The inferred continuity of these boundaries has traditionally come from refraction seismology. There is now a body of high quality, coincident wide-angle and normal-incidence seismic data that have been recorded with 50-100 m shot spacing and with high frequency sources (e.g. MOBIL, BABEL). The complexity and characteristics of the wide-angle arrivals seen on these data suggest that they do not originate from continuous boundaries. It is suggested that these arrivals are reflections from the same assemblage of short length reflectors that are responsible for normal-incidence reflections. Seismic velocities below the middle crust may (1) change corresponding to normal-incidence reflectivity, or (2) generally increase with depth with localised sills or lens structures of different velocity accounting for the observed reflections. Wide-angle arrivals that have traditionally been identified as reflections from crustal boundaries (e.g. the mid-crust and Moho) and which were considered indicative of a sharp velocity discontinuity from continuous boundaries, may instead result from a concentration of lamellae.
Wide-Angle, Flat-Field Telescope
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1987-01-01
All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.
An all-reflective wide-angle flat-field telescope for space
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1984-01-01
An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.
Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro
2014-10-20
We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Song, Young Min; Yu, Jae Su
2013-10-01
We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr02806b
Yu, Kan; Huang, De-xiu; Yin, Juan-juan; Bao, Jia-qi
2015-08-01
Three-port tunable optical filter is a key device in the all-optic intelligent switching network and dense wavelength division multiplexing system. The characteristics of the reflecting spectrum, especially the reflectivity and the isolation degree are very important to the three-port filter. Angle-tuned thin film filter is widely used as a three-port tunable filter for its high rectangular degree and good temperature stability. The characteristics of the reflecting spectrum are greatly influenced not only by the incident angle, but also by the wedge angle parameter of the non-paralleled wedge thin film filter. In the present paper, the influences of the wedge angle parameter to the reflectivity and the half bandwidth are analyzed, and the reflecting spectrum characterstics are simulationed in different wedge angle parameter and polarity. The wedge angle-tuned thin film filter with 0.8° wedge angle parameter is fabricated. The experimental results show that keeping the wedge angle the same orientation to the incident angle will worsen the reflectivity and the rectangular degree of the reflecting spectrum. However, keeping the wedge angle orientation reverse to the incident angle will enhance the reflectivity and decrease the bandwidth, which will give higher reflectivity and isolation degree to the three-port filter than that of high parallel degree angle-tuned thin film filter.
Wide angle reflection effects on the uncertainty in layered models travel times tomography
NASA Astrophysics Data System (ADS)
Majdanski, Mariusz; Bialas, Sebastian; Trzeciak, Maciej; Gaczyński, Edward; Maksym, Andrzej
2015-04-01
Multi-phase layered model traveltimes tomography inversions can be realised in several ways depending on the inversion path. Inverting the shape of the boundaries based on reflection data and the velocity field based on refractions could be done jointly or sequentially. We analyse an optimal inversion path based on the uncertainty analysis of the final models. Additionally, we propose to use post critical wide-angle reflections in tomographic inversions for more reliable results especially in the deeper parts of each layer. We focus on the effects of using hard to pick post critical reflections on the final model uncertainty. Our study is performed using data collected during standard vibroseis and explosive sources seismic reflection experiment focused on shale gas reservoir characterisation realised by Polish Oil and Gas Company. Our data were gathered by a standalone single component stations deployed along the whole length of the 20 km long profile, resulting in significantly longer offsets. Our piggy back recordings resulted in good quality wide angle refraction and reflection recordings clearly observable up to the offsets of 12 km.
Robert B. Hawman
2008-01-01
Migration of wide-angle reflections generated by quarry blasts suggests that crustal thickness increases from 38 km beneath the Carolina Terrane to 47â51 km along the southeastern flank of the Blue Ridge. The migration algorithm, developed for generating single-fold images from explosions and earthquakes recorded with isolated, short-aperture arrays, uses the localized...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brocher, T.M.; Fuis, G.S.; Fisher, M.A.
1993-04-01
In the northern Gulf of Alaska and Prince William Sound, wide-angle seismic reflection/refraction profiling, earthquake studies, and laboratory measurements of physical properties are used to determine the geometry of the Prince William and Yakutat terranes, and the subducting Pacific plate. In this complex region, the Yakutat terrane is underthrust beneath the Prince William terrane, and both terranes are interpreted to be underlain by the Pacific plate. Wide-angle seismic reflection/refraction profiles recorded along 5 seismic lines are used to unravel this terrane geometry. Modeled velocities in the upper crust of the Prince William terrane (to 18-km depth) agree closely with laboratorymore » velocity measurements of Orca Group phyllites and quartzofeldspathic graywackes (the chief components of the Prince William terrane) to hydrostatic pressures as high as 600 MPa (6 KBAR). An interpretation consistent with these data extends the Prince William terrane to at least 18-km depth. A landward dipping reflection at depths of 16--24 km is interpreted as the base of the Prince William terrane. This reflector corresponds to the top of the Wadati-Benioff zone seismicity and is interpreted as the megathrust. Beneath this reflector is a 6.9-km/s refractor, that is strongly reflective and magnetic, and is interpreted to be gabbro in Eocene age oceanic crust of the underthrust Yakutat terrane. Both wide-angle seismic and magnetic anomaly data indicate that the Yakutat terrane has been underthrust beneath the Prince William terrane for at least a few hundred kilometers. Wide-angle seismic data are consistent with a 9 to 10[degree] landward dip of the subducting Pacific plate, distinctly different from the inferred average 3 to 4[degree] dip of the overlying 6.9-km/s refractor and Wadati-Benioff seismic zone. The preferred interpretation of the geophysical data is that one composite plate, composed of the Pacific and Yakutat plates, is subducting beneath southern Alaska.« less
NASA Astrophysics Data System (ADS)
Chen, Michael; Abdo-Sánchez, Elena; Epstein, Ariel; Eleftheriades, George V.
2018-03-01
Huygens' metasurfaces are electrically thin devices which allow arbitrary field transformations. Beam refraction is among the first demonstrations of realized metasurfaces. As previously shown for extreme-angle refraction, control over only the electric impedance and magnetic admittance of the Huygens' metasurface proved insufficient to produce the desired reflectionless field transformation. To maintain zero reflections for wide refraction angles, magnetoelectric coupling between the electric and magnetic response of the metasurface, leading to bianisotropy, can be introduced. In this paper, we report the theory, design, and experimental characterization of a reflectionless bianisotropic metasurface for extreme-angle refraction of a normally incident plane wave towards 71.8° at 20 GHz. The theory and design of three-layer asymmetric bianisotropic unit cells are discussed. The realized printed circuit board structure was tested via full-wave simulations as well as experimental characterization. To experimentally verify the prototype, two setups were used. A quasi-optical experiment was conducted to assess the specular reflections of the metasurface, while a far-field antenna measurement characterized its refraction nature. The measurements verify that the fabricated metasurface has negligible reflections and the majority of the scattered power is refracted to the desired Floquet mode. This provides an experimental demonstration of a reflectionless wide-angle refracting metasurface using a bianisotropic Huygens' metasurface at microwave frequencies.
[Analysis of influencing factors of snow hyperspectral polarized reflections].
Sun, Zhong-Qiu; Zhao, Yun-Sheng; Yan, Guo-Qian; Ning, Yan-Ling; Zhong, Gui-Xin
2010-02-01
Due to the need of snow monitoring and the impact of the global change on the snow, on the basis of the traditional research on snow, starting from the perspective of multi-angle polarized reflectance, we analyzed the influencing factors of snow from the incidence zenith angles, the detection zenith angles, the detection azimuth angles, polarized angles, the density of snow, the degree of pollution, and the background of the undersurface. It was found that these factors affected the spectral reflectance values of the snow, and the effect of some factors on the polarization hyperspectral reflectance observation is more evident than in the vertical observation. Among these influencing factors, the pollution of snow leads to an obvious change in the snow reflectance spectrum curve, while other factors have little effect on the shape of the snow reflectance spectrum curve and mainly impact the reflection ratio of the snow. Snow reflectance polarization information has not only important theoretical significance, but also wide application prospect, and provides new ideas and methods for the quantitative research on snow using the remote sensing technology.
Effect of reflection and refraction on NEXAFS spectra measured in TEY mode
2018-01-01
The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θc. Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers–Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail. PMID:29271772
Brocher, Thomas M.; Allen, Richard M.; Stone, David B.; Wolf, Lorraine W.; Galloway, Brian K.
1995-01-01
This report presents fourteen deep-crustal wide-angle seismic reflection and refraction profiles recorded onland in western Alaska and eastern Siberia from marine air gun sources in the Bering-Chukchi Seas. During a 20-day period in August, 1994, the R/V Ewing acquired two long (a total of 3754 km) deep-crustal seismic-reflection profiles on the continental shelf of the Bering and Chukchi Seas, in a collaborative project between Stanford University and the United States Geological Survey (USGS). The Ewing's 137.7 liter (8355 cu. in.) air gun array was the source for both the multichannel reflection and the wide-angle seismic data. The Ewing, operated by the Lamont-Doherty Earth Observatory, steamed northward from Nunivak Island to Barrow, and returned, firing the air gun array at intervals of either 50 m or 75 m. About 37,700 air gun shots were fired along the northward directed Lines 1 and 2, and more than 40,000 air gun shots were fired along the southward directed Line 3. The USGS and the University of Alaska, Fairbanks (UAF), deployed an array of twelve 3-component REFTEK and PDAS recorders in western Alaska and eastern Siberia which continuously recorded the air gun signals fired during the northward bound Lines 1 and 2. Seven of these recorders also continuously recorded the southward bound Line 3. These wide-angle seismic data were acquired to: (1) image reflectors in the upper to lower crust, (2) determine crustal and upper mantle refraction velocities, and (3) provide important constraints on the geometry of the Moho along the seismic lines. In this report, we describe the land recording of wide-angle data conducted by the USGS and the UAF, describe in detail how the wide-angle REFTEK and PDAS data were reduced to common receiver gather seismic sections, and illustrate the wide-angle seismic data obtained by the REFTEKs and PDAS's. Air gun signals were observed to ranges in excess of 400 km, and crustal and upper /mantle refractions indicate substantial variation in the crustal thickness along the transect.
Assessment of crustal velocity models using seismic refraction and reflection tomography
NASA Astrophysics Data System (ADS)
Zelt, Colin A.; Sain, Kalachand; Naumenko, Julia V.; Sawyer, Dale S.
2003-06-01
Two tomographic methods for assessing velocity models obtained from wide-angle seismic traveltime data are presented through four case studies. The modelling/inversion of wide-angle traveltimes usually involves some aspects that are quite subjective. For example: (1) identifying and including later phases that are often difficult to pick within the seismic coda, (2) assigning specific layers to arrivals, (3) incorporating pre-conceived structure not specifically required by the data and (4) selecting a model parametrization. These steps are applied to maximize model constraint and minimize model non-uniqueness. However, these steps may cause the overall approach to appear ad hoc, and thereby diminish the credibility of the final model. The effect of these subjective choices can largely be addressed by estimating the minimum model structure required by the least subjective portion of the wide-angle data set: the first-arrival times. For data sets with Moho reflections, the tomographic velocity model can be used to invert the PmP times for a minimum-structure Moho. In this way, crustal velocity and Moho models can be obtained that require the least amount of subjective input, and the model structure that is required by the wide-angle data with a high degree of certainty can be differentiated from structure that is merely consistent with the data. The tomographic models are not intended to supersede the preferred models, since the latter model is typically better resolved and more interpretable. This form of tomographic assessment is intended to lend credibility to model features common to the tomographic and preferred models. Four case studies are presented in which a preferred model was derived using one or more of the subjective steps described above. This was followed by conventional first-arrival and reflection traveltime tomography using a finely gridded model parametrization to derive smooth, minimum-structure models. The case studies are from the SE Canadian Cordillera across the Rocky Mountain Trench, central India across the Narmada-Son lineament, the Iberia margin across the Galicia Bank, and the central Chilean margin across the Valparaiso Basin and a subducting seamount. These case studies span the range of modern wide-angle experiments and data sets in terms of shot-receiver spacing, marine and land acquisition, lateral heterogeneity of the study area, and availability of wide-angle reflections and coincident near-vertical reflection data. The results are surprising given the amount of structure in the smooth, tomographically derived models that is consistent with the more subjectively derived models. The results show that exploiting the complementary nature of the subjective and tomographic approaches is an effective strategy for the analysis of wide-angle traveltime data.
Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan
2017-01-01
In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593
Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan
2017-02-09
In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.
Brocher, Thomas M.; Pratt, Thomas L.; Spence, George D.; Riedel, Michael; Hyndman, Roy D.
2003-01-01
This report describes the acquisition and processing of shallow-crustal wide-angle seismicreflection and refraction data obtained during a collaborative study in the Georgia Strait, western Washington and southwestern British Columbia. The study, the 2002 Georgia Strait Geohazards Initiative, was conducted in May 2002 by the Pacific Geoscience Centre, the U.S. Geological Survey, and the University of Victoria. The wide-angle recordings were designed to image shallow crustal faults and Cenozoic sedimentary basins crossing the International Border in southern Georgia basin and to add to existing wide-angle recordings there made during the 1998 SHIPS experiment. We recorded, at wide-angle, 800 km of shallow penetration multichannel seismic-reflection profiles acquired by the Canadian Coast Guard Ship (CCGS) Tully using an air gun with a volume of 1.967 liters (120 cu. in.). Prior to this reflection survey, we deployed 48 Refteks onshore to record the airgun signals at wide offsets. Three components of an oriented, 4.5 Hz seismometer were digitally recorded at all stations. Nearly 160,300 individual air gun shots were recorded along 180 short seismic reflection lines. In this report, we illustrate the wide-angle profiles acquired using the CCGS Tully, describe the land recording of the air gun signals, and summarize the processing of the land recorder data into common-receiver gathers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but the experiment provided useful data from 42 of the 48 stations deployed. Three-fourths of all stations yielded useful first-arrivals to source-receiver offsets beyond 10 km: the average maximum source-receiver offset for first arrivals was 17 km. Six stations yielded no useful data and useful firstarrivals were limited to offsets less than 10 km at five stations. We separately archived our recordings of 86 local and regional earthquakes ranging in magnitude from 0.2 to 4.3 and 16 teleseisms ranging in magnitude 5.5 to 6.5.
NASA Astrophysics Data System (ADS)
Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej
2015-04-01
Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.
Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.
Okazaki, Toshio
2018-02-01
I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.
What is MISR? MISR Instrument? MISR Project?
Atmospheric Science Data Center
2014-12-08
... to improve our understanding of the Earth's environment and climate. Viewing the sunlit Earth simultaneously at nine widely-spaced angles, ... types of atmospheric particles and clouds on climate. The change in reflection at different view angles affords the means to distinguish ...
Disturbance Detection in Snow Using Polarimetric Imagery of the Visible Spectrum
2010-12-01
37 1. Wide- Angle Image .............................................................................37 2. Telephoto Lens Image...known qualitative results regarding polarization is that of Brewster’s angle . Sir David Brewster , a self-taught scientist and inventor, was deeply...refractive indices of materials in which they traversed ( Brewster , 1815). Coulson accurately defines Brewster’s angle : Light which is reflected at a
Modeling of the ITER-like wide-angle infrared thermography view of JET.
Aumeunier, M-H; Firdaouss, M; Travère, J-M; Loarer, T; Gauthier, E; Martin, V; Chabaud, D; Humbert, E
2012-10-01
Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.
Visible and infrared polarization ratio spectroreflectometer
NASA Technical Reports Server (NTRS)
Batten, C. E. (Inventor)
1980-01-01
The instrument assists in determining the refractive index and absorption index, at different spectral frequencies, of a solid sample by illuminating the sample at various angles in incidence and measuring the corresponding reflected intensities at various spectral frequencies and polarization angles. The ratio of the intensity of the reflected light for parallel polarized light to that for perpendicular polarized light at two different angles of incidence can be used to determine the optical constants of the sample. The invention involves an apparatus for facilitating the utilization of a wide variety of angles of incidence. The light source and polarizing element are positioned on an outer platform; the sample is positioned on an inner platform. The two platforms rotate about a common axis and cooperate in their rotation such that the sample is rotated one degree for every two degrees of rotation of the light source. This maintains the impingement of the reflected light upon the detector for any angle of incidence without moving or adjusting the detector which allows a continuous change in the angle of incidence.
Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong
2018-06-21
An optical device with minimized dimensions, which is capable of efficiently resolving an ultra-broad spectrum into a wide splitting angle but incurring no spectrum overlap, is of importance in advancing the development of spectroscopy. Unfortunately, this challenging task cannot be easily addressed through conventional geometrical or diffractive optical elements. Herein, we propose and demonstrate vertically integrated visible and near-infrared metasurfaces which render an ultra-broadband and highly angle-resolved anomalous reflection. The proposed metasurface capitalizes on a supercell that comprises two vertically concatenated trapezoid-shaped aluminum antennae, which are paired with a metallic ground plane via a dielectric layer. Under normal incidence, reflected light within a spectral bandwidth of 1000 nm ranging from λ = 456 nm to 1456 nm is efficiently angle-resolved to a single diffraction order with no spectrum overlap via the anomalous reflection, exhibiting an average reflection efficiency over 70% and a substantial angular splitting of 58°. In light of a supercell pitch of 1500 nm, to the best of our knowledge, the micron-scale bandwidth is the largest ever reported. It is noted that the substantially wide bandwidth has been accomplished by taking advantage of spectral selective vertical coupling effects between antennae and ground plane. In the visible regime, the upper antenna primarily renders an anomalous reflection by cooperating with the lower antenna, which in turn cooperates with the ground plane and produces phase variations leading to an anomalous reflection in the near-infrared regime. Misalignments between the two antennae have been particularly inspected to not adversely affect the anomalous reflection, thus guaranteeing enhanced structural tolerance of the proposed metasurface.
NASA Astrophysics Data System (ADS)
Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo
2016-04-01
Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just wide-angle seismic data. As expected, there is an important improvement in the definition of the reflector geometry, which in turn, allows to improve the accuracy of the velocity retrieval just above and below the reflector. To test the joint inversion approach with real data, we combined wide-angle (WAS) seismic and coincident multichannel seismic reflection (MCS) data acquired in the northern Chile subduction zone into a common inversion scheme to obtain a higher-resolution information of upper plate and inter-plate boundary.
Abe, Hiroshi; Hamaya, Nozomu; Koyama, Yoshihiro; Kishimura, Hiroaki; Takekiyo, Takahiro; Yoshimura, Yukihiro; Wakabayashi, Daisuke; Funamori, Nobumasa; Matsuishi, Kiyoto
2018-04-23
The Bragg reflections of 1-decyl-3-methylimidazolium chloride ([C 10 mim][Cl]), a room-temperature ionic liquid, are observed in a lowly scattered wavevector (q) region using high-pressure (HP) small-angle X-ray scattering methods. The HP crystal of [C 10 mim][Cl] was characterized by an extremely long periodic structure. The peak position at the lowest q (1.4 nm -1 ) was different from that of the prepeak observed in the liquid state (2.3 nm -1 ). Simultaneously, Bragg reflections at high-q were detected using HP wide-angle X-ray scattering. The longest lattice constant was estimated to be 4.3 nm using structural analysis. The crystal structure of HP differed from that of the low-temperature (LT) crystal and the LT liquid crystal. With increasing pressure, Bragg reflections in the high-q component became much broader, and were accompanied by phase transition, although those in the low-q component were observed to be relatively sharp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoscale cellular imaging with scanning angle interference microscopy.
DuFort, Christopher; Paszek, Matthew
2014-01-01
Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.
Non-periodic high-index contrast gratings reflector with large-angle beam forming ability
NASA Astrophysics Data System (ADS)
Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min
2016-05-01
A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark Arthur (Inventor)
1990-01-01
The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.
Terahertz wide aperture reflection tomography.
Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David
2005-07-01
We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.
NASA Technical Reports Server (NTRS)
Vaughan, Arthur H. (Inventor)
1993-01-01
A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-02-01
Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.
Realization of a near-perfect antireflection coating for silicon solar energy utilization.
Kuo, Mei-Ling; Poxson, David J; Kim, Yong Sung; Mont, Frank W; Kim, Jong Kyu; Schubert, E Fred; Lin, Shawn-Yu
2008-11-01
To harness the full spectrum of solar energy, Fresnel reflection at the surface of a solar cell must be eliminated over the entire solar spectrum and at all angles. Here, we show that a multilayer nanostructure having a graded-index profile, as predicted by theory [J. Opt. Soc. Am. 66, 515 (1976); Appl. Opt. 46, 6533 (2007)], can accomplish a near-perfect transmission of all-color of sunlight. An ultralow total reflectance of 1%-6% has been achieved over a broad spectrum, lambda = 400 to 1600 nm, and a wide range of angles of incidence, theta = 0 degrees-60 degrees . The measured angle- and wavelength-averaged total reflectance of 3.79% is the smallest ever reported in the literature, to our knowledge.
NASA Astrophysics Data System (ADS)
Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli
2017-06-01
The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.
Leem, Jung Woo; Yu, Jae Su
2012-10-01
We reported the bioinspired periodic pinecone-shaped silicon (Si) subwavelength nanostructures, which were fabricated by laser interference lithography and inductively coupled plasma etching using thermally dewetted gold (Au) nanoparticles in SiCl4 plasma, on Si substrates for broadband and wide-angle antireflective surface. For the fabricated pinecone-like Si subwavelength nanostructures, antireflection characteristics and wetting behaviors were investigated. The pinecone-shaped Si subwavelength nanostructure with a period of 320 nm for 7 nm of Au film exhibited a relatively low solar weighted reflectance value of 3.5% over a wide wavelength range of 300-1030 nm, maintaining the reflectance values of < 9.9% at a wavelength of 550 nm up to a high incident angle of theta(i) = 70 degrees for non-polarized light. This structure also showed a hydrophobic surface with a water contact angle of theta(c) approximately 102 degrees.
Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection
NASA Astrophysics Data System (ADS)
Song, Bokwang; Johansen, Villads Egede; Sigmund, Ole; Shin, Jung H.
2017-04-01
The scales of Morpho butterflies are covered with intricate, hierarchical ridge structures that produce a bright, blue reflection that remains stable across wide viewing angles. This effect has been researched extensively, and much understanding has been achieved using modeling that has focused on the positional disorder among the identical, multilayered ridges as the critical factor for producing angular independent color. Realizing such positional disorder of identical nanostructures is difficult, which in turn has limited experimental verification of different physical mechanisms that have been proposed. In this paper, we suggest an alternative model of inter-structural disorder that can achieve the same broad-angle color reflection, and is applicable to wafer-scale fabrication using conventional thin film technologies. Fabrication of a thin film that produces pure, stable blue across a viewing angle of more than 120 ° is demonstrated, together with a robust, conformal color coating.
NASA Technical Reports Server (NTRS)
Park, Jung- Ho; Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.
1994-01-01
We report the design of multilayer reflective filters for the self-filtering cameras of the NUVIEWS project. Wide angle self-filtering cameras were designed to image the C IV (154.9 nm) line emission, and H2 Lyman band fluorescence (centered at 161 nm) over a 20 deg x 30 deg field of view. A key element of the filter design includes the development of pi-multilayers optimized to provide maximum reflectance at 154.9 nm and 161 nm for the respective cameras without significant spectral sensitivity to the large cone angle of the incident radiation. We applied self-filtering concepts to design NUVIEWS telescope filters that are composed of three reflective mirrors and one folding mirror. The filters with narrowband widths of 6 and 8 rim at 154.9 and 161 nm, respectively, have net throughputs of more than 50 % with average blocking of out-of-band wavelengths better than 3 x 10(exp -4)%.
Design of a polarization-independent, wide-angle, broadband visible absorber
NASA Astrophysics Data System (ADS)
Jia, Xiuli; Wang, Xiaoou
2018-01-01
Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.
Joint refraction and reflection travel-time tomography of multichannel and wide-angle seismic data
NASA Astrophysics Data System (ADS)
Begovic, Slaven; Meléndez, Adrià; Ranero, César; Sallarès, Valentí
2017-04-01
Both near-vertical multichannel (MCS) and wide-angle (WAS) seismic data are sensitive to same properties of sampled model, but commonly they are interpreted and modeled using different approaches. Traditional MCS images provide good information on position and geometry of reflectors especially in shallow, commonly sedimentary layers, but have limited or no refracted waves, which severely hampers the retrieval of velocity information. Compared to MCS data, conventional wide-angle seismic (WAS) travel-time tomography uses sparse data (generally stations are spaced by several kilometers). While it has refractions that allow retrieving velocity information, the data sparsity makes it difficult to define velocity and the geometry of geologic boundaries (reflectors) with the appropriate resolution, especially at the shallowest crustal levels. A well-known strategy to overcome these limitations is to combine MCS and WAS data into a common inversion strategy. However, the number of available codes that can jointly invert for both types of data is limited. We have adapted the well-known and widely-used joint refraction and reflection travel-time tomography code tomo2d (Korenaga et al, 2000), and its 3D version tomo3d (Meléndez et al, 2015), to implement streamer data and multichannel acquisition geometries. This allows performing joint travel-time tomographic inversion based on refracted and reflected phases from both WAS and MCS data sets. We show with a series of synthetic tests following a layer-stripping strategy that combining these two data sets into joint travel-time tomographic method the drawbacks of each data set are notably reduced. First, we have tested traditional travel-time inversion scheme using only WAS data (refracted and reflected phases) with typical acquisition geometry with one ocean bottom seismometer (OBS) each 10 km. Second, we have jointly inverted WAS refracted and reflected phases with only streamer (MCS) reflection travel-times. And at the end we have performed joint inversion of combined refracted and reflected phases from both data sets. MCS data set (synthetic) has been produced for a 8 km-long streamer and refracted phases used for the streamer have been downward continued (projected on the seafloor). Taking advantage of high redundancy of MCS data, the definition of geometry of reflectors and velocity of uppermost layers are much improved. Additionally, long- offset wide-angle refracted phases minimize velocity-depth trade-off of reflection travel-time inversion. As a result, the obtained models have increased accuracy in both velocity and reflector's geometry as compared to the independent inversion of each data set. This is further corroborated by performing a statistical parameter uncertainty analysis to explore the effects of unknown initial model and data noise in the linearized inversion scheme.
Leem, Jung Woo; Yu, Jae Su
2012-08-27
We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.
NASA Technical Reports Server (NTRS)
Page, Norman A.; Tubbs, Eldred F.
1994-01-01
Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.
Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang
2016-01-01
Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768
NASA Astrophysics Data System (ADS)
Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.
2005-12-01
We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.
NASA Astrophysics Data System (ADS)
Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.
2010-09-01
Silicon (Si) subwavelength grating (SWG) structures were fabricated on Si substrates by holographic lithography and subsequent inductively coupled plasma (ICP) etching process using SiCl4 with or without Ar addition for solar cell applications. To ensure a good nanosized pattern transfer into the underlying Si layer, the etch selectivity of Si over the photoresist mask is optimized by varying the etching parameters, thus improving antireflection characteristics. For antireflection analysis of Si SWG surfaces, the optical reflectivity is measured experimentally and it is also calculated theoretically by a rigorous coupled-wave analysis. The reflectance depends on the height, period, and shape of two-dimensional periodic Si subwavelength structures, correlated with ICP etching parameters. The optimized Si SWG structure exhibits a dramatic decrease in optical reflection of the Si surface over a wide angle of incident light ( θ i ), i.e. less than 5% at wavelengths of 300-1100 nm, leading to good wide-angle antireflection characteristics (i.e. solar-weighted reflection of 1.7-4.9% at θ i <50°) of Si solar cells.
Aerial LED signage by use of crossed-mirror array
NASA Astrophysics Data System (ADS)
Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro
2013-03-01
3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.
Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data
NASA Astrophysics Data System (ADS)
Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.
2015-12-01
In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.
NASA Astrophysics Data System (ADS)
Janik, Tomasz; Środa, Piotr; Czuba, Wojciech; Lysynchuk, Dmytro
2016-12-01
The interpretation of seismic refraction and wide angle reflection data usually involves the creation of a velocity model based on an inverse or forward modelling of the travel times of crustal and mantle phases using the ray theory approach. The modelling codes differ in terms of model parameterization, data used for modelling, regularization of the result, etc. It is helpful to know the capabilities, advantages and limitations of the code used compared to others. This work compares some popular 2D seismic modelling codes using the dataset collected along the seismic wide-angle profile DOBRE-4, where quite peculiar/uncommon reflected phases were observed in the wavefield. The 505 km long profile was realized in southern Ukraine in 2009, using 13 shot points and 230 recording stations. Double PMP phases with a different reduced time (7.5-11 s) and a different apparent velocity, intersecting each other, are observed in the seismic wavefield. This is the most striking feature of the data. They are interpreted as reflections from strongly dipping Moho segments with an opposite dip. Two steps were used for the modelling. In the previous work by Starostenko et al. (2013), the trial-and-error forward model based on refracted and reflected phases (SEIS83 code) was published. The interesting feature is the high-amplitude (8-17 km) variability of the Moho depth in the form of downward and upward bends. This model is compared with results from other seismic inversion methods: the first arrivals tomography package FAST based on first arrivals; the JIVE3D code, which can also use later refracted arrivals and reflections; and the forward and inversion code RAYINVR using both refracted and reflected phases. Modelling with all the codes tested showed substantial variability of the Moho depth along the DOBRE-4 profile. However, SEIS83 and RAYINVR packages seem to give the most coincident results.
NASA Astrophysics Data System (ADS)
Fartookzadeh, M.; Mohseni Armaki, S. H.
2016-10-01
A new kind of dual-band reflection-mode circular polarizers (RMCPs) is introduced with wide bandwidth and wide-view at the operating frequencies. The proposed RMCPs are based on dual-layer rectangular patches on both sides of a substrate, separated by a foam or air layer from the ground plane. Required TE susceptance of the first layer patches to produce circular polarization is calculated using the equivalent transmission line model. Dimensions of the RMCP are obtained using parametrical study for the two frequency bands, 1.9-2.3 GHz and 7.9-8.3 GHz. In addition, it is indicated that the accepted view angle and bandwidth of the proposed dual-layer RMCP are improved compared with the single layer RMCP, significantly. Moreover, a tradeoff is observed for the dual-layer RMCP on the bandwidths of X band and S band that can be controlled by propagation angle of the incident wave. The proposed RMCP has 30.5 % and 33.7 % bandwidths for less than 3 dB axial ratio with incident angles {\\theta}max=50{\\deg} and {\\theta}min=35{\\deg}. Finally, simulation results are met by the measurement for three angles of the incident wave.
Wide-angle flat field telescope
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1986-01-01
Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.
McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.
1991-01-01
The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors
Directional reflectance factor distributions of a cotton row crop
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.
1984-01-01
The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Dehler, Sonya; Funck, Thomas
2017-04-01
The SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) 2009 cruise was undertaken by the Geological Survey of Canada (GSC) and the Geological Survey of Denmark and Greenland (GEUS), with scientific contributions from Dalhousie University, to collect refraction/wide-angle reflection (RWAR) profiles as part of each country's continental shelf program under UNCLOS (United Nations Convention on the Law of the Sea) Article 76. Line 1 extended from the Bonavista Platform off Newfoundland, across the Orphan Basin, to Orphan Knoll and beyond into oceanic crust. The line followed the same track as an earlier seismic refraction line and ocean-bottom seismometer (OBS) locations were chosen to complement and to extend the original station coverage. The final crustal velocity model across Orphan Basin shows thinned continental crust (15 to 20 km thick) beneath most of the basin with thinner crust (10 km thick) immediately outboard of the Bonavista Platform, interpreted as a failed rift zone. Seaward of the failed rift, the velocity structure of the thinned continental crust is generally uniform over 250 km toward Orphan Knoll. Immediately outboard of Orphan Knoll, the crust thins to 8 km and exhibits a velocity structure consistent with oceanic crust. The results from modelling of the combined refraction/wide-angle reflection dataset support an extension of Canada's continental shelf beyond the seaward limits of the Orphan Basin.
NASA Technical Reports Server (NTRS)
Slater, P. N.; Jackson, R. D.
1982-01-01
Ground-measured spectral reflectance data for Avondale loam and drought-stressed and unstressed wheat were converted into digital counts for spectral bands 5 and 7 of the Landsat Multispectral Scanner System (MSS). For dry loam, the differences between ratios of MSS bands 7-5 as determined from space and from ground level measurements were 2.3 percent for clear and 5.6 percent for turbid atmospheric conditions. By contrast, for wet loam the differences were 10.4 and 29.5 percent. It is found that atmospheric conditions may cause a delay of from 3 to 7 days in the discrimination between drought-stressed and unstressed wheat. For oblique angle observations the atmospheric modification of ground-measured reflectances increased with angle at a greater rate in the 0/180 deg azimuth than in the 90/270 deg azimuth. Implications of this result are discussed for oblique angle Systeme Probatoire d'Observation de la Terre (SPOT), Mapsat, future multispectral linear array system imagery, and wide-angle imagery collected from scanners in high-altitude aircraft.
Kowalik, William S.; Marsh, Stuart E.; Lyon, Ronald J. P.
1982-01-01
A method for estimating the reflectance of ground sites from satellite radiance data is proposed and tested. The method uses the known ground reflectance from several sites and satellite data gathered over a wide range of solar zenith angles. The method was tested on each of 10 different Landsat images using 10 small sites in the Walker Lake, Nevada area. Plots of raw Landsat digital numbers (DNs) versus the cosine of the solar zenith angle (cos Z) for the the test areas are linear, and the average correlation coefficients of the data for Landsat bands 4, 5, 6, and 7 are 0.94, 0.93, 0.94, and 0.94, respectively. Ground reflectance values for the 10 sites are proportional to the slope of the DN versus cos Z relation at each site. The slope of the DN versus cos Z relation for seven additional sites in Nevada and California were used to estimate the ground reflectances of those sites. The estimates for nearby sites are in error by an average of 1.2% and more distant sites are in error by 5.1%. The method can successfully estimate the reflectance of sites outside the original scene, but extrapolation of the reflectance estimation equations to other areas may violate assumptions of atmospheric homogeneity.
NASA Astrophysics Data System (ADS)
Wang, Ling; Hu, Xiuqing; Chen, Lin
2017-09-01
Calibration is a critical step to ensure data quality and to meet the requirement of quantitative remote sensing in a broad range of scientific applications. One of the least expensive and increasingly popular methods of on-orbit calibration is the use of pseudo invariant calibration sites (PICS). A spatial homogenous and temporally stable area of 34 km2 in size around the center of Kunlun Mountain (KLM) over Tibetan Plateau (TP) was identified by our previous study. The spatial and temporal coefficient of variation (CV) this region was better than 4% for the reflective solar bands. In this study, the BRDF impacts of KLM glacier on MODIS observed TOA reflectance in band 1 (659 nm) are examined. The BRDF impact of KLM glacier with respect to the view zenith angle is studied through using the observations at a fixed solar zenith angle, and the effect with respect to the sun zenith angle is studied based on the observations collected at the same view angle. Then, the two widely used BRDF models are applied to our test data to simulate the variations of TOA reflectance due to the changes in viewing geometry. The first one is Ross-Li model, which has been used to produce the MODIS global BRDF albedo data product. The second one is snow surface BRDF model, which has been used to characterize the bidirectional reflectance of Antarctic snow. Finally, the accuracy and effectiveness of these two different BRDF models are tested through comparing the model of simulated TOA reflectance with the observed one. The results show that variations of the reflectances at a fixed solar zenith angle are close to the lambertian pattern, while those at a fixed sensor zenith angle are strongly anisotropic. A decrease in solar zenith angle from 50º to 20º causes an increase in reflectance by the level of approximated 50%. The snow surface BRDF model performs much better than the Ross-Li BRDF model to re-produce the Bi-Directional Reflectance of KLM glacier. The RMSE of snow surface BRDF model is 3.60%, which is only half of the RMSE when using Ross-Li model.
Wide field strip-imaging optical system
NASA Technical Reports Server (NTRS)
Vaughan, Arthur H. (Inventor)
1994-01-01
A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180-degree strip or arc of a target image. Light received by the spherical mirror section is reflected to a frusto-conical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide-angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180-degree strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.
Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating
NASA Astrophysics Data System (ADS)
Li, Xu; Wang, Zongpeng; Hou, Yumin
2018-01-01
In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Thomas A.; Brauer, Carolyn S.; Kelly-Gorham, Molly Rose K.
The optical constants n and k can be used to model infrared spectra, including refraction, absorption, reflectance, and emissivity, but obtaining reliable values for solid materials (pure or otherwise) presents a challenge: In the past, the best results for n and k have been obtained from bulk, homogeneous materials, free of defects. That is, materials where the Fresnel equations are operant since there is no light scattering. Since it is often not possible to obtain a pure macroscopic (crystalline) material, it may be possible to press the material into a (uniform, void-free) disk. We have recently been able to domore » this with ammonium sulfate powder and then measured the n & k values via two independent methods: 1) Ellipsometry - which measures the changes in amplitude and phase of light reflected from the material of interest as a function of wavelength and angle of incidence, and 2) Single angle specular reflectance with an FT spectrometer using a specular reflectance device within an FT instrument which measures the change in amplitude of light reflected from the material of interest as a function of wavelength and angle of incidence over a wide wavelength range. The quality of the derived n & k values was tested by generating the reflectance spectra of the pellet and comparing to the calculated to measured reflectance spectra of the pure material which has been previously published. The comparison to literature values showed good accuracy and good agreement, indicating promise to measure other materials by such methods.« less
Velocity Models of the Sedimentary Cover and Acoustic Basement, Central Arctic
NASA Astrophysics Data System (ADS)
Bezumov, D. V.; Butsenko, V.
2017-12-01
As the part of the Russian Federation Application on the Extension of the outer limit of the continental shelf in the Arctic Ocean to the Commission for the limits of the continental shelf the regional 2D seismic reflection and sonobuoy data was obtained in 2011, 2012 and 2014 years. Structure and thickness of the sedimentary cover and acoustic basement of the Central Arctic ocean can be refined due to this data. "VNIIOkeangeologia" created a methodology for matching 2D velocity model of the sedimentary cover based on vertical velocity spectrum calculated from wide-angle reflection sonobuoy data and the results of ray tracing of reflected and refracted waves. Matched 2D velocity models of the sedimentary cover in the Russian part of the Arctic Ocean were computed along several seismic profiles (see Figure). Figure comments: a) vertical velocity spectrum calculated from wide-angle reflection sonobuoy data. RMS velocity curve was picked in accordance with interpreted MCS section. Interval velocities within sedimentary units are shown. Interval velocities from Seiswide model are shown in brackets.b) interpreted sonobuoy record with overlapping of time-distance curves calculated by ray-tracing modelling.c) final depth velocity model specified by means of Seiswide software.
Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan
2016-11-29
High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.
An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction
Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli
2016-01-01
In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084
An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.
Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli
2016-02-11
In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.
Compact reflection holographic recording system with high angle multiplexing
NASA Astrophysics Data System (ADS)
Kanayasu, Mayumi; Yamada, Takehumi; Takekawa, Shunsuke; Akieda, Kensuke; Goto, Akiyo; Yamamoto, Manabu
2011-02-01
Holographic memory systems have been widely researched since 1963. However, the size of the drives required and the deterioration of reconstructed data resulting from shrinkage of the medium have made practical use of a hologram memory difficult. In light of this, we propose a novel holographic recording/reconstructing system: a dual-reference beam reflection system that is smaller than conventional systems such as the off-axis or co-axis types, and which is expected to increase the number of multiplexing in angle multiplexed recording. In this multiplex recording system, two laser beams are used as reference beams, and the recorded data are reconstructed stably, even if there is shrinkage of the recording medium. In this paper, a reflection holographic memory system is explained in detail. In addition, the change in angle selectivity resulting from shrinkage of the medium is analyzed using the laminated film three-dimensional simulation method. As a result, we demonstrate that a dual-reference beam multiplex recording system is effective in reducing the influence of medium shrinkage.
Internal reflection sensors with high angular resolution
NASA Astrophysics Data System (ADS)
Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.
1996-07-01
We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.
Even illumination in total internal reflection fluorescence microscopy using laser light.
Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A
2008-01-01
In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.
2015-12-01
Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).
Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di
2013-01-15
The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.
There is no bidirectional hot-spot in Sentinel-2 data
NASA Astrophysics Data System (ADS)
Li, Z.; Roy, D. P.; Zhang, H.
2017-12-01
The Sentinel-2 multi-spectral instrument (MSI) acquires reflective wavelength observations with directional effects due to surface reflectance anisotropy, often described by the bidirectional reflectance distribution function (BRDF). Recently, we quantified Sentinel-2A (S2A) BRDF effects for 20° × 10° of southern Africa sensed in January and in April 2016 and found maximum BRDF effects for the January data and at the western scan edge, i.e., in the back-scatter direction (Roy et al. 2017). The hot-spot is the term used to describe the increased directional reflectance that occurs over most surfaces when the solar and viewing directions coincide, and has been observed in wide-field of view data such as MODIS. Recently, we observed that Landsat data will not have a hot-spot because the global annual minimum solar zenith angle is more than twice the maximum view zenith angle (Zhang et al. 2016). This presentation examines if there is a S2A hot-spot which may be possible as it has a wider field of view (20.6°) and higher orbit (786 km) than Landsat. We examined a global year of S2A metadata extracted using the Committee on Earth Observation Satellite Visualization Environment (COVE) tool, computed the solar zenith angles in the acquisition corners, and ranked the acquisitions by the solar zenith angle in the back-scatter direction. The available image data for the 10 acquisitions with the smallest solar zenith angle over the year were ordered from the ESA and their geometries examined in detail. The acquisition closest to the hot-spot had a maximum scattering angle of 173.61° on its western edge (view zenith angle 11.91°, solar zenith angle 17.97°) and was acquired over 60.80°W 24.37°N on June 2nd 2016. Given that hot-spots are only apparent when the scattering angle is close to 180° we conclude from this global annual analysis that there is no hot-spot in Sentinel-2 data. Roy, D.P, Li, J., Zhang, H.K., Yan, L., Huang, H., Li, Z., 2017, Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance, RSE. 199, 25-38. Zhang, H. K., Roy, D.P., Kovalskyy, V., 2016, Optimal solar geometry definition for global long term Landsat time series bi-directional reflectance normalization, IEEE TGRS. 54(3), 1410-1418.
Wide steering angle microscanner based on curved surface
NASA Astrophysics Data System (ADS)
Sabry, Yasser; Khalil, Diaa; Saadany, Bassam; Bourouina, Tarik
2013-03-01
Intensive industrial and academic research is oriented towards the design and fabrication of optical beam steering systems based on MEMS technology. In most of these systems, the scanning is achieved by rotating a flat micromirror around a central axis in which the main challenge is achieving a wide mirror rotation angle. In this work, a novel method of optical beam scanning based on reflection from a curved surface is presented. The scanning occurs when the optical axis of the curved surface is displaced with respect to the optical axis of the incident beam. To overcome the possible deformation of the spot with the scanning angle, the curved surface is designed with a specific aspherical profile. Moreover, the scanning exhibits a more linearized scanning angle-displacement relation than the conventional spherical profile. The presented scanner is fabricated using DRIE technology on an SOI wafer. The curved surface (reflector) is metalized and attached to a comb-drive actuator fabricated in the same lithography step. A single-mode fiber, behaving as a Gaussian beam source, is positioned on the substrate facing the mirror. The reflected optical beam angle and spotsize in the far field is recorded versus the relative shift between the fiber and the curved mirror. The spot size is plotted versus the scanning angle and a scanning spot size uniformity of about +/-10% is obtained for optical deflection angles up to 100 degrees. As the optical beam is propagating parallel to the wafer substrate, a completely integrated laser scanner can be achieved with filters and actuators self-aligned on the same chip that allows low cost and mass production of this important product.
Optical properties of transiently-excited semiconductor hyperbolic metamaterials
Campione, Salvatore; Luk, Ting S.; Liu, Sheng; ...
2015-10-02
Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similarmore » range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Lastly, we discuss the onset of negative refraction in the photopumped state.« less
NASA Technical Reports Server (NTRS)
Abel, I. R. (Inventor)
1974-01-01
A wide angle, low focal ratio, high resolution, catoptric, image plane scanner is described. The scanner includes the following features: (1) a reflective improvement on the Schmidt principle, (2) a polar line scanner in which all field elements are brought to and corrected on axis, and (3) a scanner arrangement in which the aperture stop of the system is imaged at the center of curvature of a spherical primary mirror. The system scans are a large radial angle and an extremely high rate of speed with relatively small scanning mirrors. Because the system is symmetrical about the optical axis, the obscuration is independent of the scan angle.
NASA Astrophysics Data System (ADS)
Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.
2017-10-01
The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.
A novel screen design for anti-ambient light front projection display with angle-selective absorber
NASA Astrophysics Data System (ADS)
Liao, Tianju; Chen, Weigang; He, Kebo; Zhang, Zhaoyu
2016-03-01
Ambient light is destructive to the reflective type projection system's contrast ratio which has great influence on the image quality. In contrast to the conventional front projection, short-throw projection has its advantage to reject the ambient light. Fresnel lens-shaped reflection layer is adapted to direct light from a large angle due to the low lens throw ratio to the viewing area. The structure separates the path of the ambient light and projection light, creating the chance to solve the problem that ambient light is mixed with projection light. However, with solely the lens-shaped reflection layer is not good enough to improve the contrast ratio due to the scattering layer, which contributes a necessarily wide viewing angle, could interfere with both light paths before hitting the layer. So we propose a new design that sets the draft angle surface with absorption layer and adds an angle-selective absorber to separate these two kinds of light. The absorber is designed to fit the direction of the projection light, leading to a small absorption cross section for the projection light and respectfully big absorption cross section for the ambient light. We have calculated the design with Tracepro, a ray tracing program and find a nearly 8 times contrast ratio improvement against the current design in theory. This design can hopefully provide efficient display in bright lit situation with better viewer satisfaction.
Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.; Balgley, Jesse; Dean, Cory R.; Tromp, Rudolf M.; van der Molen, Sense Jan
2016-01-01
High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the ‘chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of. PMID:27897180
Toslak, Devrim; Liu, Changgeng; Alam, Minhaj Nur; Yao, Xincheng
2018-06-01
A portable fundus imager is essential for emerging telemedicine screening and point-of-care examination of eye diseases. However, existing portable fundus cameras have limited field of view (FOV) and frequently require pupillary dilation. We report here a miniaturized indirect ophthalmoscopy-based nonmydriatic fundus camera with a snapshot FOV up to 67° external angle, which corresponds to a 101° eye angle. The wide-field fundus camera consists of a near-infrared light source (LS) for retinal guidance and a white LS for color retinal imaging. By incorporating digital image registration and glare elimination methods, a dual-image acquisition approach was used to achieve reflection artifact-free fundus photography.
Sun-view angle effects on reflectance factors of corn canopies
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.; Bauer, M. E.
1985-01-01
The effects of sun and view angles on reflectance factors of corn (Zea mays L.) canopies ranging from the six leaf stage to harvest maturity were studied on the Purdue University Agronomy Farm by a multiband radiometer. The two methods of acquiring spectral data, the truck system and the tower systrem, are described. The analysis of the spectral data is presented in three parts: solar angle effects on reflectance factors viewed at nadir; solar angle effects on reflectance factors viewed at a fixed sun angle; and both sun and view angles effect on reflectance factors. The analysis revealed that for nadir-viewed reflectance factors there is a strong solar angle dependence in all spectral bands for canopies with low leaf area index. Reflectance factors observed from the sun angle at different view azimuth angles showed that the position of the sensor relative to the sun is important in determining angular reflectance characteristics. For both sun and view angles, reflectance factors are maximized when the sensor view direction is towards the sun.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Irwin, S. H.; NELSON; Roleyni, G.
1977-01-01
Optimal design studies of MLS angle-receivers and a theoretical design-study of MLS DME-receivers are reported. The angle-receiver results include an integration of the scan data processor and tracking filter components of the optimal receiver into a unified structure. An extensive simulation study comparing the performance of the optimal and threshold receivers in a wide variety of representative dynamical interference environments was made. The optimal receiver was generally superior. A simulation of the performance of the threshold and delay-and-compare receivers in various signal environments was performed. An analysis of combined errors due to lateral reflections from vertical structures with small differential path delays, specular ground reflections with neglible differential path delays, and thermal noise in the receivers is provided.
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Wertz, John N.; Welter, John T.; Wallentine, Sarah; Lindgren, Eric A.; Kramb, Victoria; Zainey, David
2018-04-01
In this study, the use of angled-beam ultrasonic NDE was explored for the potential characterization of the hidden regions of impact damage in composites. Simulated studies using CIVA FIDEL 2D were used to explore this inspection problem. Quasi-shear (qS) modes can be generated over a wide range of angles and used to reflect off the backwall and interrogate under the top delaminations of impact damage. Secondary probe signals that do propagate normal to the surface were found to be significant under certain probe conditions, and can potentially interfere with weakly scattered signals from within the composite panel. Simulations were used to evaluate the source of the multiple paths of reflections from the edge of a delamination; time-of-flight and amplitude will depend on the depth of the delamination and location of neighboring delaminations. For angled-beam inspections, noise from both the top surface roughness and internal features was found to potentially mask the detection of signals from the edge of delaminations. Lastly, the study explored the potential of generating "guided" waves along the backwall using an angled-beam source and subsequently measuring scattered signals from a far surface crack hidden under a delamination.
Siddique, Radwanul Hasan; Diewald, Silvia; Leuthold, Juerg; Hölscher, Hendrik
2013-06-17
Morpho butterflies are well-known for their iridescence originating from nanostructures in the scales of their wings. These optical active structures integrate three design principles leading to the wide angle reflection: alternating lamellae layers, "Christmas tree" like shape, and offsets between neighboring ridges. We study their individual effects rigorously by 2D FEM simulations of the nanostructures of the Morpho sulkowskyi butterfly and show how the reflection spectrum can be controlled by the design of the nanostructures. The width of the spectrum is broad (≈ 90 nm) for alternating lamellae layers (or "brunches") of the structure while the "Christmas tree" pattern together with a height offset between neighboring ridges reduces the directionality of the reflectance. Furthermore, we fabricated the simulated structures by e-beam lithography. The resulting samples mimicked all important optical features of the original Morpho butterfly scales and feature the intense blue iridescence with a wide angular range of reflection.
NASA Astrophysics Data System (ADS)
Han, S. K.; Wu, C. W.; Chen, Z.
2018-01-01
We investigate through numerical simulation the anomalous reflection (AR) of acoustic waves with perfect phononic crystals (PCs). Broadband AR is observed in a wide angle for the oblique incidence. The AR is due to the unsymmetrical specific acoustic impedance (SAI) profile along the surface, which is caused by the high frequency incidence. The findings in this paper complement the theories for the AR of acoustic waves with PCs, and may find applications in acoustic engineerings.
Specular Andreev reflection in thin films of topological insulators
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Asgari, Reza
2016-05-01
We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.
2011-12-01
The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the Moroccan and Nova Scotia margin will give new insights into the original opening of the Atlantic ocean. Further work on this data set will include forward modelling of the wide-angle seismic data, gravity and magnetic modelling.
Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity
Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe
2013-01-01
The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181
Computer modeling of bidirectional spectra: the role of geometry of illumination/observation
NASA Astrophysics Data System (ADS)
Grynko, Ye.; Shkuratov, Yu.; Mall, U.
Reflectance spectroscopy is widely used in the remote sensing of the Moon. Ground based and space spectrophotometric observations provide information about physical properties and chemical composition of lunar regolith. The main spectral features such as spectral slope and parameters of the absorption bands are different for different minerals and depend on the surface roughness, particle size, degrees of maturity and cristallinity, etc. In order to interpret reflectance measurements a model describing the light interaction with a regolith-like surface is needed. However, the problem of light scattering in dense particulate media consisting of irregular particles larger than the wavelength of light (which is the case for lunar regolith) has not yet been solved and only approximate models exist. Spectrophotometric properties of such surfaces can be analyzed in the geometric optics approach with one-dimensional (1-D) light scattering models (e.g., [1]). Although the 1-D models are successfully applied to interprete planetary regolith spectra they do not give an answer how spectral features depend on the geometrical illumination/observation condition of the surface. Laboratory measurements prove that the changing lighting conditions play a significant role in the formation of the above mentioned spectral features [2, 3]. In the presented work we use computer modeling to simulate light reflection from a regolith-like surface. Our computer experiment includes two stages: The simulation of the medium and ray tracing [4, 5]. Particles with random irregular shape are randomly distributed in a cyclically closed model volume which forms a semi-infinite medium (surface). Their surface is described by flat facets.The applied technique uses a Monte Carlo ray tracing method with parallel rays falling under a given angle relative to the average surface normal. The interaction of a ray with a particle surface facet is determined by Fresnel formulas and Snell's law. The model delivers the absolute surface reflectance as function of wavelength for a given geometrical illumination/observation condition In this paper we study the dependence of the reflectance spectra on the phase angle. The angle of incidence is constant and equals to 70°. The phase angle changes from 0° to 160°. For the substance which the particles are made of we chose average value 1 for the complex refractive index corresponding to lunar mare and highlands. Our calculations reveal a strong dependence of the spectral slopes on the phase angle. This confirms the previous general conclusion given in [2] that the larger the phase angle is the redder is the spectrum. A decomposition of the reflected flux into different scattering components shows that this is caused by the indicatrix of single scattering. Multiple scattering has almost no influence on spectral slope. The shape of the absorption bands also varies with phase angle but this dependence is not regular. The 1 µm feature is more pronounced at small and moderate phase angles and becomes wide and less visible at very large phase angles. References. [1] Yu. Shkuratov et al., Icarus, 137, 235-246 (1999). [2] C. M. Pieters et al., LPSC XXII, Abstract #1069 (1991). [3] A. Cord et al., Icarus, 165, 414-427 (2003). [4] Ye. Grynko and Yu. Shkuratov, J. Quant. Spectrosc. Rad. Trans. 78, 319- 340 (2003). [5] Yu. Shkuratov and Ye. Grynko, Icarus, 173, 16-28 (2006). 2
Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan
2017-11-01
A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of target reflection on three-dimensional range gated reconstruction.
Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong
2016-08-20
The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.
1990-02-14
Range : 4 billion miles from Earth, at 32 degrees to the ecliptic. P-36057C This color image of the Sun, Earth, and Venus is one of the first, and maybe, only images that show are solar system from such a vantage point. The image is a portion of a wide angle image containing the sun and the region of space where the Earth and Venus were at the time, with narrow angle cameras centered on each planet. The wide angle was taken with the cameras darkest filter, a methane absorption band, and the shortest possible exposure, one two-hundredth of a second, to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky, as seen from Voyager's perpective at the edge of the solar system. Yet, it is still 8xs brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics of the camera. The rays around th sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. the 2 narrow angle frames containing the images of the Earth and Venus have been digitally mosaicked into the wide angle image at the appropriate scale. These images were taken through three color filters and recombined to produce the color image. The violet, green, and blue filters used , as well as exposure times of .72,.48, and .72 for Earth, and .36, .24, and .36 for Venus.The images also show long linear streaks resulting from scatering of sulight off parts of the camera and its shade.
Structure of gel phase DMPC determined by X-ray diffraction.
Tristram-Nagle, Stephanie; Liu, Yufeng; Legleiter, Justin; Nagle, John F
2002-01-01
The structure of fully hydrated gel phase dimyristoylphosphatidylcholine lipid bilayers was obtained at 10 degrees C. Oriented lipid multilayers were used to obtain high signal-to-noise intensity data. The chain tilt angle and an estimate of the methylene electron density were obtained from wide angle reflections. The chain tilt angle is measured to be 32.3 +/- 0.6 degrees near full hydration, and it does not change as the sample is mildly dehydrated from a repeat spacing of D = 59.9 A to D = 56.5 A. Low angle diffraction peaks were obtained up to the tenth order for 17 samples with variable D and prepared by three different methods with different geometries. In addition to the usual Fourier reconstructions of the electron density profiles, model electron density profiles were fit to all the low angle data simultaneously while constraining the model to include the wide-angle data and the measured lipid volume. Results are obtained for area/lipid (A = 47.2 +/- 0.5 A(2)), the compressibility modulus (K(A) = 500 +/- 100 dyn/cm), various thicknesses, such as the hydrocarbon thickness (2D(C) = 30.3 +/- 0.2 A), and the head-to-head spacing (D(HH) = 40.1 +/- 0.1 A). PMID:12496100
THOR: Cloud Thickness from Off beam Lidar Returns
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken
2004-01-01
Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
The crustal structure in the transition zone between the western and eastern Barents Sea
NASA Astrophysics Data System (ADS)
Shulgin, Alexey; Mjelde, Rolf; Faleide, Jan Inge; Høy, Tore; Flueh, Ernst; Thybo, Hans
2018-04-01
We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modeling uses the joint refraction/reflection tomography approach where co-located multi-channel seismic reflection data constrain the sedimentary structure. Further, forward gravity modeling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure.
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di
2017-10-01
Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.
Seismic wide-angle constraints on the crust of the southern Urals
NASA Astrophysics Data System (ADS)
Carbonell, R.; Gallart, J.; PéRez-Estaún, A.; Diaz, J.; Kashubin, S.; Mechie, J.; Wenzel, F.; Knapp, J.
2000-06-01
A wide-angle seismic reflection/refraction data set was acquired during spring 1995 across the southern Urals to characterize the lithosphere beneath this Paleozoic orogen. The wide-angle reflectivity features a strong frequency dependence. While the lower crustal reflectivity is in the range of 6-15 Hz, the PmP is characterized by frequencies below 6 Hz. After detailed frequency filtering, the seismic phases constrain a new average P wave velocity crustal model that consists of an upper layer of 5.0-6.0 km/s, which correlates with the surface geology; 5-7 km depths at which the velocities increase to 6.2-6.3 km/s; 10-30 km depths at which, on average, the crust is characterized by velocities of 6.6 km/s; and finally, the lower crust, from 30-35 km down to the Moho, which has velocities ranging from 6.8 to 7.4 km/s. Two different S wave velocity models, one for the N-S and one for the E-W, were derived from the analysis of the horizontal component recordings. Crustal sections of Poisson's ratio and anisotropy were calculated from the velocity models. The Poisson's ratio increases in the lower crust at both sides of the root zone. A localized 2-3% anisotropy zone is imaged within the lower crust beneath the terranes east of the root. This feature is supported by time differences in the SmS phase and by the particle motion diagrams, which reveal two polarized directions of motion. Velocities are higher in the central part of the orogen than for the Siberian and eastern plates. These seismic recordings support a 50-56 km crustal thickness beneath the central part of the orogen in contrast to Moho depths of ≈ 45 km documented at the edges of the transect. The lateral variation of the PmP phase in frequency content and in waveform can be taken as evidence of different genetic origins of the Moho in the southern Urals.
Correction for reflected sky radiance in low-altitude coastal hyperspectral images.
Kim, Minsu; Park, Joong Yong; Kopilevich, Yuri; Tuell, Grady; Philpot, William
2013-11-10
Low-altitude coastal hyperspectral imagery is sensitive to reflections of sky radiance at the water surface. Even in the absence of sun glint, and for a calm water surface, the wide range of viewing angles may result in pronounced, low-frequency variations of the reflected sky radiance across the scan line depending on the solar position. The variation in reflected sky radiance can be obscured by strong high-spatial-frequency sun glint and at high altitude by path radiance. However, at low altitudes, the low-spatial-frequency sky radiance effect is frequently significant and is not removed effectively by the typical corrections for sun glint. The reflected sky radiance from the water surface observed by a low-altitude sensor can be modeled in the first approximation as the sum of multiple-scattered Rayleigh path radiance and the single-scattered direct-solar-beam radiance by the aerosol in the lower atmosphere. The path radiance from zenith to the half field of view (FOV) of a typical airborne spectroradiometer has relatively minimal variation and its reflected radiance to detector array results in a flat base. Therefore the along-track variation is mostly contributed by the forward single-scattered solar-beam radiance. The scattered solar-beam radiances arrive at the water surface with different incident angles. Thus the reflected radiance received at the detector array corresponds to a certain scattering angle, and its variation is most effectively parameterized using the downward scattering angle (DSA) of the solar beam. Computation of the DSA must account for the roll, pitch, and heading of the platform and the viewing geometry of the sensor along with the solar ephemeris. Once the DSA image is calculated, the near-infrared (NIR) radiance from selected water scan lines are compared, and a relationship between DSA and NIR radiance is derived. We then apply the relationship to the entire DSA image to create an NIR reference image. Using the NIR reference image and an atmospheric spectral reflectance look-up table, the low spatial frequency variation of the water surface-reflected atmospheric contribution is removed.
Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Tréhu, Anne M.; Miller, Kate C.; ten Brink, Uri S.; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.
1999-01-01
This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide-angle seismic data collected using the Refteks and ocean-bottom seismometers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but SHIPS appears to have successfully obtained useful data from almost all the stations deployed to record the airgun shots. Several interesting arrivals were observed: including refractions from the sedimentary basin fill in several basins, refractions from basement rocks forming the upper crust, Pg, refractions from the upper mantle, Pn, as well as reflections from within the crust and from the top of the upper mantle, PmP. We separately archived more than 30 local earthquakes recorded by the Reftek array during our deployment.
Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.
1996-01-01
Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim
2014-12-16
Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [ Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an averagemore » percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).« less
Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A
2014-12-16
Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an average percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, GaoYa; Yao, Jianquan
2016-01-01
A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than −10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices. PMID:27982089
Liang, Lanju; Wei, Minggui; Yan, Xin; Wei, Dequan; Liang, Dachuan; Han, Jiaguang; Ding, Xin; Zhang, GaoYa; Yao, Jianquan
2016-12-16
A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than -10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices.
Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Choi, Y. J.; Kim, S.; Kang, K. I.
2016-12-01
A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.
NASA Technical Reports Server (NTRS)
Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)
2010-01-01
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory
NASA Astrophysics Data System (ADS)
Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao
2016-03-01
Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.
Broadband one-dimensional photonic crystal wave plate containing single-negative materials.
Chen, Yihang
2010-09-13
The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.
Tyan, R C; Sun, P C; Scherer, A; Fainman, Y
1996-05-15
We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.
Analytical fitting model for rough-surface BRDF.
Renhorn, Ingmar G E; Boreman, Glenn D
2008-08-18
A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.
Optofluidic refractive index sensor based on partial reflection
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zhang, Zhang; Wang, Yichuan; Ye, Meiying; Fang, Wei; Tong, Limin
2017-06-01
We demonstrate a novel optofluidic refractive index (RI) sensor with high sensitivity and wide dynamic range based on partial reflection. Benefited from the divergent incident light and the output fibers with different tilting angles, we have achieved highly sensitive RI sensing in a wide range from 1.33 to 1.37. To investigate the effectiveness of this sensor, we perform a measurement of RI with a resolution of ca. 5.0×10-5 refractive index unit (RIU) for ethylene glycol solutions. Also, we have measured a series of liquid solutions by using different output fibers, achieving a resolution of ca. 0.52 mg/mL for cane surge. The optofluidic RI sensor takes advantage of the high sensitivity, wide dynamic range, small footprint, and low sample consumption, as well as the efficient fluidic sample delivery, making it useful for applications in the food industry.
Scattering-Type Surface-Plasmon-Resonance Biosensors
NASA Technical Reports Server (NTRS)
Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh
2005-01-01
Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined
Metal/dielectric/metal sandwich film for broadband reflection reduction
Jen, Yi-Jun; Lakhtakia, Akhlesh; Lin, Meng-Jie; Wang, Wei-Hao; Wu, Huang-Ming; Liao, Hung-Sheng
2013-01-01
A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon. PMID:23591704
Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com; Rock Fluid Imaging Lab., Bandung; Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com
2015-04-16
Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied aboutmore » the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.« less
NASA Astrophysics Data System (ADS)
Zeng, Y.; Berry, J. A.; Jing, L.; Qinhuo, L.
2017-12-01
Terrestrial ecosystem plays a critical role in removing CO2 from atmosphere by photosynthesis. Remote sensing provides a possible way to monitor the Gross Primary Production (GPP) at the global scale. Vegetation Indices (VI), e.g., NDVI and NIRv, and Solar Induced Fluorescence (SIF) have been widely used as a proxy for GPP, while the impact of 3D canopy structure on VI and SIF has not be comprehensively studied yet. In this research, firstly, a unified radiative transfer model for visible/near-infrared reflectance and solar induced chlorophyll fluorescence has been developed based on recollision probability and directional escape probability. Then, the impact of view angles, solar angles, weather conditions, leaf area index, and multi-layer leaf angle distribution (LAD) on VI and SIF has been studied. Results suggest that canopy structure plays a critical role in distorting pixel-scale remote sensing signal from leaf-scale scattering. In thin canopy, LAD affects both of the remote sensing estimated GPP and real GPP, while in dense canopy, SIF variations are mainly due to canopy structure, instead of just due to physiology. At the microscale, leaf angle reflects the plant strategy to light on the photosynthesis efficiency, and at the macroscale, a priori knowledge of leaf angle distribution for specific species can improve the global GPP estimation by remote sensing.
NASA Astrophysics Data System (ADS)
Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan
2018-05-01
A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.
Optical Reflection Spectroscopy of GEO Objects
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald
2013-01-01
We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.
Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo
2016-03-01
The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin
2017-04-01
The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531-R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using the least squares regression with multi-angle observations. In both the half-hourly and daily time steps, the canopy-level two-leaf PRI (PRIt) can effectively enhance (>50% and >35%, respectively) the correlation between PRI and LUE derived from the tower flux measurements over the big-leaf PRI (PRIb) taken as the arithmetic average of the multi-angle measurements in a given time interval. PRIt is very effective in detecting the low-moderate drought stress on LUE at half-hourly time steps, while ineffective in detecting severe atmospheric water and heat stresses, which is probably due to alternative radiative energy sink, i.e. photorespiration. Overall, the two-leaf approach well overcomes some external effects (e.g. sun-target-view geometry) that interfere with PRI signals.
New light-shielding technique for shortening the baffle length of a star sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori
2002-10-01
We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Melnikova, V. S.; Popov, V. V., E-mail: popov-slava@yahoo.co.uk
2016-11-15
The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.
Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
Gao, M; Huang, X; Yang, P; Kattawar, G W
2013-08-20
The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.
Angular dependance of spectral reflection for different materials
NASA Astrophysics Data System (ADS)
Kiefer, Pascal M.
2017-10-01
Parameters like the sun angle as well as the measurement angle mostly are not taken into account when simulating because their influence on the reflectivity is weak. Therefore the impact of a changing measurement and illumination angle on the reflectivity is investigated. Furthermore the impact of humidity and chlorophyll in the scenery is studied by analyzing reflectance spectra of different vegetative background areas. It is shown that the measurement as well as the illumination angle has an important influence on the absolute reflection values which raises the importance of measurements of the bidirectional reflectance distribution function (BRDF).
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation
NASA Astrophysics Data System (ADS)
Stafe, M.; Popescu, A. A.; Savastru, D.; Negutu, C.; Vasile, G.; Mihailescu, M.; Ducariu, A.; Savu, V.; Tenciu, D.; Miclos, S.; Baschir, L.; Verlan, V. V.; Bordian, O.; Puscas, N. N.
2018-03-01
Optical hysteresis is a fundamental phenomenon that can lead to optical bistability and high-speed signal processing. Here, we present a theoretical and experimental study of the optical hysteresis phenomenon in amorphous As2S3 chalcogenide based waveguide structures under surface plasmon resonance (SPR) conditions. The SPR structure is irradiated with low power CW Ar laser radiation at 514 nm wavelength, with photon energy near the optical band-gap of As2S3, in a Kretschmann-Raether configuration. First, we determined the incidence angle on the SPR structure for resonant coupling of the laser radiation within the waveguide structure. Subsequently, by setting the near resonance incidence angle, we analyzed the variation of the laser power reflected on the SPR structure with incident power. We demonstrated that, by setting the incidence angle at a value slightly smaller than the resonance angle, the increase followed by the decrease of the incident power lead to a wide (up to 60%) hysteresis loop of the reflected power. This behavior is related to the slow and persistent photo-induced modification of the complex refractive index of As2S3 under 514 nm laser irradiation. The experimental and theoretical results are in good agreement, demonstrating the validity of the theoretical model presented here.
NASA Astrophysics Data System (ADS)
Wang, Zhi-shan; Zhao, Yue-jin; Li, Zhuo; Dong, Liquan; Chu, Xuhong; Li, Ping
2010-11-01
The comparison goniometer is widely used to measure and inspect small angle, angle difference, and parallelism of two surfaces. However, the common manner to read a comparison goniometer is to inspect the ocular of the goniometer by one eye of the operator. To read an old goniometer that just equips with one adjustable ocular is a difficult work. In the fabrication of an IR reflecting mirrors assembly, a common comparison goniometer is used to measure the angle errors between two neighbor assembled mirrors. In this paper, a quick reading technique image-based for the comparison goniometer used to inspect the parallelism of mirrors in a mirrors assembly is proposed. One digital camera, one comparison goniometer and one set of computer are used to construct a reading system, the image of the sight field in the comparison goniometer will be extracted and recognized to get the angle positions of the reflection surfaces to be measured. In order to obtain the interval distance between the scale lines, a particular technique, left peak first method, based on the local peak values of intensity in the true color image is proposed. A program written in VC++6.0 has been developed to perform the color digital image processing.
Proust, Julien; Fehrembach, Anne-Laure; Bedu, Frédéric; Ozerov, Igor; Bonod, Nicolas
2016-01-01
Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence. PMID:27109643
Structural colored liquid membrane without angle dependence.
Takeoka, Yukikazu; Honda, Masaki; Seki, Takahiro; Ishii, Masahiko; Nakamura, Hiroshi
2009-05-01
We have demonstrated for the first time that condensed gel particle suspensions in amorphous-like states display structural color with low angle dependence. This finding is in contrast to the common understanding that a periodic dielectric structure is fundamental to photonic band gap (PBG) production, and it validates the theory that a "tight bonding model" that is applicable to semiconductor systems can also be applied to photonic systems. More practically, this structural colored suspension represents a promising new material for the manufacture of reflective full-color displays with a wide viewing angle and nonfading color materials. This liquid system shows promise as a display material because electronic equipment used for display systems can easily be filled with the liquid in the same way that liquid crystals are currently used.
Zhang, Weihong; Howell, Steven C; Wright, David W; Heindel, Andrew; Qiu, Xiangyun; Chen, Jianhan; Curtis, Joseph E
2017-05-01
We describe a general method to use Monte Carlo simulation followed by torsion-angle molecular dynamics simulations to create ensembles of structures to model a wide variety of soft-matter biological systems. Our particular emphasis is focused on modeling low-resolution small-angle scattering and reflectivity structural data. We provide examples of this method applied to HIV-1 Gag protein and derived fragment proteins, TraI protein, linear B-DNA, a nucleosome core particle, and a glycosylated monoclonal antibody. This procedure will enable a large community of researchers to model low-resolution experimental data with greater accuracy by using robust physics based simulation and sampling methods which are a significant improvement over traditional methods used to interpret such data. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Iwasaki, T.; Tsumura, N.; Ito, T.; Sato, H.; Kurashimo, E.; Hirata, N.; Arita, K.; Noda, K.; Fujiwara, A.; Abe, S.; Kikuchi, S.; Suzuki, K.
2014-12-01
The oblique subduction of the Pacific plate beneath the southernmost part of the Kuril trench is generating a unique tectonic environment in the Hokkaido Island, Japan. In this area, the Kuril forearc sliver started to collide against Northeast (NE) Japan arc from the east at the time of middle Miocene to form the Hidaka collision zone (HCZ). This collision has been acting as a responsible factor for the westward obduction of the crustal rocks of the Kuril arc (the Hidaka metamorphic belt (HMB)) along the Hidaka main thrust (HMT) and the development of the thick foreland fold-and-thrust belt. A multi-disciplinary project of the 1998-2000 Hokkaido Transect, crossing the northern part of the HCZ in EW direction, collected high-quality seismic data on a 227-km seismic refraction/wide-angle reflection profile and three seismic reflection lines. Reprocessing/reinterpretation for this data set revealed detailed collision structure ongoing in the northern part of the HCZ. The westward obduction of the Kuril arc crust was clearly imaged along the HMT. This obduction starts at a depth of 27-30 km, much deeper than in the southern HCZ (23-25 km). In the west of the HMT, we recognize the gently eastward dipping structure, representing the fragments of Cretaceous subduction/arc complexes or deformation interfaces branched from the HMT. The most important finding from our reprocessing is a series of reflection events at a 30-45 km depth below the obducted Kuril arc crust, which probably correspond to the lower crust/Moho within the NE Japan arc descending down to the east under the collision zone. The wide-angle reflection data indicate that the subducted NE Japan arc meets the Kuril arc 30-40 km east of the HMT at a depth of 30 km. This structural geometry well explained a weak but coherent seismic phase observed at far offsets (120-180 km) on the wide-angle reflection line. The obtained structure shows the complicated collision style where the upper 30-km Kuril arc crust is thrust up with significant deformation. At the moment, we cannot find out the strong evidence of crustal delamination. This is in a marked contrast with the case of the southern part of the HCZ, where the upper 23-km crust is obducted at about 20 km distance from the HMT, while the remaining lower crust is descending down to the subducted Pacific plate.
Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera
NASA Astrophysics Data System (ADS)
Mahanti, P.; Humm, D. C.; Robinson, M. S.; Boyd, A. K.; Stelling, R.; Sato, H.; Denevi, B. W.; Braden, S. E.; Bowman-Cisneros, E.; Brylow, S. M.; Tschimmel, M.
2016-04-01
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) has acquired more than 250,000 images of the illuminated lunar surface and over 190,000 observations of space and non-illuminated Moon since 1 January 2010. These images, along with images from the Narrow Angle Camera (NAC) and other Lunar Reconnaissance Orbiter instrument datasets are enabling new discoveries about the morphology, composition, and geologic/geochemical evolution of the Moon. Characterizing the inflight WAC system performance is crucial to scientific and exploration results. Pre-launch calibration of the WAC provided a baseline characterization that was critical for early targeting and analysis. Here we present an analysis of WAC performance from the inflight data. In the course of our analysis we compare and contrast with the pre-launch performance wherever possible and quantify the uncertainty related to various components of the calibration process. We document the absolute and relative radiometric calibration, point spread function, and scattered light sources and provide estimates of sources of uncertainty for spectral reflectance measurements of the Moon across a range of imaging conditions.
Bright color optical switching device by polymer network liquid crystal with a specular reflector.
Lee, Gae Hwang; Hwang, Kyu Young; Jang, Jae Eun; Jin, Yong Wan; Lee, Sang Yoon; Jung, Jae Eun
2011-07-04
The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device.
Thilak, Vimal; Voelz, David G; Creusere, Charles D
2007-10-20
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Voelz, David G.; Creusere, Charles D.
2007-10-01
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
Kinematics of reflections in subsurface offset and angle-domain image gathers
NASA Astrophysics Data System (ADS)
Dafni, Raanan; Symes, William W.
2018-05-01
Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.
Lee, Kyu-Tae; Jang, Ji-Yun; Park, Sang Jin; Ok, Song Ah; Park, Hui Joon
2017-09-28
See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.
NASA Technical Reports Server (NTRS)
Donovan, Sheila
1985-01-01
A full evaluation of the bidirectional reflectance properties of different vegetated surfaces was limited in past studies by instrumental inadequacies. With the development of the PARABOLA, it is now possible to sample reflectances from a large number of view angles in a short period of time, maintaining an almost constant solar zenith angle. PARABOLA data collected over five different canopies in Texas are analyzed. The objective of this investigation was to evaluate the intercanopy and intracanopy differences in bidirectional reflectance patterns. Particular attention was given to the separability of canopy types using different view angles for the red and the near infrared (NIR) spectral bands. Comparisons were repeated for different solar zenith angles. Statistical and other quantitative techniques were used to assess these differences. For the canopies investigated, the greatest reflectances were found in the backscatter direction for both bands. Canopy discrimination was found to vary with both view angle and the spectral reflectance band considered, the forward scatter view angles being most suited to observations in the NIR and backscatter view angles giving better results in the red band. Because of different leaf angle distribution characteristics, discrimination was found to be better at small solar zenith angles in both spectral bands.
Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates
Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.
2014-01-01
Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ±40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830
Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes
NASA Astrophysics Data System (ADS)
Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.
2018-01-01
Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.
NASA Technical Reports Server (NTRS)
Lemaster, E. W.
1975-01-01
The experimental bidirectional reflectance of cotton is presented and compared to the Suits vegetation model. Some wheat reflectance data are presented for a Mexican dwarf wheat. The general results are that the exchange of source position and detector position gives the same reflectance measurement if the irradiance is purely specular. This agrees with Suites. The reflectance versus sun angle and reflectance versus detector angle do not agree with the Suits predictions. There is qualitative agreement between the Suits model and reflectance versus wavelength, but quantitative agreement has not been observed. Reflectance of a vegetation canopy with detector azimuth shows a change of 10 to 40% for even sun angles near zenith, so it seems advisable to include azimuthal angles into models of vegetation.
Photographic assessment of retroreflective film properties
NASA Astrophysics Data System (ADS)
Burgess, G.; Shortis, M. R.; Scott, P.
2011-09-01
Retroreflective film is used widely for target manufacture in close-range photogrammetry, especially where high precision is required for applications in industrial or engineering metrology. 3M Scotchlite 7610 high gain reflective sheeting is the gold standard for retroreflective targets because of the high level of response for incidence angles up to 60°. Retroreflective film is now widely used in the transport industry for signage and many other types of film have become available. This study reports on the performance of six types of retroreflective sheeting, including 7610, based on published metrics for reflectance. Measurements were made using a camera and flash, so as to be directly applicable to photogrammetry. Analysis of the results from this project and the assessment of previous research indicates that the use of standards is essential to enable a valid comparison of retroreflective performance.
Neutron reflecting supermirror structure
Wood, J.L.
1992-12-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.
Neutron reflecting supermirror structure
Wood, James L.
1992-01-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.
Photometric normalization of LROC WAC images
NASA Astrophysics Data System (ADS)
Sato, H.; Denevi, B.; Robinson, M. S.; Hapke, B. W.; McEwen, A. S.; LROC Science Team
2010-12-01
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) acquires near global coverage on a monthly basis. The WAC is a push frame sensor with a 90° field of view (FOV) in BW mode and 60° FOV in 7-color mode (320 nm to 689 nm). WAC images are acquired during each orbit in 10° latitude segments with cross track coverage of ~50 km. Before mosaicking, WAC images are radiometrically calibrated to remove instrumental artifacts and to convert at sensor radiance to I/F. Images are also photometrically normalized to common viewing and illumination angles (30° phase), a challenge due to the wide angle nature of the WAC where large differences in phase angle are observed in a single image line (±30°). During a single month the equatorial incidence angle drifts about 28° and over the course of ~1 year the lighting completes a 360° cycle. The light scattering properties of the lunar surface depend on incidence(i), emission(e), and phase(p) angles as well as soil properties such as single-scattering albedo and roughness that vary with terrain type and state of maturity [1]. We first tested a Lommel-Seeliger Correction (LSC) [cos(i)/(cos(i) + cos(e))] [2] with a phase function defined by an exponential decay plus 4th order polynomial term [3] which did not provide an adequate solution. Next we employed a LSC with an exponential 2nd order decay phase correction that was an improvement, but still exhibited unacceptable frame-to-frame residuals. In both cases we fitted the LSC I/F vs. phase angle to derive the phase corrections. To date, the best results are with a lunar-lambert function [4] with exponential 2nd order decay phase correction (LLEXP2) [(A1exp(B1p)+A2exp(B2p)+A3) * cos(i)/(cos(e) + cos(i)) + B3cos(i)]. We derived the parameters for the LLEXP2 from repeat imaging of a small region and then corrected that region with excellent results. When this correction was applied to the whole Moon the results were less than optimal - no surprise given the variability of the regolith from region to region. As the fitting area increases, the accuracy of curve fitting decreases due to the larger variety of albedo, topography, and composition. Thus we have adopted an albedo-dependent photometric normalization routine. Phase curves are derived for discreet bins of preliminary normalized reflectance calculated from Clementine global mosaic in a fitting area that is composed of predominantly mare in Oceanus Procellarum. The global WAC mosaic was then corrected pixel-by-pixel according to its preliminary reflectance map with satisfactory results. We observed that the phase curves per normalized-reflectance bins become steeper as the reflectance value increases. Further filtering by using FeO, TiO2, or optical maturity [5] for parameter calculations may help elucidate the effects of surface composition and maturity on photometric properties of the surface. [1] Hapke, B.W. (1993) Theory of Reflectance and Emittance Spectroscopy, Cambridge Univ. Press. [2] Schoenberg (1925) Ada. Soc. Febb., vol. 50. [3] Hillier et al. (1999) Icarus 141, 205-225. [4] McEwen (1991) Icarus 92, 298-311. [5] Lucey et al. (2000) JGR, v105, no E8, p20377-20386.
Angle-independent pH-sensitive composites with natural gyroid structure
Xue, Ruiyang; Zhang, Wang; Sun, Peng; Zada, Imran; Guo, Cuiping; Liu, Qinglei; Gu, Jiajun; Su, Huilan; Zhang, Di
2017-01-01
pH sensor is an important and practical device with a wide application in environmental protection field and biomedical industries. An efficient way to enhance the practicability of intelligent polymer composed pH sensor is to subtilize the three-dimensional microstructure of the materials, adding measurable features to visualize the output signal. In this work, C. rubi wing scales were combined with pH-responsive smart polymer polymethylacrylic acid (PMAA) through polymerization to achieve a colour-tunable pH sensor with nature gyroid structure. Morphology and reflection characteristics of the novel composites, named G-PMAA, are carefully investigated and compared with the original biotemplate, C. rubi wing scales. The most remarkable property of G-PMAA is a single-value corresponding relationship between pH value and the reflection peak wavelength (λmax), with a colour distinction degree of 18 nm/pH, ensuring the accuracy and authenticity of the output. The pH sensor reported here is totally reversible, which is able to show the same results after several detection circles. Besides, G-PMAA is proved to be not influenced by the detection angle, which makes it a promising pH sensor with superb sensitivity, stability, and angle-independence. PMID:28165044
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
Variation of directional reflectance factors with structural changes of a developing alfalfa canopy
NASA Technical Reports Server (NTRS)
Kirchner, J. A.; Kimes, D. S.; Mcmurtrey, J. E., III
1982-01-01
Directional reflectance factors of an alfalfa canopy were determined and related to canopy structure, agronomic variables, and irradiance conditions at four periods during a cutting cycle. Nadir and off-nadir reflectance factors decreased with increasing biomass in Thematic Mapper band 3(0.63-0.69 micrometer) and increased with increasing biomass in band 4(0.76-0.90 micrometer). The sensor view angle had less impact on perceived reflectance as the alfalfa progressed from an erectophile canopy of stems after harvest to a near planophile canopy of leaves at maturity. Studies of directional reflectance are needed for testing and upgrading vegetation canopy models and to aid in the complex interpretation problems presented by aircraft scanners and pointable satellites where illumination and viewing geometries may vary widely. Distinct changes in the patterns of radiance observed by a sensor as structural and biomass changes occur are keys to monitoring the growth and condition of crops.
Near-surface structure of the Carpathian Foredeep marginal zone in the Roztocze Hills area
NASA Astrophysics Data System (ADS)
Majdański, M.; Grzyb, J.; Owoc, B.; Krogulec, T.; Wysocka, A.
2018-03-01
Shallow seismic survey was made along 1280 m profile in the marginal zone of the Carpathian Foredeep. Measurements performed with standalone wireless stations and especially designed accelerated weight drop system resulted in high fold (up to 60), long offset seismic data. The acquisition has been designed to gather both high-resolution reflection and wide-angle refraction data at long offsets. Seismic processing has been realised separately in two paths with focus on the shallow and deep structures. Data processing for the shallow part combines the travel time tomography and the wide angle reflection imaging. This difficult analysis shows that a careful manual front mute combined with correct statics leads to detailed recognition of structures between 30 and 200 m. For those depths, we recognised several SW dipping tectonic displacements and a main fault zone that probably is the main fault limiting the Roztocze Hills area, and at the same time constitutes the border of the Carpathian Forebulge. The deep interpretation clearly shows a NE dipping evaporate layer at a depth of about 500-700 m. We also show limitations of our survey that leads to unclear recognition of the first 30 m, concluding with the need of joint interpretation with other geophysical methods.
NASA Astrophysics Data System (ADS)
Winters, Gregory S.; Retherford, Kurt D.; Davis, Michael W.; Escobedo, Stephen M.; Bassett, Eric C.; Patrick, Edward L.; Nagengast, Maggie E.; Fairbanks, Matthew H.; Miles, Paul F.; Parker, Joel W.; Gladstone, G. Randall; Slater, David C.; Stern, S. Alan
2012-10-01
We designed and assembled a highly capable UV reflectometer chamber and data acquisition system to provide bidirectional scattering data of various surfaces and materials. This chamber was initially conceived to create laboratory-based UV reflectance measurements of water frost on lunar soil/regolith simulants, to support interpretation of UV reflectance data from the Lyman Alpha Mapping Project ("LAMP") instrument on-board the NASA Lunar Reconnaissance Orbiter spacecraft. A deuterium lamp illuminates surfaces and materials at a fixed 45° incident beam angle over the 115 to 200 nm range via a monochromator, while a photomultiplier tube detector is scanned to cover emission angles -85° to +85° (with a gap from -60° to -30°, due to the detector blocking the incident beam). Liquid nitrogen cools the material/sample mount when desired. The chamber can be configured to test a wide range of samples and materials using sample trays and holders. Test surfaces to date include aluminum mirrors, water ice, reflectance standards, and frozen mixtures of water and lunar soil/regolith stimulant. Future UV measurements planned include Apollo lunar samples, meteorite samples, other ices, minerals, and optical surfaces. Since this chamber may well be able to provide useful research data for groups outside Southwest Research Institute, we plan to take requests from and collaborate with others in the UV and surface reflection research community.
Longitudinal shapes of the tibia and femur are unrelated and variable.
Howell, Stephen M; Kuznik, Kyle; Hull, Maury L; Siston, Robert A
2010-04-01
In general practice, short films of the knee are used to assess component position and define the entry point for intramedullary femoral alignment in TKAs; however, whether it is justified to use the short film commonly used in research settings and everyday practice as a substitute for the whole leg view is controversial and needs clarification. In 138 long leg CT scanograms we measured the angle formed by the anatomic axis of the proximal fourth of the tibia and the mechanical axis of the tibia, the angle formed by the anatomic axis of the distal fourth of the femur and the mechanical axis of the femur, the "bow" of the tibia (as reflected by the offset of the anatomic axis from the center of the talus), and the "bow" of the femur (as reflected by the offset of the anatomic axis from the center of the femoral head). Because the angle formed by these axes and the bow of the tibia and femur have wide variability in females and males, a short film of the knee should not be used in place of the whole leg view when accurate assessment of component position and limb alignment is essential. A previous study of normal limbs found that only 2% of subjects have a neutral hip-knee-ankle axis, which can be explained by the wide variability of the bow in the tibia and femur and the lack of correlation between the bow of the tibia and femur in a given limb as shown in the current study.
Wide-band/angle Blazed Surfaces using Multiple Coupled Blazing Resonances
Memarian, Mohammad; Li, Xiaoqiang; Morimoto, Yasuo; Itoh, Tatsuo
2017-01-01
Blazed gratings can reflect an oblique incident wave back in the path of incidence, unlike mirrors and metal plates that only reflect specular waves. Perfect blazing (and zero specular scattering) is a type of Wood’s anomaly that has been observed when a resonance condition occurs in the unit-cell of the blazed grating. Such elusive anomalies have been studied thus far as individual perfect blazing points. In this work, we present reflective blazed surfaces that, by design, have multiple coupled blazing resonances per cell. This enables an unprecedented way of tailoring the blazing operation, for widening and/or controlling of blazing bandwidth and incident angle range of operation. The surface can thus achieve blazing at multiple wavelengths, each corresponding to different incident wavenumbers. The multiple blazing resonances are combined similar to the case of coupled resonator filters, forming a blazing passband between the incident wave and the first grating order. Blazed gratings with single and multi-pole blazing passbands are fabricated and measured showing increase in the bandwidth of blazing/specular-reflection-rejection, demonstrated here at X-band for convenience. If translated to appropriate frequencies, such technique can impact various applications such as Littrow cavities and lasers, spectroscopy, radar, and frequency scanned antenna reflectors. PMID:28211506
Imafuku, Michio; Ogihara, Naomichi
2016-12-01
There have been only a few reports on the directional reflection of light by butterfly wings. Here, we systematically investigated this phenomenon in a lycaenid butterfly, Chrysozephyrus smaragdinus,in which males have bright green wings based on structural coloration. We used a device that measures intensities of light in hemispherical space by vertical shifting of a sensor and horizontal rotation of the stage carrying the wing, which is illuminated from the top, to determine the direction of light reflected by the fore- and hindwings. The orientation and curvature of wing scales were also examined microscopically. The forewing of this species reflected light shone from the top largely forward, whereas the hindwing reflected it slightly forward. This difference was attributed to the tilt angles of the wing scales. Light reflection by the forewing was relatively weak, and widely scattered, whereas that by the hindwing was rather concentrated, resulting in higher reflectance. This difference was attributed to difference in the curvature of the wing scales on the two wings.
Liu, Bingyi; Zhao, Jiajun; Xu, Xiaodong; Zhao, Wenyu; Jiang, Yongyuan
2017-10-23
Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell's law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for all-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the all-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates inside the metasurface slab. The coiling-up space structures are utilized to build desired acoustic gradient metasurface, and the all-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface, and the all-angle negative reflection characteristic possessed by acoustic gradient metasurface could enable a new degree of the acoustic wave manipulating and be applied in the functional diffractive acoustic elements, such as the all-angle acoustic back reflector.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark A. (Inventor)
1991-01-01
A cassegrain optical system provides improved collection of off-axis light yet is still characterized by a high concentration ratio. The optical system includes a primary mirror for collecting incoming light and reflecting the light to a secondary mirror which, in turn, reflects the light to a solar cell or other radiation collection device. The primary mirror reflects incoming on-axis light onto an annular section of the secondary mirror and results in the reflection of a substantial amount of incoming off-axis light onto the remainder of the secondary mirror. Thus light which would otherwise be lost to the system will be captured by the collector. Furthermore, the off-axis sections of the secondary mirror may be of a different geometrical shape than the on-axis annular section so as to optimize the amount of off-axis light collected.
Design considerations for a backlight with switchable viewing angles
NASA Astrophysics Data System (ADS)
Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny
2006-08-01
Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.
Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan
2016-12-05
As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell's law. However, the critical angle that derived from the generalized Snell's law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.
Measuring contact angle and meniscus shape with a reflected laser beam.
Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K
2014-01-01
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.
Measuring contact angle and meniscus shape with a reflected laser beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibach, T. F.; Nguyen, H.; Butt, H. J.
2014-01-15
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collectedmore » on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.« less
NASA Astrophysics Data System (ADS)
Leprêtre, Angélique; Verrier, Fanny; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; de Clarens, Philippe; Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline
2017-04-01
The Natal valley (South Mozambique margin) is a key area for the understanding of the SW Indian Ocean history since the Gondwana break-up, and widely, the structure of a margin system at the transition between divergent and strike-slip segments. As one part of the PAMELA project (PAssive Margins Exploration Laboratories), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN, the Natal Valley and the East Limpopo margin have been explored during the MOZ3/5 cruise (2016), conducted onboard the R/V Pourquoi Pas?, through the acquisition of 7 wide-angle profiles and coincident marine multichannel (720 traces) seismic as well as potential field data. Simultaneously, land seismometers were deployed in the Mozambique coastal plains, extending six of those profiles on land for about 100 km in order to provide information on the onshore-offshore transition. Wide-angle seismic data are of major importance as they can provide constrains on the crustal structure of the margin and the position of the continent-ocean boundary in an area where the crustal nature is poorly known and largely controversial. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along two perpendicular MZ1 & MZ7 wide-angle profiles crossing the Natal Valley in an E-W and NNW-SSE direction respectively, which reveal a crust up to 30 km thick below the Natal Valley and thus raises questions of a purely oceanic origin of the Valley. The post-doc of Angélique Leprêtre is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.
NASA Astrophysics Data System (ADS)
Rao, Jionghui; Yao, Wenming; Wen, Linqiang
2015-10-01
Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.
Numerical simulations of novel high-power high-brightness diode laser structures
NASA Astrophysics Data System (ADS)
Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter
2001-07-01
One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.
Stokes-Doppler coherence imaging for ITER boundary tomography.
Howard, J; Kocan, M; Lisgo, S; Reichle, R
2016-11-01
An optical coherence imaging system is presently being designed for impurity transport studies and other applications on ITER. The wide variation in magnetic field strength and pitch angle (assumed known) across the field of view generates additional Zeeman-polarization-weighting information that can improve the reliability of tomographic reconstructions. Because background reflected light will be somewhat depolarized analysis of only the polarized fraction may be enough to provide a level of background suppression. We present the principles behind these ideas and some simulations that demonstrate how the approach might work on ITER. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube.
Xu, Xueke; Shao, Jianda; Fan, Zhengxiu
2006-06-20
A method for the design of an all-dielectric nonpolarizing prism beam splitter utilizing the principle of frustrated total internal reflection is reported. The nonpolarizing condition for a prism beam splitter is discussed, and some single layer design examples are elaborated. The concept can be applied to a wide range of wavelengths and arbitrary transmittance values, and with the help of a computer design program examples of 400-700 nm, T(p)=T(s)=0.5+/-0.01, with incident angles of 45 degrees and 62 degrees are given. In addition, the sensitivity and application of the design are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keum,J.; Burger, C.; Zuo, F.
2007-01-01
By utilizing synchrotron rheo-WAXD (wide-angle X-ray diffraction) and rheo-SAXS (small-angle X-ray scattering) techniques, the nucleation and growth behavior of twisted kebabs from the shear-induced shish scaffold in entangled high-density polyethylene (HDPE) melts were investigated. The evolution of the (110) reflection intensity in WAXD at the early stages of crystallization could be described by a simplified Avrami equation, while the corresponding long period of kebabs determined by SAXS was found to decrease with time. The combined SAXS and WAXD results indicate that the kebab growth in sheared HDPE melts consists of two-dimensional geometry with thermal (sporadic) nucleation. The WAXD data clearlymore » exhibited the transformations of (110) reflection from equatorial 2-arc to off-axis 4-arc and of (200) reflection from off-axis 4-arc to meridional 2-arc, which can be explained by the rotation of crystallographic a-axis around the b-axis during twisted kebab growth. This observation is also consistent with the orientation mode changes from 'Keller/Machin II' to 'intermediate' and then to 'Keller/Machin I'.« less
Image of the Moho across the continent-ocean transition, US east coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holbrook, W.S.; Purdy, G.M.; Reiter, E.C.
1992-03-01
Strong wide-angle reflections from the Moho were recorded by ocean-bottom seismic instruments during the 1988 Carolina Trough multichannel seismic experiment, in an area where the Moho is difficult to detect with vertical-incidence seismic data. Prestack depth migration of these reflections has enabled the construction of a seismic image of the Moho across the continent-ocean transition of a sedimented passive margin. The Moho rises across the margin at a slope of 10{degree}-12{degree}, from a depth of about 33 km beneath the continental shelf to 20 km beneath the outer rise. This zone of crustal thinning defines a distinct, 60-70-km-wide continent-ocean transitionmore » zone. The authors interpret the Moho in the Carolina Trough as a Jurassic feature, formed by magmatic intrusion and underplating during the rifting of Pangea.« less
Holt, Amanda L.; Sweeney, Alison M.; Johnsen, Sönke; Morse, Daniel E.
2011-01-01
Cephalopods possess a sophisticated array of mechanisms to achieve camouflage in dynamic underwater environments. While active mechanisms such as chromatophore patterning and body posturing are well known, passive mechanisms such as manipulating light with highly evolved reflectors may also play an important role. To explore the contribution of passive mechanisms to cephalopod camouflage, we investigated the optical and biochemical properties of the silver layer covering the eye of the California fishery squid, Loligo opalescens. We discovered a novel nested-spindle geometry whose correlated structure effectively emulates a randomly distributed Bragg reflector (DBR), with a range of spatial frequencies resulting in broadband visible reflectance, making it a nearly ideal passive camouflage material for the depth at which these animals live. We used the transfer-matrix method of optical modelling to investigate specular reflection from the spindle structures, demonstrating that a DBR with widely distributed thickness variations of high refractive index elements is sufficient to yield broadband reflectance over visible wavelengths, and that unlike DBRs with one or a few spatial frequencies, this broadband reflectance occurs from a wide range of viewing angles. The spindle shape of the cells may facilitate self-assembly of a random DBR to achieve smooth spatial distributions in refractive indices. This design lends itself to technological imitation to achieve a DBR with wide range of smoothly varying layer thicknesses in a facile, inexpensive manner. PMID:21325315
Solar System Portrait - 60 Frame Mosaic
1996-09-13
The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever portrait of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. http://photojournal.jpl.nasa.gov/catalog/PIA00451
Solar System Portrait - 60 Frame Mosaic
NASA Technical Reports Server (NTRS)
1990-01-01
The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever 'portrait' of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun.
Estimation of crystallinity in a model thermoplastic composite
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.
1986-01-01
Crystallinities as low as 16 percent have been estimated by determination of the interplanar spacing on PET/carbonaceous filament composites with resin content of aobut 25 percent w/w using wide-angle X-ray scattering (WAXS) in the angular range 2 theta = 16-18 deg. The diffraction pattern of the carbonaceous reinforcements masks the major reflections of the resin, and the resin content and the crystallinity are kept low to make the simulation reasonable.
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-01-01
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.
1975-01-01
The complete radiation field is calculated for scattering layers of various optical thicknesses. Results obtained for Rayleigh and haze scattering are compared. Calculated radiances show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are approximately 0.1% for a continental haze phase function. The polarization of reflected and transmitted radiation is given for various optical thicknesses, solar zenith angles, and surface albedos. Two types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points arise from zero polarization that occurs at scattering angles of 0 deg and 180 deg. For Rayleigh phase functions, the position of these points varies with the optical thickness of the scattering layer. Non-Rayleigh neutral points are associated with the zeros of polarization which occur between the end points of the single scattering curve, and are found over a wide range of azimuthal angles.
Ultra-wideband and broad-angle linear polarization conversion metasurface
NASA Astrophysics Data System (ADS)
Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Martín, Ferran
2017-05-01
In this work, a metasurface acting as a linear polarization rotator, that can efficiently convert linearly polarized electromagnetic waves to cross polarized waves within an ultra wide frequency band and with a broad incident angle, is proposed. Based on the electric and magnetic resonant features of the unit cell, composed by a double-head arrow, a cut-wire, and two short V-shaped wire structures, three resonances, which lead to the bandwidth expansion of cross-polarization reflections, are generated. The simulation results show that an average polarization conversion ratio of 90% from 17.3 GHz to 42.2 GHz can be achieved. Furthermore, the designed metasurface exhibits polarization insensitivity within a broad incident angle, from 0° to 50°. The experiments conducted on the fabricated metasurface are in good agreement with the simulations. The proposed metasurface can find potential applications in reflector antennas, imaging systems, and remote sensors operating at microwave frequencies.
NASA Astrophysics Data System (ADS)
Tozer, B.; Stern, T. A.; Lamb, S. L.; Henrys, S. A.
2017-11-01
Wide-angle reflection and refraction data recorded during the Seismic Array HiKurangi Experiment (SAHKE) are used to constrain the crustal P-wave velocity (Vp) structure along two profiles spanning the length and width of Wanganui Basin, located landwards of the southern Hikurangi subduction margin, New Zealand. These models provide high-resolution constraints on the structure and crustal thickness of the overlying Australian and subducted Pacific plates and plate interface geometry. Wide-angle reflections are modelled to show that the subducted oceanic Pacific plate crust is anomalously thick (∼10 km) below southern North Island and is overlain by a ∼1.5-4.0 km thick, low Vp (4.8-5.4 km s-1) layer, interpreted as a channel of sedimentary material, that persists landwards at least as far as Kapiti Island. Distinct near vertical reflections from onshore shots identify a ∼4 km high mound of low-velocity sedimentary material that appears to underplate the overlying Australian plate crust and is likely to contribute to local rock uplift along the Axial ranges. The overriding Australian plate Moho beneath Wanganui Basin is imaged as deepening southwards and reaches a depth of at least 36.4 km. The Moho shape approximately mirrors the thickening of the basin sediments, suggestive of crustal downwarping. However, the observed crustal thickness variation is insufficient to explain the large negative Bouguer gravity anomaly (-160 mGal) centred over the basin. Partial serpentinization within the upper mantle with a concomitant density decrease is one possible way of reconciling this anomaly.
Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan
2016-01-01
As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device. PMID:27917909
NASA Astrophysics Data System (ADS)
Środa, Piotr
2017-04-01
The area of SE Poland represents a complex contact of tectonic units of different consolidation age—from the Precambrian East European Craton, through Palaeozoic West European Platform (including Małopolska Block) to Cenozoic Carpathians and Carpathian Foredeep. In order to investigate the anisotropic properties of the upper crust of the Małopolska Block and their relation to tectonic evolution of the area, two seismic datasets were used: seismic wide-angle off-line recordings from POLCRUST-01 deep seismic reflection profile and recordings from active deep seismic experiment CELEBRATION 2000. During acquisition of deep reflection seismic profile POLCRUST-01 in 2010, a 35-km-long line of 14 recorders (PA-14), oriented perpendicularly to the profile, was deployed to record the refractions from the upper crust (Pg) at wide range of azimuths. These data were used for an analysis of the azimuthal anisotropy of the MB with the modified delay-time inversion method. The results of modelling of the off-line refractions from the MB suggest 6% HTI anisotropy of the Cambrian/Ediacaran basement, with 130º azimuth of the fast velocity axis and mean Vp of 4.9 km/s. To compare this result with previous, independent information about anisotropy at larger depth, a subset of previously modelled data from CELEBRATION 2000 experiment, recorded in the MB area, was also analysed by inversion. The recordings of Pg phase at up to 120 km offsets were analysed using anisotropic delay-time inversion, providing information down to 12 km depth. The CELEBRATION 2000 model shows 9% HTI anisotropy with 126º orientation of the fast axis. Thus, local-scale anisotropy of this part of MB confirms the large-scale anisotropy suggested by previous studies based on data from a broader area and larger depth interval. The azimuthal anisotropy (i.e. HTI symmetry of the medium) is interpreted as a result of strong compressional deformation during the accretion of terranes to the EEC margin, leading to tight (sub-vertical) folding and fracturing of intrinsically anisotropic metasediments forming the MB basement. Obtained anisotropy models are compared with data about stratal dips of the MB sequences and implications of assuming more realistic TTI model are discussed. Wide-angle recordings from off-line measurements along a reflection profile provided new information about seismic velocity and anisotropy, not available from standard near-vertical profiling, and contributed to more complete image of the upper crustal structure of Małopolska Block.
Analytical study of the reflection and transmission coefficient of the submarine interface
NASA Astrophysics Data System (ADS)
Zhang, Guangli; Hao, Chongtao; Yao, Chen
2018-05-01
The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.
Optimization of wide-angle seismic signal-to-noise ratios and P-wave transmission in Kenya
Jacob, A.W.B.; Vees, R.; Braile, L.W.; Criley, E.
1994-01-01
In previous refraction and wide-angle reflection experiments in the Kenya Rift there were problems with poor signal-noise ratios which made good seismic interpretation difficult. Careful planning and preparation for KRISP 90 has substantially overcome these problems and produced excellent seismic sections in a difficult environment. Noise levels were minimized by working, as far as possible, at times of the day when conditions were quiet, while source signals were optimized by using dispersed charges in water where it was available and waterfilled boreholes in most cases where it was not. Seismic coupling at optimum depth in water has been found to be more than 100 times greater than it is in a borehole in dry loosely compacted material. Allowing for the source coupling, a very marked difference has been found between the observation ranges in the rift and those on the flanks, where the observation ranges are greater. These appear to indicate a significant difference in seismic transmission through the two types of crust. ?? 1994.
NASA Astrophysics Data System (ADS)
Meyer, Elliot; Chen, Shaojie; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Simard, Luc; Marie, Jerome; Mieda, Etsuko; Gordon, Jacob
2014-07-01
We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). IRIS will operate across the near-infrared encompassing the ZYJHK bands (~0.84 - 2.4μm) with multiple spectral resolutions. We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37μm (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86° and 20.54° respectively. The other two gratings accept a bandpass of 1.51-1.82μm (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines/mm, and blaze angle of 9.86°. The fraction of flux in each diffraction mode was compared to both a pure reflection mirror as well as the sum of the flux measured in all observable modes. We measure the efficiencies off blaze angle for all gratings and the efficiencies between the polarization transverse magnetic (TM) and transverse electric (TE) states. The peak reflective efficiencies are 98.90 +/- 3.36% (TM) and 84.99 +/- 2.74% (TM) for the H-band R=4000 and J-band R=4000 respectively. The peak reflective efficiency for the J-band R=8000 grating is 78.78 +/- 2.54% (TE). We find that these ruled gratings do not exhibit a wide dependency on incident angle within +/-3°. Our best-manufactured gratings were found to exhibit a dependency on the polarization state of the incident beam with a ~10-20% deviation, consistent with the theoretical efficiency predictions. This work will significantly contribute to the selection of the final grating type and vendor for the IRIS optical system, and are also pertinent to current and future near-infrared astronomical spectrographs.
Application of AI techniques to infer vegetation characteristics from directional reflectance(s)
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Harrison, P. A.; Harrison, P. R.
1994-01-01
Traditionally, the remote sensing community has relied totally on spectral knowledge to extract vegetation characteristics. However, there are other knowledge bases (KB's) that can be used to significantly improve the accuracy and robustness of inference techniques. Using AI (artificial intelligence) techniques a KB system (VEG) was developed that integrates input spectral measurements with diverse KB's. These KB's consist of data sets of directional reflectance measurements, knowledge from literature, and knowledge from experts which are combined into an intelligent and efficient system for making vegetation inferences. VEG accepts spectral data of an unknown target as input, determines the best techniques for inferring the desired vegetation characteristic(s), applies the techniques to the target data, and provides a rigorous estimate of the accuracy of the inference. VEG was developed to: infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; infer percent ground cover from any combination of nadir and/or off-nadir view angles; infer unknown view angle(s) from known view angle(s) (known as view angle extension); and discriminate between user defined vegetation classes using spectral and directional reflectance relationships developed from an automated learning algorithm. The errors for these techniques were generally very good ranging between 2 to 15% (proportional root mean square). The system is designed to aid scientists in developing, testing, and applying new inference techniques using directional reflectance data.
Superwide-angle coverage code-multiplexed optical scanner.
Riza, Nabeel A; Arain, Muzammil A
2004-05-01
A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.
Scanning system for angle-resolved low-coherence interferometry.
Steelman, Zachary A; Ho, Derek; Chu, Kengyeh K; Wax, Adam
2017-11-15
Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm 2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm 2 without repositioning. By utilizing a reflection-only three-optic rotator prism and a two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health.
A scanning system for angle-resolved low-coherence interferometry
Steelman, Zachary A.; Ho, Derek; Chu, Kengyeh K.; Wax, Adam
2018-01-01
Angle-resolved low-coherence interferometry (a/LCI) detects precancer by enabling depth-resolved measurements of nuclear morphology in vivo. A significant limitation of a/LCI is the point-probe nature of the method, sampling <0.5 mm2 before probe relocation is necessary. In this work, we demonstrate a scanning method capable of assessing an area >100 mm2 without repositioning. By utilizing a reflection-only three-optic rotator (ROTOR) prism and two-axis scanning mirror, we demonstrate radial scans of a sample with a linear range of 12 mm and a full rotational range of 180°. Use of this design will improve the diagnostic utility of a/LCI for wide-area screening of tissue health. PMID:29140317
2014-01-01
In this work, three slanted silver nanorod arrays (NRAs) with different thicknesses are fabricated using the glancing angle deposition method. Each silver NRA in the Kretschmann configuration is arranged to form a prism/NRA/air system. Attenuated total reflection occurs over the visible wavelengths and wide incident angles of both s- and p-polarization states. The extinctance is inversely proportional to the thickness of the Ag NRA. The thinnest NRA, with a thickness of 169 nm, exhibits strong extinctance of more than 80% over the visible wavelengths. The associated forward scatterings from the three NRAs are measured and compared under illumination with a laser beam with a wavelength of 632.8 nm. PMID:25352769
Frustrated Total Internal Reflection: A Simple Application and Demonstration.
ERIC Educational Resources Information Center
Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.
2003-01-01
Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)
Real part of refractive index measurement approach for absorbing liquid.
Liu, Hao; Ye, Junwei; Yang, Kecheng; Xia, Min; Guo, Wenping; Li, Wei
2015-07-01
An algorithm based on use of a reflected refractometer to measure the real part of the refractive index (RI) for an absorbing liquid is presented. The absorption of liquid will blur the division between bright and dark regions on a Fresnel reflective curve. However, the reflective ratio at some incident angles that are less than the critical angle have little sensitivity to absorbability. Unlike common methods that extract RI from reflectivity in critical angle vicinity, the presented method acquires the real RI from reflective ratio at a subcritical angle. Supported by the theoretical analysis and experimental results on a reflected refractometer, we have achieved accuracy better than 3×10(-4) RIU on ink samples with absorption coefficient around 300 cm(-1). Additional tests on Alizarin yellow GG solutions prove that the subcritical algorithm is feasible and of high accuracy.
Non-destructive Techniques for Classifying Aircraft Coating Degradation
2015-03-26
model is bidirectional reflectance distribution func- tions ( BRDF ) which describes how much radiation is reflected for each solid angle and each...incident angle. An intermediate model between ideal reflectors and BRDF is to assume all reflectance is a combination of diffuse and specular reflectance...19 K-Fold Cross Validation
ERIC Educational Resources Information Center
Mackworth, Norman H.; And Others
1972-01-01
The Mackworth wide-angle reflection eye camera was used to record the position of the gaze on a display of 16 white symbols. One of these symbols changed to red after 30 seconds, remained red for a minute of testing, and then became white again. The subjects were 10 aphasic children (aged 5-9), who were compared with a group of 10 normal children,…
Low Cost, Wide Angle Infinity Optics Visual System.
1981-09-01
identify one of the four possible quadrants of the line of sight. Signal and power to the Probe are transmitted by means of three cables into three...on all four sides. This design was expected to remove any sag from the glass and any strain from nonuni- form suoport, (Figure 18). With these...recorded, four or five will be recorded. These phenomena are due to the multiple reflection off the plane glass surfaces, which now have enough intensity
Some Approaches to the Analysis and Interpretation of Wide-Angle Bottom Loss Data.
1982-02-15
1979; Hastrup , 1969). This is described by the equation I ( ) = A( ) x where I(w)z impulse response estimate, A(w) = bottom interacting signal, S(w...quite significant subbottom reflectivity structure ( Hastrup , 1970; Herstein et al, 1979; Santaniello et al, 1979; Chapman, 1980; Tyce et al, 1980...Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," Proo. IEEE 66, 51. 186 Hastrup , 0. F., 1970. "Digital Analysis of Acoustic
Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers
2012-09-20
wide-angle X-ray scattering (2D-WAXS) of P5.1 (extruded at 210oC). This trend is reflected in conventional bulk- heterojunction OPV devices as shown...Additives in Molecular Bulk Heterojunction Solar Cells Using a bithiophene capped, isoindigo core, DAD molecule as the donor phase, and PCBM as the...PCE values of 3.7% as illustrated in Figure 11. Figure 11. Combining interface control using MoOx as an electron transport material and PDMS
NASA Astrophysics Data System (ADS)
Mackenzie, G. D.; Thybo, H.; Maguire, P. K. H.
2005-09-01
We present the results of velocity modelling of a recently acquired wide-angle seismic reflection/refraction profile across the Main Ethiopian Rift. The models show a continental type of crust with significant asymmetry between the two sides of the rift. A 2- to 5-km-thick layer of sedimentary and volcanic sequences is modelled across the entire region. This is underlain by a 40- to 45-km-thick crust with a c. 15-km-thick high-velocity lowest crustal layer beneath the western plateau. This layer is absent from the eastern side, where the crust is 35 km thick beneath the sediments. We interpret this layer as underplated material associated with the Oligocene flood basalts of the region with possible subsequent addition by recent magmatic events. Slight crustal thinning is observed beneath the rift, where Pn velocities indicate the presence of hot mantle rocks containing partial melt. Beneath the rift axis, the velocities of the upper crustal layers are 5-10 per cent higher than outside the rift, which we interpret as resulting from mafic intrusions that can be associated with magmatic centres observed in the rift valley. Variations in seismic reflectivity suggest the presence of layering in the lower crust beneath the rift, possibly indicating the presence of sills, as well as some layering in the proposed underplated body.
Gonzalez, Federico Lora; Gordon, Michael J
2014-06-02
Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.
Graphene-based terahertz metasurface with tunable spectrum splitting.
Su, Zhaoxian; Chen, Xuan; Yin, Jianbo; Zhao, Xiaopeng
2016-08-15
We design a tunable terahertz metasurface, which consists of two different trapezoid graphene ribbons patterned in opposite directions on a gold film, separated by a thin dielectric spacer. The two kinds of graphene ribbons can cover a nearly 2π phase shift with high reflection efficiency in different spectral regions so that the metasurface can reflect different frequency waves to totally different directions. By changing the Fermi level of the graphene ribbons, the response frequency of the proposed metasurface can be adjusted, and as a result, tunable spectrum splitting can be realized. The present metasurface provides a powerful way to control terahertz waves and has potential applications in wide-angle beam splitters.
Optical system for determining physical characteristics of a solar cell
Sopori, Bhushan L.
2001-01-01
The invention provides an improved optical system for determining the physical characteristics of a solar cell. The system comprises a lamp means for projecting light in a wide solid-angle onto the surface of the cell; a chamber for receiving the light through an entrance port, the chamber having an interior light absorbing spherical surface, an exit port for receiving a beam of light reflected substantially normal to the cell, a cell support, and an lower aperture for releasing light into a light absorbing baffle; a means for dispersing the reflection into monochromatic components; a means for detecting an intensity of the components; and a means for reporting the determination.
Morgan, Jessica I. W.; Pugh, Edward N.
2013-01-01
Purpose. We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. Methods. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. Results. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. Conclusions. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment. PMID:23412087
Morgan, Jessica I W; Pugh, Edward N
2013-03-01
We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity. The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence. At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density. The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment.
Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.
1985-01-01
The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Perez, C.; Garcia-Valenzuela, A.
2012-11-15
We propose and evaluate a spectroscopic refractometer device to measure the refractive index dispersion of transparent and absorbing solutions. The angle-dependent reflectivity of a white beam of light in an internal reflection configuration around the critical angle is spectrally analyzed. The refractive index in a wavelength range from 400 nm to 900 nm is obtained from the angle-reflectivity curve around the critical angle at each wavelength. The device does not use angle scanning mechanisms, decreasing considerably the complexity of the instrument in comparison to previous proposals. As a result, the measurements are obtained relatively fast. Nevertheless, a good experimental resolutionmore » in refractive index of about {Delta}n Almost-Equal-To 10{sup -4} at all the wavelengths is achieved in the case of transparent solutions. The calibration procedure of the device is discussed in detail. We also present measurements of the refractive index dispersion of rhodamine 6G-methanol solutions, which has a strong absorption band in the visible spectra.« less
NASA Astrophysics Data System (ADS)
Verrier, Fanny; Leprêtre, Angélique; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; De Clarens, Philippe; Afonso Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline
2017-04-01
The study of South Mozambique passive margin is essential to understand its rifting evolution and better constrain kinematic reconstructions model of the Indian Ocean. MOZ3-5 oceanographic cruises (2016) is part of the PAMELA project (PAssive Margin Exploration LAboratory), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN. These campaigns allowed the acquisition of wide-angle and multichannel seismic data as well as high resolution bathymetric data, dredges, magnetic and gravimetric data. This work focuses on the deep structure of the northern segment of the Natal Valley which was investigated along a 300 km long E-W seismic transect cross-cutting the Almirante Leite volcanic ridge (MZ2 profile). The wide-angle data set is composed of 23 OBS (Ocean Bottom Seismometers) and 19 LSS (Land Seismic Station) spaced by about 12 km and 4-5 km respectively. Forward modelling of the wide-angle data led to a preliminary 2D P-waves velocity model revealing the sedimentary architecture, crustal and lithospherical structures and shallow high velocity material at the volcanic ridge. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along the profile MZ2, in order to discuss the sedimentary sequences, the geometry and nature of the crust (oceanic or continental) as well as structures associated with volcanism, and to better understand the margin's evolution. The post-doc of Fanny Verrier is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Moulin, M., Aslanian, D., 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500
Occurrence and Magnitude of High Reflectance Materials on the Moon
NASA Astrophysics Data System (ADS)
Nuno, R. G.; Boyd, A. K.; Robinson, M. S.
2013-12-01
We utilize a Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) 643 nm photometrically normalized (30°, 0°, 30°; i, e, g) reflectance map to investigate the occurrence and origin of high reflectance materials on the Moon. Compositional differences (mainly iron and titanium content) and maturity state (e.g. Copernican crater rays and swirls) are the predominant factors affecting reflectance variations observed on the Moon. Therefore, comparing reflectance values of different regions yields insight into the composition and relative exposure age of lunar materials. But an accurate comparison requires precise reflectance values normalized across every region being investigated. The WAC [1] obtains monthly near-global ground coverage, each month's observations acquired with different lighting conditions. Boyd et al. [2] utilized a geologically homogeneous subset [0°N to 90°N, 146°E to 148°E] of the WAC observations to determine an equation that describes how viewing and lighting angles affect reflectance values. A normalized global reflectance map was generated by applying the local empirical solution globally, with photometric angles derived from the WAC Global Lunar Digital Terrain Model (DTM)(GLD100) [3]. The GLD100 enables accurate correction of reflectance differences caused by local topographic undulations at the scale of 300 meters. We compare reflectance values across the Moon within 80°S to 80°N latitude. The features with the highest reflectance are steep crater walls within Copernican aged craters, such as the walls of Giordano Bruno, which have normalized reflectance values up to 0.35. Near-impact ejecta of some craters have high reflectance values, such as Virtanen (0.22). There are also broad relatively flat features with high reflectance, such as the 900-km Thales-Compton region (0.24) and the 600-km extent of Anaxagoras (Copernican age) ejecta (0.20). Since the interior of Anaxagoras contains occurrences of pure anorthosite [4], the high reflectance of its ray system may be due to both composition and maturity. Some relatively small isolated features exhibit high reflectance, such as the Compton-Belkovich Volcanic Complex (0.24) and rilles in the floor of Compton crater (0.27). Features associated with pure anorthosite [4] are also found to have high reflectance values, such as occurrences in Mare Orientale (0.22). Since the photometric normalization accounted for topography up to the 300-m horizontal spatial scale, uncertainties remain for steep crater walls. We are currently reducing these uncertainties for selected craters with high resolution (15 meter baseline) stereo-based NAC DTMs. References: [1] Robinson et al. (2010), Space Sci. Rev. [2] Boyd et al. (2013) AGU, this conference. [3] Scholten et al. (2012) JGR. [4] Ohtake et al. (2009) Nature.
Geant4 simulations of a wide-angle x-ray focusing telescope
NASA Astrophysics Data System (ADS)
Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing
2017-06-01
The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.
Neutron reflecting supermirror structure
Wood, James L.
1992-01-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.
Confining the angular distribution of terrestrial gamma ray flash emission
NASA Astrophysics Data System (ADS)
Gjesteland, T.; Østgaard, N.; Collier, A. B.; Carlson, B. E.; Cohen, M. B.; Lehtinen, N. G.
2011-11-01
Terrestrial gamma ray flashes (TGFs) are bremsstrahlung emissions from relativistic electrons accelerated in electric fields associated with thunder storms, with photon energies up to at least 40 MeV, which sets the lowest estimate of the total potential of 40 MV. The electric field that produces TGFs will be reflected by the initial angular distribution of the TGF emission. Here we present the first constraints on the TGF emission cone based on accurately geolocated TGFs. The source lightning discharges associated with TGFs detected by RHESSI are determined from the Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education (AWESOME) network and the World Wide Lightning Location Network (WWLLN). The distribution of the observation angles for 106 TGFs are compared to Monte Carlo simulations. We find that TGF emissions within a half angle >30° are consistent with the distributions of observation angle derived from the networks. In addition, 36 events occurring before 2006 are used for spectral analysis. The energy spectra are binned according to observation angle. The result is a significant softening of the TGF energy spectrum for large (>40°) observation angles, which is consistent with a TGF emission half angle (<40°). The softening is due to Compton scattering which reduces the photon energies.
The Wavelength Dependence of the Lunar Phase Curve as Seen by the LRO LAMP
NASA Astrophysics Data System (ADS)
Liu, Y.; Retherford, K. D.; Greathouse, T. K.; Hendrix, A. R.; Mandt, K.; Gladstone, R.; Cahill, J. T.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.
2016-12-01
The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) provides global coverage of both nightside and dayside of the Moon in the far ultraviolet (FUV) wavelengths. The nightside observations use roughly uniform diffuse illumination sources from interplanetary medium Lyman-α sky glow and UV-bright stars so that traditional photometric corrections do not apply. In contrast, the dayside observations use sunlight as its illumination source where bidirectional reflectance is measured. The bidirectional reflectance is dependent on the incident, emission, and phase angles as well as the soil properties. Thus the comparisons of dayside mapping and nightside mapping techniques offer a method for cross-comparing the photometric correction factors because the observations are made under different lighting and viewing conditions. Specifically, the nightside data well constrain the single-scattering coefficient. We'll discuss the wavelength dependence of the lunar phase curve as seen by the LAMP instrument in dayside data. Our preliminary results indicate that the reflectance in the FUV wavelengths decreases with the increasing phase angles from 0° to 90°, similar to the phase curve in the UV-visible wavelengths as studied by Hapke et al. (2012) using LRO wide angle camera (WAC) data, among other visible-wavelength lunar studies. Particularly, we'll report how coherent backscattering and shadow hiding contribute to the opposition surge, given the fact that the albedo at FUV wavelengths is extremely low and thus multiple scattering is significantly less important. Finally, we'll report the derived Hapke parameters at FUV wavelengths for our study areas.
NASA Astrophysics Data System (ADS)
Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger
2017-04-01
The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.
NASA Astrophysics Data System (ADS)
Miller, I.; Forster, B. C.; Laffan, S. W.
2012-07-01
Spectral reflectance characteristics of substrates in a coral reef environment are often measured in the field by viewing a substrate at nadir. However, viewing a substrate from multiple angles would likely result in different spectral characteristics for most coral reef substrates and provide valuable information on structural properties. To understand the relationship between the morphology of a substrate and its spectral response it is necessary to correct the observed above-water radiance for the effects of atmosphere and water attenuation, at a number of view and azimuth angles. In this way the actual surface reflectance can be determined. This research examines the air-water surface interaction for two hypothetical atmospheric conditions (clear Rayleigh scattering and totally cloudcovered) and the global irradiance reaching the benthic surface. It accounts for both water scattering and absorption, with simplifications for shallow water conditions, as well as the additive effect of background reflectance being reflected at the water-air surface at angles greater than the critical refraction angle (~48°). A model was developed to correct measured above-water radiance along the refracted view angle for its decrease due to path attenuation and the "n squared law of radiance" and the additive surface reflectance. This allows bidirectional benthic surface reflectance and nadir-normalised reflectance to be determined. These theoretical models were adapted to incorporate above-water measures relative to a standard, diffuse, white reference panel. The derived spectral signatures of a number of coral and non-coral benthic surfaces compared well with other published results, and the signatures and nadir normalised reflectance of the corals and other benthic surface classes indicate good class separation.
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Zheng, Jie; Farrell, Gerald
2011-08-01
The well known beam propagation method (BPM) has become one of the most useful, robust and effective numerical simulation tools for the investigation of guided-wave optics, for example integrated optical waveguides and fiber optic devices. In this paper we examine the use of the 2D and 3D wide angle-beam propagation method (WA-BPM) combined with the well known perfectly matched layer (PML) boundary conditions as a tool to analyze TIR based optical switches, in particular the relationship between light propagation and the geometrical parameters of a TIR based optical switch. To analyze the influence of the length and the width of the region in which the refractive index can be externally controlled, the 3D structure of a 2x2 TIR optical switch is firstly considered in 2D using the effective index method (EIM). Then the influence of the etching depth and the tilt angle of the reflection facet on the switch performance are investigated with a 3D model.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo
2011-01-01
Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.
2010-07-30
from Xu et al., 2005). (b) Map of SMU-IGPCEA Huailai Seismic Network and seismicity ( open circles) for the time period of January 01, 2002 through...the Beijing-Huailai-Fengzhen (H20) refraction/ wide angle reflection profile (Zhu et al., 1997). Open circles are locations of two historical...historycatalog_query.jsp) and the China Seismograph Network ( CSN ) Catalog (http://210.72.96.165/wdcd/csn_catalog_p001.jsp) list a total of 323 earthquakes with magnitude
Polymer Dispersed Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Doane, J. William
The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES
Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal
NASA Astrophysics Data System (ADS)
Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.
2018-02-01
PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.
Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Teillet, P. M.; Slater, P. N.; Fedosejevs, G.; Jasinski, Michael F.
1990-01-01
An apparatus for acquiring bidirectional reflectance-factor data was constructed and used over four surface types. Data sets were obtained over a headed wheat canopy, bare soil having several different roughness conditions, playa (dry lake bed), and gypsum sand. Results are presented in terms of relative bidirectional reflectance factors (BRFs) as a function of view angle at a number of solar zenith angles, nadir BRFs as a function of solar zenith angles, and, for wheat, vegetation indices as related to view and solar zenith angles. The wheat canopy exhibited the largest BRF changes with view angle. BRFs for the red and the NIR bands measured over wheat did not have the same relationship with view angle. NIR/Red ratios calculated from nadir BRFs changed by nearly a factor of 2 when the solar zenith angle changed from 20 to 50 degs. BRF versus view angle relationships were similar for soils having smooth and intermediate rough surfaces but were considerably different for the roughest surface. Nadir BRF versus solar-zenith angle relationships were distinctly different for the three soil roughness levels. Of the various surfaces, BRFs for gypsum sand changed the least with view angle (10 percent at 30 degs).
Anomalous postcritical refraction behavior for certain transversely isotropic media
Fa, L.; Brown, R.L.; Castagna, J.P.
2006-01-01
Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.
Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe
NASA Astrophysics Data System (ADS)
Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing
2017-04-01
Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.
Huang, Yi-Fan; Chattopadhyay, Surojit; Jen, Yi-Jun; Peng, Cheng-Yu; Liu, Tze-An; Hsu, Yu-Kuei; Pan, Ci-Ling; Lo, Hung-Chun; Hsu, Chih-Hsun; Chang, Yuan-Huei; Lee, Chih-Shan; Chen, Kuei-Hsien; Chen, Li-Chyong
2007-12-01
Nature routinely produces nanostructured surfaces with useful properties, such as the self-cleaning lotus leaf, the colour of the butterfly wing, the photoreceptor in brittlestar and the anti-reflection observed in the moth eye. Scientists and engineers have been able to mimic some of these natural structures in the laboratory and in real-world applications. Here, we report a simple aperiodic array of silicon nanotips on a 6-inch wafer with a sub-wavelength structure that can suppress the reflection of light at a range of wavelengths from the ultraviolet, through the visible part of the spectrum, to the terahertz region. Reflection is suppressed for a wide range of angles of incidence and for both s- and p-polarized light. The antireflection properties of the silicon result from changes in the refractive index caused by variations in the height of the silicon nanotips, and can be simulated with models that have been used to explain the low reflection from moth eyes. The improved anti-reflection properties of the surfaces could have applications in renewable energy and electro-optical devices for the military.
Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes
NASA Astrophysics Data System (ADS)
Huang, Chi-Chieh
The study of the imaging principles of natural compound eyes has become an active area of research and has fueled the advancement of modern optics with many attractive design features beyond those available with conventional technologies. Most prominent among all compound eyes is the reflecting superposition compound eyes (RSCEs) found in some decapods. They are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Inspired by their remarkable visual system, we were able to implement the unique lens-free, reflection-based imaging mechanisms into a miniaturized, large-FOV optical imaging device operating at the wide visible spectrum to minimize chromatic aberration without any additional post-image processing. First, two micro-transfer printing methods, a multiple and a shear-assisted transfer printing technique, were studied and discussed to realize life-sized artificial RSCEs. The processes exploited the differential adhesive tendencies of the microstructures formed between a donor and a transfer substrate to accomplish an efficient release and transfer process. These techniques enabled conformal wrapping of three-dimensional (3-D) microstructures, initially fabricated in two-dimensional (2-D) layouts with standard fabrication technology onto a wide range of surfaces with complex and curvilinear shapes. Final part of this dissertation was focused on implementing the key operational features of the natural RSCEs into large-FOV, wide-spectrum artificial RSCEs as an optical imaging device suitable for the wide visible spectrum. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to the performance of conventional refractive lenses of comparable size, our devices demonstrated minimum chromatic aberration, exceptional FOV up to 165o without distortion, modest spherical aberrations and comparable imaging quality without any post-image processing. Together with an augmenting cruciform pattern surrounding each focused image, our devices possessed enhanced, dynamic motion-tracking capability ideal for diverse applications in military, security, search and rescue, night navigation, medical imaging and astronomy. In the future, due to its reflection-based operating principles, it can be further extended into mid- and far-infrared for more demanding applications.
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses.
Eplee, Robert E; Patt, Frederick S; Barnes, Robert A; McClain, Charles R
2007-02-10
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eplee, Robert E. Jr.; Patt, Frederick S.; Barnes, Robert A.
The NASA Ocean Biology Processing Group's Calibration and Validation(Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch,so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. Anmore » exponential function with a time constant of 200 days yields the best fit to the diffuser time series.The decrease in diffuser reflectance over the mission is wavelength dependent,ranging from 9% in the blue(412 nm) to 5% in the red and near infrared(670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].« less
SeaWiFS long-term solar diffuser reflectance and sensor noise analyses
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2007-02-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) team has undertaken an analysis of the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) solar calibration time series to assess the long-term degradation of the solar diffuser reflectance over 9 years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The Cal/Val team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series corrected for both the varying solar incidence angles and the diffuser reflectance degradation. A sensor noise model is used to compare on-orbit SNRs computed for radiances reflected from the diffuser with prelaunch SNRs measured at typical radiances specified for the instrument. To within the uncertainties in the measurements, the SNRs for SeaWiFS have not changed over the mission. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as the Moderate-Resolution Imaging Spectrometer [currently flying on the Earth Observing System (EOS) Terra and Aqua satellites], the Visible and Infrared Radiometer Suite [scheduled to fly on the NASA National Polar-orbiting Operational Environmental Satellite System (NPOESS) and NPOESS Preparatory Project (NPP) satellites] and the Advanced Baseline Imager [scheduled to fly on the National Oceanic and Atmospheric Administration Geostationary Environmental Operational Satellite Series R (GOES-R) satellites].
Large incidence angle and defocus influence cat's eye retro-reflector
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui
2014-11-01
Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.
Suits reflectance models for wheat and cotton - Theoretical and experimental tests
NASA Technical Reports Server (NTRS)
Chance, J. E.; Lemaster, E. W.
1977-01-01
Plant canopy reflectance models developed by Suits are tested for cotton and Penjamo winter wheat. Properties of the models are discussed, and the concept of model depth is developed. The models' predicted exchange symmetry for specular irradiance with respect to sun polar angle and observer polar angle agreed with field data for cotton and wheat. Model calculations and experimental data for wheat reflectance vs sun angle disagreed. Specular reflectance from 0.50 to 1.10 micron shows fair agreement between the model and wheat measurements. An Appendix includes the physical and optical parameters for wheat necessary to apply Suits' models.
NASA Astrophysics Data System (ADS)
Moscoso, Eduardo; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Flueh, Ernst R.; Dzierma, Yvonne; Rabbel, Wolfgang; Thorwart, Martin
2011-07-01
The 27 February, 2010 Maule earthquake (Mw = 8.8) ruptured ~ 400 km of the Nazca-South America plate boundary and caused hundreds of fatalities and billions of dollars in material losses. Here we present constraints on the fore-arc structure and subduction zone of the rupture area derived from seismic refraction and wide-angle data. The results show a wedge shaped body ~ 40 km wide with typical sedimentary velocities interpreted as a frontal accretionary prism (FAP). Landward of the imaged FAP, the velocity model shows an abrupt velocity-contrast, suggesting a lithological change which is interpreted as the contact between the FAP and the paleo accretionary prism (backstop). The backstop location is coincident with the seaward limit of the aftershocks, defining the updip limit of the co-seismic rupture and seismogenic zone. Furthermore, the seaward limit of the aftershocks coincides with the location of the shelf break in the entire earthquake rupture area (33°S-38.5°S), which is interpreted as the location of the backstop along the margin. Published seismic profiles at the northern and southern limit of the rupture area also show the presence of a strong horizontal velocity gradient seismic backstop at a distance of ~ 30 km from the deformation front. The seismic wide-angle reflections from the top of the subducting oceanic crust constrain the location of the plate boundary offshore, dipping at ~ 10°. The projection of the epicenter of the Maule earthquake onto our derived interplate boundary yielded a hypocenter around 20 km depth, this implies that this earthquake nucleated somewhere in the middle of the seismogenic zone, neither at its updip nor at its downdip limit.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naruka, Preeti, E-mail: preety-naruka@Yyahoo.co.in; Bissa, Shivangi; Nagar, A. K.
In the present paper, we study propagation of a soliton at an interface formed between special type of chalcogenide fibre and gallium in three different phases with the help of equivalent particle theory. Critical angle of incidence and critical power required for transmission and reflection of soliton beam have investigated. Here it is found that if the incident angle of the beam or initial velocity of the equivalent particle is insufficient to overcome the maximum increase in potential energy then the particle (light beam) is reflected by the interface and if this incident angle is greater than a critical anglemore » then light beam will be transmitted by the interface. From an equation these critical angles for α-gallium, one of a metastable phase and liquid gallium are calculated and concluded that at large incident angles, the soliton is transmitted through the boundary, whereas at small incidence angles the soliton get reflected on keeping the power of incident beam constant. These results are explained by phase plane trajectories of the effective potential which are experimentally as well as theoretically proved.« less
XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William; Lindberg, Ryan; Kim, K-J
The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinalmore » and transverse coherence of the radiation output.« less
Prediction of Viking lander camera image quality
NASA Technical Reports Server (NTRS)
Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.
1976-01-01
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.
Wafer characteristics via reflectometry
Sopori, Bhushan L.
2010-10-19
Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.
NASA Astrophysics Data System (ADS)
Arkebauer, T. J.; Walter-Shea, E. A.
2017-12-01
Vegetation indices, based on canopy spectral reflectance, are widely used to infer physical and biological characteristics of vegetation. Understanding the changes in remotely sensed signals as vegetation responds to its changing environment is essential for full assessment of canopy structure and function. Canopy-level reflectance has been measured at Nebraska AmeriFlux sites US-Ne1, US-Ne2 and US-Ne3 for most years since flux measurements were initiated in 2001. Tower-mounted spectral sensors provided 10-minute averaged reflectance (in PAR and NIR spectral regions) every half hour through the growing season for maize and soybean. Canopy reflectance varied over diurnal and seasonal time periods which led to variations in vegetation indices. One source of variation is due to the interaction of incident solar radiant energy with canopy structure (e.g., reflectance varies with changes in solar zenith angle and direct beam fraction, vegetative fraction, and leaf angle distribution). Another source of variation results from changes in canopy function (e.g., fluctuations in gross primary production and invocation of photoprotective mechanisms with plant stress). We present here a series of diurnal "patterns" of vegetation indices (including Normalized Difference Vegetation Index and Chlorophyll Index) for maize and soybean under mostly clear sky conditions. We demonstrate that diurnal patterns change as the LAI of the canopy changes through the course of the growing season in a somewhat predictable pattern from plant emergence (low vegetative cover) through peak green LAI (full vegetation cover). However, there are changes in the diurnal pattern that we have yet to fully understand; this variation in pattern may indicate variation in canopy function. Initially, we have explored the pattern changes qualitatively and are currently developing more quantitative approaches.
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Zare, Moslem; Asgari, Reza
2018-06-01
The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.
2017-12-01
Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.
Partially-overlapped viewing zone based integral imaging system with super wide viewing angle.
Xiong, Zhao-Long; Wang, Qiong-Hua; Li, Shu-Li; Deng, Huan; Ji, Chao-Chao
2014-09-22
In this paper, we analyze the relationship between viewer and viewing zones of integral imaging (II) system and present a partially-overlapped viewing zone (POVZ) based integral imaging system with a super wide viewing angle. In the proposed system, the viewing angle can be wider than the viewing angle of the conventional tracking based II system. In addition, the POVZ can eliminate the flipping and time delay of the 3D scene as well. The proposed II system has a super wide viewing angle of 120° without flipping effect about twice as wide as the conventional one.
Terahertz wavefront control by tunable metasurface made of graphene ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji
2015-08-03
We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THzmore » within a switching time shorter than 0.6 ps.« less
Properties of seismic absorption induced reflections
NASA Astrophysics Data System (ADS)
Zhao, Haixia; Gao, Jinghuai; Peng, Jigen
2018-05-01
Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M. (Principal Investigator)
1985-01-01
The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.
Metasurface for multi-channel terahertz beam splitters and polarization rotators
NASA Astrophysics Data System (ADS)
Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin
2018-04-01
Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.
Polarized Infrared Reflectance Studies of Quaternary In0.04Al0.06Ga0.90N
NASA Astrophysics Data System (ADS)
Bakhori, S. K. Mohd; Lee, S. C.; Ahmad, M. A.; Ng, S. S.; Hassan, H. Abu
2010-07-01
Group III-nitride has re-gained considerable interest recently as wide direct band gap semiconductor materials for opto-electronic and high power devices. The quaternary InAlGaN have great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. In this study, we report for the first time the polarized infrared (IR) reflectance studies of quaternary In0.04Al0.06Ga0.90N by using Fourier transform infrared spectroscopy of Perkin-Elmer. The quaternary In0.04Al0.06Ga0.90N epilayers was grown on sapphire by molecular beam epitaxy. The polarized IR reflectance spectra obtained at incident angle of 15° were then compared with modeling spectrum of damped harmonic oscillator. Through this study, the transverse and longitudinal optical phonon modes of quaternary In0.04Al0.06Ga0.90N epilayers were obtained.
Metasurface optical antireflection coating
Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; ...
2014-12-15
Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared.more » Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. In conclusion, the demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.« less
Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.
Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V
2015-04-28
We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1986-05-01
By using an HF radar which produces a steerable beam about 4° wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of mid-latitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1° from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds, each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
Using an HF radar which produces a steerable beam about 4 deg wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of midlatitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1 deg from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
Terahertz reflection interferometry for automobile paint layer thickness measurement
NASA Astrophysics Data System (ADS)
Rahman, Aunik; Tator, Kenneth; Rahman, Anis
2015-05-01
Non-destructive terahertz reflection interferometry offers many advantages for sub-surface inspection such as interrogation of hidden defects and measurement of layers' thicknesses. Here, we describe a terahertz reflection interferometry (TRI) technique for non-contact measurement of paint panels where the paint is comprised of different layers of primer, basecoat, topcoat and clearcoat. Terahertz interferograms were generated by reflection from different layers of paints on a metallic substrate. These interferograms' peak spacing arising from the delay-time response of respective layers, allow one to model the thicknesses of the constituent layers. Interferograms generated at different incident angles show that the interferograms are more pronounced at certain angles than others. This "optimum" angle is also a function of different paint and substrate combinations. An automated angular scanning algorithm helps visualizing the evolution of the interferograms as a function of incident angle and also enables the identification of optimum reflection angle for a given paint-substrate combination. Additionally, scanning at different points on a substrate reveals that there are observable variations from one point to another of the same sample over its entire surface area. This ability may be used as a quality control tool for in-situ inspection in a production line. Keywords: Terahertz reflective interferometry, Paint and coating layers, Non-destructive
NASA Astrophysics Data System (ADS)
MacGibbon, J.; Whitehead, J. D.; From, W. R.
1989-03-01
Angle-of-arrival measurements were obtained for first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground). Unexpectedly, the off-vertical angle-of-arrival of the second echo was found to be consistently less than that of the first echo for much of the time. It is suggested that rapid phase variations caused by the change in the tilt of the ionosphere prevented recognition of the second echo by the present radar system for echoes reflected from rough terrain.
Variable area light reflecting assembly
Howard, T.C.
1986-12-23
Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.
Variable area light reflecting assembly
Howard, Thomas C.
1986-01-01
Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.
Study on feasibility of laser reflective tomography with satellite-accompany
NASA Astrophysics Data System (ADS)
Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang
2015-10-01
Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
Information content in reflected signals during GPS Radio Occultation observations
NASA Astrophysics Data System (ADS)
Aparicio, Josep M.; Cardellach, Estel; Rodríguez, Hilda
2018-04-01
The possibility of extracting useful information about the state of the lower troposphere from the surface reflections that are often detected during GPS radio occultations (GPSRO) is explored. The clarity of the reflection is quantified, and can be related to properties of the surface and the low troposphere. The reflected signal is often clear enough to show good phase coherence, and can be tracked and processed as an extension of direct non-reflected GPSRO atmospheric profiles. A profile of bending angle vs. impact parameter can be obtained for these reflected signals, characterized by impact parameters that are below the apparent horizon, and that is a continuation at low altitude of the standard non-reflected bending angle profile. If there were no reflection, these would correspond to tangent altitudes below the local surface, and in particular below the local mean sea level. A forward operator is presented, for the evaluation of the bending angle of reflected GPSRO signals, given atmospheric properties as described by a numerical weather prediction system. The operator is an extension, at lower impact parameters, of standard bending angle operators, and reproduces both the direct and reflected sections of the measured profile. It can be applied to the assimilation of the reflected section of the profile as supplementary data to the direct section. Although the principle is also applicable over land, this paper is focused on ocean cases, where the topographic height of the reflecting surface, the sea level, is better known a priori.
Wide-angle vision for road views
NASA Astrophysics Data System (ADS)
Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.
2013-03-01
The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.
Dual redundant display in bubble canopy applications
NASA Astrophysics Data System (ADS)
Mahdi, Ken; Niemczyk, James
2010-04-01
Today's cockpit integrator, whether for state of the art military fast jet, or piston powered general aviation, is striving to utilize all available panel space for AMLCD based displays to enhance situational awareness and increase safety. The benefits of a glass cockpit have been well studied and documented. The technology used to create these glass cockpits, however, is driven by commercial AMLCD demand which far outstrips the combined worldwide avionics requirements. In order to satisfy the wide variety of human factors and environmental requirements, large area displays have been developed to maximize the usable display area while also providing necessary redundancy in case of failure. The AMLCD has been optimized for extremely wide viewing angles driven by the flat panel TV market. In some cockpit applications, wide viewing cones are desired. In bubble canopy cockpits, however, narrow viewing cones are desired to reduce canopy reflections. American Panel Corporation has developed AMLCD displays that maximize viewing area, provide redundancy, while also providing a very narrow viewing cone even though commercial AMLCD technology is employed suitable for high performance AMLCD Displays. This paper investigates both the large area display architecture with several available options to solve redundancy as well as beam steering techniques to also limit canopy reflections.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
Deviation characteristics of specular reflectivity of micro-rough surface from Fresnel's equation
NASA Astrophysics Data System (ADS)
Zhang, W. J.; Qiu, J.; Liu, L. H.
2015-07-01
Specular reflectivity is an important radiative property in thermal engineering applications and reflection-based optical constant determinations, yet it will be influenced by surface micro-roughness which cannot be completely removed during the polishing process. In this work, we examined the deviation characteristics of the specular reflectivity of micro-rough surfaces from that predicted by the Fresnel's equation under the assumption of smooth surface. The effects of incident angle and relative roughness were numerically investigated for both 1D and 2D micro randomly rough surfaces using full wave analysis under the condition that the relative roughness is smaller than 0.05. For transverse magnetic (TM) wave incidence, it is observed that the deviation of specular reflectivity dramatically rises as the incident angle approaches to the pseudo Brewster's angle, which violates the prediction based on Rayleigh criterion. While for the transverse electric (TE) wave incidence, the deviation of the specular reflectivity is much smaller and decreases monotonically with the increase of incident angle, which agrees with the predication from Rayleigh criterion. Generally, the deviation of specular reflectivity for both TM and TE increases with the relative roughness as commonly expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru
2015-10-15
The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less
Estimating big bluestem albedo from directional reflectance measurements
NASA Technical Reports Server (NTRS)
Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.
1988-01-01
Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.
NASA Technical Reports Server (NTRS)
Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.
1994-01-01
Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.
NASA Astrophysics Data System (ADS)
Subagyo; Daryanto, Yanto; Risnawan, Novan
2018-04-01
The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.
Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners
NASA Astrophysics Data System (ADS)
Guo, Jingwen; Zhang, Xin; Fang, Yi; Fattah, Ryu
2018-05-01
Acoustic liners, consisting of a perforated panel affixed to a honeycomb core with a rigid back plate, are widely used for noise attenuation purpose. In this study, by exploiting inhomogeneous impedance properties, we report an experimental and numerical study on a liner-type acoustic metasurface, which possesses the functionality of both reflected wave manipulation and sound energy attenuation simultaneously. To realize the inhomogeneous acoustic impedance, an acoustic metasurface constructed by varying-depth acoustic liners is designed and fabricated. The reflected sound pressure fields induced by the metasurface are obtained in both experiments and simulations. A complete characterization of this metasurface is performed, including the effects of depth gradient, incident angle, and incident frequency. Anomalous reflection, apparent negative reflection, and conversion from an incident wave to a surface wave with strong energy dissipation are achieved by the structure. Moreover, our proposed structure can overcome the single frequency performance limitation that exists in conventional metasurfaces and performs well in a broadband frequency range. The proposed acoustic metasurface offers flexibility in controlling the direction of sound wave propagation with energy dissipation property and holds promise for various applications of noise reduction.
Reflectance and optical constants for Cer-Vit from 250 to 1050 A
NASA Technical Reports Server (NTRS)
Osantowski, J. F.
1974-01-01
The reflectance for a bowl-feed polished Cer-Vit sample was measured at nine wavelengths and five angles of incidence from 15 to 85 deg. Optical constants were derived by the reflectance-vs-angle-of-incidence method and compared to previously reported values for ultralow-expansion fused silica and several other glasses. Surface-roughness corrections of the reflectance data and optical constants are discussed.
Head Mounted Display with a Roof Mirror Array Fold
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor)
2014-01-01
The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.
Leaf bidirectional reflectance and transmittance in corn and soybean
NASA Technical Reports Server (NTRS)
Walter-Shea, E. A.; Norman, J. M.; Blad, B. L.
1989-01-01
Bidirectional optical properties of leaves must be adequately characterized to develop comprehensive and reliably predictive canopy radiative-transfer models. Directional reflectance and transmittance factors of individual corn and soybean leaves were measured at source incidence angles (SIAs) 20, 45, and 70 deg and numerous view angles in the visible and NIR. Bidirectional reflectance distributions changed with increasing SIA, with forward scattering most pronounced at 70 deg. Directional-hemispherical reflectance generally increased and transmittance decreased with increased SIA. Directional-hemispherical reflectance factors were higher and transmittances were lower than the nadir-viewed reflectance component.
Fougnie, B; Frouin, R; Lecomte, P; Deschamps, P Y
1999-06-20
Reflected skylight in above-water measurements of diffuse marine reflectance can be reduced substantially by viewing the surface through an analyzer transmitting the vertically polarized component of incident radiance. For maximum reduction of effects, radiometric measurements should be made at a viewing zenith angle of approximately 45 degrees (near the Brewster angle) and a relative azimuth angle between solar and viewing directions greater than 90 degrees (backscattering), preferably 135 degrees. In this case the residual reflected skylight in the polarized signal exhibits minimum sensitivity to the sea state and can be corrected to within a few 10(-4) in reflectance units. For most oceanic waters the resulting relative error on the diffuse marine reflectance in the blue and green is less than 1%. Since the water body polarizes incident skylight, the measured polarized reflectance differs from the total reflectance. The difference, however, is small for the considered geometry. Measurements made at the Scripps Institution of Oceanography pier in La Jolla, Calif., with a specifically designed scanning polarization radiometer, confirm the theoretical findings and demonstrate the usefulness of polarization radiometry for measuring diffuse marine reflectance.
Analytical beam-width characteristics of distorted cat-eye reflected beam
NASA Astrophysics Data System (ADS)
Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan
2015-02-01
The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.
Bootsma, Reinoud J.; Schoemaker, Marina M.; Otten, Egbert; Mouton, Leonora J.; Bongers, Raoul M.
2017-01-01
Flexibility in motor actions can be defined as variability in the use of degrees of freedom (e.g., joint angles in the arm) over repetitions while keeping performance (e.g., fingertip position) stabilized. We examined whether flexibility can be increased through enlarging the joint angle range during practice in a manual obstacle-avoidance target-pointing task. To establish differences in flexibility we partitioned the variability in joint angles over repetitions in variability within (GEV) and variability outside the solution space (NGEV). More GEV than NGEV reflects flexibility; when the ratio of the GEV and NGEV is higher, flexibility is higher. The pretest and posttest consisted of 30 repetitions of manual pointing to a target while moving over a 10 cm high obstacle. To enlarge the joint angle range during practice participants performed 600 target-pointing movements while moving over obstacles of different heights (5–9 cm, 11–15 cm). The results indicated that practicing movements over obstacles of different heights led participants to use enlarged range of joint angles compared to the range of joint angles used in movements over the 10 cm obstacle in the pretest. However, for each individual obstacle neither joint angle variance nor flexibility were higher during practice. We also did not find more flexibility after practice. In the posttest, joint angle variance was in fact smaller than before practice, primarily in GEV. The potential influences of learning effects and the task used that could underlie the results obtained are discussed. We conclude that with this specific type of practice in this specific task, enlarging the range of joint angles does not lead to more flexibility. PMID:28700695
Interface plasmonic properties of silver coated by ultrathin metal oxides
NASA Astrophysics Data System (ADS)
Sytchkova, A.; Zola, D.; Grilli, M. L.; Piegari, A.; Fang, M.; He, H.; Shao, J.
2011-09-01
Many fields of high technology take advantage of conductor-dielectric interface properties. Deeper knowledge of physical processes that determine the optical response of the structures containing metal-dielectric interfaces is important for improving the performance of thin film devices containing such materials. Here we present a study on optical properties of several ultrathin metal oxides deposited over thin silver layers. Some widely used materials (Al2O3, SiO2, Y2O3, HfO2) were selected for deposition by r.f. sputtering, and the created metal-dielectric structures with two of them, alumina and silica, were investigated in this work using attenuated total reflectance (ATR) technique and by variable-angle spectroscopic ellipsometry (VASE). VASE was performed with a help of a commercial ellipsometer at various incident angles and in a wide spectral range. A home-made sample holder manufactured for WVASE ellipsometer and operational in Otto configuration has been implemented for angle-resolved and spectral ATR measurements. Simultaneous analysis of data obtained by these two independent techniques allows elaboration of a representative model for plasmonic-related phenomena at metal-dielectric interface. The optical constants of the interface layers formed between metal and ultrathin oxide layers are investigated. A series of oxides chosen for this study allows a comparative analysis aimed for selection of the most appropriate materials for different applications.
Anisotropic reflectance from turbid media. II. Measurements.
Neuman, Magnus; Edström, Per
2010-05-01
The anisotropic reflectance from turbid media predicted using the radiative transfer based DORT2002 model is experimentally verified through goniophotometric measurements. A set of paper samples with varying amounts of dye and thickness is prepared, and their angle resolved reflectance is measured. An alleged perfect diffusor is also included. The corresponding simulations are performed. A complete agreement between the measurements and model predictions is seen regarding the characteristics of the anisotropy. They show that relatively more light is reflected at large polar angles when the absorption or illumination angle is increased or when the medium thickness is decreased. This is due to the relative amount of near-surface bulk scattering increasing in these cases. This affects the application of the Kubelka-Munk model as well as standards for reflectance measurements and calibration routines.
Passive bottom reflection-loss estimation using ship noise and a vertical line array.
Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M
2017-06-01
An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.
Braaf, Boy; van de Watering, Thomas Christiaan; Spruijt, Kees; van der Heijde, Rob G.L.; Sicam, Victor Arni D.P.
2010-01-01
Purpose To develop a method to calculate the angle λ of the human eye using Zernike tilt measurements in specular reflection corneal topography. Methods The meaning of Zernike tilt in specular reflection corneal topography is demonstrated by measurements on translated artificial surfaces using the VU Topographer. The relationship derived from the translation experiments is used to determine the angle λ. Corneal surfaces are measured for a set of eight different fixation points, for which tilt angles ρ are obtained from the Zernike tilt coefficients. The angles ρ are used with respect to the fixation target angles to determine angle λ by fitting a geometrical model. This method is validated with Orbscan II's angle-κ measurements in 9 eyes. Results The translation experiments show that the Zernike tilt coefficient is directly related to an angle ρ, which describes a tilt orientation of the cornea and can therefore be used to derive a value for angle λ. A significant correlation exists between measured values for angle λ with the VU Topographer and the angle κ with the Orbscan II (r=0.95, P<0.001). A Bland-Altman plot indicates a mean difference of -0.52 degrees between the two instruments, but this is not statistically significant as indicated by a matched-pairs Wilcoxon signed-rank test (P≤0.1748). The mean precision for measuring angle λ using the VU topographer is 0.6±0.3 degrees. Conclusion The method described above to determine angle λ is sufficiently repeatable and performs similarly to the angle-κ measurements made with the Orbscan II.
Controlling X-ray beam trajectory with a flexible hollow glass fibre.
Tanaka, Yoshihito; Nakatani, Takashi; Onitsuka, Rena; Sawada, Kei; Takahashi, Isao
2014-01-01
A metre-length flexible hollow glass fibre with 20 µm-bore and 1.5 mm-cladding diameters for transporting a synchrotron X-ray beam and controlling the trajectory has been examined. The large cladding diameter maintains a moderate curvature to satisfy the shallow glancing angle of total reflection. The observed transmission efficiency was more than 20% at 12.4 keV. As a demonstration, a wide-area scan of a synchrotron radiation beam was performed to identify the elements for a fixed metal film through its absorption spectra.
Structure functions in decomposing CuRh systems
NASA Astrophysics Data System (ADS)
Prem, M.; Blaschko, O.; Rosta, L.
1997-02-01
The time evolution of a CuRh alloy quenched within the miscibility gap is investigated by small and wide angle neutron scattering techniques. Near fundamental Bragg reflections diffuse satellites arising from a lattice parameter modulation induced by the precipitation pattern are investigated. The results show that in CuRh the precipitation morphology and its time evolution are quite different from decomposition characteristics recently observed in the system AuPt. The results are discussed and related to the larger lattice misfit present in CuRh in comparison to AuPt.
An integrated geological and geophysical study of the Parnaíba cratonic basin, North-East Brazil
NASA Astrophysics Data System (ADS)
Tozer, B.; Watts, A. B.; Daly, M.
2015-12-01
Cratonic basins are characterized by their sub-circular shape, long-lived (>100 Myr) subsidence, shallow marine/terrestrial sediments that young towards the center of the basin and exhibit little internal deformation, and thick seismic lithosphere. Despite the recognition of >30 world-wide, the paucity of geological and geophysical data over these basins means their origin remains enigmatic. In order to address this problem, we have used a recently acquired 1400 km long seismic reflection profile recorded to 20 s TWTT, field observations and well logs, gravity and magnetic data acquired at 1 km intervals, and five wide-angle refection/refraction receiver gathers recorded at offsets up to 100 km, to constrain the origin of the Parnaíba basin, North-East Brazil. We find a depth to pre-Paleozoic basement and Moho of ~ 3.5 and ~ 40 - 42 km respectively beneath the basin center. A prominent mid-crustal reflection (MCR) can be tracked laterally for ~ 300 km at depths between 17 - 25 km and a low-fold wide-angle receiver gather stack shows that the crust below the MCR is characterized by a ~ 4 s TWTT package of anastomosing reflections. Gravity modelling suggests that the MCR represents the upper surface of a high density (+0.14 kg m-3) lower crustal body, which is probably of magmatic origin. Backstripping of biostratigraphic data from wells in the center of the basin show an exponentially decreasing subsidence. We show that although cooling of a thick (180 km) lithosphere following prolonged rifting (~ 65 Myr) can provide a good fit to the tectonic subsidence curves, process-oriented gravity and flexure modelling suggest that other processes must be important, as rifting does not account for the observed gravity anomaly and predicts too thin a crust (~ 34 km). The thicker than expected crust suggests warping due, for example, to far-field stresses or basal tractions. Another possibility, which is compatible with existing geophysical data, is a dense magmatic intrusion in the lower crust that has loaded and flexed the pre-existing Moho downwards to greater depths than beneath flanking Archaen and Proterozoic terranes.
The ASTRO-H SXT Performance to the Large Off-Set Angles
NASA Technical Reports Server (NTRS)
Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi;
2016-01-01
The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (approximately 3' x 3') at large off-axis angles (greater than 15') are approximately 1(exp -4) times smaller than the on-axis effective area (approximately 590 sq cm at 1.49 keV).
Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Biehl, L. L.; Bauer, M. E.
1984-01-01
Comparisons of the spectral response for incomplete (well-defined row structure) and complete (overlapping row structure) canopies of soybeans indicated a greater dependence on Sun and view geometry for the incomplete canopies. Red and near-IR reflectance for the incomplete canopy decreased as solar zenith angle increased for a nadir view angle until the soil between the plant rows was completely shaded. Thereafter for increasing solar zenith angle, the red reflectance leveled off and the near-IR reflectance increased. A 'hot spot' effect was evident for the red and near-IR reflectance factors. The 'hot spot' effect was more pronounced for the red band based on relative reflectance value changes. The ratios of off-nadir to nadir acquired data reveal that off-nadir red band reflectance factors more closely approximated straightdown measurements for time periods away from solar noon. Normalized difference generally approximated straightdown measurements during the middle portion of the day.
Effects of changing canopy directional reflectance on feature selection
NASA Technical Reports Server (NTRS)
Smith, J. A.; Oliver, R. E.; Kilpela, O. E.
1973-01-01
The use of a Monte Carlo model for generating sample directional reflectance data for two simplified target canopies at two different solar positions is reported. Successive iterations through the model permit the calculation of a mean vector and covariance matrix for canopy reflectance for varied sensor view angles. These data may then be used to calculate the divergence between the target distributions for various wavelength combinations and for these view angles. Results of a feature selection analysis indicate that different sets of wavelengths are optimum for target discrimination depending on sensor view angle and that the targets may be more easily discriminated for some scan angles than others. The time-varying behavior of these results is also pointed out.
Broadband angle-independent antireflection coatings on nanostructured light trapping solar cells
NASA Astrophysics Data System (ADS)
Vázquez-Guardado, Abraham; Boroumand, Javaneh; Franklin, Daniel; Chanda, Debashis
2018-03-01
Backscattering from nanostructured surfaces greatly diminishes the efficacy of light trapping solar cells. While the analytical design of broadband, angle-independent antireflection coatings on nanostructured surfaces proved inefficient, numerical optimization proves a viable alternative. Here, we numerically design and experimentally verify the performance of single and bilayer antireflection coatings on a 2D hexagonal diffractive light trapping pattern on crystalline silicon substrates. Three well-known antireflection coatings, aluminum oxide, silicon nitride, and silicon oxide, which also double as high-quality surface passivation materials, are studied in the 400-1000 nm band. By varying thickness and conformity, the optimal parameters that minimize the broadband total reflectance (specular and scattering) from the nanostructured surface are obtained. The design results in a single-layer antireflection coating with normal-angle wavelength-integrated reflectance below 4% and a bilayer antireflection coating demonstrating reflection down to 1.5%. We show experimentally an angle-averaged reflectance of ˜5.2 % up to 60° incident angle from the optimized bilayer antireflection-coated nanostructured surface, paving the path toward practical implementation of the light trapping solar cells.
Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties
Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon
2000-05-02
A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.
Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke
2017-07-06
We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.
NASA Astrophysics Data System (ADS)
Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.
2011-12-01
The origin of the Algerian margin remains one of the key questions still unresolved in the Western Mediterranean sea. This is related to the unknown nature and kinematics of this Neogene basin. Whereas the westernmost margin is generally assumed to have been shaped as a STEP-fault (Subduction-Transform Edge Propagator, transcurrent) margin by the westward displacement of the Alboran block, the central Algerian margin is believed to have involved a NW-SE basin opening related to a southward slab rollback. This work sheds insight on this issue, using data acquired in the context of the Algerian-French program SPIRAL (Sismique Profonde et Investigation Régionale en Algérie): a cruise conducted on the 'R/V L'Atalante' in October-November 2009. It has provided 5 new combined onshore-offshore wide-angle seismic profiles and an extensive multi-channel seismic dataset spread along the margin, from Oran to Annaba. In this work, the available structural information on the ~N-S wide-angle transect of Tipaza is presented, where the margin broadens due to the presence of a bathymetric high (the Khayr-Al-Din bank) which is assumed to represent a remaining titled block of the passive margin. Along the transect, 39 OBS and 13 landstations recorded 751 low frequency airgun shots. Travel-time tomography and forward modelling were computed using the software developed by Zelt and Barton (1998) and Zelt and Smith (1992), to obtain the velocity structure in the region. A set of multi-channel seismic reflection profiles including two coincident profiles with the wide-angle data allows a combined interpretation and extend the deep structure in the Bou Ismail Bay. MCS data outline the sedimentary sequence filling the Algerian basin depicting an intensive salt tectonic associated with the Messinan Salinity Crisis and allowing to image locally below the salt layer. The deep penetrating data SPIRAL allow to image the sedimentary sequence in the Algerian basin off Tipaza (West Algiers) and the crustal structure at the continent-ocean boundary. In the Algerian basin off Tipaza, the Moho discontinuity is identified using wide-angle modelling at 11-12 km depth which corresponds in two-way travel-time to 7-8 s. Wide-angle seismic modelling imaged a major thinning of the crust from more of 15 km in the upper margin (KADB) to only 5-6 km in the deep basin. This thinning also marks the rapid transition from a thinned continental crust at the Khayr-al-Din bank to an oceanic crust in the Algerian Basin, revealing a narrow transition zone (20-30 km) between the two domains. This work presents the deep structure of the margin West of Algiers from wide-angle and multichannel seismic data in order to discuss models of opening for the Algerian basin.
NASA Astrophysics Data System (ADS)
Vignati, F.; Guardone, A.
2017-11-01
An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.
Measuring Snow Grain Size with the Near-Infrared Emitting Reflectance Dome (NERD)
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.
2014-12-01
Because of its high visible albedo, snow plays a large role in Earth's surface energy balance. This role is a subject of intense study, but due to the wide range of snow albedo, variations in the characteristics of snow grains can introduce radiative feedbacks in a snow pack. Snow grain size, for example, is one property which directly affects a snow pack's absorption spectrum. Previous studies model and observe this spectrum, but potential feedbacks induced by these variations are largely unknown. Here, we implement a simple and inexpensive technique to measure snow grain size in an instrument we call the Near-infrared Emitting Reflectance Dome (NERD). A small black styrene dome (~17cm diameter), fitted with two narrowband light-emitting diodes (LEDs) centered around 1300nm and 1550nm and three near-infrared reverse-biased photodiodes, is placed over the snow surface enabling a multi-spectral measurement of the hemispheric directional reflectance factor (HDRF). We illuminate the snow at each wavelength, measure directional reflectance, and infer grain size from the difference in HDRFs measured on the same snow crystals at fixed viewing angles. We validate measurements from the NERD using two different reflectance standards, materials designed to be near perfect Lambertian reflectors, having known, constant reflectances (~99% and ~55%) across a wide range of wavelengths. Using a 3D Monte Carlo model simulating photon pathways through a pack of spherical snow grains, we calculate the difference in HDRFs at 1300nm and 1550nm to predict the calibration curve for a wide range of grain sizes. This theoretically derived curve gives a relationship between effective radius and the difference in HDRFs and allows us to approximate grain sizes using the NERD in just a few seconds. Further calibration requires knowledge of truth values attainable using a previously validated instrument or measurements from an inter-comparison workshop.
Low-reflective wire-grid polarizers with absorptive interference overlayers.
Suzuki, Motofumi; Takada, Akio; Yamada, Takatoshi; Hayasaka, Takashi; Sasaki, Kouji; Takahashi, Eiji; Kumagai, Seiji
2010-04-30
Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an antireflection (AR) coating owing to the interference along with the absorption in the absorptive layer. A wide variety of materials can be used for AR coatings by tuning the thicknesses of both the absorptive and the gap layers. This AR concept has been applied to reduce the reflectance of WG polarizers of Al. FeSi(2) as an absorptive layer has been deposited by the glancing angle deposition technique immediately on the top of Al wires covered with a thin SiO(2) layer as a gap layer. For the optimum combination of the thicknesses of FeSi(2) and SiO(2), the reflectance becomes lower than a few per cent, independent of the polarization, whereas the transmission polarization properties remain good. Because low-reflective (LR) WG polarizers are completely composed of inorganic materials, they are useful for applications requiring high-temperature durability such as liquid crystal projection displays.
2017-10-30
Reflected sunlight is the source of the illumination for visible wavelength images such as the one above. However, at longer infrared wavelengths, direct thermal emission from objects dominates over reflected sunlight. This enabled instruments that can detect infrared radiation to observe the pole even in the dark days of winter when Cassini first arrived at Saturn and Saturn's northern hemisphere was shrouded in shadow. Now, 13 years later, the north pole basks in full sunlight. Close to the northern summer solstice, sunlight illuminates the previously dark region, permitting Cassini scientists to study this area with the spacecraft's full suite of imagers. This view looks toward the northern hemisphere from about 34 degrees above Saturn's ringplane. The image was taken with the Cassini spacecraft wide-angle camera on April 25, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 274,000 miles (441,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 111 degrees. Image scale is 16 miles (26 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21351
A fast radiative transfer method for the simulation of visible satellite imagery
NASA Astrophysics Data System (ADS)
Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard
2016-05-01
A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.
Alternatives to SiOx for protective scan mirror coatings in remote sensing instruments
NASA Astrophysics Data System (ADS)
MacDonald, Michael E.
1999-09-01
Mirrors in remote sensing instruments require durable dielectric coatings, both to prevent oxidation of the reflective surface and to protect it during cleaning. IR absorption bands within widely-used SiOx coatings produce scene radiance and instrument background variations as a function of scan mirror angle which motivate the search for possible substitute materials. In this work several candidate coatings are evaluated including CeF3, HfO2, MgF2 SrF2, and Y2O3. This evaluation consists of reflectance, adhesion, and durability measurements of mirrors with an aluminum reflective surface over-coated with these materials. S-polarized and P- polarized reflectance measurements are presented between 2 and 20 micrometers for incidence angles between 40 and 50 degrees. This angular range is sufficient to scan the earth disk from geostationary orbit. Additional measurements at 45 degrees incidence are presented between 2 and 55 micrometers , covering the IR wavelength range of interest for earth radiation budget sensors. Comparisons are drawn with measurements of scan- mirror witness samples from the imaging and sounding instruments used in the Geostationary Operational Environmental Satellite (GOES). These witness samples exhibit reflectance variations arising from IR absorption bands in the SiOx protective coatings used in these mirrors. The spectral characteristics of several of the alternate materials are found to be quite attractive, however durable coatings of some of these materials require elevated deposition temperature which are incompatible with the nickel-coated beryllium scan mirror substrate construction used in GOES. This work present the achievable reflectance and durability of these alternate dielectric protective coatings at the deposition temperature constraints imposed by the scan mirror substrate. The prospects for substituting one of these coatings for SiOx are evaluated, and contrasted with the capability of radiometric calibration techniques to deal with the reflectance variations produced by SiOx coatings.
Fang, Ning; Sun, Wei
2015-04-21
A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.
Method and Apparatus for Measuring Near-Angle Scattering of Mirror Coatings
NASA Technical Reports Server (NTRS)
Chipman, Russell A. (Inventor); Daugherty, Brian J. (Inventor); McClain, Stephen C. (Inventor); Macenka, Steven A. (Inventor)
2013-01-01
Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed.
2015-04-16
Measurements from NASA MESSENGER MLA instrument during the spacecraft greater than four-year orbital mission have mapped the topography of Mercury northern hemisphere in great detail. This enhanced color mosaic shows (from left to right) Munch (61 km/38 mi.), Sander (52 km/32 mi.), and Poe (81 km/50 mi.) craters, which lie in the northwest portion of the Caloris basin. The smooth volcanic plains that fill the Caloris basin appear orange in this image. All three craters are superposed on these volcanic plains and have excavated low-reflectance material, which appears blue in this image, from the subsurface. Hollows, typically associated with low-reflectance material, dot the rims of Munch and Poe and cover the floor of Sander. These images were acquired as high-resolution targeted color observations. Targeted color observations are images of a small area on Mercury's surface at resolutions higher than the 1-kilometer/pixel 8-color base map. During MESSENGER's one-year primary mission, hundreds of targeted color observations were obtained. During MESSENGER's extended mission, high-resolution targeted color observations are more rare, as the 3-color base map is covering Mercury's northern hemisphere with the highest-resolution color images that are possible. Date acquired: July 03, 2011, July 04, 2011 Image Mission Elapsed Time (MET): 218204186, 218204190, 218204194, 218246487, 218246491, 218246495 Image ID: 458397, 458398, 458399, 460433, 460434, 460435 Instrument: Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 42° N Center Longitude: 154° E Projection: Equirectangular Resolution: 239 meters/pixel Scale: Munch crater is approximately 61 km (38 mi.) in diameter Incidence Angle: 43°, 42° Emission Angle: 35°, 13° Phase Angle: 79°, 55° http://photojournal.jpl.nasa.gov/catalog/PIA19421
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patommel, Jens; Klare, Susanne; Hoppe, Robert
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
Patommel, Jens; Klare, Susanne; Hoppe, Robert; ...
2017-03-06
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel
2017-10-01
The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.
The Absolute Reflectance and New Calibration Site of the Moon
NASA Astrophysics Data System (ADS)
Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu
2018-05-01
How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.
Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho
2015-01-01
Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P < .001) and TT (P = .018). In the hallux, HVA was strongly correlated with transverse ISA of the hallux (P < .001). The segmental foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.
Experimental test of plant canopy reflectance models on cotton
NASA Technical Reports Server (NTRS)
Lemaster, E. W.
1973-01-01
Spectroradiometric data on the bidirectional reflectance function was collected for a cotton canopy as a function of observer zenith angle, observer angle, and solar zenith angle. The area under study was about 40 miles from the Gulf of Mexico and the prevailing winds blew inland such that cloud formation increased during the day. The standard reflectance panel was constructed of plywood that had been spray painted with a flat white latex paint. Physical and optical plant parameters were measured. A time lapse mechanism was constructed to operate a 16 mm movie camera such that single frames could be exposed at intervals of one per second up to one per hour. Data were digitized from a strip chart recorder and reflectance panel measurements.
Solar System Portrait - View of the Sun, Earth and Venus
1996-09-13
This color image of the sun, Earth and Venus was taken by the Voyager 1 spacecraft Feb. 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The "rays" around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resulting from the scattering of sunlight off parts of the camera and its sun shade. From Voyager's great distance both Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. Detailed analysis also suggests that Voyager detected the moon as well, but it is too faint to be seen without special processing. Venus was only 0.11 pixel in diameter. The faint colored structure in both planetary frames results from sunlight scattered in the optics. http://photojournal.jpl.nasa.gov/catalog/PIA00450
Solar System Portrait - View of the Sun, Earth and Venus
NASA Technical Reports Server (NTRS)
1990-01-01
This color image of the sun, Earth and Venus was taken by the Voyager 1 spacecraft Feb. 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The 'rays' around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resulting from the scattering of sunlight off parts of the camera and its sun shade. From Voyager's great distance both Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. Detailed analysis also suggests that Voyager detected the moon as well, but it is too faint to be seen without special processing. Venus was only 0.11 pixel in diameter. The faint colored structure in both planetary frames results from sunlight scattered in the optics.
NASA Astrophysics Data System (ADS)
Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James
2017-04-01
We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.
Special report, diffuse reflectivity of the lunar surface
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1972-01-01
The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
Parity-time-symmetric teleportation
NASA Astrophysics Data System (ADS)
Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.
2016-06-01
We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.
Interpreting vegetation reflectance measurements as a function of solar zenith angle
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Smith, J. A.; Ranson, K. J.
1979-01-01
Spectral hemispherical-conical reflectances of a nadir looking sensor were taken throughout the day for a lodgepole pine and two grass canopies. Mathematical simulations of both spectral hemispherical-conical and bi-hemispherical reflectances were performed for two theoretical canopies of contrasting geometric structure. These results and comparisons with literature studies showed a great amount of variability of vegetation canopy reflectances as a function of solar zenith angle. Explanations for this variability are discussed and recommendations for further measurements are proposed.
NASA Astrophysics Data System (ADS)
Wu, Aisheng; Xiong, Xiaoxiong J.; Cao, Changyong
2017-09-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite has been in operation for over five years. VIIRS has 22 bands with a spectral range from 0.4 μm to 2.2 μm for the reflective solar bands (RSB). The Earth view swath covers a distance of 3000 km over scan angles of +/- 56.0° off nadir. The on-board calibration of the RSB relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability, particularly at the short wavelengths (blue) where the most degradation occurs. In this study, the RVS stability is examined based on reflectance trends collected at various scan angles over the selected pseudo-invariant desert sites in Northern Africa and the Dome C snow site in Antarctica. These trends are corrected by the site dependent BRDF (bi-directional reflectance function) model to reduce seasonally related fluctuations. The BRDF corrected trends are examined so any systematic drifts in the scan angle direction would indicate a potential change in RVS. The results of this study provide useful information on VIIRS RVS on-orbit stability performance.
Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai
2016-12-01
Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy at 0° to -30° (R2 = 0.835, RMSE = 0.366). As it is possible to monitor plant N status over a wide range of angles using portable spectrometers, viewing angles of as much as 0° to -30° are common. Consequently, we developed a united model across angles of 0° to -30° to reduce the effects of viewing angle on LNC prediction in wheat. The proposed combined NDRE/FWBI parameter, designated the wide-angle-adaptability nitrogen index (WANI), is superior for estimating LNC in wheat on a regional scale in China and Canada.
UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.
Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis
2014-03-07
The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.
Krotkov, N A; Vasilkov, A P
2000-03-20
Use of a vertical polarizer has been suggested to reduce the effects of surface reflection in the above-water measurements of marine reflectance. We suggest using a similar technique for airborne or spaceborne sensors when atmospheric scattering adds its own polarization signature to the upwelling radiance. Our own theoretical sensitivity study supports the recommendation of Fougnie et al. [Appl. Opt. 38, 3844 (1999)] (40-50 degrees vertical angle and azimuth angle near 135 degrees, polarizer parallel to the viewing plane) for above-water measurements. However, the optimal viewing directions (and the optimal orientation of the polarizer) change with altitude above the sea surface, solar angle, and atmospheric vertical optical structure. A polarization efficiency function is introduced, which shows the maximal possible polarization discrimination of the background radiation for an arbitrary altitude above the sea surface, viewing direction, and solar angle. Our comment is meant to encourage broader application of airborne and spaceborne polarization sensors in remote sensing of water and sea surface properties.
New developments of a knowledge based system (VEG) for inferring vegetation characteristics
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Harrison, P. A.; Harrison, P. R.
1992-01-01
An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).
Internal high-reflectivity omni-directional reflectors
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Ojha, Manas; Plawsky, J. L.; Gill, W. N.; Kim, Jong Kyu; Schubert, E. F.
2005-07-01
An internal high-reflectivity omni-directional reflector (ODR) for the visible spectrum is realized by the combination of total internal reflection using a low-refractive-index (low-n) material and reflection from a one-dimensional photonic crystal (1D PC). The low-n layer limits the range of angles in the 1D PC to values below the Brewster angle, thereby enabling high reflectivity and omni-directionality. This ODR is demonstrated using GaP as ambient, nanoporous SiO2 with a very low refractive index (n=1.10), and a four-pair TiO2/SiO2 multilayer stack. The results indicate a two orders of magnitude lower angle-integrated transverse-electric-transverse-magnetic polarization averaged mirror loss of the ODR compared with conventional distributed Bragg reflectors and metal reflectors. This indicates the high potential of the internal ODRs for optoelectronic semiconductor devices, e.g., light-emitting diodes.
NASA Astrophysics Data System (ADS)
From, W. R.; MacGibbon, J.; Whitehead, J. D.
1989-03-01
Angles of arrival of first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground) were measured. It is easy to show that under specified conditions the off-vertical angle of arrival of the second echo ought to be twice that of the first echo. It is consistently found to be less than this for much of the time. Several possibilities are canvassed, but none provide a convincing explanation. The place on the Earth from which the second echo was reflected was nearly always the sea or flat ground. Apparently, rapid phase variations, as the tilt of the ionosphere changed, prevented recognition of the second echo by this particular radar system for echoes reflected from rough terrain.
Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Peng, Suping
2016-01-01
This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.
Multi-Angle View of the Canary Islands
NASA Technical Reports Server (NTRS)
2000-01-01
A multi-angle view of the Canary Islands in a dust storm, 29 February 2000. At left is a true-color image taken by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. This image was captured by the MISR camera looking at a 70.5-degree angle to the surface, ahead of the spacecraft. The middle image was taken by the MISR downward-looking (nadir) camera, and the right image is from the aftward 70.5-degree camera. The images are reproduced using the same radiometric scale, so variations in brightness, color, and contrast represent true variations in surface and atmospheric reflectance with angle. Windblown dust from the Sahara Desert is apparent in all three images, and is much brighter in the oblique views. This illustrates how MISR's oblique imaging capability makes the instrument a sensitive detector of dust and other particles in the atmosphere. Data for all channels are presented in a Space Oblique Mercator map projection to facilitate their co-registration. The images are about 400 km (250 miles)wide, with a spatial resolution of about 1.1 kilometers (1,200 yards). North is toward the top. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.
Wide-angle light-trapping electrode for photovoltaic cells.
Omelyanovich, Mikhail M; Simovski, Constantin R
2017-10-01
In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.
Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence
NASA Astrophysics Data System (ADS)
Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen
2018-05-01
Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.
NASA Astrophysics Data System (ADS)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen; Shi, Hongying; Liu, Bin; Wang, Lianhui; Huang, Wei
2015-02-01
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.
NASA Astrophysics Data System (ADS)
Da Deppo, V.; Naletto, G.; Nicolosi, P.; Zambolin, P.; De Cecco, M.; Debei, S.; Parzianello, G.; Ramous, P.; Zaccariotto, M.; Fornasier, S.; Verani, S.; Thomas, N.; Barthol, P.; Hviid, S. F.; Sebastian, I.; Meller, R.; Sierks, H.; Keller, H. U.; Barbieri, C.; Angrilli, F.; Lamy, P.; Rodrigo, R.; Rickman, H.; Wenzel, K. P.
2017-11-01
Rosetta is one of the cornerstone missions of the European Space Agency for having a rendezvous with the comet 67P/Churyumov-Gerasimenko in 2014. The imaging instrument on board the satellite is OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System), a cooperation among several European institutes, which consists of two cameras: a Narrow (NAC) and a Wide Angle Camera (WAC). The WAC optical design is an innovative one: it adopts an all reflecting, unvignetted and unobstructed two mirror configuration which allows to cover a 12° × 12° field of view with an F/5.6 aperture and gives a nominal contrast ratio of about 10-4. The flight model of this camera has been successfully integrated and tested in our laboratories, and finally has been integrated on the satellite which is now waiting to be launched in February 2004. In this paper we are going to describe the optical characteristics of the camera, and to summarize the results so far obtained with the preliminary calibration data. The analysis of the optical performance of this model shows a good agreement between theoretical performance and experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the usemore » of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.« less
Impact of high power and angle of incidence on prism corrections for visual field loss.
Jung, Jae-Hyun; Peli, Eli
2014-01-17
Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1995-01-01
A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.
Impact of high power and angle of incidence on prism corrections for visual field loss
Jung, Jae-Hyun; Peli, Eli
2014-01-01
Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice. PMID:24497649
Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson
NASA Astrophysics Data System (ADS)
Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth
2012-04-01
One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.
Airborne Spectral Measurements of Ocean Directional Reflectance
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens
2004-01-01
During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.
Germer, Thomas A
2017-11-20
We measured the Mueller matrix bidirectional reflectance distribution function (BRDF) of a sintered polytetrafluoroethylene (PTFE) sample over the scattering hemisphere for six incident angles (0°-75° in 15° steps) and for four wavelengths (351 nm, 532 nm, 633 nm, and 1064 nm). The data for each wavelength were fit to a phenomenological description for the Mueller matrix BRDF, which is an extension of the bidirectional surface scattering modes developed by Koenderink and van Doorn [J. Opt. Soc. Am. A.15, 2903 (1998)JOAOD60740-323210.1364/JOSAA.15.002903] for unpolarized BRDF. This description is designed to be complete, to obey the appropriate reciprocity conditions, and to provide a full description of the Mueller matrix BRDF as a function of incident and scattering directions for each wavelength. The description was further extended by linearizing the surface scattering mode coefficients with wavelength. This data set and its parameterization provides a comprehensive on-demand description of the reflectance properties for this commonly used diffuse reflectance reference material over a wide range of wavelengths.
Optical Reflectance Measurements for Commonly Used Reflectors
NASA Astrophysics Data System (ADS)
Janecek, Martin; Moses, William W.
2008-08-01
When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.
NASA Astrophysics Data System (ADS)
Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral
2010-05-01
During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.
Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Suttles, J. T.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
Optical inverse-square displacement sensor
Howe, Robert D.; Kychakoff, George
1989-01-01
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##
The Zeldovich approximation and wide-angle redshift-space distortions
NASA Astrophysics Data System (ADS)
Castorina, Emanuele; White, Martin
2018-06-01
The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.
Waveguide Grating For Polarization Preprocessing Circuits
NASA Astrophysics Data System (ADS)
Voirin, Guy; Gradisnik, F.; Parriaux, Olivier M.; Gale, Michael T.; Kunz, Rino E.; Curtis, B. J.; Lehmann, Hans W.
1989-12-01
Periodically corrugated optical waveguides on glass with non-collinear coupling have been investigated both theoretically and experimentally. For a TE or TM polarized guided mode of a planar waveguide obliquely incident on a grating pad, there are four characteristic angles corresponding to the coupling with TE and TM reflected modes fulfilling the Bragg condition. The reflectivity is obtained by solving the coupled mode equations for the non-collinear case. The modelling shows that integrated passive functions such as polarization splitting and interference can be achieved. The polarization interference element uses the property that the coupling coefficients TM-TE and TE-TE are equal at defined incidence angles. Since the angle between the two reflected TE beams is only a few minutes of arc, the two beams can interfere. The waveguides are made by K+ ion exchange in BK7 glass for 3 hours at 380°C. The structure was designed for use at a wavelength of 633 nm and uses a 485 nm period grating which was fabricated by holographic exposure and plasma etching techniques in a 50 nm TiO2 layer e-beam evaporated onto the glass surface. The reflectivity of the grating structure was studied experimentally and compared with theory. The diffraction angles are within 30 " of arc of the predicted angles. The measured reflectivities reached 20 %. The feasibility of realizing an integrated optic preprocessing circuit for polarization interferometry has been demonstrated.
Specular reflectance of soiled glass mirrors - Study on the impact of incidence angles
NASA Astrophysics Data System (ADS)
Heimsath, Anna; Lindner, Philip; Klimm, Elisabeth; Schmid, Tobias; Moreno, Karolina Ordonez; Elon, Yehonatan; Am-Shallem, Morag; Nitz, Peter
2016-05-01
The accumulation of dust and soil on the surface of solar reflectors is an important factor reducing the power output of solar power plants. Therefore the effect of accumulated dust on the specular reflectance of solar mirrors should be understood well in order to improve the site-dependent performance prediction. Furthermore, an optimization of the CSP System maintenance, in particular the cleaning cycles, can be achieved. Our measurements show a noticeable decrease of specular reflectance when the angle of incidence is increased. This effect may be explained by shading and blocking mechanisms caused by dirt particles. The main physical causes of radiation loss being absorption and scattering, the near-angle scattering leads to a further decrease of specular reflectance for smaller angles of acceptance. Within this study mirror samples were both outdoor exposed and indoor artificially soiled. For indoor soiling, the mirror samples were artificially soiled in an in-house developed dusting device using both artificial-standardized dust and real dust collected from an arid outdoor test field at the Negev desert. A model function is proposed that approximates the observed reduction of specular reflectance with the incidence angle with a sufficient accuracy and by simple means for this soil type. Hence a first step towards a new approach to improve site dependent performance prediction of solar power plants is taken.
Metamaterial Designs for Photovoltaic and IR Focal-Plane-Imaging Array Applications
2013-03-01
incident angles above 17 degrees. There also seems to be no Brewster angle (i.e. the angle at which reflection = 0) for the reflection from the MTM...half- space, while glass has as Brewster angle at 56 degrees incident for TM polarized light. 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9...and incident spot beams from an objective lens . The spot beams hitting the detectors are absorbed, but the power of the spot beams falling in between
Brocher, Thomas M.; Clayton, Robert W.; Klitgord, Kim D.; Bohannon, Robert G.; Sliter, Ray; McRaney, John K.; Gardner, James V.; Keene, J.B.
1995-01-01
This report describes the acquisition of deep-crustal multichannel seismic-reflection data in the Inner California Borderland aboard the R/V Maurice Ewing, conducted in October 1994 as part of the Los Angeles Regional Seismic Experiment (LARSE). LARSE is a cooperative study of the crustal structure of southern California involving earth scientists from the U.S. Geological Survey, Caltech, the University of Southern California, the University of California Los Angeles, and the Southern California Earthquake Center (SCEC). During LARSE, the R/V Ewing's 20- element air gun array, totaling 137.7 liters (8470 cu. in.), was used as the primary seismic source for wide-angle recording along three main onshore-offshore lines centered on the Los Angeles basin and the epicenters of the 1933 Long Beach and 1994 Northridge earthquakes. The LARSE onshore-offshore lines were each 200-250 km long, with the offshore portions being between 90 and 150 km long. The nearly 24,000 air gun signals generated by the Ewing were recorded by an array of 170 PASSCAL REFTEK recorders deployed at 2 km intervals along all three of the onshore lines and 9 ocean bottom seismometers (OBSs) deployed along two of the lines. Separate passes over the OBS-deployment lines were performed with a long air gun repetition rate (60 and 90 seconds) to minimize acoustic-wave interference from previous shots in the OBS data. The Ewing's 4.2-km, 160-channel, digital streamer was also used to record approximately 1250 km of 40-fold multichannel seismic-reflection data. To enhance the fold of the wide-angle data recorded onshore, mitigating against cultural and wind noise in the Los Angeles basin, the entire ship track was repeated at least once resulting in fewer than about 660 km of unique trackline coverage in the Inner Borderland. Portions of the seismic-reflection lines were repeated up to 6 times. A variety of other geophysical data were also continuously recorded, including 3.5 kHz bathymetry, multi-beam swath Hydrosweep bathymetry, magnetics, and gravity data. In this report, we describe the equipment and procedures used to acquire multichannel seismic-reflection and other geophysical data aboard the Ewing, provide a detailed cruise narrative, discuss the reduction of the data, and present near-trace constant offset seismic sections of the acquired profiles.
NASA Technical Reports Server (NTRS)
Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)
1993-01-01
A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.
Soybean canopy reflectance as a function of view and illumination geometry
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.
1982-01-01
The results of an experiment designed to characterize a soybean field by its reflectance at various view and illumination angles and by its physical and agronomic attributes are presented. Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions for various solar zenith and azimuth angles during portions of three days. An ancillary data set consisting of the agronomic and physical characteristics of the soybean field is described. The results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength and row direction, as well as the state of development of the canopy. Shadows between rows greatly affected the reflectance in the visible wavelength bands and to a lesser extent in the near infrared wavelengths. A model is proposed that describes the reflectance variation as a function of projected solar and projected viewing angles. The model appears to approximate the reflectance variations in the visible wavelength bands from a canopy with well defined row structure.
Detailed Investigation of Self-Similarity of Strong Shock Reflection Phenomena
NASA Astrophysics Data System (ADS)
Kobayashi, Susumu; Adachi, Takashi
2012-04-01
This paper experimentally investigates the validity of self-similarity of strong shock reflection phenomena in a shock tube. The models used for the shock-tube experiment are ordinary wedges with various reflecting wedge angles. The triple-point trajectory is approximately a straight line through the wedge apex for each reflecting wedge. However, a detailed measurement of the angle made by the incident and reflected shocks shows that the wave angle varies as the incident shock proceeds. This means that the shock reflection configuration deviates from self-similarity. The most remarkable phenomenon is the dynamic transition from regular to Mach reflection during shock propagation, where the validity of self-similarity breaks down. The flow-field behind the Mach stem is subsonic with respect to the triple point, so the condition on the solid boundary can catch up with the triple point and affect the flow around it. We also explain why the discrepancy between theory and experiment has gone unnoticed for strong shock waves and demonstrate that it is due to the transport properties of the fluid, such as the viscosity.
Theory of Mach reflection of detonation at glancing incidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bdzil, John Bohdan; Short, Mark
In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less
Theory of Mach reflection of detonation at glancing incidence
Bdzil, John Bohdan; Short, Mark
2016-12-06
In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less
Realization of an Ultra-thin Metasurface to Facilitate Wide Bandwidth, Wide Angle Beam Scanning.
Bah, Alpha O; Qin, Pei-Yuan; Ziolkowski, Richard W; Cheng, Qiang; Guo, Y Jay
2018-03-19
A wide bandwidth, ultra-thin, metasurface is reported that facilitates wide angle beam scanning. Each unit cell of the metasurface contains a multi-resonant, strongly-coupled unequal arm Jerusalem cross element. This element consists of two bent-arm, orthogonal, capacitively loaded strips. The wide bandwidth of the metasurface is achieved by taking advantage of the strong coupling within and between its multi-resonant elements. A prototype of the proposed metasurface has been fabricated and measured. The design concept has been validated by the measured results. The proposed metasurface is able to alleviate the well-known problem of impedance mismatch caused by mutual coupling when the main beam of an array is scanned. In order to validate the wideband and wide scanning ability of the proposed metasurface, it is integrated with a wideband antenna array as a wide angle impedance matching element. The metasurface-array combination facilitates wide angle scanning over a 6:1 impedance bandwidth without the need for bulky dielectrics or multi-layered structures.
Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.
2011-01-01
MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.
NASA Astrophysics Data System (ADS)
Bolshakov, A. S.; Chaldyshev, V. V.; Zavarin, E. E.; Sakharov, A. V.; Lundin, W. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.
2017-04-01
We studied the optical properties of periodic InGaN/GaN multiple quantum well systems with different numbers of periods. A resonant increase in the optical reflection and simultaneous suppression of the optical absorption have been revealed experimentally at room temperature when the Bragg and exciton resonances were tuned to each other. Numerical modeling with a single set of parameters gave a quantitatively accurate fit of the experimental reflection and transmission spectra in a wide wavelength range and various angles of the light incidence. The model included both exciton resonance and non-resonant band-to-band transitions in the InGaN quantum wells, as well as Rayleigh light scattering in the GaN buffer layer. The analysis also involved x-ray diffraction and photoluminescence data. It allowed us to determine the key parameters of the structure. In particular, the radiative broadening of the InGaN QW excitons was evaluated as 0.20 ± 0.02 meV.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
Dual-band reflective polarization converter based on slotted wire resonators
NASA Astrophysics Data System (ADS)
Li, Fengxia; Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Zhao, Rui; Zhou, Yang; Liang, Difei; Lu, Haipeng; Deng, Longjiang
2018-02-01
A dual-band and high-efficiency reflective linear polarization converter composed of a layer of slotted metal wires has been proposed. Both the simulated and experimental results indicate that the structure can convert a linearly polarized wave to its cross-polarized state for two distinct frequency bands under normal incidence: 9.8-15.1 and 19.2-25.7 GHz. This phenomenon is attributed to a resonance that corresponds to the "trapped mode" at 15.8 GHz. This mode is stable with structural parameters and incident angle at a relatively wide range, and thus becomes promising for dual-band (also multiband) devices design. By surface current distribution and electric field analysis, the operation mechanism has been illuminated, especially for the "trapped mode", identified by the equally but also oppositely directed currents in each unit cell.
Sun, Jingyao; Wang, Xiaobing; Wu, Jinghua; Jiang, Chong; Shen, Jingjing; Cooper, Merideth A; Zheng, Xiuting; Liu, Ying; Yang, Zhaogang; Wu, Daming
2018-04-03
Sub-wavelength antireflection moth-eye structures were fabricated with Nickel mold using Roll-to-Plate (R2P) ultraviolet nanoimprint lithography (UV-NIL) on transparent polycarbonate (PC) substrates. Samples with well replicated patterns established an average reflection of 1.21% in the visible light range, 380 to 760 nm, at normal incidence. An excellent antireflection property of a wide range of incidence angles was shown with the average reflection below 4% at 50°. Compared with the unpatterned ultraviolet-curable resin coating, the resulting sub-wavelength moth-eye structure also exhibited increased hydrophobicity in addition to antireflection. This R2P method is especially suitable for large-area product preparation and the biomimetic moth-eye structure with multiple performances can be applied to optical devices such as display screens, solar cells, or light emitting diodes.
External quantum efficiency enhancement by photon recycling with backscatter evasion.
Nagano, Koji; Perreca, Antonio; Arai, Koji; Adhikari, Rana X
2018-05-01
The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01-0.06 from 0.86-0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned.
Intrastab Earthquakes: Dehydration of the Cascadia Slab
Preston, L.A.; Creager, K.C.; Crosson, R.S.; Brocher, T.M.; Trehu, A.M.
2003-01-01
We simultaneously invert travel times of refracted and wide-angle reflected waves for three-dimensional compressional-wave velocity structure, earthquake locations, and reflector geometry in northwest Washington state. The reflector, interpreted to be the crust-mantle boundary (Moho) of the subducting Juan de Fuca plate, separates intrastab earthquakes into two groups, permitting a new understanding of the origins of intrastab earthquakes in Cascadia. Earthquakes up-dip of the Moho's 45-kilometer depth contour occur below the reflector, in the subducted oceanic mantle, consistent with serpentinite dehydration; earthquakes located down-dip occur primarily within the subducted crust, consistent with the basalt-to-eclogite transformation.
Controlling X-ray beam trajectory with a flexible hollow glass fibre
Tanaka, Yoshihito; Nakatani, Takashi; Onitsuka, Rena; Sawada, Kei; Takahashi, Isao
2014-01-01
A metre-length flexible hollow glass fibre with 20 µm-bore and 1.5 mm-cladding diameters for transporting a synchrotron X-ray beam and controlling the trajectory has been examined. The large cladding diameter maintains a moderate curvature to satisfy the shallow glancing angle of total reflection. The observed transmission efficiency was more than 20% at 12.4 keV. As a demonstration, a wide-area scan of a synchrotron radiation beam was performed to identify the elements for a fixed metal film through its absorption spectra. PMID:24365917
Sound propagation through a variable area duct - Experiment and theory
NASA Technical Reports Server (NTRS)
Silcox, R. J.; Lester, H. C.
1981-01-01
A comparison of experiment and theory has been made for the propagation of sound through a variable area axisymmetric duct with zero mean flow. Measurement of the acoustic pressure field on both sides of the constricted test section was resolved on a modal basis for various spinning mode sources. Transmitted and reflected modal amplitudes and phase angles were compared with finite element computations. Good agreement between experiment and computation was obtained over a wide range of frequencies and modal transmission variations. The study suggests that modal transmission through a variable area duct is governed by the throat modal cut-off ratio.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Miniaturized CARS microendoscope probe design for label-free intraoperative imaging
NASA Astrophysics Data System (ADS)
Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.
2014-03-01
A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.
NASA Astrophysics Data System (ADS)
Sherrod, B. L.
2014-12-01
Three reverse faults in northwestern Washington - the Seattle, Tacoma, and Birch Bay faults - experienced late Holocene earthquakes. Warped intertidal platforms in the hanging wall of each fault formed broad anticlines as a result of deformation during these three earthquakes. Estimates of past deformation rely on differencing raised shoreline features and corresponding modern features. I utilized profiles of LiDAR digital elevation models to calculate prehistoric (647 profiles) and modern shoreline angles (507 profiles) and used these angles to quantify the shape and amount of deformation of each anticline. I calculated shoreline angle elevations by visually fitting lines to modern and uplifted intertidal surfaces and adjacent shoreline cliffs. The intersection of the two fitted lines is the shoreline angle. Mean elevations of modern shoreline angles for 6 shoreline areas in northern Puget Sound and the Strait of Georgia (n=507) lie within 2-46 cm of mean tide level. Three additional shoreline areas in southern Puget Sound have modern shoreline angles closer to mean higher high water (within 22-88 cm) and lie in areas with less fetch and greater tidal range than sites in northern Puget Sound and the Straits of Georgia. A M>7 earthquake ~1.1 ka on the Seattle fault lifted a broad platform cut on sedimentary rocks out of the intertidal zone. Profiles of the platform at three locations along the western end of the Seattle fault zone define an anticline 8-10 km wide (orthogonal to the fault) with a maximum uplift during the earthquake of ~5-8 m. Another large earthquake ~1.1 ka uplifted an intertidal platform along the western part of the Tacoma fault. The raised platform formed an anticline ~10 km wide (orthogonal to the fault) with a maximum uplift of ~5 m. An earthquake ~1.2 ka raised shorelines in the hanging wall of the Birch Bay fault above an anticline observed on seismic reflection profiles near Bellingham, WA. Only part of the anticline is expressed in raised shorelines because shoreline angles are not preserved in the northern limb of the anticline. Estimated width of the anticline is ~8 km with a maximum uplift of 2.5 m. Ongoing elastic half-space modeling is intended to match profiles of each raised shoreline in order to estimate fault geometries and earthquake magnitudes required to produce the observed uplift profiles.
An invisible medium for circularly polarized electromagnetic waves.
Tamayama, Y; Nakanishi, T; Sugiyama, K; Kitano, M
2008-12-08
We study the no reflection condition for a planar boundary between vacuum and an isotropic chiral medium. In general chiral media, elliptically polarized waves incident at a particular angle satisfy the no reflection condition. When the wave impedance and wavenumber of the chiral medium are equal to the corresponding parameters of vacuum, one of the circularly polarized waves is transmitted to the medium without reflection or refraction for all angles of incidence. We propose a circular polarizing beam splitter as a simple application of the no reflection effect. (c) 2008 Optical Society of America
GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections
NASA Astrophysics Data System (ADS)
Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian
2017-09-01
The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi-empirical model. AHI band 1 (0.47μm) shows good matching with VIIRS band M3 with difference of 0.15%. AHI band 5 (1.69μm) shows largest difference in comparison with VIIRS M10.
Measurements of the reflection factor of flat ground surfaces
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Myles, M. M.; Ver, I. L.
1977-01-01
Measurements are made of the reflection factors of asphalt, concrete, and sod at oblique angles of incidence. Initial measurements were carried out in an anechoic chamber to eliminate the effects of wind and temperature gradients. These were followed by measurements made outdoors over a wider frequency range. Data are presented for the magnitudes of the reflection factors of asphalt, concrete, and sod at angles of incidence of 38 deg and 45 deg.
Neutron Reflectivity and Grazing Angle Diffraction
Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.
1993-01-01
Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457
The Shank-to-Vertical-Angle as a parameter to evaluate tuning of Ankle-Foot Orthoses.
Kerkum, Yvette L; Houdijk, Han; Brehm, Merel-Anne; Buizer, Annemieke I; Kessels, Manon L C; Sterk, Arjan; van den Noort, Josien C; Harlaar, Jaap
2015-09-01
The effectiveness of an Ankle-Foot Orthosis footwear combination (AFO-FC) may be partly dependent on the alignment of the ground reaction force with respect to lower limb joint rotation centers, reflected by joint angles and moments. Adjusting (i.e. tuning) the AFO-FC's properties could affect this alignment, which may be guided by monitoring the Shank-to-Vertical-Angle. This study aimed to investigate whether the Shank-to-Vertical-Angle during walking responds to variations in heel height and footplate stiffness, and if this would reflect changes in joint angles and net moments in healthy adults. Ten subjects walked on an instrumented treadmill and performed six trials while walking with bilateral rigid Ankle-Foot Orthoses. The AFO-FC heel height was increased, aiming to impose a Shank-to-Vertical-Angle of 5°, 11° and 20°, and combined with a flexible or stiff footplate. For each trial, the Shank-to-Vertical-Angle, joint flexion-extension angles and net joint moments of the right leg at midstance were averaged over 25 gait cycles. The Shank-to-Vertical-Angle significantly increased with increasing heel height (p<0.001), resulting in an increase in knee flexion angle and internal knee extensor moment (p<0.001). The stiff footplate reduced the effect of heel height on the internal knee extensor moment (p=0.030), while the internal ankle plantar flexion moment increased (p=0.035). Effects of heel height and footplate stiffness on the hip joint were limited. Our results support the potential to use the Shank-to-Vertical-Angle as a parameter to evaluate AFO-FC tuning, as it is responsive to changes in heel height and reflects concomitant changes in the lower limb angles and moments. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical inverse-square displacement sensor
Howe, R.D.; Kychakoff, G.
1989-09-12
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.
Method and apparatus for inspecting conduits
Spisak, Michael J.; Nance, Roy A.
1997-01-01
An apparatus and method for ultrasonic inspection of a conduit are provided. The method involves directing a first ultrasonic pulse at a particular area of the conduit at a first angle, receiving the reflected sound from the first ultrasonic pulse, substantially simultaneously or subsequently in very close time proximity directing a second ultrasonic pulse at said area of the conduit from a substantially different angle than said first angle, receiving the reflected sound from the second ultrasonic pulse, and comparing the received sounds to determine if there is a defect in that area of the conduit. The apparatus of the invention is suitable for carrying out the above-described method. The method and apparatus of the present invention provide the ability to distinguish between sounds reflected by defects in a conduit and sounds reflected by harmless deposits associated with the conduit.
Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A
2015-06-01
Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.
NASA Astrophysics Data System (ADS)
Davydov, B. L.
2006-05-01
New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal—air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables.
Detecting Moho Boundary under Taiwan with Wide-angle Data by Ray-tracing Method - The TAIGER Project
NASA Astrophysics Data System (ADS)
Kuo, Y. N.; Wang, C.; Okaya, D. A.
2009-12-01
Taiwan is located at the converging boundary of the Eurasian plate and the Philippine Sea plate, and is one of the most rapidly uplifting orogeny in the world. The geological structure is relatively complicated. There exist several models of tectonic collisions from the thin-skinned thrust, the lithospheric collision, to uplifting by buoyancy. The shape of Moho should be a key factor to evaluate these models. In this study, we try to detect the Moho beneath Taiwan using the newly collected wide-angle data from the Taiwan Integrated Geodynamic Research (TAIGER) project. The results could be of help to set up some constrains for the Taiwan tectonics. The TAIGER project is a collaboration between America and Taiwan. The land stations collected two parts of data (land and marine) generated by active sources. The land part was carried out in 2008/2~3, which created 6 kinds of data from explosion sources including: 1) 3 E-W wide-angle reflections of Texans arrays; 2) 2 N-S seismometer arrays; 3) the seismic networks of Central Weather Bureau(CWB) and Institute of Earth Science(IES) over the island; 4) a short array of RT130; 5) 2 short period OBS arrays in the Taiwan Strait; 6) 2 temporary seismic arrays in Fujan, mainland China. The marine part was carried out in 2009/4~6, which provided 4 kinds of data from air-gun sources including: 1) 4 wide-angle refractions of E-W RT130 arrays; 2) 2 N-S seismometer arrays; 3) the CWB network; 4) the broad band array in Taiwan for Seismology(BATS). In this study, we focus on analyzing the wide-angle data, which contain land explosion data, onshore-offshore data, OBS data and mainland data, especially concentrate on the line in the southern Taiwan (Transect T4). We make a summary of the TAIGER project and show several plots of real data and arrivals. A 2D E-W velocity model was constructed from the mainland side to the ocean side about 600 km long using the ray-tracing method with layer-striping technique. The preliminary results are: 1) the distribution of Moho depth is basically getting deeper from the west to the east, but becoming shallower rapidly in the area of Coast Range; 2) the crust thickens to the range of 40 km in the mountain area; 3) the Moho depth is shallower than 30 km in the Peikang High and deeper than 32 km at the coast line of Fujan, no crust bulge in the Taiwan Strait; 4) the structures derived from PmP phase and Pn phase from land explosions and onshore-offshore air-gun shots are highly consistent.
Multi-band reflector antenna with double-ring element frequency selective subreflector
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Lee, S. W.
1993-01-01
Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.
The effects of solar incidence angle over digital processing of LANDSAT data
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
A technique to extract the topography modulation component from digital data is described. The enhancement process is based on the fact that the pixel contains two types of information: (1) reflectance variation due to the target; (2) reflectance variation due to the topography. In order to enhance the signal variation due to topography, the technique recommends the extraction from original LANDSAT data of the component resulting from target reflectance. Considering that the role of topographic modulation over the pixel information will vary with solar incidence angle, the results of this technique of digital processing will differ from one season to another, mainly in highly dissected topography. In this context, the effects of solar incidence angle over the topographic modulation technique were evaluated. Two sets of MSS/LANDSAT data, with solar elevation angles varying from 22 to 41 deg were selected to implement the digital processing at the Image-100 System. A secondary watershed (Rio Bocaina) draining into Rio Paraiba do Sul (Sao Paulo State) was selected as a test site. The results showed that the technique used was more appropriate to MSS data acquired under higher Sun elevation angles. Topographic modulation components applied to low Sun elevation angles lessens rather than enhances topography.
ODERACS 2 White Spheres Optical Calibration Report
NASA Technical Reports Server (NTRS)
Culp, Robert D.; Gravseth, Ian; Gloor, Jason; Wantuch, Todd
1995-01-01
This report documents the status of the Orbital Debris Radar Calibration Spheres (ODERACS) 2 white spheres optical calibration study. The purpose of this study is to determine the spectral reflectivity and scattering characteristics in the visible wavelength region for the white spheres that were added to the project in the fall, 1994. Laboratory measurements were performed upon these objects and an analysis of the resulting data was conducted. These measurements are performed by illuminating the objects with a collimated beam of light and measuring the reflected light versus the phase angle. The phase angle is defined as the angle between the light source and the sensor, as viewed from the object. By measuring the reflected signal at the various phase angles, one is able to estimate the reflectance properties of the object. The methodology used in taking the measurements and reducing the data are presented. The results of this study will be used to support the calibration of ground-based optical instruments used in support of space debris research. Visible measurements will be made by the GEODDS, NASA and ILADOT telescopes.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.
2014-12-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
View angle effects on relationships between leaf area index in wheat and vegetation indices
NASA Astrophysics Data System (ADS)
Chen, H.; Li, W.; Huang, W.; Niu, Z.
2016-12-01
The effects of plant types and view angles on the canopy-reflected spectrum can not be ignored in the estimation of leaf area index (LAI) using remote sensing vegetation indices. While vegetation indices derived from nadir-viewing remote sensors are insufficient in leaf area index (LAI) estimation because of its misinterpretation of structural characteristecs, vegetation indices derived from multi-angular remote sensors have potential to improve detection of LAI. However, view angle effects on relationships between these indices and LAI for low standing crops (i.e. wheat) has not been fully evaluated and thus limits them to applied for consistent and accurate monitoring of vegetation. View angles effects of two types of winter wheat (wheat 411, erectophile; and wheat 9507, planophile) on relationship between LAI and spectral reflectance are assessed and compared in this study. An evaluation is conducted with in-situ measurements of LAI and bidirectional reflectance in the principal plane from -60° (back-scattering direction ) ot 60° (forward scattering direction) in the growth cycle of winter wheat. A variety of vegetation indices (VIs) published are calculated by BRDF. Additionally, all combinations of the bands are used in order to calculate Normalized difference Spectral Indices (NDSI) and Simple Subtraction Indices (SSI). The performance of the above indices along with raw reflectance and reflectance derivatives on LAI estimation are examined based on a linearity comparison. The results will be helpful in further developing multi-angle remote sensing models for accurate LAI evaluation.
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Stable high absorption metamaterial for wide-angle incidence of terahertz wave
NASA Astrophysics Data System (ADS)
Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu
2014-04-01
We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.
NASA Astrophysics Data System (ADS)
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
Chui, Siu Lit; Lu, Ya Yan
2004-03-01
Wide-angle full-vector beam propagation methods (BPMs) for three-dimensional wave-guiding structures can be derived on the basis of rational approximants of a square root operator or its exponential (i.e., the one-way propagator). While the less accurate BPM based on the slowly varying envelope approximation can be efficiently solved by the alternating direction implicit (ADI) method, the wide-angle variants involve linear systems that are more difficult to handle. We present an efficient solver for these linear systems that is based on a Krylov subspace method with an ADI preconditioner. The resulting wide-angle full-vector BPM is used to simulate the propagation of wave fields in a Y branch and a taper.
NASA Astrophysics Data System (ADS)
Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.
2018-03-01
Omnidirectional anti-reflection coating nanostructure film have attracted enormous attention for the developments of the optical coating, lenses, light emitting diode, display and photovoltaic. However, fabricated of the omnidirectional antireflection nanostructure film on glass substrate in large area was a challenge topic. In the past two decades, the invention of glancing angle deposition technique as a growth of well-controlled two and three-dimensional morphologies has gained significant attention because of it is simple, fast, cost-effective and high mass production capability. In this present work, the omnidirectional anti-reflection nanostructure coating namely silicon dioxide (SiO2) nanorods has been investigated for optimized high transparent layer at all light incident angle. The SiO2 nanorod films of an optimally low refractive index have been fabricated by electron beam evaporation with the glancing angle deposition technique. The morphological of the prepared sampled were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The optical transmission and omnidirectional property of the SiO2 nanorod films were investigated by UV-Vis-NIR spectrophotometer. The measurement were performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measure were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. The morphological characterization results showed that when the glancing angle deposition technique was applied, the vertically align SiO2 nanorods with partially isolated columnar structure can be constructed due to the enhanced shadowing and limited addtom diffusion effect. The average transmission of the vertically align SiO2 nanorods were higher than the glass substrate reference sample over the visible wavelength range at all incident angle due to the transition in the refractive index profile from air to the nanostructure layer that improved the anti-reflection characteristics.
A dedicated H-beta meridian scanning photometer for proton aurora measurement
NASA Astrophysics Data System (ADS)
Unick, Craig W.; Donovan, Eric; Connors, Martin; Jackel, Brian
2017-01-01
An instrument designed to measure the location and brightness of auroral emissions from energetic proton precipitation is described. This photometer scans from the north to south horizon with a stepper motor and mirror. The scans are configured in software for a 30 s cadence with equally spaced samples along a meridian at constant altitude. Broadband light is separated into two channels with a novel optical splitter. This splitter uses a filter that has high transmission for the signal channel and high reflection on both the long- and short-wavelength sides to reflect the combined background passbands, directing each channel to its respective detector. The half-cone angle and angle of incidence of this splitter filter allow for an overall compact optical design that also provides superior sensitivity in both signal and background channels. The signal channel is 3 nm wide full width at half maximum (FWHM) at 486.1 nm, and the background channel comprises two 3 nm wide FWHM passbands at 480 nm and 495 nm created by a single filter. Both of these channels are measured with photomultiplier tubes in photon-counting mode. Calibrations indicate a response of around 1000 c/s per rayleigh. Data are currently acquired in 5 ms bins with a Nyquist frequency of 100 Hz. The first system (Forty-Eight Sixty-One (FESO)-1) has been operating at Athabasca University since February 2014, and the second system (FESO-2) was deployed at Lucky Lake, Saskatchewan, in October 2015. The improved sensitivity over legacy instruments and the simultaneous measurement of signal and background enable operation during intervals with dynamic electron aurora and scattered moonlight.
NASA Astrophysics Data System (ADS)
Dellong, David; Gutscher, Marc-Andre; Klingelhoefer, Frauke; Graindorge, David; Kopp, Heidrun; Moretti, Milena; Marsset, Bruno; Mercier de Lepinay, Bernard; Dominguez, Stephane; Malavieille, Jacques
2016-04-01
Recently acquired swath bathymetric data in the Ionian Sea document in unprecedented detail the morphostructure and dynamics of the Calabrian accretionary wedge. A boundary zone between the eastern and western lobes of the accretionary wedge is examined here. Relative displacement between the Calabrian and Peloritan backstops is expected to cause dextral strike-slip deformation between the lobes. A wide-angle seismic profile was acquired in Oct. 2014 with the R/V Meteor (DIONYSUS survey) recorded by 25 Ocean-bottom seismometers (Geomar and Ifremer instruments) and 3 land-stations (INGV stations). Inversion and forward modeling of these seismic data reveal a 5-10 km deep asymmetric rift zone between the Malta Escarpment and the SW tip of Calabria. Analog modeling was performed to test if the origin of this rift could be related to the relative kinematics of the Calabrian and Peloritan backstops. Modeling, using two independently moving backstops, produces a zone of dextral transtension and subsidence in the accretionary wedge between two lobes. This corresponds well to the asymmetric rift observed in the southward prolongation of the straits of Messina faults. Paradoxically however, this dextral displacement does not appear to traverse the external Calabrian accretionary wedge, where prominent curved lineaments observed indicate a sinistral sense of motion. One possible explanation is that the dextral kinematic motion is transferred into a region of crisscrossing faults in the internal portion of the Eastern lobe. The bathymetry and high-resolution reflection seismic images indicate ongoing compression at the deformation front of both the western and eastern lobes. Together with the analog modeling results, these observations unambiguously demonstrate that the western lobe remains tectonically active.
The KRISP 90 seismic experiment-a technical review
Prodehl, C.; Mechie, J.; Achauer, U.; Keller, Gordon R.; Khan, M.A.; Mooney, W.D.; Gaciri, S.J.; Obel, J.D.
1994-01-01
On the basis of a preliminary experiment in 1985 (KRISP 85), a seismic refraction/wide-angle reflection survey and a teleseismic tomography experiment were jointly undertaken to study the lithospheric structure of the Kenya rift down to depths of greater than 200 km. This report serves as an introduction to a series of subsequent papers and will focus on the technical description of the seismic surveys of the main KRISP 90 effort. The seismic refraction/wide-angle reflection survey was carried out in a 4-week period in January and February 1990. It consisted of three profiles: one extending along the rift valley from Lake Turkana to Lake Magadi, one crossing the rift at Lake Baringo, and one located on the eastern flank of the rift proper. A total of 206 mobile vertical-component seismographs, with an average station interval of about 2 km, recorded the energy of underwater and borehole explosions to distances of up to about 550 km. During the teleseismic survey an array of 65 seismographs was deployed to record teleseismic, regional and local events for a period of about 7 months from October 1989 to April 1990. The elliptical array spanned the central portion of the rift, with Nakuru at its center, and covered an area about 300 ?? 200 km, with an average station spacing of 10-30 km. Major scientific goals of the project were to reveal the detailed crustal and upper-mantle structure under the Kenya rift, to study the relationship between deep crustal and mantle structure and the development of sedimentary basins and volcanic features within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system, and to answer fundamental questions such as the mode and mechanism of continental rifting. ?? 1994.
NASA Technical Reports Server (NTRS)
Valdez, P. F.; Donohoe, G. W.
1997-01-01
Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.
High-efficiency collector design for extreme-ultraviolet and x-ray applications.
Zocchi, Fabio E
2006-12-10
A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.
Soybean canopy reflectance as a function of view and illumination geometry
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Vanderbilt, V. C.; Biehl, L. L.; Robinson, B. F.; Bauer, M. E.
1981-01-01
Reflectances were calculated from measurements at four wavelength bands through eight view azimuth and seven view zenith directions, for various solar zenith and azimuth angles over portions of three days, in an experimental characterization of a soybean field by means of its reflectances and physical and agronomic attributes. Results indicate that the distribution of reflectance from a soybean field is a function of the solar illumination and viewing geometry, wavelength, and row direction, as well as the state of canopy development. Shadows between rows were found to affect visible wavelength band reflectance to a greater extent than near-IR reflectance. A model describing reflectance variation as a function of projected solar and viewing angles is proposed, which approximates the visible wavelength band reflectance variations of a canopy with a well-defined row structure.
Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten
2011-06-01
A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.
Crack depth profiling using guided wave angle dependent reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl
2015-03-31
Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less
Nonimaging Optical Illumination System
Winston, Roland
1994-02-22
A nonimaging illumination or concentration optical device. An optical device is provided having a light source, a light reflecting surface with an opening and positioned partially around the light source which is opposite the opening of the light reflecting surface. The light reflecting surface is disposed to produce a substantially uniform intensity output with the reflecting surface defined in terms of a radius vector R.sub.i in conjunction with an angle .phi..sub.i between R.sub.i, a direction from the source and an angle .theta..sub.i between direct forward illumination and the light ray reflected once from the reflecting surface. R.sub.i varies as the exponential of tan (.phi..sub.i -.theta..sub.i)/2 integrated over .phi..sub.i.
Short-focus and ultra-wide-angle lens design in wavefront coding
NASA Astrophysics Data System (ADS)
Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing
2016-10-01
Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.
NASA Astrophysics Data System (ADS)
Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.
1995-08-01
A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.
Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.
Alagappan, G; Wu, P
2009-07-06
We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r < rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r < rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.
NASA Astrophysics Data System (ADS)
He, Xiao Dong
This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.
Three mirror glancing incidence system for X-ray telescope
NASA Technical Reports Server (NTRS)
Hoover, R. B. (Inventor)
1974-01-01
A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.
Retroreflective Phase Retardation Prisms.
1981-06-01
resonant cavity of a 1.064 Mm laser. This report shows that it is possible to coat the reflecting surfaces of a porro prism so that incident plane...with controlled phase retardation can be made by coating each reflecting surface of a porro prism with a single dielectric film. The amount of phase...of angle of incidence (n, < n2) S. Phase change on reflection as a function of angle of incidence (n" n ) [RL-0202-’R 6. Porro prism 7. Phase change
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
Lin, Shan C.; Masis, Marisse; Porco, Travis C.; Pasquale, Louis R.
2017-01-01
Purpose To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. Methods This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. Results We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P<.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P<.001) in the wide-angle group (P=.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P<.001) reduction vs 2.5±3 mm Hg (16%, P<.001) in the wide-angle group (P=.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year (P<.05 for all). Conclusions In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option. PMID:29147104
Lin, Shan C; Masis, Marisse; Porco, Travis C; Pasquale, Louis R
2017-08-01
To assess if narrower-angle status and anterior segment optical coherence tomography (AS-OCT) parameters can predict intraocular pressure (IOP) drop in primary open-angle glaucoma (POAG) patients after cataract surgery. This was a prospective case series of consecutive cataract surgery patients with POAG and no peripheral anterior synechiae (PAS) using a standardized postoperative management protocol. Preoperatively, patients underwent gonioscopy and AS-OCT. The same glaucoma medication regimen was resumed by 1 month. Potential predictors of IOP reduction included narrower-angle status by gonioscopy and angle-opening distance (AOD500) as well as other AS-OCT parameters. Mixed-effects regression adjusted for use of both eyes and other potential confounders. We enrolled 66 eyes of 40 glaucoma patients. The IOP reduction at 1 year was 4.2±3 mm Hg (26%, P <.001) in the narrower-angle group vs 2.2±3 mm Hg (14%, P <.001) in the wide-angle group ( P =.027 for difference), as classified by gonioscopy. By AOD500 classification, the narrower-angle group had 3.4±3 mm Hg (21%, P <.001) reduction vs 2.5±3 mm Hg (16%, P <.001) in the wide-angle group ( P =.031 for difference). When the entire cohort was assessed, iris thickness, iris area, and lens vault were correlated with increasing IOP reduction at 1 year ( P <.05 for all). In POAG eyes, cataract surgery lowered IOP to a greater degree in the narrower-angle group than in the wide-angle group, and parameters relating to iris thickness and area, as well as lens vault, were correlated with IOP reduction. These findings can guide ophthalmologists in their selection of cataract surgery as a potential management option.
NASA Astrophysics Data System (ADS)
Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha
2016-10-01
A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.
Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik
2015-04-22
The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.
Expression of the degree of polarization based on the geometrical optics pBRDF model.
Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng
2017-02-01
An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.
NASA Astrophysics Data System (ADS)
Siddique, Radwanul Hasan; Gomard, Guillaume; Hölscher, Hendrik
2015-04-01
The glasswing butterfly (Greta oto) has, as its name suggests, transparent wings with remarkable low haze and reflectance over the whole visible spectral range even for large view angles of 80°. This omnidirectional anti-reflection behaviour is caused by small nanopillars covering the transparent regions of its wings. In difference to other anti-reflection coatings found in nature, these pillars are irregularly arranged and feature a random height and width distribution. Here we simulate the optical properties with the effective medium theory and transfer matrix method and show that the random height distribution of pillars significantly reduces the reflection not only for normal incidence but also for high view angles.
2014-09-02
As if trying to get our attention, Mimas is positioned against the shadow of Saturn's rings, bright on dark. As we near summer in Saturn's northern hemisphere, the rings cast ever larger shadows on the planet. With a reflectivity of about 96 percent, Mimas (246 miles, or 396 kilometers across) appears bright against the less-reflective Saturn. This view looks toward the sunlit side of the rings from about 10 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on July 13, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Saturn and approximately 1 million miles (1.6 million kilometers) from Mimas. Image scale is 67 miles (108 kilometers) per pixel at Saturn and 60 miles (97 kilometers) per pixel at Mimas. http://photojournal.jpl.nasa.gov/catalog/PIA18282
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Liu, Jun; Xu, Weidong
2017-09-01
In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.
Biophysical and spectral modeling for crop identification and assessment
NASA Technical Reports Server (NTRS)
Goel, N. S. (Principal Investigator)
1984-01-01
The development of a technique for estimating all canopy parameters occurring in a canopy reflectance model from the measured canopy reflectance data is summarized. The Suits and the SAIL model for a uniform and homogeneous crop canopy were used to determine if the leaf area index and the leaf angle distribution could be estimated. Optimal solar/view angles for measuring CR were also investigated. The use of CR in many wavelengths or spectral bands and of linear and nonlinear transforms of CRs for various solar/view angles and various spectral bands is discussed as well as the inversion of rediance data inside the canopy, angle transforms for filtering out terrain slope effects, and modification of one dimensional models.
Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets
NASA Astrophysics Data System (ADS)
Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping
2018-03-01
Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.
Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies
NASA Technical Reports Server (NTRS)
Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.
1997-01-01
Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area viewed from nadir and from the side give two different radiance measurements but should yield the same flux when converted by the BDRF. The analytic BDRFs are in very good qualitative agreement with the ERBE models. The overcast scenes exhibit constant retrieved albedo over viewing zenith angles for solar zenith angles less than 60 degrees. The clear ocean model does not produce constant retrieved albedo over viewing zenith angles but gives an improvement over the ERBE operational clear sky ocean BDRF.
The Critical Angle Can Override the Brewster Angle
ERIC Educational Resources Information Center
Froehle, Peter H.
2009-01-01
As a culminating activity in their study of optics, my students investigate polarized light and the Brewster angle. In this exercise they encounter a situation in which it is impossible to measure the Brewster angle for light reflecting from a particular surface. This paper describes the activity and explains the students' observations.
Water Detection Based on Object Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2012-01-01
Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.
NASA Technical Reports Server (NTRS)
Wu, Aisheng; Xiong, Xiaoxiong; Cao, Changyong
2016-01-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite (http:npp.gsfc.nasa.govviirs.html) has been in operation for nearly five years. The onboard calibration of the VIIRS reflective solar bands (RSB) relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The VIIRS response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability. In this study, the RVS stability is examined based on reflectance trends collected from 16-day repeatable orbits over pre-selected pseudo-invariant desert sites in Northern Africa. These trends nearly cover the entire Earth view scan range so that any systematic drifts in the scan angle direction would indicate a change in RVS. This study also compares VIIRS RVS on-orbit stability results with those from both Aqua and Terra MODIS over the first four years of mission for a few selected bands, which provides further information on potential VIIRS RVS on-orbit changes.
Bidirectional reflectance distribution function effects in ladar-based reflection tomography.
Jin, Xuemin; Levine, Robert Y
2009-07-20
Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.
Kattawar, G W; Plass, G N; Hitzfelder, S J
1976-03-01
The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.
Doping profile measurement on textured silicon surface
NASA Astrophysics Data System (ADS)
Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice
2018-04-01
In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.
Earth observations taken from shuttle orbiter Discovery during STS-82 mission
1997-02-12
STS082-723-071 (11-21 Feb. 1997) --- The island of Hispaniola appears left center in this wide-angle view, photographed with a 70mm handheld camera from the Earth-orbiting Space Shuttle Discovery. The prominent cape is Cap-a-Foux, the northwest point of Haiti. The cloud is broken by the mountainous spine of the island. Smoke from bush fires appears in the valleys between the ridges. The coppery tinge of light reflected off the sea surface indicates pollution in the air -- probably industrial pollutants from North America which are typically fed around from the Atlantic seaboard into the Caribbean from the east.
Seven-parameter statistical model for BRDF in the UV band.
Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua
2012-05-21
A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.
Problems of sampling and radiation balances: Their problematics
NASA Technical Reports Server (NTRS)
Crommelynck, D.
1980-01-01
Problems associated with the measurement of the Earth radiation balances are addressed. It is demonstrated that the knowledge of the different radiation budgets with their components is largely dependent on the space time sampling of the radiation field of the Earth atmosphere system. Whichever instrumental approach is adopted (wide angle view of high resolution) it affects the space time integration of the fluxes measured directly or calculated. In this case the necessary knowledge of the reflection pattern depends in addition on the angular sampling of the radiances. A series of questions is considered, the answers of which are a prerequisite to the the organization of a global observation system.
NASA Astrophysics Data System (ADS)
Hu, Yan; Wang, Yuanhao; An, Zhenguo; Zhang, Jingjie; Yang, Hongxing
2016-11-01
The super-hydrophobic and IR-reflectivity hollow glass microspheres (HGM) was synthesized by being coated with anatase TiO2 and a super-hydrophobic material. The super-hydrophobic self-cleaning property prolong the life time of the IR reflectivity. TBT and PFOTES were firstly applied and hydrolyzed on HGM and then underwent hydrothermal reaction to synthesis anatase TiO2 film. For comparison, the PFOTES/TiO2 mutual-coated HGM (MCHGM), PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The MCHGM had bigger contact angle (153°) but smaller sliding angle (16°) than F-SCHGM (contact angle: 141.2°; sliding angle: 67°). Ti-SCHGM and MCHGM both showed similar IR reflectivity with ca. 5.8% increase compared with original HGM and F-SCHGM. For the thermal conductivity, coefficients of F-SCHGM (0.0479 W/(m K)) was basically equal to that of the original HGM (0.0475 W/(m K)). Negligible difference was found between the thermal conductivity coefficients of MCHGM-coated HGM (0.0543 W/(m K)) and Ti-SCHGM (0.0546 W/(m K)).
Seismic interferometry of railroad induced ground motions: body and surface wave imaging
NASA Astrophysics Data System (ADS)
Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon
2016-04-01
Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.
Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region
NASA Astrophysics Data System (ADS)
Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.
2016-03-01
(21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. In addition, we compared the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) and Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy) parameters with laboratory samples and other small Solar System bodies visited by space missions.
Leonardo-BRDF: A New Generation Satellite Constellation
NASA Technical Reports Server (NTRS)
Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)
2000-01-01
Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in alongtrack or cross-track mode, or anything in between, at ground command. This provides inherent system redundancy and cross-calibration capability. Several "wing-man" satellites in non-static orbits fly in formation up to 1000 km out from the keystone satellites to provide additional along- and cross-track angular sampling. They view the target(s) observed by the keystone satellites from different zenith and azimuth angles and are maneuverable within a limited range of zenith angle using thrusters, and within a large range of azimuth angle using clever orbit design. The wing-man satellites carry single miniature imaging radiometers with just a few wavelength bands in order to be lighter and more agile.
Mid-latitude spread- F structure
NASA Astrophysics Data System (ADS)
From, W. R.; Meehan, D. H.
1988-07-01
Spread- F has been observed at frequencies of 1.98, 3.84 and 5.80 MHz and multiple angles of arrival have been resolved using an HF radar near Brisbane (27°S, 153°E). The spreading of the ionogram trace has been shown to be due to a spread in angles of arrival of echoes, rather than any 'vertical' spreading. The reflection process appears to involve total specular reflection rather than scattering. The previously reported very strong bias for angles of arrival from the north-west at Brisbane is supported. The direction of movement of the reflection points is not radial and therefore, the structure cannot be purely frontal with purely linear movement, as is often supposed. The velocities are much less than for coexisting travelling ionospheric disturbances. The variations of angle of arrival, range and rate of change of range with frequency do not fit previously proposed ideas of the plasma distribution and an alternative is suggested in which the distortions of the isoionic surfaces resemble small, elongated, asymmetrical 'hills' or 'dips'.
Effect of reflection losses on stationary dielectric-filled nonimaging concentrators
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Boehm, Robert F.
2016-10-01
The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.
Angular Distribution of the X-ray Reflection in Accretion Disks
NASA Astrophysics Data System (ADS)
Garcia, Javier; Dauser, T.; Lohfink, A. M.; Kallman, T. R.; McClintock, J. E.; Steiner, J. F.; Brenneman, L.; Wilms, J.; Reynolds, C. S.; Tombesi, F.
2014-01-01
For the study of black holes, it is essential to have an accurate disk-reflection model with a proper treatment of the relativistic effects that occur near strong gravitational fields. These models are used to constrain the properties of the disk, including its inner radius, the degree of ionization of the gas, and the elemental abundances. Importantly, reflection models are the key to measuring black hole spin via the Fe-line method. However, most current reflection models only provide an angle-averaged solution for the flux reflected at the surface of the disk, which can systematically affect the inferred disk emission. We overcome this limitation by exploiting the full capabilities of our reflection code XILLVER. The solution of the reflected intensity of the radiation field is calculated for each photon energy, position in the slab, and viewing angle. We use this information to construct a grid of reflection models in which the inclination of the system is included as a free fitting parameter. Additionally, we directly connect the angle-resolved XILLVER model with the relativistic blurring code RELLINE to produce a self-consistent numerical model for to angular distribution of the reflected X-ray spectra from ionized accretion disks around black holes. The new model, RELCONV_XILL, is provided in the appropriate format to be used in combination with the commonly used fitting packages. An additional version of the new model, RELCONV_LP_XILL, which simulates the reflected spectra in a lampost scenario, is also supplied.
3. WIDE ANGLE OF NEUTRAL BUOYANCY SIMULATOR (NBS) FROM WITHIN ...
3. WIDE ANGLE OF NEUTRAL BUOYANCY SIMULATOR (NBS) FROM WITHIN NBS HIGHBAY DOORS. DIVE BELL IN FOREGROUND. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Evaluation of lens distortion errors in video-based motion analysis
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo
1993-01-01
In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.
Character of the opposition effect and negative polarization
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.
1991-01-01
Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.
Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection.
Cattani-Scholz, Anna; Pedone, Daniel; Dubey, Manish; Neppl, Stefan; Nickel, Bert; Feulner, Peter; Schwartz, Jeffrey; Abstreiter, Gerhard; Tornow, Marc
2008-08-01
We investigated hydroxyalkylphosphonate monolayers as a novel platform for the biofunctionalization of silicon-based field effect sensor devices. This included a detailed study of the thin film properties of organophosphonate films on Si substrates using several surface analysis techniques, including AFM, ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity, and current-voltage characteristics in electrolyte solution. Our results indicate the formation of a dense monolayer on the native silicon oxide that has excellent passivation properties. The monolayer was biofunctionalized with 12 mer peptide nucleic acid (PNA) receptor molecules in a two-step procedure using the heterobifunctional linker, 3-maleimidopropionic-acid-N-hydroxysuccinimidester. Successful surface modification with the probe PNA was verified by XPS and contact angle measurements, and hybridization with DNA was determined by fluorescence measurements. Finally, the PNA functionalization protocol was translated to 2 microm long, 100 nm wide Si nanowire field effect devices, which were successfully used for label-free DNA/PNA hybridization detection.
NASA Astrophysics Data System (ADS)
El-Hakim, H. A.; Mahmoud, K. R.
2017-10-01
In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.
Chen, Xueye; Liu, Bo; Wu, Qiang; Zhu, Zhichao; Zhu, Jingtao; Gu, Mu; Chen, Hong; Liu, Jinliang; Chen, Liang; Ouyang, Xiaoping
2018-04-30
Plastic scintillators are widely used in various radiation measurement systems. However, detection efficiency and signal-to-noise are limited due to the total internal reflection, especially for weak signal detection situations. In the present investigation, large-area photonic crystals consisting of an array of periodic truncated cone holes were prepared based on hot embossing technology aiming at coupling with the surface of plastic scintillator to improve the light extraction efficiency and directionality control. The experimental results show that a maximum enhancement of 64% at 25° emergence angle along Γ-M orientation and a maximum enhancement of 58% at 20° emergence angle along Γ-K orientation were obtained. The proposed fabrication method of photonic crystal scintillator can avoid complicated pattern transfer processes used in most traditional methods, leading to a simple, economical method for large-area preparation. The photonic crystal scintillator demonstrated in this work is of great value for practical applications of nuclear radiation detection.
Radiative transfer code SHARM for atmospheric and terrestrial applications
NASA Astrophysics Data System (ADS)
Lyapustin, A. I.
2005-12-01
An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Δ-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.
Radiative transfer code SHARM for atmospheric and terrestrial applications.
Lyapustin, A I
2005-12-20
An overview of the publicly available radiative transfer Spherical Harmonics code (SHARM) is presented. SHARM is a rigorous code, as accurate as the Discrete Ordinate Radiative Transfer (DISORT) code, yet faster. It performs simultaneous calculations for different solar zenith angles, view zenith angles, and view azimuths and allows the user to make multiwavelength calculations in one run. The Delta-M method is implemented for calculations with highly anisotropic phase functions. Rayleigh scattering is automatically included as a function of wavelength, surface elevation, and the selected vertical profile of one of the standard atmospheric models. The current version of the SHARM code does not explicitly include atmospheric gaseous absorption, which should be provided by the user. The SHARM code has several built-in models of the bidirectional reflectance of land and wind-ruffled water surfaces that are most widely used in research and satellite data processing. A modification of the SHARM code with the built-in Mie algorithm designed for calculations with spherical aerosols is also described.
Kim, Sangbum; Kim, Kihong
2017-12-11
We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.
Grazing incidence reflection coefficients of rhodium, osmium, platinum, and gold from 50 to 300 A
NASA Technical Reports Server (NTRS)
Hettrick, M. C.; Edelstein, J.; Flint, S. A.
1985-01-01
Reflectance measurements were made of several metals illuminated from various angles with light at 14 wavelengths in the interval 46.5-283 A. The metals, Rh, Os, Pt and Au were deposited as 125 A films on a binding substrate through electron beam epitaxy. Measurements were made with a grazing incidence monochromator and a reflectometer. The data generally showed lowered reflectance with increasing angles of illumination and shorter wavelengths. The reflectance peak, however, was located at wavelengths of 100-160 A, particularly at large grazing incidences. The wavelengths correspond with the 5p to epsilon-d transition in all of the elements. Rh displayed the highest overall reflectance, and both Rh and Os were more efficient than Au or Pt.
Remote sensing of wetland parameters related to carbon cycling
NASA Technical Reports Server (NTRS)
Bartlett, David S.; Johnson, Robert W.
1985-01-01
Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.
NASA Astrophysics Data System (ADS)
Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.
1996-05-01
The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.
Buried nanoantenna arrays: versatile antireflection coating.
Kabiri, Ali; Girgis, Emad; Capasso, Federico
2013-01-01
Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.
Normalization of multidirectional red and NIR reflectances with the SAVI
NASA Technical Reports Server (NTRS)
Huete, A. R.; Hua, G.; Qi, J.; Chehbouni, A.; Van Leeuwen, W. J. D.
1992-01-01
Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.
NASA Astrophysics Data System (ADS)
Foote, E. J.; Paige, D. A.; Shepard, M. K.; Johnson, J. R.; Biggar, S. F.; Greenhagen, B. T.; Allen, C.
2010-12-01
We have compared laboratory solar reflectance measurements of Apollo 11 and 16 soil samples to Lunar Reconnaissance Orbiter (LRO) Diviner orbital albedo measurements at the Apollo landing sites. The soil samples are two representative end member samples from the moon, low albedo lunar maria (sample 10084) and high albedo lunar highlands (sample 68810). Bidirectional reflectance distribution function (BRDF) measurements of the soil samples were conducted at Bloomsburg University (BUG) and at the University of Arizona [1,2]. We collected two different types of BUG datasets: a standard set of BRDF measurements at incidence angles of 0-60°, emission angles of 0-80°, and phase angles of 3-140°, and a high-incidence angle set of measurements along and perpendicular to the principal plane at incidence angles of 0-75° and phase angles of 3-155°. The BUG measurements generated a total of 765 data points in four different filters 450, 550, 750 and 950 nm. The Blacklab measurements were acquired at incidence angles of 60-88°, emission angles 60-82°, and phase angles of 17-93° at wavelengths of 455, 554, 699, 949nm. The BUG data were fit to two BRDF models: Hapke’s model [3] as described by Johnson et al, 2010 [4], and a simplified empirical function. The fact that both approaches can satisfactorily fit the BUG data is not unexpected, given the similarities between the functions and their input parameters, and the fact that the BRDF for dark lunar soil is dominated by the single scattering phase functions of the individual soil particles. To compare our lunar sample measurements with LRO Diviner data [5], we selected all daytime observations acquired during the first year of operation within 3 km square boxes centered at the landing sites. We compared Diviner Channel 1 (0.3 - 3 µm) Lambert albedos with model calculated Lambert albedos of the lunar samples at the same photometric angles. In general, we found good agreement between the laboratory and Diviner measurements, particularly at intermediate incidence angles. We are currently reconciling any differences observed between our two datasets to provide mutual validation, and to better understand the Diviner solar reflectance measurements in terms of lunar regolith properties. [1] Shepard, M.K., Solar System Remote Sensing Symposium, #4004, LPI, 2002; [2] Biggar, S.F. et al, Proc. Soc. Photo-Opt. Instrum. Eng. 924:232-240, 1988; [3] Hapke, B. Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 1993; [4] Johnson J.R. et al, Fall AGU 2010; [5] Paige, D.A. et al, Space Science Reviews, 150:125-160, 2010;
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.
2014-05-15
A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less
Evaluation of modified portable digital camera for screening of diabetic retinopathy.
Chalam, Kakarla V; Brar, Vikram S; Keshavamurthy, Ravi
2009-01-01
To describe a portable wide-field noncontact digital camera for posterior segment photography. The digital camera has a compound lens consisting of two optical elements (a 90-dpt and a 20-dpt lens) attached to a 7.2-megapixel camera. White-light-emitting diodes are used to illuminate the fundus and reduce source reflection. The camera settings are set to candlelight mode, the optic zoom standardized to x2.4 and the focus is manually set to 3.0 m. The new technique provides quality wide-angle digital images of the retina (60 degrees ) in patients with dilated pupils, at a fraction of the cost of established digital fundus photography. The modified digital camera is a useful alternative technique to acquire fundus images and provides a tool for screening posterior segment conditions, including diabetic retinopathy in a variety of clinical settings.
The measurement of acoustic properties of limited size panels by use of a parametric source
NASA Astrophysics Data System (ADS)
Humphrey, V. F.
1985-01-01
A method of measuring the acoustic properties of limited size panels immersed in water, with a truncated parametric array used as the acoustic source, is described. The insertion loss and reflection loss of thin metallic panels, typically 0·45 m square, were measured at normal incidence by using this technique. Results were obtained for a wide range of frequencies (10 to 100 kHz) and were found to be in good agreement with the theoretical predictions for plane waves. Measurements were also made of the insertion loss of aluminium, Perspex and G.R.P. panels for angles of incidence up to 50°. The broad bandwidth available from the parametric source permitted detailed measurements to be made over a wide frequency range using a single transmitting transducer. The small spot sizes obtainable with the parametric source also helped to reduce the significance of diffraction from edges of the panel under test.
Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters
2008-01-01
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...
Photometric Lambert Correction for Global Mosaicking of HRSC Data
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas
2015-04-01
The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.
Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data
NASA Astrophysics Data System (ADS)
Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh
2017-11-01
Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop physiology.
A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification
NASA Astrophysics Data System (ADS)
Cannon, Patrick; Honary, Farideh; Borisov, Nikolay
Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.
Simulation of a circular phased array for a portable ultrasonic polar scan
NASA Astrophysics Data System (ADS)
Daemen, Jannes; Kersemans, Mathias; Martens, Arvid; Verboven, Erik; Delrue, Steven; Van Paepegem, Wim; Degrieck, Joris; Van Den Abeele, Koen
2018-04-01
The development of new composite materials, often anisotropic in nature, requires intricate approaches to characterize these materials and to detect internal defects. The Ultrasonic Polar Scan (UPS) is able to achieve both goals. During an UPS experiment, a material spot is insonified at several angles Ψ(θ,ϕ), after which the reflected or transmitted signal is recorded. While excellent results have been obtained using an in-house developed 5-axis scanner, UPS measurements with the current set-up are too lengthy and cumbersome for in-situ industrial application. Therefore, we propose to replace the complex mechanical steering of the transducers by a hemispherical phased array consisting of small PZT elements. This allows to create a compact and portable setup without compromising the current data quality. By successively activating a specific set of elements of the array and choosing appropriate inter-element time delays, the beam can be electronically steered from any angle to a fixed position on the targeted sample. Consequently, UPS reflection measurements can be performed at this position from a wide range of angles in a timeframe of seconds. Additionally, by using apodization windows, it is possible to efficiently reduce the intensity of unwanted side lobes and to create a phase profile which closely resembles that of a bounded plane wave, leading to an easier interpretation of the recorded data. The appropriate time delays and apodization parameters can be found though a multi-objective inverse problem in which both the phase profile and the side lobe reduction are optimized. This approach enables the creation of an effective beam profile to be used during UPS experiments for the characterization and inspection of composite materials. Our simulation approach is a crucial step towards a next-generation UPS device for industrial applications and in-field measurements.
Twist-3 contributions to wide-angle photoproduction of pions
NASA Astrophysics Data System (ADS)
Kroll, P.; Passek-Kumerički, K.
2018-04-01
We investigate wide-angle π0 photoproduction within the handbag approach to twist-3 accuracy. In contrast to earlier work both the 2-particle as well as the 3-particle twist-3 contributions are taken into account. It is shown that both are needed for consistent results that respect gauge invariance and crossing properties. The numerical studies reveal the dominance of the twist-3 contribution. With it fair agreement with the recent CLAS measurement of the π0 cross section is obtained. We briefly comment also on wide-angle photoproduction of other pseudoscalar mesons.
Acoustic metamaterials with broadband and wide-angle impedance matching
NASA Astrophysics Data System (ADS)
Liu, Chenkai; Luo, Jie; Lai, Yun
2018-04-01
We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.
NASA Astrophysics Data System (ADS)
Arai, T.; Matsunaga, T.
2017-12-01
GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.
Radar sea reflection for low-e targets
NASA Astrophysics Data System (ADS)
Chow, Winston C.; Groves, Gordon W.
1998-09-01
Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.
Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens
Nixon, M. R.; Orr, A. G.; Vukusic, P.
2015-01-01
The dorsal surfaces of the hindwings of the dragonfly Rhyothemis resplendens (Odonata: Libellulidae) reflect a deep blue from the multilayer structure in its wing membrane. The layers within this structure are not flat, but distinctly ‘wrinkled’, with a thickness of several hundred nanometres and interwrinkle crest distances of 5 µm and greater. A comparison between the backscattered light from R. resplendens and a similar, but un-‘wrinkled’ multilayer in the damselfly Matronoides cyaneipennis (Odonata: Calopterygidae) shows that the angle over which incident light is backscattered is increased by the wrinkling in the R. resplendens structure. Whereas the reflection from the flat multilayer of M. cyaneipennis is effectively specular, the reflection from the wrinkled R. resplendens multilayer spans 1.47 steradians (equivalent to ±40° for all azimuthal angles). This property enhances the visibility of the static wing over a broader angle range than is normally associated with a smooth multilayer, thereby markedly increasing its conspicuousness. PMID:25540236
Total internal reflection optical switch using the reverse breakdown of a pn junction in silicon.
Kim, Jong-Hun; Park, Hyo-Hoon
2015-11-01
We demonstrate a new type of silicon total-internal-reflection optical switch with a simple pn junction functioning both as a reflector and a heater. The reflector is placed between asymmetrically y-branched multimode waveguides with an inclination angle corresponding to half of the branch angle. When the reflector is at rest, incident light is reflected in accordance to the refractive index difference due to the plasma dispersion effect of the pre-doped carriers. Switching to the transmission state is attained under a reverse breakdown of the pn junction by the thermo-optic effect which smears the refractive index difference. From this switching scheme, we confirmed the switching operation with a shallow total-internal-reflection region of 1 μm width. At a 6° branch angle, an extinction ratio of 12 dB and an insertion loss of -4.2 dB are achieved along with a thermal heating power of 151.5 mW.
The polarization patterns of skylight reflected off wave water surface.
Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie
2013-12-30
In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.
NASA Astrophysics Data System (ADS)
Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge
2017-04-01
Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has been identified as a reflector in the wide-angle seismic data. These delamination planes outcrop at the interplate contact creating weak zones that focus the tectonic deformation in the upper plate. An incoming oceanic crust made of serpentinized mantle rocks is consistent with a depressed geothermal gradient in the trench due to water alteration and heat generation at depth due to serpentinite dehydration. This fluid-rich altered and weak oceanic crust likely reduces the seismic activity along this margin segment.
Polarization Signals of Common Spacecraft Materials
NASA Technical Reports Server (NTRS)
Gravseth, Ian; Culp, Robert D.; King, Nicole
1996-01-01
This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.
Recent advancements of wide-angle polarization analysis with 3He neutron spin filters
NASA Astrophysics Data System (ADS)
Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.
2016-09-01
Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.
NASA Astrophysics Data System (ADS)
Gordon, Devin A.; DeNoyer, Lin; Meyer, Corey W.; Sweet, Noah W.; Burns, David M.; Bruckman, Laura S.; French, Roger H.
2017-08-01
Poly(ethylene-terephthalate) (PET) film is widely used in photovoltaic module backsheets for its dielectric break- down strength, and in applications requiring high optical clarity for its high transmission in the visible region. However, PET degrades and loses optical clarity under exposure to ultraviolet (UV) irradiance, heat, and moisture. Stabilizers are often included in PET formulation to increase its longevity; however, even these are subject to degradation and further reduce optical clarity. To study the weathering induced changes in the optical properties in PET films, samples of a UV-stabilized grade of PET were exposed to heat, moisture, and UV irradiance as prescribed by ASTM-G154 Cycle 4 for 168 hour time intervals. UV-Vis reflection and transmission spectra were collected via Multi-Angle, Polarization-Dependent, Reflection, Transmission, and Scattering (MaPd:RTS) spectroscopy after each exposure interval. The resulting spectra were used to calculate the complex index of refraction throughout the UV-Vis spectral region via an iterative optimization process based upon the Fresnel equations. The index of refraction and extinction coefficient were found to vary throughout the UV-Vis region with time under exposure. The spectra were also used to investigate changes in light scattering behavior with increasing exposure time. The intensity of scattered light was found to increase at higher angles with time under exposure.
Development of the Laser Retroreflector Array (LRA) for SARAL
NASA Astrophysics Data System (ADS)
Costes, Vincent; Gasc, Karine; Sengenes, Pierre; Salcedo, Corinne; Imperiali, Stéphan; du Jeu, Christian
2017-11-01
CNES (French spatial agency) will provide the AltiKa high resolution altimeter, Doris instrument and the LRA (Laser Retroreflector Array) for SARAL (Satellite with Argos and AltiKa) in cooperation with ISRO (Indian space agency). The LRA is a passive equipment reflecting the laser beams coming from the Earth ground stations. Computing the send-return time travel of the laser beams allows the determination of the satellite altitude within an accuracy of a few millimeters. The reflective function is done by a set of 9 corner cube reflectors, with a conical arrangement providing a 150 degrees wide field of view over the full 360 degrees azimuth angle. According to CNES optomechanical specifications, the LRA has been developed by SESO (French optical firm). SESO has succeeded in providing the corner cube reflectors with a very stringent dihedral angle error of 1.6 arcsec and an accuracy within +/-0.5 arcsec. During this development, SESO has performed mechanical, thermal and thermo-optical analyses. The optical gradient of each corner cube, as well as angular deviations and PSF (Point Spread Function) in each laser range finding direction, have been computed. Mechanical and thermal tests have been successfully performed. A thermo-optical test has successfully confirmed the optical effect of the predicted in-flight thermal gradients. Each reflector is characterized in order to find its best location in the LRA housing and give the maximum optimization to the space telemetering mission.
Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization
NASA Astrophysics Data System (ADS)
Hudson, Stephen R.; Warren, Stephen G.; Brandt, Richard E.; Grenfell, Thomas C.; Six, Delphine
2006-09-01
The bidirectional reflectance distribution function (BRDF) of snow was measured from a 32-m tower at Dome C, at latitude 75°S on the East Antarctic Plateau. These measurements were made at 96 solar zenith angles between 51° and 87° and cover wavelengths 350-2400 nm, with 3- to 30-nm resolution, over the full range of viewing geometry. The BRDF at 900 nm had previously been measured at the South Pole; the Dome C measurement at that wavelength is similar. At both locations the natural roughness of the snow surface causes the anisotropy of the BRDF to be less than that of flat snow. The inherent BRDF of the snow is nearly constant in the high-albedo part of the spectrum (350-900 nm), but the angular distribution of reflected radiance becomes more isotropic at the shorter wavelengths because of atmospheric Rayleigh scattering. Parameterizations were developed for the anisotropic reflectance factor using a small number of empirical orthogonal functions. Because the reflectance is more anisotropic at wavelengths at which ice is more absorptive, albedo rather than wavelength is used as a predictor in the near infrared. The parameterizations cover nearly all viewing angles and are applicable to the high parts of the Antarctic Plateau that have small surface roughness and, at viewing zenith angles less than 55°, elsewhere on the plateau, where larger surface roughness affects the BRDF at larger viewing angles. The root-mean-squared error of the parameterized reflectances is between 2% and 4% at wavelengths less than 1400 nm and between 5% and 8% at longer wavelengths.
NASA Technical Reports Server (NTRS)
Walter-Shea, E. A.; Blad, B. L.; Mesarch, M. A.; Hays, C. J.; Deering, D. W.; Eck, T. F.
1992-01-01
Instantaneous fractions of absorbed photosynthetically active radiation (APAR) were measured at the Streletskaya Steppe Reserve in conjunction with canopy bidirectional-reflected radiation measured at solar zenith angles ranging between 37 and 74 deg during the Kursk experiment (KUREX-91). APAR values were higher for KUREX-91 than those for the first ISLSCP field experiment (FIFE-89) and the amount of APAR of a canopy was a function of solar zenith angle, decreasing as solar zenith angle increased at the resrve. Differences in absorption are attributed to leaf area index (LAI) and leaf angle distribution and subsequently transmitted radiation interactions. LAIs were considerably higher at the reserve than those at the FIFE site. Leaf angle distributions of the reserve approach a uniform distribution while distributions at the FIFE site more closely approximate erectophile distributions. Reflected photosynthetically active radiation (PAR) components at KUREX-91 and FIFE-89 were similar in magnitude and in their response to solar zenith angle. Transmitted PAR increased with increasing solar zenith angle at KUREX-91 and decreased with increasing solar zenith angle at FIFE-89. Transmitted PAR at FIFE-89 was considerably larger than those at KUREX-91.
Recirculating Etalon Spectrometer
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor); Fahey, Molly E. (Inventor); Krainak, Michael A. (Inventor)
2017-01-01
Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon.
Back focal plane microscopic ellipsometer with internal reflection geometry
NASA Astrophysics Data System (ADS)
Otsuki, Soichi; Murase, Norio; Kano, Hiroshi
2013-05-01
A back focal plane (BFP) ellipsometer is presented to measure a thin film on a cover glass using an oil-immersion high-numerical-aperture objective lens. The internal reflection geometry lowers the pseudo Brewster angle (ϕB) to the range over which the light distribution is observed in BFP of the objective. A calculation based on Mueller matrix was developed to compute ellipsometric parameters from the intensity distribution on BFP. The center and radius of the partial reflection region below the critical angle were determined and used to define a polar coordinate on BFP. Harmonic components were computed from the intensities along the azimuth direction and transformed to ellipsometric parameters at multiple incident angles around ϕB. The refractive index and thickness of the film and the contributions of the objective effect were estimated at the same time by fitting.
Discriminating electromagnetic radiation based on angle of incidence
Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.
2015-06-16
The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.
Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons
Xue, Chun-hua; Wu, Feng; Jiang, Hai-tao; Li, Yunhui; Zhang, Ye-wen; Chen, Hong
2016-01-01
We theoretically investigate wide-angle spectrally selective absorber by utilizing dispersionless Tamm plasmon polaritons (TPPs) under TM polarization. TPPs are resonant tunneling effects occurring on the interface between one-dimensional photonic crystals (1DPCs) and metal slab, and their dispersion properties are essentially determined by that of 1DPCs. Our investigations show that dispersionless TPPs can be excited in 1DPCs containing hyperbolic metamaterials (HMMs) on metal substrate. Based on dispersionless TPPs, electromagnetic waves penetrate into metal substrate and are absorbed entirely by lossy metal, exhibiting a narrow-band and wide-angle perfect absorption for TM polarization. Our results exhibit nearly perfect absorption with a value over 98% in the angle of incidence region of 0–80 degree. PMID:27991565
Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars
Johnson, J. R.; Kirk, R.; Soderblom, L.A.; Gaddis, L.; Reid, R.J.; Britt, D.T.; Smith, P.; Lemmon, M.; Thomas, N.; Bell, J.F.; Bridges, N.T.; Anderson, R.; Herkenhoff, K. E.; Maki, J.; Murchie, S.; Dummel, A.; Jaumann, R.; Trauthan, F.; Arnold, G.
1999-01-01
Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small "photometric spot" subframed scenes, covering phase angles from 20?? to 150??; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ???0?? to 155??; and (3) full-image scenes of the rock "Yogi," covering phase angles from 48?? to 100??. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140??, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass-like or varnished surface. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.
2013-12-01
Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed if hyperspectral ground-based data are available to validate the current modelling approaches. The results presented here extend the work of previous studies by recording the HDRF of Arctic snow covered tundra at high solar zenith angles over several sites. Demonstrating the strong forward scattering nature of snow reflectance at high solar zenith angles, but also showing clear wavelength dependence in the shape of the HDRF, and an increasing anisotropy with wavelength.
On Sound Reflection in Superfluid
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-02-01
We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.
Probe for measurement of velocity and density of vapor in vapor plume
Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.
1997-03-11
A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.
Angle dependent antireflection property of TiO2 inspired by cicada wings
NASA Astrophysics Data System (ADS)
Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di
2016-10-01
Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.
High brightness angled cavity quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, D.; Bai, Y.; Bandyopadhyay, N.
2015-03-02
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less
Probe for measurement of velocity and density of vapor in vapor plume
Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.
1997-01-01
A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.
Structure of the Peruvian Margin as imaged by Wide Angle and Reflection Seismic Data
NASA Astrophysics Data System (ADS)
Bialas, J.; Broser, A.; Hampel, A.; Kukowski, N.
2001-12-01
Within the GEOPECO project seismic reflection and refraction data were acquired during RV SONNE cruise SO-146 off Peru. The objectives were a quantitative characterization of the structures and geodynamics of the Peruvian section of the Andean subduction zone in regions with different tectonic development. Six wide angle seismic profiles (each app. 100 nm) were shot with three 32 l airguns and recorded by up to 14 OBH/S stations. The profiles cover the area which has been passed by the subducting Nazca ridge during the last 8 million years, from Yaquina basin in the North to about 15° South where the ridge currently subducts. Thorough modeling reveals the structure of the oceanic crust, the trench, and the adjacent continental slope in great detail. A small accretionary wedge was established some 2 million years after trespassing of the subducting ridge but did not increase in volume since then. Even compared to the one at 9° South, where Nazca Ridge subducted some 8 million years ago, the accretionary wedge is of similar size, some 30 km wide with a thickness of about 3 to 4 km. The relatively large subduction taper of 12° to 17° resulting from forward modeling is indicative for high basal friction and non-accretive subduction. Low p-wave velocities modeled at the top of the downgoing oceanic plate infer the presence of a subduction channel. The crustal thickness of the oceanic plate is 10 km between Nazca ridge and the Mendana fracture zone. North of the fracture zone, the age of the crust is some 10 million years younger (28 million years) than in the South and the crustal thickness is of typical oceanic values of 7 km. Two cross lines in Lima basin give insight into its internal structure. Along dip, the basin is some 150 km wide with a seperating basement high at the landward termination. The basin has an asymmetric shape and its depth varies between 1 and 3 km depth below sea floor. Along strike, the basin floor is almost horizontal. The top of the subducting oceanic plate is modeled at 25 km depth underneath the South-Eastern part of the basin.
New seismic images of the cascadia subduction zone from cruise SO 108-ORWELL
Flueh, E.R.; Fisher, M.A.; Bialas, J.; Childs, J. R.; Klaeschen, D.; Kukowski, Nina; Parsons, T.; Scholl, D. W.; ten Brink, Uri S.; Trehu, A.M.; Vidal, N.
1998-01-01
In April and May 1996, a geophysical study of the Cascadia continental margin off Oregon and Washington was conducted aboard the German R/V Sonne. This cooperative experiment by GEOMAR and the USGS acquired wide-angle reflection and refraction seismic data, using ocean-bottom seismometers (OBS) and hydrophones (OBH), and multichannel seismic reflection (MCS) data. The main goal of this experiment was to investigate the internal structure and associated earthquake hazard of the Cascadia subduction zone and to image the downgoing plate. Coincident MCS and wide-angle profiles along two tracks are presented here. The plate boundary has been imaged precisely beneath the wide accretionary wedge close to shore at c13km depth. Thus, the downgoing plate dips more shallowly than previously assumed. The dip of the plate changes from 2?? to 4?? at the eastern boundary of the wedge on the northern profile, whereas approximately 3km of sediment is entering the subduction zone. On the southern profile, where the incoming sedimentary section is about 2.2km thick, the plate dips about 0.5?? to 1.5?? near the deformation front and increases to 3.5?? further landwards. On both profiles, the deformation of the accretionary wedge has produced six ridges on the seafloor, three of which represent active faulting, as indicated by growth folding. The ridges are bordered by landward verging faults which reach as deep as the top of the oceanic basement. Thus, the entire incoming sediment package is being accreted. At least two phases of accretion are evident, and the rocks of the older accretionary phase(s) forms the backstop for the younger phase, which started around 1.5 Ma ago. This documents that the 30 to 50km wide frontal part of the accretionary wedge, which is characterized by landward vergent thrusts, is a Pleistocene feature which was formed in response to the high input of sediment building the fans during glacial periods. Velocities increase quite rapidly within the wedge, both landward and downward. At the toe of the deformation front, velocities are higher than 4.0 km/s, indicating extensive dewatering of deep, oceanic sediment. Further landward, considerable velocity variation is found, which indicates major breaks throughout the accretionary history.
The Coherent Backscattering Opposition Effect: Measurements at Very Small Phase Angles
NASA Technical Reports Server (NTRS)
Nelson, R.; Hapke, B.; Smythe, W.; Horn, L.; Herrera, P.; Gharakanian, V.
1993-01-01
This oral presentation explains that measurements of the opposition surge (the nonlinear increase in reflectance seen in particulate materials when observed at small phase angles) are the first ever made using the JPL long-arm goniometer, which permits very small phase angle measuremnets to be made.
Satellite and in situ monitoring data used for modeling of forest vegetation reflectance
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N.; Baschir, L.
2010-10-01
As climatic variability and anthropogenic stressors are growing up continuously, must be defined the proper criteria for forest vegetation assessment. In order to characterize current and future state of forest vegetation satellite imagery is a very useful tool. Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and, especially, its very strong reflectance in the near-IR. Vegetation reflectance has variations with sun zenith angle, view zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used a developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy with randomly oriented leaves. A simple physical model of forest vegetation reflectance was applied and validated for Cernica forested area, near Bucharest town through two ASTER satellite data , acquired within minutes from one another ,a nadir and off-nadir for band 3 lying in the near infra red, most radiance differences between the two scenes can be attributed to the BRDF effect. Other satellite data MODIS, Landsat TM and ETM as well as, IKONOS have been used for different NDVI and classification analysis.
NASA Astrophysics Data System (ADS)
Hsieh, Shang Yu; Neubauer, Franz
2015-04-01
The internal structure of major strike-slip faults is still poorly understood, particularly how to extrapolate subsurface structures by surface expressions. Series of brittle analogue experiments by Leever et al., 2011 resulted the convergence angle is the most influential factor for surface structures. Further analogue models with different ductile settings allow a better understanding in extrapolating surface structures to the subsurface geometry of strike-slip faults. Fifteen analogue experiments were constructed to represent strike-slip faults in nature in different geological settings. As key parameters investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressional system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences, suggesting that the correlation of structures across a weak layer has to be supported by geophysical data, which help constraining the geometry of the deep part. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
Photometric theory for wide-angle phenomena
NASA Technical Reports Server (NTRS)
Usher, Peter D.
1990-01-01
An examination is made of the problem posed by wide-angle photographic photometry, in order to extract a photometric-morphological history of Comet P/Halley. Photometric solutions are presently achieved over wide angles through a generalization of an assumption-free moment-sum method. Standard stars in the field allow a complete solution to be obtained for extinction, sky brightness, and the characteristic curve. After formulating Newton's method for the solution of the general nonlinear least-square problem, an implementation is undertaken for a canonical data set. Attention is given to the problem of random and systematic photometric errors.
Csutak, A; Lengyel, I; Jonasson, F; Leung, I; Geirsdottir, A; Xing, W; Peto, T
2010-10-01
To establish the agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula. In 2008, the 12-year follow-up was conducted on 573 participants of the Reykjavik Eye Study. This study included the use of the Optos P200C AF ultra wide-angle laser scanning ophthalmoscope alongside Zeiss FF 450 conventional digital fundus camera on 121 eyes with or without age-related macular degeneration using the International Classification System. Of these eyes, detailed grading was carried out on five cases each with hard drusen, geographic atrophy and chorioretinal neovascularisation, and six cases of soft drusen. Exact agreement and κ-statistics were calculated. Comparison of the conventional and ultra wide-angle images in the macula showed an overall 96.43% agreement (κ=0.93) with no disagreement at end-stage disease; although in one eye chorioretinal neovascularisation was graded as drusenoid pigment epithelial detachment. Of patients with drusen only, the exact agreement was 96.1%. The detailed grading showed no clinically significant disagreement between the conventional 45° and 200° images. On the basis of our results, there is a good agreement between grading conventional and ultra wide-angle images in the macula.
Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina
2012-09-01
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
NASA Astrophysics Data System (ADS)
Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina
2012-09-01
The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.
Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-14
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
NASA Astrophysics Data System (ADS)
Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li
2016-12-01
Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.
Gradient metasurface for four-direction anomalous reflection in terahertz
NASA Astrophysics Data System (ADS)
Wang, Jiao; Jiang, Yannan
2018-06-01
In this paper, a four-direction anomalous reflection metasurface is proposed. The basic cells comprise of squares and circles, which are designed at various sizes and arranged in a super cell at regular spacing. Then, properly combining super cells molds a square phase gradient metasurface (PGM). It is mounted on an optical thickness gold mirror, which inhibits all light transmission. Markedly different from previously reported metasurfaces, the square PGM is characterized by four-direction reflection beams. It takes into consideration the normal incidence and the oblique incidence. For the normal incidence, that the degrees of the four reflection angles are identical is due to the x, - x, y and - y directional discontinuous phase gradients, and lies on the symmetric structure in the xoy plane, which is then revealed by the surface current distribution. Incident angles varying from -20° to 20°, the reflection angles are demonstrated in the oblique incidence. Moreover, the PGM is polarization-independent. The performance is attributed to the symmetry of structure, which is verified by Radar cross section. Simulated results prove that our method offers a simple and effective strategy for metasurface design in terahertz. The proposed PGM can aid in focused beams, steering beams, and shaped beams.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.; Stallings, R. L., Jr.
1986-01-01
A wind-tunnel investigation has been conducted at Mach numbers of 1.50, 2.16, and 2.86 to obtain axial-force data on a metric rectangular-box cavity with various length-to-depth ratios. The model was tested at angles of attack from -4 deg to -2 deg. The results are summarized to show variations in cavity axial-force coefficient for deep- and shallow-cavity configurations with detached and attached cavity flow fields, respectively. The results of the investigation indicate that for a wide range of cavity lengths and depths, good correlations of the cavity axial-force coefficients (based on cavity rear-face area) are obtained when these coefficients are plotted as a function of cavity length-to-depth ratio. Abrupt increases in the cavity axial-force coefficients at an angle of attack of 0 deg. reflect the transition from an open (detached) cavity flow field to a closed (attached) cavity flow field. Cavity length-to-depth ratio is the dominant factor affecting the switching of the cavity flow field from one type to the other. The type of cavity flow field (open or closed) is not dependent on the test angles of attack except near the critical value of length-to-depth ratio.
Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.
Zhou, Ziheng; Chen, Ke; Zhao, Junming; Chen, Ping; Jiang, Tian; Zhu, Bo; Feng, Yijun; Li, Yue
2017-11-27
The metasurfaces have recently been demonstrated to provide full control of the phase responses of electromagnetic (EM) wave scattering over subwavelength scales, enabling a wide range of practical applications. Here, we propose a comprehensive scheme for the efficient and flexible design of metasurface Salisbury screen (MSS) capable of absorbing the impinging EM wave in an ultra-wide frequency band. We show that properly designed reflective metasurface can be used to substitute the metallic ground of conventional Salisbury screen for generating diverse resonances in a desirable way, thus providing large controllability over the absorption bandwidth. Based on this concept, we establish an equivalent circuit model to qualitatively analysis the resonances in MSS and design algorithms to optimize the overall performance of the MSS. Experiments have been carried out to demonstrate that the absorption bandwidth from 6 GHz to 30 GHz with an efficiency higher than 85% can be achieved by the proposal, which is apparently much larger than that of conventional Salisbury screen (7 GHz - 17 GHz). The proposed concept of MSS could offer opportunities for flexibly designing thin electromagnetic absorbers with simultaneously ultra-wide bandwidth, polarization insensitivity, and wide incident angle, exhibiting promising potentials for many applications such as in EM compatibility, stealth technique, etc.
Space qualification of IR-reflecting coverslides for GaAs solar cells
NASA Technical Reports Server (NTRS)
Meulenberg, Andrew
1995-01-01
Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.
Huang, Xiu Tao; Lu, Cong Hui; Rong, Can Can; Wang, Sheng Ming; Liu, Ming Hai
2018-04-25
An ultra-wide-angle THz metamaterial absorber (MA) utilizing sixteen-circular-sector (SCR) resonator for both transverse electric (TE) and transverse magnetic (TM) mode is designed and investigated numerically. At normal incidence, the absorptivity of the proposed MA is higher than 93.7% at 9.05 THz for different polarization angles, due to the rotational symmetry structure of the unit cell. Under oblique incidence, the absorptivity can still exceed 90%, even when the incident angle is up to 70° for both TE and TM mode. Especially, the frequency variation in TE mode is less than 0.25% for different incident angles from 0° to 70°. The electric field (E z ) distributions are used to explain the absorption mechanism. Numerical simulation results show that the high absorption with wide-angle independence stems from fundamental dipole resonance and gap surface plasmons. The broadband deep-infrared MA is also obtained by stacking three metal-dielectric layers. The designed MA has great potential in bolometric pixel elements, biomedical sensors, THz imaging, and solar cells.
Seismic experiment ross ice shelf 1990/91: Characteristics of the seismic reflection data
1993-01-01
The Transantarctic Mountains, with a length of 3000-3500 km and elevations of up to 4500 m, are one of the major Cenozoic mountain ranges in the world and are by far the most striking example of rift-shoulder mountains. Over the 1990-1991 austral summer Seismic Experiment Ross Ice Shelf (SERIS) was carried out across the Transantarctic Mountain front, between latitudes 82 degrees to 83 degrees S, in order to investigate the transition zone between the rifted area of the Ross Embayment and the uplifted Transantarctic Mountains. This experiment involved a 140 km long seismic reflection profile together with a 96 km long coincident wide-angle reflection/refraction profile. Gravity and relative elevation (using barometric pressure) were also measured along the profile. The primary purpose was to examine the boundary between the rift system and the uplifted rift margin (represented by the Transantarctic Mountains) using modern multi-channel crustal reflection/refraction techniques. The results provide insight into crustal structure across the plate boundary. SERIS also represented one of the first large-scale and modern multi-channel seismic experiments in the remote interior of Antarctica. As such, the project was designed to test different seismic acquisition techniques which will be involved in future seismic exploration of the continent. This report describes the results from the analysis of the acquisition tests as well as detailing some of the characteristics of the reflection seismic data. (auths.)
A broadband metamaterial absorber based on multi-layer graphene in the terahertz region
NASA Astrophysics Data System (ADS)
Fu, Pan; Liu, Fei; Ren, Guang Jun; Su, Fei; Li, Dong; Yao, Jian Quan
2018-06-01
A broadband metamaterial absorber, composed of the periodic graphene pattern on SiO2 dielectric with the double layer graphene films inserted in it and all of them backed by metal plan, is proposed and investigated. The simulation results reveal that the wide absorption band can be flexibly tuned between the low-frequency band and the high-frequency band by adjusting graphene's Fermi level. The absorption can achieve 90% in 5.50-7.10 THz, with Fermi level of graphene is 0.3 eV, while in 6.98-9.10 THz with Fermi level 0.6 eV. Furthermore, the proposed structure can be switched from reflection (>81%) to absorption (>90%) over the whole operation band, when the Fermi level of graphene varies from 0 to 0.6 eV. Besides, the proposed absorber is insensitive to the polarization and can work over a wide range of incident angle. Compared with the previous broadband absorber, our graphene based wideband terahertz absorber can enable a wide application of high performance terahertz devices, including sensors, imaging devices and electro-optic switches.
Measuring Light Reflectance of BGO Crystal Surfaces
NASA Astrophysics Data System (ADS)
Janecek, Martin; Moses, William W.
2008-10-01
A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.
NASA Astrophysics Data System (ADS)
Sasmal, Sudipta; Basak, Tamal; Chakraborty, Suman; Palit, Sourav; Chakrabarti, Sandip K.
2017-07-01
Characteristics of very low frequency (VLF) signal depends on solar illumination across the propagation path. For a long path, solar zenith angle varies widely over the path and this has a significant influence on the propagation characteristics. To study the effect, Indian Centre for Space Physics participated in the 27th and 35th Scientific Expedition to Antarctica. VLF signals transmitted from the transmitters, namely, VTX (18.2 kHz), Vijayanarayanam, India, and NWC (19.8 kHz), North West Cape, Australia, were recorded simultaneously at Indian permanent stations Maitri and Bharati having respective geographic coordinates 70.75°S, 11.67°E, and 69.4°S, 76.17°E. A very stable diurnal variation of the signal has been obtained from both the stations. We reproduced the signal variations of VLF signal using solar zenith angle model coupled with long wavelength propagation capability (LWPC) code. We divided the whole path into several segments and computed the solar zenith angle (χ) profile. We assumed a linear relationship between the Wait's exponential model parameters effective reflection height (h'), steepness parameter (β), and solar zenith angle. The h' and β values were later used in the LWPC code to obtain the VLF signal amplitude at a particular time. The same procedure was repeated to obtain the whole day signal. Nature of the whole day signal variation from the theoretical modeling is also found to match with our observation to some extent.
Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.
1990-01-01
Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth.
A method of directly extracting multiwave angle-domain common-image gathers
NASA Astrophysics Data System (ADS)
Han, Jianguang; Wang, Yun
2017-10-01
Angle-domain common-image gathers (ADCIGs) can provide an effective way for migration velocity analysis and amplitude versus angle analysis in oil-gas seismic exploration. On the basis of multi-component Gaussian beam prestack depth migration (GB-PSDM), an alternative method of directly extracting multiwave ADCIGs is presented in this paper. We first introduce multi-component GB-PSDM, where a wavefield separation is proceeded to obtain the separated PP- and PS-wave seismic records before migration imaging for multiwave seismic data. Then, the principle of extracting PP- and PS-ADCIGs using GB-PSDM is presented. The propagation angle can be obtained using the real-value travel time of Gaussian beam in the course of GB-PSDM, which can be used to calculate the incidence and reflection angles. Two kinds of ADCIGs can be extracted for the PS-wave, one of which is P-wave incidence ADCIGs and the other one is S-wave reflection ADCIGs. In this paper, we use the incident angle to plot the ADCIGs for both PP- and PS-waves. Finally, tests of synthetic examples show that the method introduced here is accurate and effective.
Resonant absorption of electromagnetic waves in transition anisotropic media.
Kim, Kihong
2017-11-27
We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.
Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction
NASA Astrophysics Data System (ADS)
Krywonos, Andrey
Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.
NASA Astrophysics Data System (ADS)
Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.
2011-12-01
The Bidirectional Reflectance Distribution Function (BRDF) of the forest is an important clue for remote sensing to reveal the forest structure such as Leaf Area Index (LAI) and above-ground biomass. The BRDF is required for the robust development of forest radiative transfer model, which is applied to the forest structure analysis based on satellite data. To acquire in-situ BRDF of the forest, we carried out the field survey of BRDFs at a boreal forest in no-snow season (July 2010) and snow season (March 2011) in Alaska, and compared them. A black spruce forest, a typical boreal evergreen forest in Alaska, located in the Poker Flat Research Range of University of Alaska Fairbanks (65 07'24"N, 147 29'15"W, 210 m MSL) was targeted. Since the forest homogeneously extends about 500 m wide and the terrain is relatively even, this forest site is highly suitable for the validation of the remote sensing measurement. The tree stand density was about 4000 tree/ha, and the highest tree was 6.4 m. The forest floor is covered by the green vegetation such as moss and grass in summer, while the vegetation on the floor is completely covered by snow during winter and early spring. The observations of the BRDF taken place around the noon of July 7 and 8, 2010 (no-snow season) and March 16 and 17, 2011 (snow season) from the top of the tower (17 m) constructed in the forest. We measured the reflected irradiance from the forest by the spectroradiometer (MS-720; EKO Instruments) changing the viewing angle from 20 to 70 degrees and -20 to -70 degrees(off-nadir angle; positive and negative angles mean forward and back scatter angles, respectively) with 5 degrees interval in the principal plane. Irradiances in the orthogonal (cross) plane were also measured in the same manner. The global radiation was simultaneously measured by the other spectroradiometer for the calculation of the reflectance. The BRDF in the principal plane in the no-snow season showed a kind of bowl-shape distribution with its minimum and maximum at approximately 30 and -70 degrees in visible and near-infrared bands, respectively, that is, the forward scatter was generally smaller than the back scatter. By contrast, in the snow season, the back scatter was generally smaller than the forward scatter, that is, the reverse of that in the no-snow season. These results will be used for the development of the forest radiative transfer model aimed to evaluate the forest biodiversity and ecosystem functions.
Solar module having reflector between cells
Kardauskas, Michael J.
1999-01-01
A photovoltaic module comprising an array of electrically interconnected photovoltaic cells disposed in a planar and mutually spaced relationship between a light-transparent front cover member in sheet form and a back sheet structure is provided with a novel light-reflecting means disposed between adjacent cells for reflecting light falling in the areas between cells back toward said transparent cover member for further internal reflection onto the solar cells. The light-reflecting comprises a flexible plastic film that has been embossed so as to have a plurality of small V-shaped grooves in its front surface, and a thin light-reflecting coating on said front surface, the portions of said coating along the sides of said grooves forming light-reflecting facets, said grooves being formed so that said facets will reflect light impinging thereon back into said transparent cover sheet with an angle of incidence greater than the critical angle, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to said solar modules, thereby increasing the current output of the module.
Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer
NASA Astrophysics Data System (ADS)
Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun
2015-10-01
Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.
Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units
NASA Astrophysics Data System (ADS)
Chen, Zhaobin; Deng, Hui; Xiong, Qingxu; Liu, Chen
2018-03-01
It has been pointed out by many documents that a phase gradient metasurface with wideband characteristics can be designed by the unit with a low-quality factor ( Q value). In this paper, a cross-shaped unit with a low-quality factor Q is proposed. By changing the variable parameters of the unit, it is found that the reflection phase of the unit can achieve a stable distribution of phase gradient in the frequency range of 8.0-20.0 GHz. we analyze variation of the electromagnetic field distribution on the unit with frequency and find that the size along electrical field polarization of electromagnetic field distribution area changes with frequency. Based on our design, effective size of electromagnetic field distribution area keeps meeting the subwavelength condition, thus stable phase distribution is gained across broadened bandwidth. It is found by the analysis of the phase gradient metasurface composed of seven units that the metasurface can exhibit anomalous reflection in the wide frequency band of 8.0-20.0 GHz, and the efficiency of abnormal reflection is higher in the range of 10.0-18.0 GHz. The error between the simulation results of abnormal reflection angle and the theoretical result is only - 1.5° to 0.5° after the work of comparison. Therefore, the metasurface designed by the new cross-shaped unit has a good control on the deflection direction of the reflected wave, and shows obvious advantages in widening the bandwidth.
Angle-selective optical filter for highly sensitive reflection photoplethysmogram
Hwang, Chan-Sol; Yang, Sung-Pyo; Jang, Kyung-Won; Park, Jung-Woo; Jeong, Ki-Hun
2017-01-01
We report an angle-selective optical filter (ASOF) for highly sensitive reflection photoplethysmography (PPG) sensors. The ASOF features slanted aluminum (Al) micromirror arrays embedded in transparent polymer resin, which effectively block scattered light under human tissue. The device microfabrication was done by using geometry-guided resist reflow of polymer micropatterns, polydimethylsiloxane replica molding, and oblique angle deposition of thin Al film. The angular transmittance through the ASOF is precisely controlled by the angle of micromirrors. For the mirror angle of 30 degrees, the ASOF accepts an incident light between - 90 to + 50 degrees and the maximum transmittance at - 55 degrees. The ASOF exhibits the substantial reduction of both the in-band noise of PPG signals over a factor of two and the low-frequency noise by three times. Consequently, this filter allows distinguishing the diastolic peak that allows miscellaneous parameters with diverse vascular information. This optical filter provides a new opportunity for highly sensitive PPG monitoring or miscellaneous optical tomography. PMID:29082070
Design, fabrication, and verification of a three-dimensional autocollimator.
Yin, Yanhe; Cai, Sheng; Qiao, Yanfeng
2016-12-10
The autocollimator is an optical instrument for noncontact angle measurement with high resolution and a long detection range. It measures two-dimensional angles, i.e., pitch and yaw, but not roll. In this paper, we present a novelly structured autocollimator capable of measuring three-dimensional (3D) angles simultaneously. In this setup, two collimated beams of different wavelengths are projected onto a right-angle prism. One beam is reflected by the hypotenuse of the prism and received by an autocollimation unit for detecting pitch and yaw. The other is reflected by the two legs of the right-angle prism and received by a moiré fringe imaging unit for detecting roll. Furthermore, a prototype is designed and fabricated. Experiments are carried out to evaluate its basic performance. Calibration results show that this prototype has angular RMS errors of less than 5 arcsec in all 3Ds over a range of 1000 arcsec at a working distance of 2 m.
Optimal design of wide-view-angle waveplate used for polarimetric diagnosis of lithography system
NASA Astrophysics Data System (ADS)
Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Chen, Xiuguo; Liu, Shiyuan
2016-03-01
The diagnosis and control of the polarization aberrations is one of the main concerns in a hyper numerical aperture (NA) lithography system. Waveplates are basic and indispensable optical components in the polarimetric diagnosis tools for the immersion lithography system. The retardance of a birefringent waveplate is highly sensitive to the incident angle of the light, which makes the conventional waveplate not suitable to be applied in the polarimetric diagnosis for the immersion lithography system with a hyper NA. In this paper, we propose a method for the optimal design of a wideview- angle waveplate by combining two positive waveplates made from magnesium fluoride (MgF2) and two negative waveplates made from sapphire using the simulated annealing algorithm. Theoretical derivations and numerical simulations are performed and the results demonstrate that the maximum variation in the retardance of the optimally designed wide-view-angle waveplate is less than +/- 0.35° for a wide-view-angle range of +/- 20°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less
Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin
Brocher, T.M.; Parsons, T.; Trehu, A.M.; Snelson, C.M.; Fisher, M.A.
2003-01-01
Petrologic models suggest that dehydration and metamorphism of subducting slabs release water that serpentinizes the overlying forearc mantle. To test these models, we use the results of controlled-source seismic surveys and earthquake tomography to map the upper mantle along the Cascadia margin forearc. We find anomalously low upper-mantle velocities and/or weak wide-angle reflections from the top of the upper mantle in a narrow region along the margin, compatible with recent teleseismic studies and indicative of a serpentinized upper mantle. The existence of a hydrated forearc upper-mantle wedge in Cascadia has important geological and geophysical implications. For example, shearing within the upper mantle, inferred from seismic reflectivity and consistent with its serpentinite rheology, may occur during aseismic slow slip events on the megathrust. In addition, progressive dehydration of the hydrated mantle wedge south of the Mendocino triple junction may enhance the effects of a slap gap during the evolution of the California margin.
Gross, Lydwine; Frouin, Robert; Dupouy, Cécile; André, Jean Michel; Thiria, Sylvie
2004-07-10
A neural network is developed to retrieve chlorophyll a concentration from marine reflectance by use of the five visible spectral bands of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The network, dedicated to the western equatorial Pacific Ocean, is calibrated with synthetic data that vary in terms of atmospheric content, solar zenith angle, and secondary pigments. Pigment variability is based on in situ data collected in the study region and is introduced through nonlinear modeling of phytoplankton absorption as a function of chlorophyll a, b, and c and photosynthetic and photoprotectant carotenoids. Tests performed on simulated yet realistic data show that chlorophyll a retrievals are substantially improved by use of the neural network instead of classical algorithms, which are sensitive to spectrally uncorrelated effects. The methodology is general, i.e., is applicable to regions other than the western equatorial Pacific Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise
We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.
Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)
Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di
2016-01-01
Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role. PMID:27849051
Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM)
NASA Astrophysics Data System (ADS)
Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di
2016-11-01
Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO2 thin film on a glass fiber cloth whose surface contained 96% V4+ and 4% V5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V5+, which causes destabilization of the monoclinic phase of VO2. When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.
Angle-independent VO2 Thin Film on Glass Fiber Cloth as a Soft-Smart-Mirror (SSM).
Cai, Nianjin; Zhang, Wang; Wang, Wanlin; Zhu, Yuchen; Zada, Imran; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Guo, Cuiping; Zhang, Zhijian; Zhang, Jianzhong; Wu, Liping; Zhang, Di
2016-11-16
Designing materials with a negative feedback function is beneficial for achieving temperature regulation inside a greenhouse. VO 2 has been studied extensively because of its low insulator-to-metal transition temperature (IMT). In this study, reflection changes during a VO 2 phase transition were investigated. Glass fiber cloth was used as a substrate, as it is stable and soft. A VO 2 thin film on a glass fiber cloth whose surface contained 96% V 4+ and 4% V 5+ was prepared using an inorganic sol-gels method. The insulator-to-metal transition temperature was decreased by 38 °C, which was observed from the reflection curve detected using an angle-resolved spectrometer. This decrease in IMT occurred mainly because of the presence of V 5+ , which causes destabilization of the monoclinic phase of VO 2 . When the greenhouse temperature was increased from 30 °C to 40 °C, the reflected intensity of VO 2 on glass fiber cloth decreased by 22% for the wavelength range of 400 nm to 800 nm. In addition, the angle-independent property of the VO 2 thin film was observed using an angle-resolved spectrometer. Owing to its thermo-reflective properties, the thin film can serve as a soft-smart-mirror (SSM) inside a greenhouse to stabilize the temperature, playing a negative feedback role.
Investigation of the Electromagnetic Radiation Emitted by Sub-GeV Electrons in a Bent Crystal.
Bandiera, L; Bagli, E; Germogli, G; Guidi, V; Mazzolari, A; Backe, H; Lauth, W; Berra, A; Lietti, D; Prest, M; De Salvador, D; Vallazza, E; Tikhomirov, V
2015-07-10
The radiation emitted by 855 MeV electrons via planar channeling and volume reflection in a 30.5-μm-thick bent Si crystal has been investigated at the MAMI (Mainzer Mikrotron) accelerator. The spectral intensity was much more intense than for an equivalent amorphous material, and peaked in the MeV range in the case of channeling radiation. Differently from a straight crystal, also for an incidence angle larger than the Lindhard angle, the spectral intensity remains nearly as high as for channeling. This is due to volume reflection, for which the intensity remains high at a large incidence angle over the whole angular acceptance, which is equal to the bending angle of the crystal. Monte Carlo simulations demonstrated that incoherent scattering significantly influences both the radiation spectrum and intensity, either for channeling or volume reflection. In the latter case, it has been shown that incoherent scattering increases the radiation intensity due to the contribution of volume-captured particles. As a consequence, the experimental spectrum becomes a mixture of channeling and pure volume reflection radiations. These results allow a better understanding of the radiation emitted by electrons subjected to coherent interactions in bent crystals within a still-unexplored energy range, which is relevant for possible applications for innovative and compact x-ray or γ-ray sources.
Andersen, Torben B
2016-05-01
In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.
Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.
2016-06-01
Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.
A normalisation framework for (hyper-)spectral imagery
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian
2015-06-01
It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.
Site selection and directional models of deserts used for ERBE validation targets
NASA Technical Reports Server (NTRS)
Staylor, W. F.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.
Single-mode fibers to single-mode waveguides coupling with minimum Fresnel back-reflection
NASA Astrophysics Data System (ADS)
Sneh, Anat; Ruschin, Shlomo; Marom, Emanuel
1991-04-01
Slantly polished fibers and waveguides coupling as a means for achieving both low optical power reflection and efficient power transmission is proposed. Return losses exceeding -70 dB can be obtained in fiber-to-Lithium Niobate waveguides operating at ) = 0.633 jm and ) = 1.3 pm by polishing the fiber at an angle of 6°. A phase matching condition between the propagation constants ,8 and the polishing angles in the fiber and the waveguide: fl(fiber)sincx(fiber) = fl(waveguide)sina(waveguide) must be fulifiled in order to enable efficient power coupling. Polishing angle tolerances of approximately lO are allowed for a maximum of 1 dB decrease in the coupling efficiency.
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Biehl, L. L.; Vanderbilt, A. S.
1981-01-01
The reflectance response with view angle of wheat, was analyzed. The analyses, which assumes there are no atmospheric effects, and otherwise simulates the response of a multispectral scanner, is based upon spectra taken continuously in wavelength from 0.45 to 2.4 micrometers at more than 1200 view/illumination directions using an Exotech model 20C spectra radiometer. Data were acquired six meters above four wheat canopies, each at a different growth stage. The analysis shows that the canopy reflective response is a pronounced function of illumination angle, scanner view angle and wavelength. The variation is greater at low solar elevations compared to high solar elevations.