Sample records for wide load range

  1. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    NASA Astrophysics Data System (ADS)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  2. An Optimized Control for LLC Resonant Converter with Wide Load Range

    NASA Astrophysics Data System (ADS)

    Xi, Xia; Qian, Qinsong

    2017-05-01

    This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.

  3. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  4. Improvement of the Measurement Range and Temperature Characteristics of a Load Sensor Using a Quartz Crystal Resonator with All Crystal Layer Components.

    PubMed

    Murozaki, Yuichi; Sakuma, Shinya; Arai, Fumihito

    2017-05-08

    Monitoring multiple biosignals, such as heart rate, respiration cycle, and weight transitions, contributes to the health management of individuals. Specifically, it is possible to measure multiple biosignals using load information obtained through contact with the environment, such as a chair and bed, in daily use. A wide-range load sensor is essential since load information contains multiple biosignals with various load ranges. In this study, a load sensor is presented by using a quartz crystal resonator (QCR) with a wide measurement range of 1.5 × 10⁶ (0.4 mN to 600 N), and its temperature characteristic of load is improved to -7 Hz/°C (-18 mN/°C). In order to improve the measurement range of the load, a design method of this sensor is proposed by restraining the buckling of QCR and by using a thinner QCR. The proposed sensor allows a higher allowable load with high sensitivity. The load sensor mainly consists of three layers, namely a QCR layer and two holding layers. As opposed to the conventional holding layer composed of silicon, quartz crystal is utilized for the holding layers to improve the temperature characteristic of the load sensor. In the study, multiple biosignals, such as weight and pulse, are detected by using a fabricated sensor.

  5. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  6. Photodiode Preamplifier for Laser Ranging With Weak Signals

    NASA Technical Reports Server (NTRS)

    Abramovici, Alexander; Chapsky, Jacob

    2007-01-01

    An improved preamplifier circuit has been designed for processing the output of an avalanche photodiode (APD) that is used in a high-resolution laser ranging system to detect laser pulses returning from a target. The improved circuit stands in contrast to prior such circuits in which the APD output current pulses are made to pass, variously, through wide-band or narrow-band load networks before preamplification. A major disadvantage of the prior wide-band load networks is that they are highly susceptible to noise, which degrades timing resolution. A major disadvantage of the prior narrow-band load networks is that they make it difficult to sample the amplitudes of the narrow laser pulses ordinarily used in ranging. In the improved circuit, a load resistor is connected to the APD output and its value is chosen so that the time constant defined by this resistance and the APD capacitance is large, relative to the duration of a laser pulse. The APD capacitance becomes initially charged by the pulse of current generated by a return laser pulse, so that the rise time of the load-network output is comparable to the duration of the return pulse. Thus, the load-network output is characterized by a fast-rising leading edge, which is necessary for accurate pulse timing. On the other hand, the resistance-capacitance combination constitutes a lowpass filter, which helps to suppress noise. The long time constant causes the load network output pulse to have a long shallow-sloping trailing edge, which makes it easy to sample the amplitude of the return pulse. The output of the load network is fed to a low-noise, wide-band amplifier. The amplifier must be a wide-band one in order to preserve the sharp pulse rise for timing. The suppression of noise and the use of a low-noise amplifier enable the ranging system to detect relatively weak return pulses.

  7. Improved gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Etsion, I.

    1979-01-01

    Two variations of gas-lubricated thrust bearings extend substantially load-carrying range over existing gas bearings. Dual-Action Gas Thrust Bearing's load-carrying capacity is more than ninety percent greater than that of single-action bearing over range of compressibility numbers. Advantages of Cantilever-mounted Thrust Bearing are greater tolerance to dirt ingestion, good initial lift-off characteristics, and operational capability over wide temperature range.

  8. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.

    PubMed

    Zhang, Zhizhou; Li, Xiaolong

    2018-05-11

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.

  9. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance

    PubMed Central

    Zhang, Zhizhou; Li, Xiaolong

    2018-01-01

    In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610

  10. Characterization of biological particulate loads in metropolitan air

    Treesearch

    J. A. Snow; R. D. Schein; W. J. Moroz

    1977-01-01

    The atmospheric particulate load includes a wide range of naturally occurring particles of biological origin that serve as a reservoir of allergenic agents in respiratory disease. Improved knowledge of potential aeroallergens is needed by medical clinicians. Aims are to better characterize air spora, qualitatively and quantitatively, and determine daily (by hour)...

  11. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  12. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  13. RELATIONSHIPS OF NITROGEN LOADINGS, RESIDENTIAL DEVELOPMENT, AND PHYSICAL CHARACTERISTICS WITH PLANT STRUCTURE IN NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    We examined the vascular plant species richness and the extent, density, and height of Spartina species of ten Narragansett Bay, Rhode Island (United States) fringe salt marshes which had a wide range of residential land development N-loadings associated with their watersheds. Si...

  14. A Compact Operational Amplifier with Load-Insensitive Stability Compensation for High-Precision Transducer Interface.

    PubMed

    Yu, Zhanghao; Yang, Xi; Chung, SungWon

    2018-01-29

    High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal-oxide-semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900- μ m 2 chip area and achieves 0.022-2.78-MHz unity gain bandwidth and over 65 ∘ phase margin with a load capacitance of 0.1-15 nF. The prototype amplifier consumes 7.6 μ W from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption.

  15. Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saveleva, Natalia, E-mail: saveleva@icmm.ru; Bayandin, Yuriy, E-mail: buv@icmm.ru; Naimark, Oleg, E-mail: naimark@icmm.ru

    2015-10-27

    The aim of this paper is numerical study of deformation processes and failure of vanadium under shock-wave loading. According developed statistical theory of solid with mesoscopic defects the constitutive equations were proposed in terms of two structural variables characterizing behavior of defects ensembles: defect density tensor and structural scaling parameter. On the basis of wide-range constitutive equations the mathematical model of deformation behavior and failure of vanadium was developed taking into account the bond relaxation mechanisms, multistage of fracture and nonlinearity kinetic of defects. Results of numerical simulation allow the description of the major effects of shock wave propagation (elasticmore » precursor decay, grow of spall strength under grow strain rate)« less

  16. Evaluation of the XSENS Force Shoe on ISS

    NASA Technical Reports Server (NTRS)

    Hanson, A. M.; Peters, B. T.; Newby, N.; Ploutz-Snyder, L

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) offers crewmembers a wide range of resistance exercises but does not provide any type of load monitoring; any load data received are based on crew self-report of dialed in load. This lack of real-time ARED load monitoring severely limits research analysis. To address this issue, portable load monitoring technologies are being evaluated to act as a surrogate to ARED's failed instrumentation. The XSENS ForceShoe"TM" is a commercial portable load monitoring tool, and performed well in ground tests. The ForceShoe "TM" was recently deployed on the International Space Station (ISS), and is being evaluated as a tool to monitor ARED loads.

  17. The value of demand response in Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoll, Brady; Buechler, Elizabeth; Hale, Elaine

    Many electrical loads may be operated flexibly to provide grid services, including peaking capacity, reserves, and load shifting. The authors model 14 demand end uses in Florida and analyze their operational impacts and overall value for a wide range of solar penetrations and grid flexibility options. They find demand response is able to reduce production costs, reduce the number of low-load hours for traditional generators, reduce starting of gas generators, and reduce curtailment.

  18. The value of demand response in Florida

    DOE PAGES

    Stoll, Brady; Buechler, Elizabeth; Hale, Elaine

    2017-11-10

    Many electrical loads may be operated flexibly to provide grid services, including peaking capacity, reserves, and load shifting. The authors model 14 demand end uses in Florida and analyze their operational impacts and overall value for a wide range of solar penetrations and grid flexibility options. They find demand response is able to reduce production costs, reduce the number of low-load hours for traditional generators, reduce starting of gas generators, and reduce curtailment.

  19. High Efficiency Variable Speed Versatile Power Air Conditioning System

    DTIC Science & Technology

    2013-08-08

    Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology

  20. Applying Cognitive Load Theory Principles to Library Instructional Guidance

    ERIC Educational Resources Information Center

    Pickens, Kathleen E.

    2017-01-01

    If the goal of library instructional guidance is to provide students with the knowledge needed to acquire new skills in order to accomplish their learning objectives, then it is prudent to consider factors that impact learning. Cognitive load theory addresses several of these factors and is applicable to a wide-range of instructional devices used…

  1. Modulation of weight off-loading level over body-weight supported locomotion training.

    PubMed

    Wang, Ping; Low, K H; Lim, Peter A C; McGregor, A H

    2011-01-01

    With the evolution of robotic systems to facilitate overground walking rehabilitation, it is important to understand the effect of robotic-aided body-weight supported loading on lower limb muscle activity, if we are to optimize neuromotor recovery. To achieve this objective, we have collected and studied electromyography (EMG) data from key muscles in the lower extremity from healthy subjects walking over a wide range of body-weight off-loading levels as provided by a bespoke gait robot. By examining the impact of body-weight off-loading, it was found that muscle activation patterns were sensitive to the level of off-loading. In addition, a large off-loading might introduce disturbance of muscle activation pattern, led to a wider range of motion in terms of dorsiflexion/plantarflexion. Therefore, any future overground training machine should be enhanced to exclude unnecessary effect of body off-loading in securing the sustaining upright posture and providing assist-as-needed BWS over gait rehabilitation. © 2011 IEEE

  2. A Compact Operational Amplifier with Load-Insensitive Stability Compensation for High-Precision Transducer Interface

    PubMed Central

    Yang, Xi

    2018-01-01

    High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal–oxide–semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900-μm2 chip area and achieves 0.022–2.78-MHz unity gain bandwidth and over 65∘ phase margin with a load capacitance of 0.1–15 nF. The prototype amplifier consumes 7.6 μW from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption. PMID:29382183

  3. Quantifying weight bearing while in passive standers and a comparison of standers.

    PubMed

    Kecskemethy, Heidi H; Herman, Daniel; May, Ryan; Paul, Kathleen; Bachrach, Steven J; Henderson, Richard C

    2008-07-01

    Mechanical loading plays an important role in skeletal health, and this is a major reason standing devices are widely used with non-ambulatory persons. However, little is known about the true axial loading that occurs while in a stander, or the factors which may impact loading. The purpose of this study was to quantify weight borne while in a stander, and to directly compare different standers. Load measuring footplate adaptors were designed and fabricated specifically for this study. Weight bearing loads in 20 non-ambulatory persons with quadriplegic cerebral palsy aged 6 to 21 years (median 14 y) were continuously monitored during routine 30-minute standing sessions. Fourteen participants were female, six were male; one was Gross Motor Function Classification System (GMFCS) Level IV, and 19 were GMFCS Level V. Each participant was monitored on four to six occasions over an 8-week period, two to three times in each of two different standers (total 108 standing sessions). Weight bearing loads ranged widely from 37 to 101% of body weight. The difference between standers was as much as 29% body weight. There is wide variance in the actual weight borne while in passive standers. The type of stander utilized is one factor which can significantly affect the amount of weight borne.

  4. Mechanisms of fracture of ring samples made of FCC metals on loading with magnetic-pulse method

    NASA Astrophysics Data System (ADS)

    Morozov, Viktor; Kats, Victor; Savenkov, Georgiy; Lukin, Anton

    2018-05-01

    Results of study of deformation and fracture of ring-shaped samples made of thin strips of cuprum, aluminum and steel in wide range of loading velocity are presented. Three developed by us schemes of magnetic-pulse method are used for the samples loading. The method of samples fracture with the high electrical resistance (e.g. steel) is proposed. Crack velocity at the sample fracture is estimated. Fracture surfaces are inspected. Mechanisms of dynamic fracture of the sample arere discussed.

  5. Microhardness, Friction and Wear of SiC and Si3N4 Materials as a Function of Load, Temperature and Environment.

    DTIC Science & Technology

    1981-10-01

    microstructures which may be developed and finally to relate properties to structure and composition (28-31). Sialon materials are alloys of Si3N4 with oxides...techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of fabrication...microhardness techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of

  6. Rugged switch responds to minute pressure differentials

    NASA Technical Reports Server (NTRS)

    Friend, L. C.; Shaub, K. D.

    1967-01-01

    Pressure responsive switching device exhibits high sensitivity but is extremely rugged and resistant to large amplitude shock and velocity loading. This snap-action, single pole-double throw switch operates over a wide temperature range.

  7. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  8. Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes

    NASA Technical Reports Server (NTRS)

    Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.

    1986-01-01

    An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.

  9. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  10. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  11. Construction Equipment

    NASA Astrophysics Data System (ADS)

    1983-01-01

    FMC Corporation conducts extensive proof lift tests and computerized analysis to insure that the cranes can lift rated capacity loads up to one million pounds in a wide range of applications. In their analysis work, engineers makes use of a computer program supplied by COSMIC. Called Analysis of Beam Columns, the program is used as part of the required analysis for determining bending moments, deflections and critical load for latticed crane booms.

  12. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints.

    PubMed

    Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng

    2018-05-01

    The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  14. Effect of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soerensen, B.F.; Holmes, J.W.

    The stress-strain behavior of a continuous-fiber-reinforced ceramic matrix composite has been measured over a wide range of loading rates (0.01 to 500 MPa/s). It was found that the loading rate has a strong effect on almost every feature of the stress-strain curve: the proportionality stress, the composite strength and failure strain increase with increasing loading rate. The microstructural damage varies also with the loading rate; with increasing loading rate, the average matrix crack spacing increases and the average fiber pullout length decreases. Using simple models, it is suggested that these phenomena are caused partly by time-dependent matrix cracking (due tomore » stress corrosion) and partly by an increasing interfacial shear stress with loading rate.« less

  15. Design of Spur Gears for Improved Efficiency

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1981-01-01

    A method to calculate spur gear system loss for a wide range of gear geometries and operating conditions was used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch line velocity and load on efficiency were determined. Peak efficiencies were found to be greater for large diameter and fine pitched gears and tare (no-load) losses were found to be significant.

  16. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  17. Dynamic piezoresistive response of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Anees, Muhammad; Namilae, Sirish; Kim, Daewon

    2017-04-01

    Hybrid nanocomposites with carbon nanotubes and graphitic platelets as fillers are known to exhibit remarkable electrical and mechanical properties with many potential strain and damage sensing applications. In this work, we fabricate hybrid nanocomposites with carbon nanotube sheet and coarse graphite platelets as fillers with epoxy matrix. We then examine the electromechanical behavior of these nanocomposites under dynamic loading. The electrical resistivity responses of the nanocomposites are measured in frequency range of 1 Hz to 50 Hz with different levels of induced strains. Axial cycling loading is applied using a uniaxial electrodynamic shaker, and transverse loading is applied on end-clamped specimen using modified speakers. In addition, a dynamic mechanical analysis of nanocomposite specimen is performed to characterize the thermal and dynamic behavior of the nanocomposite. Our results indicate that these hybrid nanocomposites exhibit a distinct piezoresistive response under a wide range of dynamic loading conditions, which can be beneficial for potential sensing applications.

  18. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  19. The mixed-mode bending method for delamination testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John H., Jr.

    1989-01-01

    A mixed-mode bending (MMB) test procedure is presented which combines double cantilever beam mode-I loading and end-notch flexure mode II loading on a split, unidirectional laminate. The MMB test has been analyzed by FEM and by beam theory in order to ascertain the mode I and mode II components' respective strain energy release rates, G(I) and G(II); these analyses indicate that a wide range of G(I)/G(II) ratios can be generated by varying the applied load's position on the loading lever. The MMB specimen analysis and test procedures are demonstrated for the case of AS4/PEEK unidirectional laminates.

  20. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  1. Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system

    PubMed Central

    Zhang, Shanshan; Anderson, Mark A.; Ao, Yan; Khakh, Baljit S.; Fan, Jessica; Deming, Timothy J.; Sofroniew, Michael V.

    2014-01-01

    Many hydrophobic small molecules are available to regulate gene expression and other cellular functions. Locally restricted application of such molecules in the central nervous system (CNS) would be desirable in many experimental and therapeutic settings, but is limited by a lack of innocuous vehicles able to load and easily deliver hydrophobic cargo. Here, we tested the potential for diblock copolypeptide hydrogels (DCH) to serve as such vehicles. In vitro tests on loading and release were conducted with cholesterol and the anti-cancer agent, temozolomide (TMZ). Loading of hydrophobic cargo modified DCH physical properties such as stiffness and viscosity, but these could readily be tuned to desired ranges by modifying DCH concentration, amino acid composition or chain lengths. Different DCH formulations exhibited different loading capacities and different rates of release. For example, comparison of different DCH with increasing alanine contents showed corresponding increases in both cargo loading capacity and time for cargo release. In vivo tests were conducted with tamoxifen, a small synthetic hydrophobic molecule widely used to regulate transgene expression. Tamoxifen released from DCH depots injected into healthy or injured CNS efficiently activated reporter gene expression in a locally restricted manner in transgenic mice. These findings demonstrate the facile and predictable tunability of DCH to achieve a wide range of loading capacities and release profiles of hydrophobic cargos while retaining CNS compatible physical properties. In addition, the findings show that DCH depots injected into the CNS can efficiently deliver small hydrophobic molecules that regulate gene expression in local cells. PMID:24314556

  2. A Wide Range of 3243A>G/tRNALeu(UUR) (MELAS) Mutation Loads May Segregate in Offspring through the Female Germline Bottleneck

    PubMed Central

    Pallotti, Francesco; Binelli, Giorgio; Fabbri, Raffaella; Valentino, Maria L.; Vicenti, Rossella; Macciocca, Maria; Cevoli, Sabina; Baruzzi, Agostino; DiMauro, Salvatore; Carelli, Valerio

    2014-01-01

    Segregation of mutant mtDNA in human tissues and through the germline is debated, with no consensus about the nature and size of the bottleneck hypothesized to explain rapid generational shifts in mutant loads. We investigated two maternal lineages with an apparently different inheritance pattern of the same pathogenic mtDNA 3243A>G/tRNALeu(UUR) (MELAS) mutation. We collected blood cells, muscle biopsies, urinary epithelium and hair follicles from 20 individuals, as well as oocytes and an ovarian biopsy from one female mutation carrier, all belonging to the two maternal lineages to assess mutant mtDNA load, and calculated the theoretical germline bottleneck size (number of segregating units). We also evaluated “mother-to-offspring” segregations from the literature, for which heteroplasmy assessment was available in at least three siblings besides the proband. Our results showed that mutation load was prevalent in skeletal muscle and urinary epithelium, whereas in blood cells there was an inverse correlation with age, as previously reported. The histoenzymatic staining of the ovarian biopsy failed to show any cytochrome-c-oxidase defective oocyte. Analysis of four oocytes and one offspring from the same unaffected mother of the first family showed intermediate heteroplasmic mutant loads (10% to 75%), whereas very skewed loads of mutant mtDNA (0% or 81%) were detected in five offspring of another unaffected mother from the second family. Bottleneck size was 89 segregating units for the first mother and 84 for the second. This was remarkably close to 88, the number of “segregating units” in the “mother-to-offspring” segregations retrieved from literature. In conclusion, a wide range of mutant loads may be found in offspring tissues and oocytes, resulting from a similar theoretical bottleneck size. PMID:24805791

  3. Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry

    NASA Astrophysics Data System (ADS)

    Bernard, C. A.; Bahlouli, N.; Wagner-Kocher, C.; Ahzi, S.; Rémond, Y.

    2015-09-01

    Plasticized poly(vinyl chloride) (PPVC) is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.

  4. Load Forecasting of Central Urban Area Power Grid Based on Saturated Load Density Index

    NASA Astrophysics Data System (ADS)

    Huping, Yang; Chengyi, Tang; Meng, Yu

    2018-03-01

    In the current society, coordination between urban power grid development and city development has become more and more prominent. Electricity saturated load forecasting plays an important role in the planning and development of power grids. Electricity saturated load forecasting is a new concept put forward by China in recent years in the field of grid planning. Urban saturation load forecast is different from the traditional load forecasting method for specific years, the time span of it often relatively large, and involves a wide range of aspects. This study takes a county in eastern Jiangxi as an example, this paper chooses a variety of load forecasting methods to carry on the recent load forecasting calculation to central urban area. At the same time, this paper uses load density index method to predict the Longterm load forecasting of electric saturation load of central urban area lasted until 2030. And further study shows the general distribution of the urban saturation load in space.

  5. Application of interleaved flyback micro inverter in a grid connected system

    NASA Astrophysics Data System (ADS)

    Brindha, R.; Ananthichristy, A.; Poornima, P. U.; Madhana, M.; Ashok Rathish, S.; Ragavi, Selvam

    2018-04-01

    The two control strategies CCM and DCM have various effects on the loss distribution and efficiency and thus were studied for the interleaved flyback micro inverter concentrating on the loss analysis under different load conditions. The dominant losses with heavy load include the conduction loss and the transformer loss in case of the interleaved flyback micro inverter; whereas driving of gate loss, the turn-off loss in the transformer core loss and in the powermosfets are included in the dominant losses with light load. A new hybrid control strategy which has the one-phase DCM and two-phase DCM control reduces the dominant losses in order to improving the efficiency based on the load in wide load range is proposed here.

  6. Preliminary weight and costs of sandwich panels to distribute concentrated loads

    NASA Technical Reports Server (NTRS)

    Belleman, G.; Mccarty, J. E.

    1976-01-01

    Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.

  7. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  8. Stress-intensity factors and crack-opening displacements for round compact specimens. [fracture toughness of metallic materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1979-01-01

    A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.

  9. Simple Formulas and Results for Buckling-Resistance and Stiffness Design of Compression-Loaded Laminated-Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Mikulas, Martin M., Jr.

    2009-01-01

    Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.

  10. Operating manual: Fast response solar array simulator

    NASA Technical Reports Server (NTRS)

    Vonhatten, R.; Weimer, A.; Zerbel, D. W.

    1971-01-01

    The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.

  11. Verification of the Multi-Axial, Temperature and Time Dependent (MATT) Failure Criterion

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Macon, David J.

    2005-01-01

    An extensive test and analytical effort has been completed by the Space Shuttle's Reusable Solid Rocket Motor (KSKM) nozzle program to characterize the failure behavior of two epoxy adhesives (TIGA 321 and EA946). As part of this effort, a general failure model, the "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. In the initial development of this failure criterion, tests were conducted to provide validation of the theory under a wide range of test conditions. The purpose of this paper is to present additional verification of the MATT failure criterion, under new loading conditions for the adhesives TIGA 321 and EA946. In many cases, the loading conditions involve an extrapolation from the conditions under which the material models were originally developed. Testing was conducted using three loading conditions: multi-axial tension, torsional shear, and non-uniform tension in a bondline condition. Tests were conducted at constant and cyclic loading rates ranging over four orders of magnitude. Tests were conducted under environmental conditions of primary interest to the RSRM program. The temperature range was not extreme, but the loading ranges were extreme (varying by four orders of magnitude). It should be noted that the testing was conducted at temperatures below the glass transition temperature of the TIGA 321 adhesive. However for the EA946, the testing was conducted at temperatures that bracketed the glass transition temperature.

  12. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  13. Effect of contact ratio on spur gear dynamic load

    NASA Technical Reports Server (NTRS)

    Liou, Chuen-Huei; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1992-01-01

    A computer simulation is presented which shows how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented was performed using the NASA gear dynamics code, DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low contact ratio gears (contact ratio less than 2.0), increasing the contact ratio reduced the gear dynamic load. For high contact ratio gears (contact ratio = or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high contact ratio gears minimized dynamic load better than low contact ratio gears.

  14. A laboratory facility for electric vehicle propulsion system testing

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  15. Compound hydraulic shear-modulated vortex amplifiers

    NASA Technical Reports Server (NTRS)

    Goldschmied, F. R.

    1977-01-01

    A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.

  16. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  17. Comparative evaluation of workload estimation techniques in piloting tasks

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.

    1983-01-01

    Techniques to measure operator workload in a wide range of situations and tasks were examined. The sensitivity and intrusion of a wide variety of workload assessment techniques in simulated piloting tasks were investigated. Four different piloting tasks, psychomotor, perceptual, mediational, and communication aspects of piloting behavior were selected. Techniques to determine relative sensitivity and intrusion were applied. Sensitivity is the relative ability of a workload estimation technique to discriminate statistically significant differences in operator loading. High sensitivity requires discriminable changes in score means as a function of load level and low variation of the scores about the means. Intrusion is an undesirable change in the task for which workload is measured, resulting from the introduction of the workload estimation technique or apparatus.

  18. Design of spur gears for improved efficiency

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1981-01-01

    A method to calculate spur gear system power loss for a wide range of gear geometries and operating conditions is used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch-line-velocity and load on efficiency are shown. A design example is given to illustrate how the method is to be applied. In general, peak efficiencies were found to be greater for larger diameter and fine pitched gears and tare (no-load) losses were found to be significant.

  19. Single-Event Transients in Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Miyahira, Tetsuo F.; Irom, F.; Laird, Jamie S.

    2006-01-01

    Single-event transients are investigated for two voltage regulator circuits that are widely used in space. A circuit-level model is developed that can be used to determine how transients are affected by different circuit application conditions. Internal protection circuits-which are affected by load as well as internal thermal effects-can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. Although conventional output transients can be reduced by adding load capacitance, that approach is ineffective for dropouts from protection circuitry.

  20. Formulation of wax oxybenzone microparticles using a factorial approach.

    PubMed

    Gomaa, Y A; Darwish, I A; Boraei, N A; El-Khordagui, L K

    2010-01-01

    Oxybenzone wax microparticles (MPs) were prepared by the hydrophobic congealable disperse phase method. The formulation of oxybenzone-loaded MPs was optimized using a 2⁴ experimental design. Factorial analysis indicated that the main MP characteristics were influenced by initial drug loading, emulsification speed, emulsifier concentration and hydrophilic-lipophilic balance. MPs were spherical with 50.5–88.1 μm size range, 17.8–38.9 drug content in mg/100 mg MPs and 33.1–87.2% oxybenzone release in 1 h. A wide range of sunscreen delivery systems suitable for different formulation purposes were generated which may contribute to the advanced formulation of sunscreen products with improved performance.

  1. Transmission expansion with smart switching under demand uncertainty and line failures

    DOE PAGES

    Schumacher, Kathryn M.; Chen, Richard Li-Yang; Cohn, Amy E. M.

    2016-06-07

    One of the major challenges in deciding where to build new transmission lines is that there is uncertainty regarding future loads, renewal generation output and equipment failures. We propose a robust optimization model whose transmission expansion solutions ensure that demand can be met over a wide range of conditions. Specifically, we require feasible operation for all loads and renewable generation levels within given ranges, and for all single transmission line failures. Furthermore, we consider transmission switching as an allowable recovery action. This relatively inexpensive method of redirecting power flows improves resiliency, but introduces computational challenges. Lastly, we present a novelmore » algorithm to solve this model. Computational results are discussed.« less

  2. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  3. Static properties of hydrostatic thrust gas bearings with curved surfaces.

    NASA Technical Reports Server (NTRS)

    Rehsteiner, F. H.; Cannon, R. H., Jr.

    1971-01-01

    The classical treatment of circular, hydrostatic, orifice-regulated thrust gas bearings, in which perfectly plane bearing plates are assumed, is extended to include axisymmetric, but otherwise arbitrary, plate profiles. Plate curvature has a strong influence on bearing load capability, static stiffness, tilting stiffness, and side force per unit misalignment angle. By a suitable combination of gas inlet impedance and concave plate profile, the static stiffness can be made almost constant over a wide load range, and to remain positive at the closure load. Extensive measurements performed with convex and concave plates agree with theory to within the experimental error throughout and demonstrate the practical feasibility of using curved plates.

  4. Elastohydrodynamic film thickness model for heavily loaded contacts

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic (EHD) film thickness formula for predicting the minimum film thickness occurring within heavily loaded contacts (maximum Hertz stresses above 150,000 psi) was developed. The formula was based upon X-ray film thickness measurements made with synthetic paraffinic, fluorocarbon, Type II ester and polyphenyl ether fluids covering a wide range of test conditions. Comparisons were made between predictions from an isothermal EHD theory and the test data. The deduced relationship was found to adequately reflect the high-load dependence exhibited by the measured data. The effects of contact geometry, material and lubricant properties on the form of the empirical model are also discussed.

  5. Microstrip Antenna Generates Circularly Polarized Beam

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  6. Variation in the reference Shields stress for bed load transport in gravel‐bed streams and rivers

    USGS Publications Warehouse

    Mueller, Erich R.; Pitlick, John; Nelson, Jonathan M.

    2005-01-01

    The present study examines variations in the reference shear stress for bed load transport (τr) using coupled measurements of flow and bed load transport in 45 gravel‐bed streams and rivers. The study streams encompass a wide range in bank‐full discharge (1–2600 m3/s), average channel gradient (0.0003–0.05), and median surface grain size (0.027–0.21 m). A bed load transport relation was formed for each site by plotting individual values of the dimensionless transport rate W* versus the reach‐average dimensionless shear stress τ*. The reference dimensionless shear stress τ*r was then estimated by selecting the value of τ* corresponding to a reference transport rate of W* = 0.002. The results indicate that the discharge corresponding to τ*r averages 67% of the bank‐full discharge, with the variation independent of reach‐scale morphologic and sediment properties. However, values of τ*r increase systematically with average channel gradient, ranging from 0.025–0.035 at sites with slopes of 0.001–0.006 to values greater than 0.10 at sites with slopes greater than 0.02. A corresponding relation for the bank‐full dimensionless shear stress τ*bf, formulated with data from 159 sites in North America and England, mirrors the relation between τ*r and channel gradient, suggesting that the bank‐full channel geometry of gravel‐ and cobble‐bedded streams is adjusted to a relatively constant excess shear stress, τ*bf − τ*r, across a wide range of slopes.

  7. Power controller 28Vdc load switching (N. O. SPST). Final report, 31 August 1977-21 January 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMackin, J.B.

    1980-01-21

    A solid state power controller has been designed in four ratings to switch 28Vdc power to selected loads upon remote command. The four ratings trip out at currents of 10, 5, 2 and 1/2 amps. The design allows for wide variations in load and supply voltage and will not trip out on short load transients of up to 1000% of rated load current. In case of failure of the controller circuitry, an internal fuse protects the load from excessive current. The control current which operates the controller also provides a sensing function so that the state of the controller canmore » be determined remotely. The controllers are designed to operate over a case temperature range of -54 C to 120 C. A quantity of 100 units have been fabricated, tested, and supplied to the Navy.« less

  8. Similitude assessment method for comparing PMHS response data from impact loading across multiple test devices.

    PubMed

    Dooley, Christopher J; Tenore, Francesco V; Gayzik, F Scott; Merkle, Andrew C

    2018-04-27

    Biological tissue testing is inherently susceptible to the wide range of variability specimen to specimen. A primary resource for encapsulating this range of variability is the biofidelity response corridor or BRC. In the field of injury biomechanics, BRCs are often used for development and validation of both physical, such as anthropomorphic test devices, and computational models. For the purpose of generating corridors, post-mortem human surrogates were tested across a range of loading conditions relevant to under-body blast events. To sufficiently cover the wide range of input conditions, a relatively small number of tests were performed across a large spread of conditions. The high volume of required testing called for leveraging the capabilities of multiple impact test facilities, all with slight variations in test devices. A method for assessing similitude of responses between test devices was created as a metric for inclusion of a response in the resulting BRC. The goal of this method was to supply a statistically sound, objective method to assess the similitude of an individual response against a set of responses to ensure that the BRC created from the set was affected primarily by biological variability, not anomalies or differences stemming from test devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Industrial robots in Europe - market, applications and developments

    NASA Technical Reports Server (NTRS)

    Schraft, R. D.

    1975-01-01

    Different companies involving a wide range of products and manufacturing processes were studied to define the requirements for industrial robots. A survey of all such automatic units offered on the world market was made to establish a data base. Principal applications include coating, spot welding, and loading and unloading operations.

  10. The role of mesopores in MTBE removal with granular activated carbon.

    PubMed

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Verification of a VRF Heat Pump Computer Model in EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigusse, Bereket; Raustad, Richard

    2013-06-15

    This paper provides verification results of the EnergyPlus variable refrigerant flow (VRF) heat pump computer model using manufacturer's performance data. The paper provides an overview of the VRF model, presents the verification methodology, and discusses the results. The verification provides quantitative comparison of full and part-load performance to manufacturer's data in cooling-only and heating-only modes of operation. The VRF heat pump computer model uses dual range bi-quadratic performance curves to represent capacity and Energy Input Ratio (EIR) as a function of indoor and outdoor air temperatures, and dual range quadratic performance curves as a function of part-load-ratio for modeling part-loadmore » performance. These performance curves are generated directly from manufacturer's published performance data. The verification compared the simulation output directly to manufacturer's performance data, and found that the dual range equation fit VRF heat pump computer model predicts the manufacturer's performance data very well over a wide range of indoor and outdoor temperatures and part-load conditions. The predicted capacity and electric power deviations are comparbale to equation-fit HVAC computer models commonly used for packaged and split unitary HVAC equipment.« less

  12. An approach for the regularization of a power flow solution around the maximum loading point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Y.

    1992-08-01

    In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less

  13. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  14. Instability-related delamination growth in thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  15. Residual stresses in angleplied laminates and their effects on laminate behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    Evidence of the presence of lamination residual stresses in angleplied laminates were transply cracks and warpage of unsymmetric laminates which occur prior to application of any mechanical load. Lamination residual strains were measured using the embedded strain gage technique. These strains result from the temperature differences between cure and room temperature and vary linearly within this temperature range. Lamination residual stresses were usually present in angleplied fiber composites laminates; they were also present in unidirectional hybrids and superhybrids. For specific applications, the magnitudes of lamination residual stresses were determined and evaluated relative to the anticipated applied stresses. Particular attention was given to cyclic thermal loadings in applications where the thermal cycling takes place over a wide temperature range.

  16. Recent radial turbine research at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1971-01-01

    The high efficiencies of small radial turbines led to their application in space power systems and numerous APU and shaft power engines. Experimental and analytical work associated with these systems included examination of blade-shroud clearance, blade loading, and exit diffuser design. Results indicate high efficiency over a wide range of specific speed and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  17. Packing Boxes into Multiple Containers Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Menghani, Deepak; Guha, Anirban

    2016-07-01

    Container loading problems have been studied extensively in the literature and various analytical, heuristic and metaheuristic methods have been proposed. This paper presents two different variants of a genetic algorithm framework for the three-dimensional container loading problem for optimally loading boxes into multiple containers with constraints. The algorithms are designed so that it is easy to incorporate various constraints found in real life problems. The algorithms are tested on data of standard test cases from literature and are found to compare well with the benchmark algorithms in terms of utilization of containers. This, along with the ability to easily incorporate a wide range of practical constraints, makes them attractive for implementation in real life scenarios.

  18. Effect of geometry and operating conditions on spur gear system power loss

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds.

  19. Effect of geometry and operating conditions on spur gear system power loss

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    The results of an analysis of the effects of spur gear size, pitch, width and ratio on total mesh power loss for a wide range of speeds, torques and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine-pitched gears had higher peak efficiencies but lower part-load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full-load loss except at low speeds.

  20. System for energy harvesting and/or generation, storage, and delivery

    NASA Technical Reports Server (NTRS)

    DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)

    2011-01-01

    A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.

  1. System for energy harvesting and/or generation, storage, and delivery

    NASA Technical Reports Server (NTRS)

    DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)

    2010-01-01

    A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.

  2. Improved method for measuring water imbibition rates on low-permeability porous media

    USGS Publications Warehouse

    Humphrey, M.D.; Istok, J.D.; Flint, L.E.; Flint, A.L.

    1996-01-01

    Existing methods for measuring water imbibition rates are inadequate when imbibition rates are small (e.g., clay soils and many igneous rocks). We developed an improved laboratory method for performing imbibition measurements on soil or rock cores with a wide range of hydraulic properties. Core specimens are suspended from an electronic strain gauge (load cell) in a closed chamber while maintaining the lower end of the core in contact with a free water surface in a constant water level reservoir. The upper end of the core is open to the atmosphere. During imbibition, mass increase of the core is recorded continuously by a datalogger that converts the load cell voltage signal into mass units using a calibration curve. Computer automation allows imbibition rate measurement on as many as eight cores simultaneously and independently. Performance of each component of the imbibition apparatus was evaluated using a set of rock cores (2.5 cm in diameter and 2-5 cm in length) from a single lithostratigraphic unit composed of non-to-moderately welded ash-flow tuff (a glass-rich pyroclastic rock partially fused by heat and pressure) with porosities ranging from 0.094 to 0.533 m3 m-3. Reproducibility of sample handling and testing procedures was demonstrated using replicate measurements. Precision and accuracy of load cell measurements were assessed using mass balance calculations and indicated agreement within a few tenths of a percent of total mass. Computed values of sorptivity, S, ranged from 8.83 x 10-6 to 4.55 x 10-4 m s-0.5. The developed method should prove useful for measuring imbibition rates on a wide range of porous materials.

  3. A 5.2 mu text{A} Quiescent Current LDO Regulator With High Stability and Wide Load Range for CZT Detectors

    NASA Astrophysics Data System (ADS)

    Fan, Shiquan; Li, Haiqi; Guo, Zhuoqi; Geng, Li

    2017-04-01

    Cadmium zinc telluride detectors are the highly considered for room-temperature hard X-ray and gamma-ray detection. The readout systems are needed in the detectors to output the detecting data. The features of power supplies are very important for the readout circuits. In this paper, a low-dropout (LDO) regulator with very low power consumption and wide load variation is presented. A combining compensation method which includes partially controlled load-tracking technique and equivalent series resistance compensation technique are proposed to enhance the loop stability of the LDO regulator. Meanwhile, high dc gain is obtained to improve the power supply ripple rejection (PSRR), which can decrease the noise from the power supply. The prototype LDO chip has been fabricated and tested with a standard 0.18-μm CMOS technology. The measured results show that the LDO regulator can provide up to 150 mA load current with a stable output voltage of 2.8 V under an input voltage scope from 2.9 to 3.6 V. The measured PSRR is up to -60 dB. The output noise spectral densities are 1.16 μVRMS/√Hz and 211 nVRMS/√Hz at 1 and 100 kHz, respectively, at load current of 150 mA. Especially, the ultralow quiescent currents of 5.2 μA at no load and 18.2 μA at full load bring great benefit to the ultralow power integrated readout systems.

  4. Miniature wide field-of-view star trackers for spacecraft attitude sensing and navigation

    NASA Technical Reports Server (NTRS)

    Mccarty, William; Curtis, Eric; Hull, Anthony; Morgan, William

    1993-01-01

    Introducing a family of miniature, wide field-of-view star trackers for low cost, high performance spacecraft attitude determination and navigation applications. These devices, derivative of the WFOV Star Tracker Camera developed cooperatively by OCA Applied Optics and the Lawrence Livermore National Laboratory for the Brilliant Pebbles program, offer a suite of options addressing a wide range of spacecraft attitude measurement and control requirements. These sensors employ much wider fields than are customary (ranging between 20 and 60 degrees) to assure enough bright stars for quick and accurate attitude determinations without long integration intervals. The key benefit of this approach are light weight, low power, reduced data processing loads and high information carrier rates for wide ACS bandwidths. Devices described range from the proven OCA/LLNL WFOV Star Tracker Camera (a low-cost, space-qualified star-field imager utilizing the spacecraft's own computer and centroiding and position-finding), to a new autonomous subsystem design featuring dual-redundant cameras and completely self-contained star-field data processing with output quaternion solutions accurate to 100 micro-rad, 3 sigma, for stand-alone applications.

  5. Classical and numerical approaches to determining V-section band clamp axial stiffness

    NASA Astrophysics Data System (ADS)

    Barrans, Simon M.; Khodabakhshi, Goodarz; Muller, Matthias

    2015-01-01

    V-band clamp joints are used in a wide range of applications to connect circular flanges, for ducts, pipes and the turbocharger housing. Previous studies and research on V-bands are either purely empirical or analytical with limited applicability on the variety of V-band design and working conditions. In this paper models of the V-band are developed based on the classical theory of solid mechanics and the finite element method to study the behaviour of theV-bands under axial loading conditions. The good agreement between results from the developed FEA and the classical model support the suitability of the latter to modelV-band joints with diameters greater than 110mm under axial loading. The results from both models suggest that the axial stiffness for thisV-band cross section reaches a peak value for V-bands with radius of approximately 150 mmacross a wide range of coefficients of friction. Also, it is shown that the coefficient of friction and the wedge angle have a significant effect on the axial stiffness of V-bands.

  6. Application of smart optical fiber sensors for structural load monitoring

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-06-01

    This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.

  7. Economics of PPP-insulated pipe-type cable: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, A.

    1987-10-01

    This study has been designed to establish the economic range of application and the potential cost advantage of PPP-insulated pipe-type cable compared with presently utilized paper-insulated designs. The study is in two parts. In the first part the electrical and thermal characteristics of a range of cable sizes are tabulated. This data can be utilized for planning and economic comparison purposes. In the second part 12 transmission load scenarios are studied to determine the relative cost of various designs considering materials, installation and the losses over a wide range of assumptions.

  8. Development of a preprototype Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1981-01-01

    A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  9. Linear control of a boiler-turbine unit: analysis and design.

    PubMed

    Tan, Wen; Fang, Fang; Tian, Liang; Fu, Caifen; Liu, Jizhen

    2008-04-01

    Linear control of a boiler-turbine unit is discussed in this paper. Based on the nonlinear model of the unit, this paper analyzes the nonlinearity of the unit, and selects the appropriate operating points so that the linear controller can achieve wide-range performance. Simulation and experimental results at the No. 4 Unit at the Dalate Power Plant show that the linear controller can achieve the desired performance under a specific range of load variations.

  10. Investigations of the influence of the profile thickness of the compressible plane flow through compressor cascades

    NASA Technical Reports Server (NTRS)

    Bahr, J.

    1978-01-01

    Flow-through cascade of an aircraft turbine compressor is studied experimentally over wide range of Reynolds numbers and subsonic Mach numbers; it was found that deterioration of flow properties due to decreasing Reynolds numbers is less noticeable on thin profiles than on thick ones; however, thick profiles are advantageous in compressors designed for efficient partial load behavior because thick profiles have a relatively large range of usable inlet flow angles.

  11. Effect of scale on the behavior of atrazine in surface waters

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    2001-01-01

    Field runoff is an important transport mechanism by which agricultural pesticides, including atrazine, move into the hydrologic environment. Atrazine is chosen because it is widely used, is transported in runoff relatively easily, is widely observed in surface waters, and has relatively little loss in the stream network. Data on runoff of atrazine from experimental plot and field studies is combined with annual estimates of load in numerous streams and rivers, resulting in a data set with 408 observations that span 14 orders of magnitude in area. The load as a percent of use (LAPU) on an annual basis is the parameter that is compared among the studies. There is no difference in the mean or range of LAPU values for areas from the size of experimental field plots (???0.000023 ha) and small watersheds (<100 000 ha). The relatively invariant LAPU value observed across a large range of watershed areas implies that the characteristics of atrazine itself (application method and chemical properties) are important in determining the extent of runoff. The variable influences on the extent of runoff from individual watershed characteristics and weather events are superimposed on the relatively invariant LAPU value observed across the range of watershed areas. The results from this study establish the direct relevance for agricultural field plot studies to watershed studies across the full range of scale.

  12. Effects of Food Texture on Three-Dimensional Loads on Implants During Mastication Based on In Vivo Measurements.

    PubMed

    Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi

    2016-08-01

    The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.

  13. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications.

    PubMed

    Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim

    2018-06-21

    Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.

  14. Preliminary design trade-offs for a multi-mission stored cryogen cooler

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1978-01-01

    Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.

  15. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  16. Estimating ammonium and nitrate load from septic systems to surface water bodies within ArcGIS environments

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Ye, Ming; Roeder, Eberhard; Hicks, Richard W.; Shi, Liangsheng; Yang, Jinzhong

    2016-01-01

    This paper presents a recently developed software, ArcGIS-based Nitrogen Load Estimation Toolkit (ArcNLET), for estimating nitrogen loading from septic systems to surface water bodies. The load estimation is important for managing nitrogen pollution, a world-wide challenge to water resources and environmental management. ArcNLET simulates coupled transport of ammonium and nitrate in both vadose zone and groundwater. This is a unique feature that cannot be found in other ArcGIS-based software for nitrogen modeling. ArcNLET is designed to be flexible for the following four simulating scenarios: (1) nitrate transport alone in groundwater; (2) ammonium and nitrate transport in groundwater; (3) ammonium and nitrate transport in vadose zone; and (4) ammonium and nitrate transport in both vadose zone and groundwater. With this flexibility, ArcNLET can be used as an efficient screening tool in a wide range of management projects related to nitrogen pollution. From the modeling perspective, this paper shows that in areas with high water table (e.g. river and lake shores), it may not be correct to assume a completed nitrification process that converts all ammonium to nitrate in the vadose zone, because observation data can indicate that substantial amount of ammonium enters groundwater. Therefore, in areas with high water table, simulating ammonium transport and estimating ammonium loading, in addition to nitrate transport and loading, are important for avoiding underestimation of nitrogen loading. This is demonstrated in the Eggleston Heights neighborhood in the City of Jacksonville, FL, USA, where monitoring well observations included a well with predominant ammonium concentrations. The ammonium loading given by the calibrated ArcNLET model can be 10-18% of the total nitrogen load, depending on various factors discussed in the paper.

  17. A Generalized Hydrodynamic-Impact Theory for the Loads and Motions of Deeply Immersed Prismatic Bodies

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F.

    1959-01-01

    A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.

  18. Deliberation's blindsight: how cognitive load can improve judgments.

    PubMed

    Hoffmann, Janina A; von Helversen, Bettina; Rieskamp, Jörg

    2013-06-01

    Multitasking poses a major challenge in modern work environments by putting the worker under cognitive load. Performance decrements often occur when people are under high cognitive load because they switch to less demanding--and often less accurate--cognitive strategies. Although cognitive load disturbs performance over a wide range of tasks, it may also carry benefits. In the experiments reported here, we showed that judgment performance can increase under cognitive load. Participants solved a multiple-cue judgment task in which high performance could be achieved by using a similarity-based judgment strategy but not by using a more demanding rule-based judgment strategy. Accordingly, cognitive load induced a shift to a similarity-based judgment strategy, which consequently led to more accurate judgments. By contrast, shifting to a similarity-based strategy harmed judgments in a task best solved by using a rule-based strategy. These results show how important it is to consider the cognitive strategies people rely on to understand how people perform in demanding work environments.

  19. Verification of rain-flow reconstructions of a variable amplitude load history. M.S. Thesis, 1990 Final Report

    NASA Technical Reports Server (NTRS)

    Clothiaux, John D.; Dowling, Norman E.

    1992-01-01

    The suitability of using rain-flow reconstructions as an alternative to an original loading spectrum for component fatigue life testing is investigated. A modified helicopter maneuver history is used for the rain-flow cycle counting and history regenerations. Experimental testing on a notched test specimen over a wide range of loads produces similar lives for the original history and the reconstructions. The test lives also agree with a simplified local strain analysis performed on the specimen utilizing the rain-flow cycle count. The rain-flow reconstruction technique is shown to be a viable test spectrum alternative to storing the complete original load history, especially in saving computer storage space and processing time. A description of the regeneration method, the simplified life prediction analysis, and the experimental methods are included in the investigation.

  20. Failure Criterion For Isotropic Time Dependent Materials Which Accounts for Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Richardson, D. E.; Anderson, G. L.; Macon, D. J.

    2003-01-01

    The Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program has recently conducted testing to characterize the effects of multi-axial loading, temperature and time on the failure characteristics of TIGA321, EA913NA, EA946 (three filled epoxy adhesives). From the test data a "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. It is shown that this criterion simplifies, for constant load and constant load rate conditions, into a form that can be easily used for stress analysis. Failure for TIGA321 and EA913NA are characterized below their glass transition temperature. Failure for EA946 is characterized for conditions that pass through its glass transition. The MATT failure criterion is shown to be accurate for a wide range of conditions for these adhesives.

  1. Quantitative analysis of herpes virus sequences from normal tissue and fibropapillomas of marine turtles with real-time PCR

    USGS Publications Warehouse

    Quackenbush, S.L.; Casey, R.N.; Murcek, R.J.; Paul, T.A.; Work, Thierry M.; Limpus, C.J.; Chaves, A.; duToit, L.; Perez, J.V.; Aguirre, A.A.; Spraker, T.R.; Horrocks, J.A.; Vermeer, L.A.; Balazs, G.S.; Casey, J.W.

    2001-01-01

    Quantitative real-time PCR has been used to measure fibropapilloma-associated turtle herpesvirus (FPTHV) pol DNA loads in fibropapillomas, fibromas, and uninvolved tissues of green, loggerhead, and olive ridley turtles from Hawaii, Florida, Costa Rica, Australia, Mexico, and the West Indies. The viral DNA loads from tumors obtained from terminal animals were relatively homogenous (range 2a??20 copies/cell), whereas DNA copy numbers from biopsied tumors and skin of otherwise healthy turtles displayed a wide variation (range 0.001a??170 copies/cell) and may reflect the stage of tumor development. FPTHV DNA loads in tumors were 2.5a??4.5 logs higher than in uninvolved skin from the same animal regardless of geographic location, further implying a role for FPTHV in the etiology of fibropapillomatosis. Although FPTHV pol sequences amplified from tumors are highly related to each other, single signature amino acid substitutions distinguish the Australia/Hawaii, Mexico/Costa Rica, and Florida/Caribbean groups.

  2. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing.

    PubMed

    Partridge, Susan; Tipper, Joanne L; Al-Hajjar, Mazen; Isaac, Graham H; Fisher, John; Williams, Sophie

    2018-05-01

    Wear and fatigue of polyethylene acetabular cups have been reported to play a role in the failure of total hip replacements. Hip simulator testing under a wide range of clinically relevant loading conditions is important. Edge loading of hip replacements can occur following impingement under extreme activities and can also occur during normal gait, where there is an offset deficiency and/or joint laxity. This study evaluated a hip simulator method that assessed wear and damage in polyethylene acetabular liners that were subjected to edge loading. The liners tested to evaluate the method were a currently manufactured crosslinked polyethylene acetabular liner and an aged conventional polyethylene acetabular liner. The acetabular liners were tested for 5 million standard walking cycles and following this 5 million walking cycles with edge loading. Edge loading conditions represented a separation of the centers of rotation of the femoral head and the acetabular liner during the swing phase, leading to loading of the liner rim on heel strike. Rim damage and cracking was observed in the aged conventional polyethylene liner. Steady-state wear rates assessed gravimetrically were lower under edge loading compared to standard loading. This study supports previous clinical findings that edge loading may cause rim cracking in liners, where component positioning is suboptimal or where material degradation is present. The simulation method developed has the potential to be used in the future to test the effect of aging and different levels of severity of edge loading on a range of cross-linked polyethylene materials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1456-1462, 2018. © 2017 Wiley Periodicals, Inc.

  3. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    NASA Astrophysics Data System (ADS)

    Kramshonkov, E. N.; Krainov, A. V.; Shorohov, P. V.

    2016-02-01

    The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical) mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  4. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  5. FuelCalc: A Method for Estimating Fuel Characteristics

    Treesearch

    Elizabeth Reinhardt; Duncan Lutes; Joe Scott

    2006-01-01

    This paper describes the FuelCalc computer program. FuelCalc is a tool to compute surface and canopy fuel loads and characteristics from inventory data, to support fuel treatment decisions by simulating effects of a wide range of silvicultural treatments on surface fuels and canopy fuels, and to provide linkages to stand visualization, fire behavior and fire effects...

  6. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    PubMed Central

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899

  7. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    PubMed

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  8. The application of dual fuel /JP-LH2/ for hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Weidner, J. P.

    1978-01-01

    The possibility of utilizing jet fuel (JP) stored primarily in the wings of hydrogen-fueled hypersonic cruise vehicles has been evaluated and compared to the performance of all hydrogen-fueled aircraft. Parametric investigations of wing loading, thrust-to-weight ratio, payload size and vehicle size are presented. Results indicate improvements in performance for a wide range of potential payload sizes, particularly when in-flight refueling of the JP fuel is considered as a means of increasing range and mission flexibility.

  9. Effect of Water Vapor Pressure on Fatigue Crack Growth in Al-Zn-Cu-Mg Alloy Over Wide-Range Stress Intensity Factor Loading

    DTIC Science & Technology

    2014-05-07

    impacts: (a) crack closure, (b) transport of water vapor molecules within the fatigue crack (47], and (c) tensile stress-plastic strain range...sealed stainless steel UHV chamber. Pure water vapor was introduced from a sealed glass flask containing triply distilled water, via a precision leak...lamellar for H1 flow in a fatigue crack in steel ; specifically, flow is dominated by the low dynamic viscosity of a gas (particularly at low pressures) and

  10. Recent radial turbine research at the NASA Lewis Research Center.

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.; Kofskey, M. G.

    1972-01-01

    The major results obtained in several recent experimental programs on small radial inflow turbines for space applications are presented and discussed. Specifically, experimental and analytical work associated with these systems that has included examination of blade-shroud clearance, blade loading, and exit diffuser design, is considered. Results indicate high efficiency over a wide range of specific speed, and also insensitivity to clearance and blade loading in the radial part of the rotor. The exit diffuser investigation indicated that a conventional conical outer wall may not provide the velocity variation consistent with minimum overall diffuser loss.

  11. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    PubMed

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  12. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.

    PubMed

    Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W

    2017-02-17

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  13. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.

    2017-02-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  14. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  15. Connective tissue responses to some heavy metals. II. Lead: histology and ultrastructure.

    PubMed Central

    Ellender, G.; Ham, K. N.

    1987-01-01

    Lead loaded ion exchange resin beads implanted into the loose connective tissue of the rat pinna induced local lesions which differed widely from those of the control (sodium loaded) beads (Ellender & Ham 1987). These lesions were characterized by changes in the granulation tissue and the approximating connective tissue. Granulation tissue contained mononuclear phagocytes in various guises, and some cells with intranuclear inclusion bodies. The matrix of the granulation tissue contained collagen fibrils having a wide range of diameters suggestive of altered collagen biosynthesis. Foci of collagen mineralization occurred in zones of combined trauma and lead impregnation. Once mineralized they became enveloped by giant cells and epithelioid cells. Lead in damaged tissues is thought to modify the protective mechanism of calcification inhibition and the biosynthesis of the matrix. Images Fig. 6 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:3040063

  16. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.

  17. Estimates of long-term mean-annual nutrient loads considered for use in SPARROW models of the Midcontinental region of Canada and the United States, 2002 base year

    USGS Publications Warehouse

    Saad, David A.; Benoy, Glenn A.; Robertson, Dale M.

    2018-05-11

    Streamflow and nutrient concentration data needed to compute nitrogen and phosphorus loads were compiled from Federal, State, Provincial, and local agency databases and also from selected university databases. The nitrogen and phosphorus loads are necessary inputs to Spatially Referenced Regressions on Watershed Attributes (SPARROW) models. SPARROW models are a way to estimate the distribution, sources, and transport of nutrients in streams throughout the Midcontinental region of Canada and the United States. After screening the data, approximately 1,500 sites sampled by 34 agencies were identified as having suitable data for calculating the long-term mean-annual nutrient loads required for SPARROW model calibration. These final sites represent a wide range in watershed sizes, types of nutrient sources, and land-use and watershed characteristics in the Midcontinental region of Canada and the United States.

  18. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.

    2004-03-01

    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.

  19. Dynamic-load-enabled ultra-low power multiple-state RRAM devices.

    PubMed

    Yang, Xiang; Chen, I-Wei

    2012-01-01

    Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.

  20. Distraction and mind-wandering under load.

    PubMed

    Forster, Sophie

    2013-01-01

    Attention research over the last several decades has provided rich insights into the determinants of distraction, including distractor characteristics, task features, and individual differences. Load Theory represented a particularly important breakthrough, highlighting the critical role of the level and nature of task-load in determining both the efficiency of distractor rejection and the stage of processing at which this occurs. However, until recently studies of distraction were restricted to those measuring rather specific forms of distraction by external stimuli which I argue that, although intended to be irrelevant, were in fact task-relevant. In daily life, attention may be distracted by a wide range of stimuli, which may often be entirely unrelated to any task being performed, and may include not only external stimuli but also internally generated stimuli such as task-unrelated thoughts. This review outlines recent research examining these more general, entirely task-irrelevant, forms of distraction within the framework of Load Theory. I discuss the relation between different forms of distraction, and the universality of load effects across different distractor types and individuals.

  1. Diverse Gastropod Hosts of Angiostrongylus cantonensis, the Rat Lungworm, Globally and with a Focus on the Hawaiian Islands

    PubMed Central

    Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.

    2014-01-01

    Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772

  2. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  3. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (100GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth vs. stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  4. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  5. Influence of filler loading on the two-body wear of a dental composite.

    PubMed

    Hu, X; Marquis, P M; Shortall, A C

    2003-07-01

    The purpose of the study was to explore the fundamental wear behaviour of a dental composite with different filler loadings under two-body wear conditions. The parent resin and filler components were mixed according to different weight ratios to produce experimental composites with filler loadings ranging from 20 to 87.5% by weight. A two-body wear test was conducted on the experimental composites using a wear-testing machine. The machine was designed to simulate the impact of the direct cyclic masticatory loading that occurs in the occlusal contact area in vivo. The results showed that there was little increase in the rate of wear with filler loadings below 60 wt%, but a sharp increase between 80 and 87.5 wt% in filler loading. Wide striations and bulk loss of material were apparent on the wear surfaces at higher filler loadings. Coefficients of friction increased with filler loading and followed the increase in rate of wear loss closely. It was concluded that, under two-body wear conditions, addition of high levels of filler particles into the resin matrix could reduce the wear resistance of dental composites. This finding may help when designing future dental composites for use in particular clinical settings.

  6. A sorting mechanism for a riffle-pool sequence

    Treesearch

    Thomas Lisle

    1979-01-01

    Transport of coarse, heterogeneous debris in a natural stream under a wide range of flows usually results in a remarkably stable, undulatory bed profile, which manifests an in transit sorting process of the bed material. In general, finer material representative of the bulk of the normal bed load resides in the deep sections, or pools, below flood stages. At high...

  7. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Treesearch

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  8. A procedure for developing ecosystem loading limits (TMDLs) for selenium in Wastersheds affected by gold mining in Northern Argentina

    Treesearch

    Dennis A. Lemly

    2001-01-01

    The Argentina Federal Secretary of Natural Resources oversees a wide array of mining operations conducted on public lands. Recently, selenium has emerged as a contaminant issue associated with several gold mines in the northern mountain ranges. The Secretary's Office contacted me and requested assistance interpreting selenium concentrations and possible impacts on...

  9. Cognitive processing load across a wide range of listening conditions: insights from pupillometry.

    PubMed

    Zekveld, Adriana A; Kramer, Sophia E

    2014-03-01

    The pupil response to speech masked by interfering speech was assessed across an intelligibility range from 0% to 99% correct. In total, 37 participants aged between 18 and 36 years and with normal hearing were included. Pupil dilation was largest at intermediate intelligibility levels, smaller at high intelligibility, and slightly smaller at very difficult levels. Participants who reported that they often gave up listening at low intelligibility levels had smaller pupil dilations in these conditions. Participants who were good at reading masked text had relatively large pupil dilation when intelligibility was low. We conclude that the pupil response is sensitive to processing load, and possibly reflects cognitive overload in difficult conditions. It seems affected by methodological aspects and individual abilities, but does not reflect subjective ratings. Copyright © 2014 Society for Psychophysiological Research.

  10. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  11. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  12. Zone descriptions and response characterization for CLF/CLTD calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Chiles, D.C.

    1985-01-01

    This paper presents the results of an extensive parametric study of the dynamic response of building cooling loads to heat gains. These results are in the form of tables that classify zones in terms of seven of their physical properties and according to their dynamic response characteristics. Weighting factors and other data are also given. The principal application of these results will be to allow calculation of tables of Cooling Load Temperature Differences (CLTDs) and Cooling Load Factors (CLFs) for a small number of representative zones that cover the wide range of zones found in practice. Additionally, they will allowmore » for adjustment to the solar CLFs in the ASHRAE Handbook -1981 Fundamentals to account for carpets, room size, ceiling and exterior wall weight.« less

  13. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds.

    PubMed

    McNamara, Stephanie L; Rnjak-Kovacina, Jelena; Schmidt, Daniel F; Lo, Tim J; Kaplan, David L

    2014-08-01

    Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds

    PubMed Central

    McNamara, Stephanie L.; Rnjak-Kovacina, Jelena; Schmidt, Daniel; Lo, Tim J.; Kaplan, David L.

    2014-01-01

    Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. PMID:24881027

  15. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  16. Framing effects under cognitive load: the role of working memory in risky decisions.

    PubMed

    Whitney, Paul; Rinehart, Christa A; Hinson, John M

    2008-12-01

    Framing effects occur in a wide range of laboratory and natural decision contexts, but the underlying processes that produce framing effects are not well understood. We explored the role of working memory (WM) in framing by manipulating WM loads during risky decisions. After starting with a hypothetical stake of money, participants were then presented a lesser amount that they could keep for certain (positive frame) or lose for certain (negative frame). They made a choice between the sure amount and a gamble in which they could either keep or lose all of the original stake. On half of the trials, the choice was made while maintaining a concurrent WM load of random letters. In both load and no-load conditions, we replicated the typical finding of risk aversion with positive frames and risk seeking with negative frames. In addition, people made fewer decisions to accept the gamble under conditions of higher cognitive load. The data are congruent with a dual-process reasoning framework in which people employ a heuristic to make satisfactory decisions with minimal effort.

  17. Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques.

    PubMed

    Wilhelm, Menaka H; Filippidi, Emmanouela; Waite, J Herbert; Valentine, Megan T

    2017-10-18

    The proteinaceous byssal plaque-thread structures created by marine mussels exhibit extraordinary load-bearing capability. Although the nanoscopic protein interactions that support interfacial adhesion are increasingly understood, major mechanistic questions about how mussel plaques maintain toughness on supramolecular scales remain unanswered. This study explores the mechanical properties of whole mussel plaques subjected to repetitive loading cycles, with varied recovery times. Mechanical measurements were complemented with scanning electron microscopy to investigate strain-induced structural changes after yield. Multicyclic loading of plaques decreases their low-strain stiffness and introduces irreversible, strain-dependent plastic damage within the plaque microstructure. However, strain history does not compromise critical strength or maximum extension compared with plaques monotonically loaded to failure. These results suggest that a multiplicity of force transfer mechanisms between the thread and plaque-substrate interface allow the plaque-thread structure to accommodate a wide range of extensions as it continues to bear load. This improved understanding of the mussel system at micron-to-millimeter lengthscales offers strategies for including similar fail-safe mechanisms in the design of soft, tough and resilient synthetic structures.

  18. Critical levels and loads and the regulation of industrial emissions in northwest British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Williston, P.; Aherne, J.; Watmough, S.; Marmorek, D.; Hall, A.; de la Cueva Bueno, P.; Murray, C.; Henolson, A.; Laurence, J. A.

    2016-12-01

    Northwest British Columbia, Canada, a sparsely populated and largely pristine region, is targeted for rapid industrial growth owing to the modernization of an aluminum smelter and multiple proposed liquefied natural gas (LNG) facilities. Consequently, air quality in this region is expected to undergo considerable changes within the next decade. In concert, the increase in LNG capacity driven by gas production from shale resources across North America has prompted environmental concerns and highlighted the need for science-based management decisions regarding the permitting of air emissions. In this study, an effects-based approach widely-used to support transboundary emissions policy negotiations was used to assess industrial air emissions in the Kitimat and Prince Rupert airsheds under permitted and future potential industrial emissions. Critical levels for vegetation of SO2 and NO2 and critical loads of acidity and nutrient nitrogen for terrestrial and aquatic ecosystems were estimated for both regions and compared with modelled concentration and deposition estimates to identify the potential extent and magnitude of ecosystem impacts. The critical level for SO2 was predicted to be exceeded in an area ranging from 81 to 251 km2 in the Kitimat airshed owing to emissions from an existing smelter, compared with <1 km2 in Prince Rupert under the lowest to highest emissions scenarios. In contrast, the NO2 critical level was not exceeded in Kitimat, and ranged from 4.5 to 6 km2 in Prince Rupert owing to proposed LNG related emissions. Predicted areal exceedance of the critical load of acidity for soil ranged from 1 to 28 km2 in Kitimat and 4-10 km2 in Prince Rupert, while the areal exceedance of empirical critical load for nutrient N was predicted to be greater in the Prince Rupert airshed (20-94 km2) than in the Kitimat airshed (1-31 km2). The number of lakes that exceeded the critical load of acidity did not vary greatly across emissions scenarios in the Kitimat (21-23 out of 80 sampled lakes) and Prince Rupert (0 out of 35 sampled lakes) airsheds. While critical loads have been widely used to underpin international emissions reductions of transboundary pollutants, it is clear that they can also play an important role in managing regional air emissions. In the current study, exceedance of critical levels and loads suggests that industrial emissions from the nascent LNG export sector may require careful regulation to avoid environmental impacts. Emissions management from LNG export facilities in other regions should consider critical levels and loads analyses to ensure industrial development is synergistic with ecosystem protection. While recognizing uncertainties in dispersion modelling, critical load estimates, and subsequent effects, the critical levels and loads approach is being used to inform regulatory decisions in British Columbia to prevent impacts that have been well documented in other regions.

  19. Prevalence of household firearms and firearm-storage practices in the 50 states and the District of Columbia: findings from the Behavioral Risk Factor Surveillance System, 2002.

    PubMed

    Okoro, Catherine A; Nelson, David E; Mercy, James A; Balluz, Lina S; Crosby, Alex E; Mokdad, Ali H

    2005-09-01

    To examine the prevalence of household firearms and firearm-storage practices in the 50 states and the District of Columbia and estimate the number of children exposed to unsafe storage practices. We analyzed data from the 2002 cross-sectional Behavioral Risk Factor Surveillance System survey of 240735 adults from randomly selected households with telephones in the 50 states and the District of Columbia. Nationally, 32.6% of adults reported that firearms were kept in or around their home. The prevalence of adults with household firearms ranged from 5.2% in the District of Columbia to 62.8% in Wyoming (median: 40.8%). The prevalence of adults with loaded household firearms ranged from 1.6% in Hawaii, Massachusetts, and New Jersey to 19.2% in Alabama (median: 7.0%), and the prevalence of adults with loaded and unlocked household firearms ranged from 0.4% in Massachusetts to 12.7% in Alabama (median: 4.2%). Among adults with children and youth <18 years old, the prevalence of loaded household firearms ranged from 1.0% to 13.4% (median: 5.3%), and the prevalence of loaded and unlocked household firearms ranged from 0.3% to 7.3% (median: 2.3%); in each instance, Massachusetts had the lowest prevalence and Alabama had the highest. Findings indicate that approximately 1.69 million (95% confidence interval: 1.57-1.82 million) children and youth in the United States <18 years old are living with loaded and unlocked household firearms. Substantial state variations exist in the prevalence of household firearms and firearm-storage practices. It is vital that surveillance systems such as the Behavioral Risk Factor Surveillance System continue to monitor the prevalence of household firearms and firearm-storage practices so that future interventions to promote safe storage of firearms can be evaluated and more widely implemented based on their efficacy.

  20. Wide step width reduces knee abduction moment of obese adults during stair negotiation.

    PubMed

    Yocum, Derek; Weinhandl, Joshua T; Fairbrother, Jeffrey T; Zhang, Songning

    2018-05-15

    An increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments (KAbM). Increases in step width (SW) may act to reduce this moment. The purpose of this study was to determine the effects of increased SW on knee biomechanics during stair negotiation of healthy-weight and obese participants. Participants (24: 10 obese and 14 healthy-weight) used stairs and walked over level ground while walking at their preferred speed in two different SW conditions - preferred and wide (200% preferred). A 2 × 2 (group × condition) mixed model analysis of variance was performed to analyze differences between groups and conditions (p < 0.05). Increased SW increased the loading-response peak knee extension moment during descent and level gait, decreased loading-response KAbMs, knee extension and abduction range of motion (ROM) during ascent, and knee adduction ROM during descent. Increased SW increased loading-response peak mediolateral ground reaction force (GRF), increased peak knee abduction angle during ascent, and decreased peak knee adduction angle during descent and level gait. Obese participants experienced disproportionate changes in loading-response mediolateral GRF, KAbM and peak adduction angle during level walking, and peak knee abduction angle and ROM during ascent. Increased SW successfully decreased loading-response peak KAbM. Implications of this finding are that increased SW may decrease medial compartment knee joint loading, decreasing pain and reducing joint deterioration. Increased SW influenced obese and healthy-weight participants differently and should be investigated further. Copyright © 2018. Published by Elsevier Ltd.

  1. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.

  2. Dynamic response of film thickness in spiral-groove face seals

    NASA Technical Reports Server (NTRS)

    Dirusso, E.

    1985-01-01

    Tests were performed on an inward- and an outward-pumping spiral-groove face seal to experimentally determine the film thickness response to seal seat motions and to gain insight into the effect of secondary seal friction on film thickness behavior. Film thickness, seal seat axial motion, seal frictional torque, and film axial load were recorded as functions of time. The experiments revealed that for sinusoidal axial oscillations of the seal seat, the primary ring followed the seal seat motion very well. For a skewed seal seat, however, the primary ring did not follow the seal seat motion, and load-carrying capacity was degraded. Secondary seal friction was varied over a wide range to determine its effect on film thickness dynamics. The seals were tested with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed ranged from 7000 to 20,000 rpm. Seal tangential velocity ranged from 34 to 98 m/sec (113 to 323 ft/sec).

  3. Viscoplastic Characterization of Ti-6-4: Experiments

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.

    2016-01-01

    As part of a continued effort to improve the understanding of material time-dependent response, a series of mechanical tests have been conducted on the titanium alloy, Ti-6Al-4V. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures and strain rates to engage various amounts of time-dependent behavior. Additional tests were conducted that involved loading steps, overloads, dwell periods, and block loading segments to characterize the interaction between plasticity and time-dependent behavior. These data will be used to characterize a recently developed, viscoelastoplastic constitutive model with a goal toward better estimates of aerospace component behavior, resulting in improved safety.

  4. Analysis of surface cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Shivakumar, K. N.; Wu, X. R.

    1995-01-01

    Parallel with the work in Part-1, stress intensity factors for semi-elliptical surface cracks emanating from a circular hole are determined. The 3-D weight function method with the 3D finite element solutions for the uncracked stress distribution as in Part-1 is used for the analysis. Two different loading conditions, i.e. remote tension and wedge loading, are considered for a wide range in geometrical parameters. Both single and double surface cracks are studied and compared with other solutions available in the literature. Typical crack opening displacements are also provided.

  5. Export of Plastic Debris by Rivers into the Sea.

    PubMed

    Schmidt, Christian; Krauth, Tobias; Wagner, Stephan

    2017-11-07

    A substantial fraction of marine plastic debris originates from land-based sources and rivers potentially act as a major transport pathway for all sizes of plastic debris. We analyzed a global compilation of data on plastic debris in the water column across a wide range of river sizes. Plastic debris loads, both microplastic (particles <5 mm) and macroplastic (particles >5 mm) are positively related to the mismanaged plastic waste (MMPW) generated in the river catchments. This relationship is nonlinear where large rivers with  population-rich catchments delivering a disproportionately higher fraction of MMPW into the sea. The 10 top-ranked rivers transport 88-95% of the global load into the sea. Using MMPW as a predictor we calculate the global plastic debris inputs form rivers into the sea to range between 0.41 and 4 × 10 6 t/y. Due to the limited amount of data high uncertainties were expected and ultimately confirmed. The empirical analysis to quantify plastic loads in rivers can be extended easily by additional potential predictors other than MMPW, for example, hydrological conditions.

  6. Tailored magnetoelastic sensor geometry for advanced functionality in wireless biliary stent monitoring systems

    NASA Astrophysics Data System (ADS)

    Green, Scott R.; Gianchandani, Yogesh B.

    2010-07-01

    This paper presents three types of wireless magnetoelastic resonant sensors with specific functionalities for monitoring sludge accumulation within biliary stents. The first design uses a geometry with a repeated cell shape that provides two well-separated resonant mode shapes and associated frequencies to permit spatial localization of mass loading. The second design implements a pattern with specific variation in feature densities to improve sensitivity to mass loading. The third design uses narrow ribbons joined by flexible couplers; this design adopts the advantages in flexibility and expandability of the other designs while maintaining the robust longitudinal mode shapes of a ribbon-shaped sensor. The sensors are batch patterned using photochemical machining from 25 µm thick 2605SA1 Metglas™, an amorphous Fe-Si alloy. Accumulation of biliary sludge is simulated with paraffin or gelatin, and the effects of viscous bile are simulated with a range of silicone fluids. Results from the first design show that the location of mass loads can be resolved within ~5 mm along the length of the sensor. The second design offers twice the sensitivity to mass loads (3000-36 000 ppm mg-1) of other designs. The third design provides a wide range of loading (sensitive to at least 10× the mass of the sensor) and survives compression into a 2 mm diameter tube as would be required for catheter-based delivery.

  7. High sensitive FBG load cell for icing of overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Mao, Naiqiang; Ma, Guoming; Li, Chengrong; Li, Yabo; Shi, Cheng; Du, Yue

    2017-04-01

    Heavy ice coating of overhead transmission lines created the serious threat on the safe operation of power grid. The measurement of conductor icing had been an effective and reliable methods to prevent potential risks, such as conductor breakage, insulator flashover and tower collapse. Because of the advantages of immunity to electromagnetic interference and no demand for power supply in site, the optical load cell has been widely applied in monitoring the ice coating of overhead transmission lines. In this paper, we have adopted the shearing structure with additional grooves as elastic element of load cell to detect the eccentric load. Then, two welding package fiber Bragg gratings (FBGs) were mounted onto the grooves of elastic element with a direction deviation of 90° to eliminate temperature effects on strain measurement without extra FBG. After that, to avoid the occurrence of load cell breakage in heavy load measurement, the protection part has been proposed and added to the elastic element. The results of tension experiments indicate that the resolution of the load cell is 7.78 N in the conventional measuring range (0-10 kN). And in addition, the load cell proposed in this paper also has a good performance in actual experiment in which the load and temperature change simultaneously.

  8. A comprehensive analytical model of rotorcraft aerodynamics and dynamics. Part 3: Program manual

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft and to be a basis for further development of rotary wing theories.

  9. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  10. FY2016 Update on ILAW Glass Testing for Disposal at IDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. E.; Swanberg, D. J.; Muller, Isabelle S.

    2017-04-12

    This status report provides a FY2016 update on work performed to collect information on the corrosion behavior of LAW glasses to support the IDF PA. In addition to the development of the baseline operating envelope for the WTP, since 2003, VSL has developed a wide range of LAW formulations that achieve considerably higher waste loadings than the WTP baseline formulations.

  11. Cover of tall trees best predicts California spotted owl habitat

    Treesearch

    Malcolm P. North; Jonathan T. Kane; Van R. Kane; Gregory P. Asner; William Berigan; Derek J. Churchill; Scott Conway; R.J. Gutiérrez; Sean Jeronimo; John Keane; Alexander Koltunov; Tina Mark; Monika Moskal; Thomas Munton; Zachary Peery; Carlos Ramirez; Rahel Sollmann; Angela White; Sheila Whitmore

    2017-01-01

    Restoration of western dry forests in the USA often focuses on reducing fuel loads. In the range of the spotted owl, these treatments may reduce canopy cover and tree density, which could reduce preferred habitat conditions for the owl and other sensitive species. In particular, high canopy cover (≥70%) has been widely reported to be an important feature of spotted owl...

  12. Molecular dynamics study of silicon carbide properties under external dynamic loading

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Fomin, V. M.

    2017-10-01

    In this study, molecular dynamic simulations of high-velocity impact of a spherical 3C-SiC cluster, with a wide range of velocities (from 100 to 2600 m/s) and with a rigid wall, were performed. The analysis of the final structure shows that no structural phase transformation occurred in the material, despite the high pressure during the collision process.

  13. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management.

    PubMed

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-02-25

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  14. A Method of Determining Aerodynamic-Influence Coefficients from Wind-Tunnel Data for Wings at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Gainer, Patrick A.

    1961-01-01

    A method is described for determining aerodynamic-influence coefficients from wind-tunnel data for calculating the steady-state load distribution on a wing with arbitrary angle-of-attack distribution at supersonic speeds. The method combines linearized theory with empirical adjustments in order to give accurate results over a wide range of angles of attack. The experimented data required are pressure distributions measured on a flat wing of the desired planform at the desired Mach number and over the desired range of angles of attack. The method has been tested by applying it to wind-tunnel data measured at Mach numbers of 1.61 and 2.01 on wings of the same planform but of different surface shapes. Influence coefficients adjusted to fit the flat wing gave good predictions of the spanwise and chord-wise distributions of loadings measured on twisted and cambered wings.

  15. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  16. Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin.

    PubMed

    Venkatasubbu, G Devanand; Ramasamy, S; Ramakrishnan, V; Kumar, J

    2011-12-01

    Hydroxyapatite is a bioceramic which has a wide range of medical application for bone diseases. To enhance its usage, we have prepared ciprofloxacin loaded nano hydroxyapatite (HA) composite with a natural polymer, alginate, using wet chemical method at low temperature. The prepared composites were analyzed by various physicochemical methods. The results show that the nano HA crystallites are well intact with the alginate macromolecules. For the composite system FT-IR and micro Raman results are reported in this paper. Studies on the drug loading and drug release have been done. The drug is pre-adsorbed onto the ceramic particle before the formation of composite. The thermal behavior of composite has been studied using thermo gravimetric analysis (TGA). This work, reports that the nanocomposite prepared under optimum condition could prolong the release of ciprofloxacin compared with the ciprofloxacin loaded hydroxyapatite.

  17. A prediction model for lift-fan simulator performance. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Yuska, J. A.

    1972-01-01

    The performance characteristics of a model VTOL lift-fan simulator installed in a two-dimensional wing are presented. The lift-fan simulator consisted of a 15-inch diameter fan driven by a turbine contained in the fan hub. The performance of the lift-fan simulator was measured in two ways: (1) the calculated momentum thrust of the fan and turbine (total thrust loading), and (2) the axial-force measured on a load cell force balance (axial-force loading). Tests were conducted over a wide range of crossflow velocities, corrected tip speeds, and wing angle of attack. A prediction modeling technique was developed to help in analyzing the performance characteristics of lift-fan simulators. A multiple linear regression analysis technique is presented which calculates prediction model equations for the dependent variables.

  18. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  19. The impact of physical and mental tasks on pilot mental workoad

    NASA Technical Reports Server (NTRS)

    Berg, S. L.; Sheridan, T. B.

    1986-01-01

    Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots.

  20. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.

    PubMed

    Szajek, Krzysztof; Wierszycki, Marcin

    2016-01-01

    Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.

  1. Distraction and Mind-Wandering Under Load

    PubMed Central

    Forster, Sophie

    2013-01-01

    Attention research over the last several decades has provided rich insights into the determinants of distraction, including distractor characteristics, task features, and individual differences. Load Theory represented a particularly important breakthrough, highlighting the critical role of the level and nature of task-load in determining both the efficiency of distractor rejection and the stage of processing at which this occurs. However, until recently studies of distraction were restricted to those measuring rather specific forms of distraction by external stimuli which I argue that, although intended to be irrelevant, were in fact task-relevant. In daily life, attention may be distracted by a wide range of stimuli, which may often be entirely unrelated to any task being performed, and may include not only external stimuli but also internally generated stimuli such as task-unrelated thoughts. This review outlines recent research examining these more general, entirely task-irrelevant, forms of distraction within the framework of Load Theory. I discuss the relation between different forms of distraction, and the universality of load effects across different distractor types and individuals. PMID:23734138

  2. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    PubMed Central

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  3. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  4. Modifications and substitutions of the RNA extraction module in the ViroSeq HIV-1 genotyping system version 2: effects on sensitivity and complexity of the assay.

    PubMed

    Stürmer, Martin; Berger, Annemarie; Doerr, Hans-Wilhelm

    2003-12-01

    Genotypic testing for HIV-1 resistance to anti-retroviral drugs has become accepted widely as a routine method to guide anti-retroviral therapy. However, implementation into routine high-throughput laboratory diagnosis is difficult due to the complexity of the assay. A commercially available assay is the ViroSeq HIV-1 Genotyping System (Applied Biosystems, Weiterstadt, Germany). We modified and substituted the RNA extraction module to optimize the proportion of samples amplified successfully as follows: 1 ml plasma was concentrated by ultracentrifugation and extracted according to the manufacturer's instructions (Kit), by substituting the lysis buffer (Roche, Roche Diagnostics GmbH, Mannheim, Germany), and by using the QIAamp Viral RNA Kit (Qiagen GmbH, Hilden, Germany) with elution volumes of 60 (Q60) or 50 micro l (Q50). Overall Q50 showed a higher success rate (97%) than the other extraction modules used (range 88-91%). In samples with a viral load range of 1,000-4,999 copies/ml, Q50 was superior (95 vs. 65% to 83%), while in samples with a viral load range of 5,000-9,999 copies/ml or those with 10,000 or more copies/ml, the success rate of the extraction procedures showed no significant differences. In 18 samples, which were negative using the Kit or Roche extraction, Q60 resulted in 7/18 positive results; in addition the Q50 was successful in amplifying 7/10 of the Q60 negative samples. When investigating samples with a measurable viral load of less than 1,000 copies/ml or lower, Q50 had the highest success rate with 80% compared to the other procedures (33-63%). A statistically significant new cut-off could be defined for Q50 at a value of 250 copies/ml. The results showed clearly that the ViroSeq System is suitable for analyzing the HIV-1 genotype over a wide range of viral loads but could be improved significantly when substituting the RNA extraction module with Q50 without using a nested PCR protocol. This is of great importance as it avoids further time- and cost-intensive steps. Copyright 2003 Wiley-Liss, Inc.

  5. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less

  6. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2012-03-01

    Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.

  7. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  8. Creep Behavior of Passive Bovine Extraocular Muscle

    PubMed Central

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L.

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics. PMID:22131809

  9. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  10. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  11. A Brief Review of Elasticity and Viscoelasticity

    DTIC Science & Technology

    2010-05-27

    through electromagnetic or acoustic means. Creating a model that accurately describes these Rayleigh waves is key to modeling and understanding the...technology to be feasible, a mathematical model that describes the propagation of the acoustic wave from the stenosis to the chest wall will be necessary...viscoelastic model is simpler to use than poroelastic models but yields similar results for a wide range of soils and dynamic 30 loadings. In addition

  12. Environmental and High-Strain Rate effects on composites for engine applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1982-01-01

    The Lewis Research Center is conducting a series of programs intended to investigate and develop the application of composite materials to structural components for turbojet engines. A significant part of that effort is directed to establishing resistance, defect growth, and strain rate characteristics of composite materials over the wide range of environmental and load conditions found in commercial turbojet engine operations. Both analytical and experimental efforts are involved.

  13. Total Thermal Management of Battery Electric Vehicles (BEVs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason A; Rugh, John P; Winkler, Jonathan M

    The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal subsystem loads can reduce the drive range by as much as 45% under ambient temperatures below -10 degrees C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this rangemore » loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs. Demonstrated on a 2015 Fiat 500e BEV, this system integrates a semi-hermetic refrigeration loop with a coolant network and serves three functions: (1) heating and/or cooling vehicle traction components (battery, power electronics, and motor) (2) heating and cooling of the cabin, and (3) waste energy harvesting and re-use. The modes of operation allow a heat pump and air conditioning system to function without reversing the refrigeration cycle to improve thermal efficiency. The refrigeration loop consists of an electric compressor, a thermal expansion valve, a coolant-cooled condenser, and a chiller, the latter two exchanging heat with hot and cold coolant streams that may be directed to various components of the thermal system. The coolant-based heat distribution is adaptable and saves significant amounts of refrigerant per vehicle. Also, a coolant-based system reduces refrigerant emissions by requiring fewer refrigerant pipe joints. The authors present bench-level test data and simulation analysis and describe a preliminary control scheme for this system.« less

  14. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon α/β receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy.

    PubMed

    Zivcec, Marko; Safronetz, David; Scott, Dana; Robertson, Shelly; Ebihara, Hideki; Feldmann, Heinz

    2013-06-15

    Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed viral hemorrhagic fever characterized by rapid onset of flu-like symptoms often followed by hemorrhagic manifestations. CCHF virus (CCHFV), a bunyavirus in the Nairovirus genus, is capable of infecting a wide range of mammalian hosts in nature but so far only causes disease in humans. Recently, immunocompromised mice have been reported as CCHF disease models, but detailed characterization is lacking. Here, we closely followed infection and disease progression in CCHFV-infected interferon α/β receptor knockout (IFNAR(-/-)) mice and age-matched wild-type (WT) mice. WT mice quickly clear CCHFV without developing any disease signs. In contrast, CCHFV infected IFNAR(-/-) mice develop an acute fulminant disease with high viral loads leading to organ pathology (liver and lymphoid tissues), marked proinflammatory host responses, severe thrombocytopenia, coagulopathy, and death. Disease progression closely mimics hallmarks of human CCHF disease, making IFNAR(-/-) mice an excellent choice to assess medical countermeasures.

  15. Extrapolation of dynamic load behaviour on hydroelectric turbine blades with cyclostationary modelling

    NASA Astrophysics Data System (ADS)

    Poirier, Marc; Gagnon, Martin; Tahan, Antoine; Coutu, André; Chamberland-lauzon, Joël

    2017-01-01

    In this paper, we present the application of cyclostationary modelling for the extrapolation of short stationary load strain samples measured in situ on hydraulic turbine blades. Long periods of measurements allow for a wide range of fluctuations representative of long-term reality to be considered. However, sampling over short periods limits the dynamic strain fluctuations available for analysis. The purpose of the technique presented here is therefore to generate a representative signal containing proper long term characteristics and expected spectrum starting with a much shorter signal period. The final objective is to obtain a strain history that can be used to estimate long-term fatigue behaviour of hydroelectric turbine runners.

  16. Late developments in the field of heat recovery

    NASA Astrophysics Data System (ADS)

    McFarlan, A. I.

    Developments to reduce the first cost and operating expense of large building air conditioning systems, with emphasis on heat transfer are described. The 3 pipe wide range coils dissipate part of the summer cooling load directly to the outside of the building without passing thru the water chillers. Tank circuits to automatically cycle water thru storage tanks can reduce the refrigeration load about 35% during the peak day period. Means to produce above 48.9 C hot water economically for winter heating and summer dissipation of internal heat are described. A heat balance is maintained automatically to remove only the excess winter heat beyond that which can be usefully recycled or stored.

  17. Heavily loaded ferrite-polymer composites to produce high refractive index materials at centimetre wavelengths

    NASA Astrophysics Data System (ADS)

    Parke, L.; Hooper, I. R.; Hicken, R. J.; Dancer, C. E. J.; Grant, P. S.; Youngs, I. J.; Sambles, J. R.; Hibbins, A. P.

    2013-10-01

    A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%-80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23 ± 2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics.

  18. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    PubMed

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.

  19. Mixed-Mode Bending Method for Delamination Testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John R., Jr.

    1990-01-01

    A mixed mode delamination test procedure was developed combining double cantilever beam (DCB) mode I loading and end-notch fixture (ENF) mode II loading on a split unidirectional laminate. By loading with a lever, a single applied load simultaneously produces mode I and mode II bending loads on the specimen. This mixed-mode bending (MMB) test was analyzed using both finite-element procedures and beam theory to calculate the mode I and mode II components of strain-energy release rate G(sub I) and G(sub II), respectively. A wide range of G(sub I)/G(sub II) ratios can be produced by varying the load position on the lever. As the delamination extended, the G(sub I)/G(sub II) ratios varied by less than 5%. Beam theory equations agreed closely with the finite-element results and provide a basis for selection of G(sub I)/G(sub II) test ratios and a basis for computing the mode I and mode II components of measured delamination toughness. The MMB test was demonstrated using AS4/PEEK (APC2) unidirectional laminates. The MMB test introduced in this paper is rather simple and is believed to offer several advantages over most current mixed-mode test.

  20. Modeling Nutrient Loading to Watersheds in the Great Lakes Basin: A Detailed Source Model at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2011-12-01

    Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.

  1. A carrier sensed multiple access protocol for high data base rate ring networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, Kurt J.; Overstreet, C. Michael; Khanna, S.; Paterra, Frank

    1990-01-01

    The results of the study of a simple but effective media access protocol for high data rate networks are presented. The protocol is based on the fact that at high data rates networks can contain multiple messages simultaneously over their span, and that in a ring, nodes used to detect the presence of a message arriving from the immediate upstream neighbor. When an incoming signal is detected, the node must either abort or truncate a message it is presently sending. Thus, the protocol with local carrier sensing and multiple access is designated CSMA/RN. The performance of CSMA/RN with TTattempt and truncate is studied using analytic and simulation models. Three performance factors, wait or access time, service time and response or end-to-end travel time are presented. The service time is basically a function of the network rate, it changes by a factor of 1 between no load and full load. Wait time, which is zero for no load, remains small for load factors up to 70 percent of full load. Response time, which adds travel time while on the network to wait and service time, is mainly a function of network length, especially for longer distance networks. Simulation results are shown for CSMA/RN where messages are removed at the destination. A wide range of local and metropolitan area network parameters including variations in message size, network length, and node count are studied. Finally, a scaling factor based upon the ratio of message to network length demonstrates that the results, and hence, the CSMA/RN protocol, are applicable to wide area networks.

  2. Traffic sharing algorithms for hybrid mobile networks

    NASA Technical Reports Server (NTRS)

    Arcand, S.; Murthy, K. M. S.; Hafez, R.

    1995-01-01

    In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

  3. Nutrient loadings to streams of the continental United States from municipal and industrial effluent?

    USGS Publications Warehouse

    Maupin, Molly A.; Ivahnenko, Tamara

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1 million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales.

  4. Water confinement in faujasite cages: a deuteron NMR investigation in a wide temperature range. 1. Low temperature spectra.

    PubMed

    Szymocha, A M; Birczyński, A; Lalowicz, Z T; Stoch, G; Krzystyniak, M; Góra-Marek, K

    2014-07-24

    Deuteron NMR spectra were measured for D2O confined in NaX, NaY, and DY faujasites with various D2O loadings at temperatures ranging from T = 70 K to T = 200 K with the aim to study the molecular mobility of confined water as a function of Si/Al ratio and loading. The recorded spectra were fitted with linear combinations of representative spectral components. At low loading, with the number of water molecules per unit cell close to the abundance of sodium cations, a component related to π-jumps of water deuterons about the 2-fold symmetry axis dominated. For loadings at levels 3 times and 5 times higher than the initial loading level, Pake dublets due to rigid water deuterons dominated the recorded spectra. A set of the quadrupole coupling constant values of localized water deuterons was derived from the analysis of the Pake dublets. Their values were attributed to deuteron positions corresponding to the locations at oxygen atoms in the faujasite framework and locations within hydrogen-bonded water clusters inside faujasite cages. The contributions of the different spectral components were observed to change with increasing temperature according to the Arrhenius law with a characteristic dynamic crossover point at T = 165 K. Below T = 165 K a spectral component was observed whose contribution changed with temperature, yielding the activation energy of about 2 kJ/mol, characteristic for jumps between inversion-related water positions in clusters.

  5. Field measurements of the linear and nonlinear shear moduli of cemented alluvium using dynamically loaded surface footings

    NASA Astrophysics Data System (ADS)

    Park, Kwangsoo

    In this dissertation, a research effort aimed at development and implementation of a direct field test method to evaluate the linear and nonlinear shear modulus of soil is presented. The field method utilizes a surface footing that is dynamically loaded horizontally. The test procedure involves applying static and dynamic loads to the surface footing and measuring the soil response beneath the loaded area using embedded geophones. A wide range in dynamic loads under a constant static load permits measurements of linear and nonlinear shear wave propagation from which shear moduli and associated shearing strains are evaluated. Shear wave velocities in the linear and nonlinear strain ranges are calculated from time delays in waveforms monitored by geophone pairs. Shear moduli are then obtained using the shear wave velocities and the mass density of a soil. Shear strains are determined using particle displacements calculated from particle velocities measured at the geophones by assuming a linear variation between geophone pairs. The field test method was validated by conducting an initial field experiment at sandy site in Austin, Texas. Then, field experiments were performed on cemented alluvium, a complex, hard-to-sample material. Three separate locations at Yucca Mountain, Nevada were tested. The tests successfully measured: (1) the effect of confining pressure on shear and compression moduli in the linear strain range and (2) the effect of strain on shear moduli at various states of stress in the field. The field measurements were first compared with empirical relationships for uncemented gravel. This comparison showed that the alluvium was clearly cemented. The field measurements were then compared to other independent measurements including laboratory resonant column tests and field seismic tests using the spectral-analysis-of-surface-waves method. The results from the field tests were generally in good agreement with the other independent test results, indicating that the proposed method has the ability to directly evaluate complex material like cemented alluvium in the field.

  6. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo.

    PubMed

    Lewis, Karl J; Frikha-Benayed, Dorra; Louie, Joyce; Stephen, Samuel; Spray, David C; Thi, Mia M; Seref-Ferlengez, Zeynep; Majeska, Robert J; Weinbaum, Sheldon; Schaffler, Mitchell B

    2017-10-31

    Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca 2+ ) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca 2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca 2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 [Formula: see text] and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca 2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading. Published under the PNAS license.

  7. Buckling behavior of long symmetrically laminated plates subjected to combined loadings

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1992-01-01

    A parametric study is presented of the buckling behavior of infinitely long, symmetrically laminated anisotropic plates subjected to combined loadings. The loading conditions considered are axial tension and compression transverse tension and compression, and shear. Results obtained using a special-purpose analysis, well-suited for parametric studies, are presented for clamped and simply supported plates. Moreover, results are presented for some common laminate constructions, and generic buckling design charts are presented for a wide range of parameters. The generic design charts are presented in terms of useful nondimensional parameters, and the dependence of the nondimensional parameters on laminate fiber orientation, stacking sequence, and material properties is discussed. An important finding of the study is that the effects of anisotropy are much more pronounced in shear-loaded plates than in compression-loaded plates. In addition, the effects of anisotropy on plates subjected to combined loadings are generally manifested as a phase shift of self-similar buckling interaction curves. A practical application of this phase shift is that the buckling resistance of long plates can be improved by applying a shear loading with a specific orientation. In all cases considered in the study, the buckling coefficients of infinitely long plates are found to be independent of the bending stiffness ratio (D sub 11/D sub 22)(1/4).

  8. Buckling behavior of long symmetrically laminated plates subjected to combined loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1992-01-01

    A parametric study of the buckling behavior of infinitely long symmetrically laminated anisotropic plates subjected to combined loadings is presented. The loading conditions considered are axial tension and compression, transverse tension and compression, and shear. Results obtained using a special purpose analysis, well suited for parametric studies are presented for clamped and simply supported plates. Moreover, results are presented for some common laminate constructions, and generic buckling design charts are presented for a wide range of parameters. The generic design charts are presented in terms of useful nondimensional parameters, and dependence of the nondimensional parameters on laminate fiber orientation, stacking sequence, and material properties is discussed. An important finding of the study is that the effects of anisotropy are much more pronounced in shear-loaded plates than in compression loaded plates. In addition, the effects of anisotropy on plates subjected to combined loadings are generally manifested as a phase shift of self-similar buckling interaction curves. A practical application of this phase shift is the buckling resistance of long plates can be improved by applying a shear loading with a specific orientation. In all cases considered, it is found that the buckling coefficients of infinitely long plates are independent of the bending stiffness ratio (D sub 11/D sub 22) sup 1/4.

  9. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    PubMed

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  10. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    NASA Technical Reports Server (NTRS)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  11. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaonkar, Amita, E-mail: ami.gaonkar@gmail.com; Murudkar, Vrishali, E-mail: vru0077@gmail.com; Deshpande, V. D., E-mail: vindesh2@rediffmail.com

    2016-05-06

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversionalmore » method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.« less

  12. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.

    2016-05-01

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversional method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.

  13. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law

    PubMed Central

    Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz

    2017-01-01

    In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798

  14. Micromechanics based simulation of ductile fracture in structural steels

    NASA Astrophysics Data System (ADS)

    Yellavajjala, Ravi Kiran

    The broader aim of this research is to develop fundamental understanding of ductile fracture process in structural steels, propose robust computational models to quantify the associated damage, and provide numerical tools to simplify the implementation of these computational models into general finite element framework. Mechanical testing on different geometries of test specimens made of ASTM A992 steels is conducted to experimentally characterize the ductile fracture at different stress states under monotonic and ultra-low cycle fatigue (ULCF) loading. Scanning electron microscopy studies of the fractured surfaces is conducted to decipher the underlying microscopic damage mechanisms that cause fracture in ASTM A992 steels. Detailed micromechanical analyses for monotonic and cyclic loading are conducted to understand the influence of stress triaxiality and Lode parameter on the void growth phase of ductile fracture. Based on monotonic analyses, an uncoupled micromechanical void growth model is proposed to predict ductile fracture. This model is then incorporated in to finite element program as a weakly coupled model to simulate the loss of load carrying capacity in the post microvoid coalescence regime for high triaxialities. Based on the cyclic analyses, an uncoupled micromechanics based cyclic void growth model is developed to predict the ULCF life of ASTM A992 steels subjected to high stress triaxialities. Furthermore, a computational fracture locus for ASTM A992 steels is developed and incorporated in to finite element program as an uncoupled ductile fracture model. This model can be used to predict the ductile fracture initiation under monotonic loading in a wide range of triaxiality and Lode parameters. Finally, a coupled microvoid elongation and dilation based continuum damage model is proposed, implemented, calibrated and validated. This model is capable of simulating the local softening caused by the various phases of ductile fracture process under monotonic loading for a wide range of stress states. Novel differentiation procedures based on complex analyses along with existing finite difference methods and automatic differentiation are extended using perturbation techniques to evaluate tensor derivatives. These tensor differentiation techniques are then used to automate nonlinear constitutive models into implicit finite element framework. Finally, the efficiency of these automation procedures is demonstrated using benchmark problems.

  15. Finite Strain Behavior of Polyurea for a Wide Range of Strain Rates

    DTIC Science & Technology

    2010-02-01

    dimensional dynamic compressive behavior of EPDM rubber ," Journal of Engineering Materials and Technology, Transaction of the ASME, 125:294-301. [97] Song, B...and Chen, W. (2004) "Dynamic compressive behavior of EPDM rubber un- der nearly uniaxial strain conditions," Journal of Engineering Materials and... rubber elastic springs to describe the steep initial stiffness of virgin butadiene rubber under tensile and compressive loading at intermediate strain

  16. The landing flare: An analysis and flight-test investigation

    NASA Technical Reports Server (NTRS)

    Seckel, E.

    1975-01-01

    Results are given of an extensive investigation of conventional landing flares in general aviation type airplanes. A wide range of parameters influencing flare behavior are simulated in experimental landings in a variable-stability Navion. The most important feature of the flare is found to be the airplane's deceleration in the flare. Various effects on this are correlated in terms of the average flare load factor. Piloting technique is extensively discussed. Design criteria are presented.

  17. Vehicle Tracking and Security

    NASA Astrophysics Data System (ADS)

    Scorer, A. G.

    1998-09-01

    This paper covers the wide area and short range locational technologies that are available for vehicle tracking in particular and mobile user security in general. It also summarises the radio communications services that can deliver information to the user. It considers the use that can be made of these technologies, when combined with procedures for delivering a response, in the security field, notably in relation to personal security, high-value load protection and the after-theft tracking markets.

  18. Direct-reading design charts for 75S-T6 aluminum-alloy flat compression panels having longitudinal extruded Z-section stiffeners

    NASA Technical Reports Server (NTRS)

    Hickman, William A; Dow, Norris F

    1951-01-01

    Direct-reading design charts are presented for 75S-T6 aluminum-alloy flat compression panels having longitudinal extruded Z-section stiffeners. These charts, which cover a wide range of proportions, make possible the direct determination of the stress and all panel dimensions required to carry a given intensity of loading with a given skin thickness and effective length of panel.

  19. Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental

    Treesearch

    Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz

    2008-01-01

    Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...

  20. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    PubMed Central

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-01-01

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346

  1. Analysis of the load selection on the error of source characteristics identification for an engine exhaust system

    NASA Astrophysics Data System (ADS)

    Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin

    2015-05-01

    Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.

  2. Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load.

    PubMed

    Shen, Feng; Sun, Bing; Kreutz, Jason E; Davydova, Elena K; Du, Wenbin; Reddy, Poluru L; Joseph, Loren J; Ismagilov, Rustem F

    2011-11-09

    In this paper, we are working toward a problem of great importance to global health: determination of viral HIV and hepatitis C (HCV) loads under point-of-care and resource limited settings. While antiretroviral treatments are becoming widely available, viral load must be evaluated at regular intervals to prevent the spread of drug resistance and requires a quantitative measurement of RNA concentration over a wide dynamic range (from 50 up to 10(6) molecules/mL for HIV and up to 10(8) molecules/mL for HCV). "Digital" single molecule measurements are attractive for quantification, but the dynamic range of such systems is typically limited or requires excessive numbers of compartments. Here we designed and tested two microfluidic rotational SlipChips to perform multivolume digital RT-PCR (MV digital RT-PCR) experiments with large and tunable dynamic range. These designs were characterized using synthetic control RNA and validated with HIV viral RNA and HCV control viral RNA. The first design contained 160 wells of each of four volumes (125 nL, 25 nL, 5 nL, and 1 nL) to achieve a dynamic range of 5.2 × 10(2) to 4.0 × 10(6) molecules/mL at 3-fold resolution. The second design tested the flexibility of this approach, and further expanded it to allow for multiplexing while maintaining a large dynamic range by adding additional wells with volumes of 0.2 nL and 625 nL and dividing the SlipChip into five regions to analyze five samples each at a dynamic range of 1.8 × 10(3) to 1.2 × 10(7) molecules/mL at 3-fold resolution. No evidence of cross-contamination was observed. The multiplexed SlipChip can be used to analyze a single sample at a dynamic range of 1.7 × 10(2) to 2.0 × 10(7) molecules/mL at 3-fold resolution with limit of detection of 40 molecules/mL. HIV viral RNA purified from clinical samples were tested on the SlipChip, and viral load results were self-consistent and in good agreement with results determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test. With further validation, this SlipChip should become useful to precisely quantify viral HIV and HCV RNA for high-performance diagnostics in resource-limited settings. These microfluidic designs should also be valuable for other diagnostic and research applications, including detecting rare cells and rare mutations, prenatal diagnostics, monitoring residual disease, and quantifying copy number variation and gene expression patterns. The theory for the design and analysis of multivolume digital PCR experiments is presented in other work by Kreutz et al.

  3. Magneto-rheological fluid shock absorbers for HMMWV

    NASA Astrophysics Data System (ADS)

    Gordaninejad, Faramarz; Kelso, Shawn P.

    2000-04-01

    This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.

  4. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu; School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration ismore » strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.« less

  5. Buoyancy-corrected gravimetric analysis of lightly loaded filters.

    PubMed

    Rasmussen, Pat E; Gardner, H David; Niu, Jianjun

    2010-09-01

    Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.

  6. A multi-agency nutrient dataset used to estimate loads, improve monitoring design, and calibrate regional nutrient SPARROW models

    USGS Publications Warehouse

    Saad, David A.; Schwarz, Gregory E.; Robertson, Dale M.; Booth, Nathaniel

    2011-01-01

    Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.

  7. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    PubMed

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  8. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range.

    PubMed

    Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying

    2018-05-30

    Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study.

    PubMed

    Duffy, Frank H; Als, Heidelise

    2012-06-26

    The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.

  10. Force-Strain Characteristics and Rupture-Load Capability of Viking-Type Suspension-Line Material Under Dynamic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.; Councill, Earl L., Jr.

    1972-01-01

    A series of tests has been conducted to investigate the elastic behavior of Viking-type suspension-line material under dynamic loading conditions. Results indicate that there is a decrease in both rupture-load capability and elongation at rupture as the test strain rate is increased. Preliminary examination of force-strain characteristics indicates that, on the average, the material exhibits some type of viscous effect which results in a greater force being produced, for a particular value of strain, under dynamic loading conditions than that produced under quasi-static loading conditions. A great deal of uncertainty exists in defining a priori the tensile properties of viscoelastic materials, such as nylon or dacron, under dynamic loading conditions. Additional uncertainty enters the picture when woven configurations such as suspension,line material are considered. To eliminate these uncertainties, with respect to the Viking parachute configuration, a test program has been conducted to obtain data on the tensile properties of Viking-type suspension-line material over a wide range of strain rates. Based on preliminary examination of these data, the following conclusions can be drawn: 1. Material rupture-load capability decreases as strain-rate is increased. At strain rates above 75 percent/sec, no rupture loads were observed which would meet the minimum tensile strength specification of 880 pounds. 2. The material, on the average, exhibits some type of viscous effect which, for a particular value of strain, produces a greater load under dynamic loading conditions than that produced under quasi-static loading conditions.

  11. Covariations of eating behaviors with other health-related behaviors among adolescents.

    PubMed

    Neumark-Sztainer, D; Story, M; Toporoff, E; Himes, J H; Resnick, M D; Blum, R W

    1997-06-01

    The study objectives are: (1) to examine and compare patterns of covariation of a wide range of health behaviors among adolescent boys and girls; (2) to determine whether eating behaviors are part of a larger construct of health-related behaviors and to identify the behaviors with which they share underlying similarities; and (3) to determine whether youth engaging in other health-compromising behaviors are at risk for unhealthy eating. Data were analyzed from the Minnesota Adolescent Health Survey, a classroom-administered questionnaire, completed by 36,284 adolescents, in grades 7-12 from 1986-87. Among boys, factor analysis revealed five factors: (1) risk-taking behaviors, (2) school-related behaviors, (3) "quietly" disturbed behaviors (e.g., frequent dieting, self-induced vomiting, suicide attempts), (4) health-promoting behaviors; and (5) exercise. Eating behaviors loaded on the construct of health-promoting behaviors with brushing teeth and seat belt use. Among girls, four similar factors emerged; however, exercise loaded on the construct of health-promoting behaviors. Therefore, eating behaviors loaded with brushing teeth, seat belt use, and exercise among girls. Logistic regression analyses, controlling for sociodemographic and personal variables, revealed that boys and girls engaging in health-promoting behaviors were less likely to have unhealthy eating behaviors, while those engaging in quietly disturbed behaviors, risk-taking behaviors, and problematic school behaviors were more likely to have unhealthy eating behaviors. Eating behaviors appear to be part of a health-promoting behavioral construct and should not be viewed in isolation from other behaviors. Although eating behaviors do not appear to be part of the "problem behavior syndrome," youth engaging in a wide range of health-compromising behaviors are at risk for unhealthy eating; emphasizing the need to target high-risk youth with health promotion programs.

  12. Estimation of global plastic loads delivered by rivers into the sea

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Krauth, Tobias; Klöckner, Phillipp; Römer, Melina-Sophie; Stier, Britta; Reemtsma, Thorsten; Wagner, Stephan

    2017-04-01

    A considerable fraction of marine plastic debris likely originates from land-based sources. Transport of plastics by rivers is a potential mechanism that connects plastic debris generated on land with the marine environment. We analyze existing and experimental data of plastic loads in rivers and relate these to the amount of mismanaged plastic waste (MMPW) generated in the river catchments. We find a positive relationship between the plastic load in rivers and the amount of MMPW. Using our empirical MMPW-plastic river load-relationship we estimated the annual plastic load for 1494 rivers, ranging from small first order streams to large rivers, which have an outlet to the sea. We estimate that the global load of plastic debris delivered by rivers to the sea is 39000 tons per year with a large 95% prediction interval between 247 tons per year and 16.7 million tons per year, respectively. Our best estimate is considerably lower than the estimated total land-based inputs which range between 4.8-12.7 million tons anually (Jambeck et al. 2015). Approximately 75% of the total load is transported by the 10 top-ranked rivers which are predominantly located in Asia. These river catchments encompass countries with a large population and high economic growth but an insufficient waste infrastructure. Reducing the plastic loads in these rivers by 50% would reduce the global inputs by 37%. Of the total MMPW generated within river catchments, only a small fraction of about 0.05 % has been found to be mobile in rivers. Thus, either only a small fraction of MMPW enters the river systems, or a substantial fraction of plastic debris accumulates in river systems world wide. References: Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law (2015), Plastic waste inputs from land into the ocean, Science, 347(6223), 768-771, doi:10.1126/science.1260352.

  13. Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors.

    PubMed

    Hines, Michael L; Eichner, Hubert; Schürmann, Felix

    2008-08-01

    Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Splitting cells is useful in attaining load balance in neural network simulations, especially when there is a wide range of cell sizes and the number of cells is about the same as the number of processors. For compute-bound simulations load balance results in almost ideal runtime scaling. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.

  14. Recent advances in "bioartificial polymeric materials" based nanovectors

    NASA Astrophysics Data System (ADS)

    Conte, Raffaele; De Luca, Ilenia; Valentino, Anna; Di Salle, Anna; Calarco, Anna; Riccitiello, Francesco; Peluso, Gianfranco

    2017-04-01

    This chapter analyzes the advantages of the use of bioartificial polymers as carriers and the main strategies used for their design. Despite the enormous progresses in this field, more studies are required for the fully evaluation of these nanovectors in complex organisms and for the characterization of the pharmacodynamic and pharmacokinetic of the loaded drugs. Moreover, progresses in polymer chemistry are introducing a wide range of functionalities in the bioartificial polymeric material (BPM) nanostructures leading to a second generation of bioartificial polymer therapeutics based on novel and heterogeneous architectures with higher molecular weight and predictable structures, in order to achieve greater multivalency and increased loading capacity. Therefore, research on bioartificial polymeric nanovectors is an "on-going" field capable of attracting medical interest.

  15. On the interaction of a vibrating plate with an acoustic medium

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Koval, L. R.

    1974-01-01

    The interaction of a vibrating plate with an adjacent acoustic medium is important in problems involving the radiation of sound from panels, in problems involving the transmission of sound through walls of buildings, aircraft, or launch vehicles; and in problems involving the estimation of damping and the stress amplitude of vibration for panel-fatigue predictions. There appear to have been no systematic studies of the effects on the plate of fluid coupling for an arbitrary fluid-mass/plate-mass loading ratio. An attempt is made to determine this effect for a wide range of fluid-plate mass ratios without resorting to the usual simplifications of light or heavy fluid loading. Emphasis is with the plate motion rather than the radiation of sound.

  16. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  17. A simple nonlocal damage model for predicting failure of notched laminates

    NASA Technical Reports Server (NTRS)

    Kennedy, T. C.; Nahan, M. F.

    1995-01-01

    The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.

  18. Mount mechanisms for the Saturn 5/Apollo mobile launcher at John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Balke, H. A.

    1975-01-01

    A support system was designed to resist hurricane wind loads at the launch pad and to allow the supported structural frame to expand and contract freely under wide ranges of temperature. This system consists of six mount mechanisms devised to meet the previously stated requirements plus a load-carrying capacity for each of 3.2-million kilograms (7-million pounds) downward and 1.6-million kilograms (3.5-million pounds) upward. A similar but lighter system of six mount mechanisms was designed for use in the sheltered environment of the vehicle assembly building. Each requirement and design result is discussed, and each mount mechanism is defined by location and type with references to visual presentations.

  19. Analysis, design, and control of a transcutaneous power regulator for artificial hearts.

    PubMed

    Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan

    2009-02-01

    Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.

  20. Fretting crevice corrosion of stainless steel stem-CoCr femoral head connections: comparisons of materials, initial moisture, and offset length.

    PubMed

    Gilbert, Jeremy L; Mehta, Manav; Pinder, Bryan

    2009-01-01

    Modular tapers continue to be used in a wide variety of orthopedic implants. In this study, stainless steel (ASTM F-1568) femoral hip stems combined with Co-Cr-Mo alloy heads (SS/CoCr) were tested in an in vitro fretting corrosion test set-up to assess the propensity for mechanically assisted corrosion. Three different aspects of the modular design were evaluated in this study: (1) material combination compared to CoCr/CoCr, (2) wet versus dry assembly for SS/CoCr couples, and (3) 0- and 6-mm head offset for SS/CoCr couples. Fretting corrosion tests over a range of cyclic loads up to 3300 N were performed, and continuous cyclic loading at 3300 N for 1 M cycles were performed on each group (n = 5). Fretting micromotion was measured as a function of cyclic load on select couples to detect the nature and extent of motion present. The results showed that SS/CoCr couples were more susceptible to fretting corrosion than CoCr/CoCr couples, that dry assembly does not prevent fretting corrosion from taking place but raises the onset load, and that 6-mm offset heads had higher visual evidence of fretting damage but showed mixed statistical results in terms of onset loads and OCP shifts and currents compared to the 0-mm offset samples. Current and voltage excursions over 1 million cycles tended to diminish towards their unloaded control levels but did not fully recover until cyclic loading ceased. Micromotion measurements indicated fretting motions in the range of 10-25 microm where 0-mm heads tended to piston on the trunion, while 6 mm heads tended to rock. (c) 2008 Wiley Periodicals, Inc.

  1. Allostasis and allostatic load: implications for neuropsychopharmacology.

    PubMed

    McEwen, B S

    2000-02-01

    The primary hormonal mediators of the stress response, glucocorticoids and catecholamines, have both protective and damaging effects on the body. In the short run, they are essential for adaptation, maintenance of homeostasis, and survival (allostasis). Yet, over longer time intervals, they exact a cost (allostatic load) that can accelerate disease processes. The concepts of allostasis and allostatic load center around the brain as interpreter and responder to environmental challenges and as a target of those challenges. In anxiety disorders, depressive illness, hostile and aggressive states, substance abuse, and post-traumatic stress disorder (PTSD), allostatic load takes the form of chemical imbalances as well as perturbations in the diurnal rhythm, and, in some cases, atrophy of brain structures. In addition, growing evidence indicates that depressive illness and hostility are both associated with cardiovascular disease (CVD) and other systemic disorders. A major risk factor for these conditions is early childhood experiences of abuse and neglect that increase allostatic load later in life and lead individuals into social isolation, hostility, depression, and conditions like extreme obesity and CVD. Animal models support the notion of lifelong influences of early experience on stress hormone reactivity. Whereas, depression and childhood abuse and neglect tend to be more prevalent in individuals at the lower end of the socioeconomic ladder, cardiovascular and other diseases follow a gradient across the full range of socioeconomic status (SES). An SES gradient is also evident for measures of allostatic load. Wide-ranging SES gradients have also been described for substance abuse and affective and anxiety disorders as a function of education. These aspects are discussed as important, emerging public health issues where the brain plays a key role.

  2. Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer

    NASA Astrophysics Data System (ADS)

    Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, Lalit C.; Asay, James R.

    2000-04-01

    Relatively straightforward changes in the design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging instrument that allows adjustment of spatial resolution over a wide range. As a result, line-imaging ORVIS can be tailored to various specific applications involving dynamic deformation of heterogeneous materials as required by their characteristic length scales (ranging from a few μm for ferroelectric ceramics to a few mm for concrete). A line-imaging system has been successfully interfaced to a compressed gas gun driver and fielded on numerous tests in combination with simultaneous dual delay-leg, "push-pull" VISAR measurements. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Results are presented that illustrate the capability for recording detailed spatially resolved material response.

  3. Inflow characteristics associated with high-blade-loading events in a wind farm

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1993-07-01

    The stochastic characteristics of the turbulent inflow have been shown to be of major significance in the accumulation of fatigue in wind turbines. Because most of the wind turbine installations in the U.S. have taken place in multi-turbine or windfarm configurations, the fatigue damage associated with the higher turbulence levels within such arrangements must be taken into account when making estimates of component service lifetimes. The simultaneous monitoring of two adjacent wind turbines over a wide range of turbulent inflow conditions has given the authors more confidence in describing the structural load distributions that can be expected in such an environment. The adjacent testing of the two turbines allowed the authors to postulate that observed similarities in the response dynamics and load distributions could be considered quasi-universal, while the dissimilarities could be considered to result from the differing design of the rotors. The format has also allowed them to begin to define appropriate statistical load distribution models for many of the critical components in which fatigue is a major driver of the design. In addition to the adjacent turbine measurements, they also briefly discuss load distributions measured on a teetered-hub turbine.

  4. Influence of increased mechanical loading by hypergravity on the microtubule cytoskeleton and prostaglandin E2 release in primary osteoblasts

    NASA Technical Reports Server (NTRS)

    Searby, Nancy D.; Steele, Charles R.; Globus, Ruth K.

    2005-01-01

    Cells respond to a wide range of mechanical stimuli such as fluid shear and strain, although the contribution of gravity to cell structure and function is not understood. We hypothesized that bone-forming osteoblasts are sensitive to increased mechanical loading by hypergravity. A centrifuge suitable for cell culture was developed and validated, and then primary cultures of fetal rat calvarial osteoblasts at various stages of differentiation were mechanically loaded using hypergravity. We measured microtubule network morphology as well as release of the paracrine factor prostaglandin E2 (PGE2). In immature osteoblasts, a stimulus of 10x gravity (10 g) for 3 h increased PGE2 2.5-fold and decreased microtubule network height 1.12-fold without affecting cell viability. Hypergravity (3 h) caused dose-dependent (5-50 g) increases in PGE2 (5.3-fold at 50 g) and decreases (1.26-fold at 50 g) in microtubule network height. PGE2 release depended on duration but not orientation of the hypergravity load. As osteoblasts differentiated, sensitivity to hypergravity declined. We conclude that primary osteoblasts demonstrate dose- and duration-dependent sensitivity to gravitational loading, which appears to be blunted in mature osteoblasts.

  5. Biomechanical properties of interosseous proximal carpal row ligaments.

    PubMed

    Nikolopoulos, Fotios; Apergis, Emmanuel; Kefalas, Vassilios; Zoubos, Aristides; Soucacos, Panayiotis; Papagelopoulos, Panayiotis

    2011-05-01

    The Scapholunate (S-L) and Lunotriquetrum (L-Tr) ligaments have been extensively studied in the literature. A wide range of measurements has been reported for ultimate load and stiffness with different mechanical protocols. In this study, we examined the mechanical properties of both ligaments harvested from the same wrist. Fifteen fresh cadaver wrists were used to harvest eight S-L and four L-Tr. Testing was performed in quasi-static loading in a well defined direction for each ligament system. The ultimate load for S-L was 68-210 N with a mean value of 147 ± 54 N and a stiffness of 35.7 ± 9.6 N/mm. For L-Tr the ultimate load was 122-179 N with a mean value of 150 ± 24 N and a stiffness of 192 ± 60 N/mm. The two ligaments had nearly the same ultimate load, but the L-Tr had a higher stiffness (p = 0.05). These findings could be useful to assess the appropriate autologous autografts for reconstruction of the S-L and L-Tr. Copyright © 2010 Orthopaedic Research Society.

  6. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics

    PubMed Central

    Lythgoe, Katrina A.; Blanquart, François

    2016-01-01

    The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. PMID:27706164

  7. An application of the suction analog for the analysis of asymmetric flow situations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1976-01-01

    A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.

  8. Cyanobacteria blooms: effects on aquatic ecosystems.

    PubMed

    Havens, Karl E

    2008-01-01

    Cyanobacteria become increasingly dominant as concentrations of TP and TN increase during eutrophication of lakes, rivers and estuaries. Temporal dynamics of cyanobacteria blooms are variable--in some systems persistent blooms occur in summer to fall, whereas in other systems blooms are more sporadic. Cyanobacteria blooms have a wide range of possible biological impacts including potential toxic effects on other algae, invertebrates and fish, impacts to plants and benthic algae due to shading, and impacts to food web function as large inedible algae produce a bottleneck to C and energy flow in the plankton food web. In lakes with dense blooms of cyanobacteria, accumulation of organic material in lake sediments and increased bacterial activity also may lead to anoxic conditions that alter the structure of benthic macro-invertebrates. Diffusive internal P loading may increase, and hypolimnetic anoxia may lead to a loss of piscivorous fish that require a summer cold water refuge in temperate lakes. Ecosystem changes associated with frequent blooms may result in delayed response of lakes, rivers and estuaries to external nutrient load reduction. Despite numerous case studies and a vast literature on species-specific responses, community level effects of cyanobacterial blooms are not well understood--in particular the realized impacts of toxins and changes in food web structure/function. These areas require additional research given the prevalence of toxic blooms in the nation's lakes, rivers and coastal waters--systems that provide a wide range of valued ecosystem services.

  9. Pressure Induced Phase Transformations of Silica Polymorphs and Glasses

    NASA Astrophysics Data System (ADS)

    Cagin, Tahir; Demiralp, Ersan; Goddard, William A., III

    1998-03-01

    Silica, SiO_2, is one of the most widely studied substance, and it has some complex and unusual properties. We have used a recently developed 2-body interaction force field (E. Demiralp, T. Cagin, W.A. Goddard, III, unpublished.) to study the structural phase transformations in silica under various pressure loading conditions. The specific transformations we studied are α-quartz to stishovite, coesite to stishovite and fused glass to stishovite-like dense, a dominantly six-coordinated glassy phase. Molecular dynamics simulations are performed under the constant loading rates ranging from 0.1 GPa/ps to 2.0 GPa/ps, pressures upto 100 GPa and at temperatures 300, 500, 700 and 900 K. We observe the crystal to crystal transformations to occur reconstructively, whereas it occurs in a smooth and displacive manner from glass to a stishovite-like phase confirming earlier conjectures. (E.M. Stolper and T.J. Ahrens, Geophys. Res. Let.) 14, 1231 (1987). To elucidate the shock loading experiments, we studied the dependence of transition pressure on the loading rate and the temperature. To assess the hysterisis effect we also studied the unloading behavior of each transformation.

  10. System simulation of direct-current speed regulation based on Simulink

    NASA Astrophysics Data System (ADS)

    Yang, Meiying

    2018-06-01

    Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.

  11. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    PubMed

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  13. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    PubMed

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  14. Lethal Crimean-Congo Hemorrhagic Fever Virus Infection in Interferon α/β Receptor Knockout Mice Is Associated With High Viral Loads, Proinflammatory Responses, and Coagulopathy

    PubMed Central

    Zivcec, Marko; Safronetz, David; Scott, Dana; Robertson, Shelly; Ebihara, Hideki; Feldmann, Heinz

    2013-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a widely distributed viral hemorrhagic fever characterized by rapid onset of flu-like symptoms often followed by hemorrhagic manifestations. CCHF virus (CCHFV), a bunyavirus in the Nairovirus genus, is capable of infecting a wide range of mammalian hosts in nature but so far only causes disease in humans. Recently, immunocompromised mice have been reported as CCHF disease models, but detailed characterization is lacking. Here, we closely followed infection and disease progression in CCHFV-infected interferon α/β receptor knockout (IFNAR−/−) mice and age-matched wild-type (WT) mice. WT mice quickly clear CCHFV without developing any disease signs. In contrast, CCHFV infected IFNAR−/− mice develop an acute fulminant disease with high viral loads leading to organ pathology (liver and lymphoid tissues), marked proinflammatory host responses, severe thrombocytopenia, coagulopathy, and death. Disease progression closely mimics hallmarks of human CCHF disease, making IFNAR−/− mice an excellent choice to assess medical countermeasures. PMID:23417661

  15. A continually online-trained neural network controller for brushless DC motor drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubaai, A.; Kotaru, R.; Kankam, M.D.

    2000-04-01

    In this paper, a high-performance controller with simultaneous online identification and control is designed for brushless dc motor drives. The dynamics of the motor/load are modeled online, and controlled using two different neural network based identification and control schemes, as the system is in operation. In the first scheme, an attempt is made to control the rotor angular speed, utilizing a single three-hidden-layer network. The second scheme attempts to control the stator currents, using a predetermined control law as a function of the estimated states. This schemes incorporates three multilayered feedforward neural networks that are online trained, using the Levenburg-Marquadtmore » training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories after relatively short online training periods. The control strategy adapts to the uncertainties of the motor/load dynamics and, in addition, learns their inherent nonlinearities. Simulation results illustrated that a neurocontroller used in conjunction with adaptive control schemes can result in a flexible control device which may be utilized in a wide range of environments.« less

  16. Mechanical Behavior of Fabric-Film Laminates

    NASA Technical Reports Server (NTRS)

    Said, Magdi S.

    1999-01-01

    Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.

  17. Retention and effective diffusion of model metabolites on porous graphitic carbon.

    PubMed

    Lunn, Daniel B; Yun, Young J; Jorgenson, James W

    2017-12-29

    The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Methodology for Flight-Time Identification of Helicopter-Slung Load Frequency Response Characteristics Using CIFER

    NASA Technical Reports Server (NTRS)

    Sahai, Ranjana; Pierce, Larry; Cicolani, Luigi; Tischler, Mark

    1998-01-01

    Helicopter slung load operations are common in both military and civil contexts. The slung load adds load rigid body modes, sling stretching, and load aerodynamics to the system dynamics, which can degrade system stability and handling qualities, and reduce the operating envelope of the combined system below that of the helicopter alone. Further, the effects of the load on system dynamics vary significantly among the large range of loads, slings, and flight conditions that a utility helicopter will encounter in its operating life. In this context, military helicopters and loads are often qualified for slung load operations via flight tests which can be time consuming and expensive. One way to reduce the cost and time required to carry out these tests and generate quantitative data more readily is to provide an efficient method for analysis during the flight, so that numerous test points can be evaluated in a single flight test, with evaluations performed in near real time following each test point and prior to clearing the aircraft to the next point. Methodology for this was implemented at Ames and demonstrated in slung load flight tests in 1997 and was improved for additional flight tests in 1999. The parameters of interest for the slung load tests are aircraft handling qualities parameters (bandwidth and phase delay), stability margins (gain and phase margin), and load pendulum roots (damping and natural frequency). A procedure for the identification of these parameters from frequency sweep data was defined using the CIFER software package. CIFER is a comprehensive interactive package of utilities for frequency domain analysis previously developed at Ames for aeronautical flight test applications. It has been widely used in the US on a variety of aircraft, including some primitive flight time analysis applications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007;more » Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007;more » Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.« less

  1. Progressive Damage and Failure Analysis of Composite Laminates

    NASA Astrophysics Data System (ADS)

    Joseph, Ashith P. K.

    Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis tool is validated by comparing the simulations against experiments for a selected number of quasi-static loading cases.

  2. Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease

    PubMed Central

    Zou, F.; Carrasquillo, M. M.; Pankratz, V. S.; Belbin, O.; Morgan, K.; Allen, M.; Wilcox, S. L.; Ma, L.; Walker, L. P.; Kouri, N.; Burgess, J. D.; Younkin, L. H.; Younkin, Samuel G.; Younkin, C. S.; Bisceglio, G. D.; Crook, J. E.; Dickson, D. W.; Petersen, R. C.; Graff-Radford, N.; Younkin, Steven G.; Ertekin-Taner, N.

    2010-01-01

    Background: Late-onset Alzheimer disease (LOAD) is a common disorder with a substantial genetic component. We postulate that many disease susceptibility variants act by altering gene expression levels. Methods: We measured messenger RNA (mRNA) expression levels of 12 LOAD candidate genes in the cerebella of 200 subjects with LOAD. Using the genotypes from our LOAD genome-wide association study for the cis-single nucleotide polymorphisms (SNPs) (n = 619) of these 12 LOAD candidate genes, we tested for associations with expression levels as endophenotypes. The strongest expression cis-SNP was tested for AD association in 7 independent case-control series (2,280 AD and 2,396 controls). Results: We identified 3 SNPs that associated significantly with IDE (insulin degrading enzyme) expression levels. A single copy of the minor allele for each significant SNP was associated with ∼twofold higher IDE expression levels. The most significant SNP, rs7910977, is 4.2 kb beyond the 3′ end of IDE. The association observed with this SNP was significant even at the genome-wide level (p = 2.7 × 10−8). Furthermore, the minor allele of rs7910977 associated significantly (p = 0.0046) with reduced LOAD risk (OR = 0.81 with a 95% CI of 0.70-0.94), as expected biologically from its association with elevated IDE expression. Conclusions: These results provide strong evidence that IDE is a late-onset Alzheimer disease (LOAD) gene with variants that modify risk of LOAD by influencing IDE expression. They also suggest that the use of expression levels as endophenotypes in genome-wide association studies may provide a powerful approach for the identification of disease susceptibility alleles. GLOSSARY AD = Alzheimer disease; CI = confidence interval; GWAS = genome-wide association study; LOAD = late-onset Alzheimer disease; mRNA = messenger RNA; OR = odds ratio; SNP = single nucleotide polymorphism. PMID:20142614

  3. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  4. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.

    PubMed

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  5. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    NASA Astrophysics Data System (ADS)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

  6. Specimens and Reusable Fixturing for Testing Advanced Aeropropulsion Materials Under In-Plane Biaxial Loading. Part 1; Results of Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.; Sandlass, G. S.; Bayyari, M.

    2001-01-01

    A design study was undertaken to investigate the feasibility of using simple specimen designs and reusable fixturing for in-plane biaxial tests planned for advanced aeropropulsion materials. Materials of interest in this work include: advanced metallics, polymeric matrix composites, metal and intermetallic matrix composites, and ceramic matrix composites. Early experience with advanced metallics showed that the cruciform specimen design typically used in this type of testing was impractical for these materials, primarily because of concerns regarding complexity and cost. The objective of this research was to develop specimen designs, fixturing, and procedures which would allow in-plane biaxial tests to be conducted on a wide range of aeropropulsion materials while at the same time keeping costs within acceptable limits. With this goal in mind. a conceptual design was developed centered on a specimen incorporating a relatively simple arrangement of slots and fingers for attachment and loading purposes. The ANSYS finite element code was used to demonstrate the feasibility of the approach and also to develop a number of optimized specimen designs. The same computer code was used to develop the reusable fixturing needed to position and grip the specimens in the load frame. The design adopted uses an assembly of slotted fingers which can be reconfigured as necessary to obtain optimum biaxial stress states in the specimen gage area. Most recently, prototype fixturing was manufactured and is being evaluated over a range of uniaxial and biaxial loading conditions.

  7. Concentrations and loads of PCBs, dioxins, PAHs, PBDEs, OC pesticides and pyrethroids during storm and low flow conditions in a small urban semi-arid watershed.

    PubMed

    Gilbreath, Alicia N; McKee, Lester J

    2015-09-01

    Urban runoff has been identified in water quality policy documents for San Francisco Bay as a large and potentially controllable source of pollutants. In response, concentrations of suspended sediments and a range of trace organic pollutants were intensively measured in dry weather and storm flow runoff from a 100% urban watershed. Flow in this highly urban watershed responded very quickly to rainfall and varied widely resulting in rapid changes of turbidity, suspended sediments and pollutant concentrations. Concentrations of each organic pollutant class were within similar ranges reported in other studies of urban runoff, however comparison was limited for several of the pollutants given information scarcity. Consistently among PCBs, PBDEs, and PAHs, the more hydrophobic congeners were transported in larger proportions during storm flows relative to low flows. Loads for Water Years 2007-2010 were estimated using regression with turbidity during the monitored months and a flow weighted mean concentration for unmonitored dry season months. More than 91% of the loads for every pollutant measured were transported during storm events, along with 87% of the total discharge. While this dataset fills an important local data gap for highly urban watersheds of San Francisco Bay, the methods, the uniqueness of the analyte list, and the resulting interpretations have applicability for managing pollutant loads in urban watersheds in other parts of the world. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fire resistivity and toxicity studies of candidate aircraft passenger seat materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Trabold, E. L.; Spieth, H.

    1978-01-01

    Fire resistivity studies were conducted on a wide range of candidate nonmetallic materials being considered for the construction of improved fire resistant aircraft passenger seats. These materials were evaluated on the basis of FAA airworthiness burn and smoke generation tests, colorfastness, limiting oxygen index, and animal toxicity tests. Physical, mechanical, and aesthetic properties were also assessed. Candidate seat materials that have significantly improved thermal response to various thermal loads corresponding to reasonable fire threats as they relate to in-flight fire situations, are identified.

  9. A Comparison of Lifting-Line and CFD Methods with Flight Test Data from a Research Puma Helicopter

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Young, Colin; Toulmay, Francois; Gilbert, Neil E.; Strawn, Roger C.; Miller, Judith V.; Maier, Thomas H.; Costes, Michel; Beaumier, Philippe

    1996-01-01

    Four lifting-line methods were compared with flight test data from a research Puma helicopter and the accuracy assessed over a wide range of flight speeds. Hybrid Computational Fluid Dynamics (CFD) methods were also examined for two high-speed conditions. A parallel analytical effort was performed with the lifting-line methods to assess the effects of modeling assumptions and this provided insight into the adequacy of these methods for load predictions.

  10. Some recent developments in spacecraft environmental control/life support subsystems

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Olcott, T. M.

    1974-01-01

    The subsystems considered include a flash evaporator for heat rejection, a regenerable carbon dioxide and humidity control subsystem, an iodinating subsystem for potable water, a cabin contaminant control subsystem, and a wet oxidation subsystem for processing spacecraft wastes. The flash evaporator discussed is a simple unit which efficiently controls life support system temperatures over a wide range of heat loads. For certain advanced spacecraft applications the control of cabin carbon dioxide and humidity can be successfully achieved by a regenerable solid amine subsystem.

  11. Experimental and analytical studies of a model helicopter rotor in hover

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1981-01-01

    A benchmark test to aid the development of various rotor performance codes was conducted. Simultaneous blade pressure measurements and tip vortex surveys were made for a wide range of tip Mach numbers including the transonic flow regime. The measured tip vortex strength and geometry permit effective blade loading predictions when used as input to a prescribed wake lifting surface code. It is also shown that with proper inflow and boundary layer modeling, the supercritical flow regime can be accurately predicted.

  12. Volttron version 5.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.

  13. The assessment of engine losses due to friction and lubricant limitations. Final report May 80-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.

    A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less

  14. Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite → Calcite Recrystallization-Mediated Release Performance.

    PubMed

    Sergeeva, Alena; Sergeev, Roman; Lengert, Ekaterina; Zakharevich, Andrey; Parakhonskiy, Bogdan; Gorin, Dmitry; Sergeev, Sergey; Volodkin, Dmitry

    2015-09-30

    Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation.

  15. Design and analysis of composite structures with stress concentrations

    NASA Technical Reports Server (NTRS)

    Garbo, S. P.

    1983-01-01

    An overview of an analytic procedure which can be used to provide comprehensive stress and strength analysis of composite structures with stress concentrations is given. The methodology provides designer/analysts with a user-oriented procedure which, within acceptable engineering accuracy, accounts for the effects of a wide range of application design variables. The procedure permits the strength of arbitrary laminate constructions under general bearing/bypass load conditions to be predicted with only unnotched unidirectional strength and stiffness input data required. Included is a brief discussion of the relevancy of this analysis to the design of primary aircraft structure; an overview of the analytic procedure with theory/test correlations; and an example of the use and interaction of this strength analysis relative to the design of high-load transfer bolted composite joints.

  16. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  17. Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures

    USGS Publications Warehouse

    Koch, Benjamin J.; Febria, Catherine M.; Cooke, Roger M.; Hosen, Jacob D.; Baker, Matthew E.; Colson, Abigail R.; Filoso, Solange; Hayhoe, Katharine; Loperfido, J. V.; Stoner, Anne M.K.; Palmer, Margaret A.

    2015-01-01

    Expert knowledge indicated wide uncertainty in BMP performance, with N removal efficiencies ranging from <0% (BMP acting as a source of N during a rain event) to >40%. Experts believed that the amount of rain was the primary identifiable source of variability in BMP efficiency, which is relevant given climate projections of more frequent heavy rain events in the mid-Atlantic. To assess the extent to which those projected changes might alter N export from suburban BMPs and watersheds, we combined downscaled estimates of rainfall with distributions of N loads for different-sized rain events derived from our elicitation. The model predicted higher and more variable N loads under a projected future climate regime, suggesting that current BMP regulations for reducing nutrients may be inadequate in the future.

  18. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  19. Influence of the optimization methods on neural state estimation quality of the drive system with elasticity.

    PubMed

    Orlowska-Kowalska, Teresa; Kaminski, Marcin

    2014-01-01

    The paper deals with the implementation of optimized neural networks (NNs) for state variable estimation of the drive system with an elastic joint. The signals estimated by NNs are used in the control structure with a state-space controller and additional feedbacks from the shaft torque and the load speed. High estimation quality is very important for the correct operation of a closed-loop system. The precision of state variables estimation depends on the generalization properties of NNs. A short review of optimization methods of the NN is presented. Two techniques typical for regularization and pruning methods are described and tested in detail: the Bayesian regularization and the Optimal Brain Damage methods. Simulation results show good precision of both optimized neural estimators for a wide range of changes of the load speed and the load torque, not only for nominal but also changed parameters of the drive system. The simulation results are verified in a laboratory setup.

  20. Large-scale 3D modeling of projectile impact damage in brittle plates

    NASA Astrophysics Data System (ADS)

    Seagraves, A.; Radovitzky, R.

    2015-10-01

    The damage and failure of brittle plates subjected to projectile impact is investigated through large-scale three-dimensional simulation using the DG/CZM approach introduced by Radovitzky et al. [Comput. Methods Appl. Mech. Eng. 2011; 200(1-4), 326-344]. Two standard experimental setups are considered: first, we simulate edge-on impact experiments on Al2O3 tiles by Strassburger and Senf [Technical Report ARL-CR-214, Army Research Laboratory, 1995]. Qualitative and quantitative validation of the simulation results is pursued by direct comparison of simulations with experiments at different loading rates and good agreement is obtained. In the second example considered, we investigate the fracture patterns in normal impact of spheres on thin, unconfined ceramic plates over a wide range of loading rates. For both the edge-on and normal impact configurations, the full field description provided by the simulations is used to interpret the mechanisms underlying the crack propagation patterns and their strong dependence on loading rate.

  1. Effective Widths of Compression-Loaded Plates With a Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2000-01-01

    A study of the effects of cutouts and laminate construction on the prebuckling and initial postbuckling stiffnesses, and the effective widths of compression-loaded, laminated-composite and aluminum square plates is presented. The effective-width concept is extended to plates with cutouts, and experimental and nonlinear finite-element analysis results are presented. Behavioral trends are compared for seven plate families and for cutout-diameter-to-plate-width ratios up to 0.66. A general compact design curve that can be used to present and compare the effective widths for a wide range of laminate constructions is also presented. A discussion of how the results can be used and extended to include certain types of damage, cracks, and other structural discontinuities or details is given. Several behavioral trends are described that initially appear to be nonintuitive. The results demonstrate a complex interaction between cutout size and plate orthotropy that affects the axial stiffness and effective width of a plate subjected to compression loads.

  2. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  3. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: An empirical modeling approach

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.

    2008-01-01

    Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.

  4. Nutrient Loadings to Streams of the Continental United States from Municipal and Industrial Effluent

    USGS Publications Warehouse

    Maupin, M.A.; Ivahnenko, T.

    2011-01-01

    Data from the United States Environmental Protection Agency Permit Compliance System national database were used to calculate annual total nitrogen (TN) and total phosphorus (TP) loads to surface waters from municipal and industrial facilities in six major regions of the United States for 1992, 1997, and 2002. Concentration and effluent flow data were examined for approximately 118,250 facilities in 45 states and the District of Columbia. Inconsistent and incomplete discharge locations, effluent flows, and effluent nutrient concentrations limited the use of these data for calculating nutrient loads. More concentrations were reported for major facilities, those discharging more than 1million gallons per day, than for minor facilities, and more concentrations were reported for TP than for TN. Analytical methods to check and improve the quality of the Permit Compliance System data were used. Annual loads were calculated using "typical pollutant concentrations" to supplement missing concentrations based on the type and size of facilities. Annual nutrient loads for over 26,600 facilities were calculated for at least one of the three years. Sewage systems represented 74% of all TN loads and 58% of all TP loads. This work represents an initial set of data to develop a comprehensive and consistent national database of point-source nutrient loads. These loads can be used to inform a wide range of water-quality management, watershed modeling, and research efforts at multiple scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  5. From a black-box to a glass-box system: the attempt towards a plant-wide automation concept for full-scale biogas plants.

    PubMed

    Wiese, J; König, R

    2009-01-01

    Biogas plants gain worldwide increasing importance due to several advantages. However, concerning the equipment most of the existing biogas plants are low-tech plants. E.g., from the point of view of instrumentation, control and automation (ICA) most plants are black-box systems. Consequently, practice shows that many biogas plants are operated sub-optimally and/or in critical (load) ranges. To solve these problems, some new biogas plants have been equipped with modern machines and ICA equipment. In this paper, the authors will show details and discuss operational results of a modern agricultural biogas plant and the resultant opportunities for the implementation of a plant-wide automation.

  6. An Approximate Solution and Master Curves for Buckling of Symmetrically Laminated Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.

  7. The effect of a concurrent working memory task and temporal offsets on the integration of auditory and visual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2012-01-01

    Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.

  8. Are external knee load and EMG measures accurate indicators of internal knee contact forces during gait?

    PubMed

    Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J

    2013-06-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.

  9. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  10. Design and development of line type modulators for high impedance electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Kavita P.; Tillu, Abhijit; Chavan, Ramchandra

    Conventional line type modulators are routinely used for powering pulsed power microwave devices such as magnetrons and klystrons used for radar, medical and scientific applications. The load impedance (operating point) is fairly well defined in these cases, and makes the design of the discharging circuit of the modulator straight forward. This paper describes the Line type modulators that have been developed and being routinely used for powering the Triode Electron Gun of industrial electron linacs. The beam parameters of such guns are user defined and the pulse current varies from few mA to 800mA (typ). The beam energies requirement variesmore » from 40 keV to 80 keV. Hence the impedance offered by the electron gun to the power source (modulator) is not well defined. The load capacitance which is inclusive of the various stray capacitances along with the intrinsic gun capacitance is ∼ 200-400 pF. This capacitance, which depends on the configuration, shunts the load and makes the effective load highly capacitive with the resistive part varying over a wide range. The paper describes the design and development of conventional line type modulators for powering Electron gun load of the type described above. (author)« less

  11. Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow

    NASA Astrophysics Data System (ADS)

    Abrahams, A. D.; Gao, P.

    2001-12-01

    The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, D.W.; Tompkins, T.A.; Pratapas, J.M.

    The Coal Quality Impact Model (CQIM{trademark}) was used to evaluate the economic and performance impacts of gas co-firing at Mississippi Power Company`s Plant Watson. One of the most important benefits of gas co-firing considered was the ability to burn lower quality, less expensive fuels. Four coals and petroleum coke were evaluated at 0, 5, 10, 20, and 30 percent gas co-firing. These fuels vary widely in their geographic source, heating value, moisture, volatile matter, and sulfur contents. Performance and economic evaluations were conducted at individual load points of 100, 75, 50, 40, 30, and 20 percent of full load. Additionalmore » analyses were made for seasonal load-demand curves and for an average annual load-demand curve. Operating cost in $/MWh, net plant heat rate in Btu/kWh, and break-even gas price in $/MBtu are presented as a function of load and percent gas co-firing. Results illustrate that with the Illinois Basin Coal currently burned at Plant Watson, gas co-firing can be economically justified over a range of gas market prices on either an annual or seasonal basis. Other findings indicate that petroleum coke and South American coal co-fired with natural gas offer significant fuel cost savings and are attractive candidate fuels for combustion verification testing.« less

  13. A testing platform for durability studies of polymers and fiber-reinforced polymer composites under concurrent hygrothermo-mechanical stimuli.

    PubMed

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-12-11

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus.

  14. A Testing Platform for Durability Studies of Polymers and Fiber-reinforced Polymer Composites under Concurrent Hygrothermo-mechanical Stimuli

    PubMed Central

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-01-01

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus. PMID:25548950

  15. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  16. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study

    PubMed Central

    2012-01-01

    Background The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Methods Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Results Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Conclusions Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks. PMID:22730909

  17. Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

    NASA Astrophysics Data System (ADS)

    Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.

    2016-09-01

    There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

  18. Annual Nutrient Loadings, Primary Productivity, and Trophic State of Lake Koocanusa, Montana and British Columbia, 1972-80

    USGS Publications Warehouse

    Woods, Paul F.

    1982-01-01

    Limnological data collected at Lake Koocanusa were used to investigate the relationship of nutrient loadings, primary productivity, and trophic state of the reservoir during 1972-80. The reservoir, on the Kootenai River, was impounded by Libby Dam on March 21, 1972. Manipulation of the 7.16-cubic-kilometer reservoir for flood control, its primary function, created large fluctuations in reservoir volume and produced annual lake-filling times that ranged from 0.14 to 0.66 year. Loadings of nitrogen and phosphorus prior to and following impoundment of Lake Koocanusa were found to be large enough to predict eutrophic conditions. Beginning in 1976, total phosphorus loadings, but not total nitrogen loadings, were substantially reduced following improvements in waste-water treatment at a fertilizer plant located upstream from the reservoir. The closure of Libby Dam substantially reduced loadings of nitrogen and phosphorus downstream from Lake Koocanusa. On the average, the reservoir retained 63 percent of its influent loading of total phosphorus and 25 percent of its influent loading of total nitrogen. Daily areal and volumetric primary productivity varied widely in each year at four sampled limnological stations. During the 9 years studied, daily areal primary productivity, in milligrams of carbon fixed per square meter, ranged from 0.4 to 420.0; the mean of the 313 sampled days was 128.5. Annual areal primary productivity ranged from 23.2 to 38.5 grams of carbon fixed per square meter and thereby categorized Lake Koocanusa as oligotrophic. The relationship of annual areal primary productivity and 12 selected environmental variables was determined by multiple regression analysis. One of the models that was derived used two variables-annual euphotic zone depth and annual areal phosphorus loading-and accounted for 62.0 percent of the variation in annual areal primary productivity. The distribution of chlorophyll a within the water column indicated that, on the average, more than one-half of the phytoplankton in the reservoir was beneath the euphotic zone. These results support the hypothesis that the reservoir's weak thermal structure had allowed circulation of phytoplankton out of the euphotic zone. The trophic state of Lake Koocanusa was categorized as eutrophic when based on the relationship of the nutrient loadings and the reservoir's ratio of mean depth to hydraulic-residence time. This result conflicted with the oligotrophic ranking the reservoir received based on its areal primary productivity. The discrepancy in trophic state was attributed mainly to the failure of nutrient loading models to adequately account for physical processes within reservoirs. Part of the nutrient loading that entered Lake Koocanusa was unavailable to phytoplankton because the nutrients were carried beneath the euphotic zone by large volumes of interflow and underflow. Another part of the nutrient loading was adsorbed to suspended sediment and removed from the water column. Thus, phytoplankton primary productivity was controlled not only by nutrients, but also by other limno logical processes.

  19. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    PubMed

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  20. Research on parallel load sharing principle of piezoelectric six-dimensional heavy force/torque sensor

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min

    2011-01-01

    In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.

  1. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  2. New 50-M-Class Single Dish Telescope: Large Submillimeter Telescope (LST)

    NASA Astrophysics Data System (ADS)

    Kawabe, Ryohei

    2018-01-01

    We report on the plan to construct a 50 m class millimeter (mm) and sub-mm single dish telescope, the Large Submillimeter Telescope (LST). The telescope is optimized for wide-area imaging and spectroscopic surveys in the 70 to 420 GHz main frequency range, which just covers main atmospheric windows at millimeter and submillimeter wavelengths for good observing sites such as the ALMA site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner part high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time domain science. With exploiting synergy with ALMA and other telescopes, LST can contribute to a wide range of topics in astronomy and astrophysics, e.g., astrochemistry, star formation in the Galaxy and galaxies, evolution of galaxy clusters via SZ effect. We also report the recent progress on the technical study, e.g., the tentative study of the surface error budget and challenges to correction for the wind-load effect.

  3. Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity.

    PubMed

    Liu, Y; Gibson, E R; Cain, J P; Wang, H; Grassian, V H; Laskin, A

    2008-02-21

    Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of Dp = 0.85 mum, particle loading densities 2 x 104 /= 0.06 (x3//2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gammanet >/= 0.003 at RH = 10% to 0.21 at 80%.

  4. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    NASA Astrophysics Data System (ADS)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  5. Impact of nitrogen deposition at the species level.

    PubMed

    Payne, Richard J; Dise, Nancy B; Stevens, Carly J; Gowing, David J

    2013-01-15

    In Europe and, increasingly, the rest of the world, the key policy tool for the control of air pollution is the critical load, a level of pollution below which there are no known significant harmful effects on the environment. Critical loads are used to map sensitive regions and habitats, permit individual polluting activities, and frame international negotiations on transboundary air pollution. Despite their fundamental importance in environmental science and policy, there has been no systematic attempt to verify a critical load with field survey data. Here, we use a large dataset of European grasslands along a gradient of nitrogen (N) deposition to show statistically significant declines in the abundance of species from the lowest level of N deposition at which it is possible to identify a change. Approximately 60% of species change points occur at or below the range of the currently established critical load. If this result is found more widely, the underlying principle of no harm in pollution policy may need to be modified to one of informed decisions on how much harm is acceptable. Our results highlight the importance of protecting currently unpolluted areas from new pollution sources, because we cannot rule out ecological impacts from even relatively small increases in reactive N deposition.

  6. Dynamic Stall Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste <0.5) results in oscillatory aerodynamic loads in the stalled stage of dynamic stall; (b) All excitation resulted in earlier flow reattachment; and (c) Excitation at progressively higher Ste weakened and eventually eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  7. The influence of the glycaemic load of breakfast on the behaviour of children in school.

    PubMed

    Benton, David; Maconie, Alys; Williams, Claire

    2007-11-23

    The impact of breakfasts of different glycaemic loads on the performance of nineteen children, aged six to seven years, was explored. Over a four week period, children attended a school breakfast club each day and ate one of three meals. Each meal offered a similar amount of energy but differed in their glycaemic load. When working individually, the behaviour of a child was rated in the classroom every ten seconds for 30 min to produce a measure of time spent on task. Memory was assessed by asking for the recall of a series of objects. The ability to sustain attention was measured by asking for a response after various delays. The incidence of negative behaviour was recorded when playing a video game that was too difficult to allow success. Two to three hours after a low glycaemic load breakfast had been consumed, performance on the tests of memory and the ability to sustain attention were better, fewer signs of frustration were displayed and initially more time was spent on task when working individually in class. The importance of the results was discussed in the context of the wide range of factors that influence behaviour in school.

  8. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    PubMed

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  9. Potential effects of structural controls and street sweeping on stormwater loads to the lower Charles River, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Breault, Robert F.; Weiskel, Peter K.

    2002-01-01

    The water quality of the lower Charles River is periodically impaired by combined sewer overflows (CSOs) and non-CSO stormwater runoff. This study examined the potential non-CSO load reductions of suspended solids, fecal coliform bacteria, total phosphorus, and total lead that could reasonably be achieved by implementation of stormwater best management practices, including both structural controls and systematic street sweeping. Structural controls were grouped by major physical or chemical process; these included infiltration-filtration (physical separation), biofiltration-bioretention (biological mechanisms), or detention-retention (physical settling). For each of these categories, upper and lower quartiles, median, and average removal efficiencies were compiled from three national databases of structural control performance. Removal efficiencies obtained indicated a wide range of performance. Removal was generally greatest for infiltration-filtration controls and suspended solids, and least for biofiltration-bioretention controls and fecal coliform bacteria. Street sweeping has received renewed interest as a water-quality control practice because of reported improvements in sweeper technology and the recognition that opportunities for implementing structural controls are limited in highly urbanized areas. The Stormwater Management Model that was developed by the U.S. Geological Survey for the lower Charles River Watershed was modified to simulate the effects of street sweeping in a single-family land-use basin. Constituent buildup and washoff variable values were calibrated to observed annual and storm-event loads. Once calibrated, the street sweeping model was applied to various permutations of four sweeper efficiencies and six sweeping frequencies that ranged from every day to once every 30 days. Reduction of constituent loads to the lower Charles River by the combined hypothetical practices of structural controls and street sweeping was estimated for a range of removal efficiencies because of their inherent variability and uncertainty. This range of efficiencies, with upper and lower estimates, provides reasonable bounds on the load that could be removed by the practices examined. The upper estimated load reduction from combined street sweeping and structural controls, as a percentage of the total non-CSO load entering the lower Charles River downstream of Watertown Dam, was 44 percent for suspended solids, 34 percent for total lead, 14 percent for total phosphorus, and 17 percent for fecal coliform bacteria. The lower estimated load reduction from combined street sweeping and structural controls from non-CSO sources downstream of Watertown Dam, was 14 percent for suspended solids, 11 percent for total lead, 4.9 percent for total phosphorus, and 7.5 percent for fecal coliform bacteria. Load reductions by these combined management practices can be a small as 1.4 percent for total phosphorus to about 4 percent for the other constituents if the total load above Watertown Dam is added to the load from below the dam. Although the reductions in stormwater loads to the lower Charles River from the control practices examined appear to be minor, these practices would likely provide water-quality benefits to portions of the river during those times that they are most impaired-during and immediately after storms. It should also be recognized that only direct measurements of changes in stormwater loads before and after implementation of control practices can provide definitive evidence of the beneficial effects of these practices on water-quality conditions in the lower Charles River.

  10. DISCOUNTING OF DELAYED AND PROBABILISTIC LOSSES OVER A WIDE RANGE OF AMOUNTS

    PubMed Central

    Green, Leonard; Myerson, Joel; Oliveira, Luís; Chang, Seo Eun

    2014-01-01

    The present study examined delay and probability discounting of hypothetical monetary losses over a wide range of amounts (from $20 to $500,000) in order to determine how amount affects the parameters of the hyperboloid discounting function. In separate conditions, college students chose between immediate payments and larger, delayed payments and between certain payments and larger, probabilistic payments. The hyperboloid function accurately described both types of discounting, and amount of loss had little or no systematic effect on the degree of discounting. Importantly, the amount of loss also had little systematic effect on either the rate parameter or the exponent of the delay and probability discounting functions. The finding that the parameters of the hyperboloid function remain relatively constant across a wide range of amounts of delayed and probabilistic loss stands in contrast to the robust amount effects observed with delayed and probabilistic rewards. At the individual level, the degree to which delayed losses were discounted was uncorrelated with the degree to which probabilistic losses were discounted, and delay and probability loaded on two separate factors, similar to what is observed with delayed and probabilistic rewards. Taken together, these findings argue that although delay and probability discounting involve fundamentally different decision-making mechanisms, nevertheless the discounting of delayed and probabilistic losses share an insensitivity to amount that distinguishes it from the discounting of delayed and probabilistic gains. PMID:24745086

  11. The spatial epidemiology of cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) use: a demonstration using a population measure of community drug load derived from municipal wastewater.

    PubMed

    Banta-Green, Caleb J; Field, Jennifer A; Chiaia, Aurea C; Sudakin, Daniel L; Power, Laura; de Montigny, Luc

    2009-11-01

    To determine the utility of community-wide drug testing with wastewater samples as a population measure of community drug use and to test the hypothesis that the association with urbanicity would vary for three different stimulant drugs of abuse. Single-day samples were obtained from a convenience sample of 96 municipalities representing 65% of the population of the State of Oregon. Chemical analysis of 24-hour composite influent samples for benzoylecgonine (BZE, a cocaine metabolite), methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). The distribution of community index drug loads accounting for total wastewater flow (i.e. dilution) and population are reported. The distribution of wastewater-derived drug index loads was found to correspond with expected epidemiological drug patterns. Index loads of BZE were significantly higher in urban areas and below detection in many rural areas. Conversely, methamphetamine was present in all municipalities, with no significant differences in index loads by urbanicity. MDMA was at quantifiable levels in fewer than half the communities, with a significant trend towards higher index loads in more urban areas. CONCLUSION; This demonstration provides the first evidence of the utility of wastewater-derived community drug loads for spatial analyses. Such data have the potential to improve dramatically the measurement of the true level and distribution of a range of drugs. Drug index load data provide information for all people in a community and are potentially applicable to a much larger proportion of the total population than existing measures.

  12. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  13. Global and local waveform simulations using the VERCE platform

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2017-04-01

    In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We demonstrate the functionality of the VERCE platform with two use cases, one using the pre-loaded velocity model and mesh for the Maule area of Chile using the SPECFEM3D Cartesian workflow, and one showing the output of a global simulation using the SPECFEM3D globe workflow. It is envisioned that this tool will allow a much greater range of seismologists to access these full waveform inversion tools, and aid full waveform tomographic and source inversion, synthetic shakemap production and other full waveform applications, in a wide range of tectonic settings.

  14. Active transmission isolation/rotor loads measurement system

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Defelice, J. J.

    1973-01-01

    Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.

  15. Large scale clear-water local pier scour experiments

    USGS Publications Warehouse

    Sheppard, D.M.; Odeh, M.; Glasser, T.

    2004-01-01

    Local clear-water scour tests were performed with three different diameter circular piles (0. 114, 0.305, and 0.914 m), three different uniform cohesionless sediment diameters (0.22, 0.80, and 2.90 mm) and a range of water depths and flow velocities. The tests were performed in the 6.1 m wide, 6.4 m deep, and 38.4 m long flume at the United States Geological Survey Conte Research Center in Turners Falls, Mass. These tests extend local scour data obtained in controlled experiments to prototype size piles and ratios of pile diameter to sediment diameter to 4,155. Supply water for this flow through flume was supplied by a hydroelectric power plant reservoir and the concentration of suspended fine sediment (wash load) could not be controlled. Equilibrium scour depths were found to depend on the wash load concentration. ?? ASCE.

  16. Growth Control and Disease Mechanisms in Computational Embryogeny

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.; Yogev, Or; Antonsson, Erik K.

    2008-01-01

    This paper presents novel approach to applying growth control and diseases mechanisms in computational embryogeny. Our method, which mimics fundamental processes from biology, enables individuals to reach maturity in a controlled process through a stochastic environment. Three different mechanisms were implemented; disease mechanisms, gene suppression, and thermodynamic balancing. This approach was integrated as part of a structural evolutionary model. The model evolved continuum 3-D structures which support an external load. By using these mechanisms we were able to evolve individuals that reached a fixed size limit through the growth process. The growth process was an integral part of the complete development process. The size of the individuals was determined purely by the evolutionary process where different individuals matured to different sizes. Individuals which evolved with these characteristics have been found to be very robust for supporting a wide range of external loads.

  17. Pair plasma relaxation time scales.

    PubMed

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  18. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  19. Asymmetric twins in rhombohedral boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Takeshi, E-mail: tfujita@wpi-aimr.tohoku.ac.jp; Guan, Pengfei; Madhav Reddy, K.

    2014-01-13

    Superhard materials consisting of light elements have recently received considerable attention because of their ultrahigh specific strength for a wide range of applications as structural and functional materials. However, the failure mechanisms of these materials subjected to high stresses and dynamic loading remain to be poorly known. We report asymmetric twins in a complex compound, boron carbide (B{sub 4}C), characterized by spherical-aberration-corrected transmission electron microscopy. The atomic structure of boron-rich icosahedra at rhombohedral vertices and cross-linked carbon-rich atomic chains can be clearly visualized, which reveals unusual asymmetric twins with detectable strains along the twin interfaces. This study offers atomic insightsmore » into the structure of twins in a complex material and has important implications in understanding the planar defect-related failure of superhard materials under high stresses and shock loading.« less

  20. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  1. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  2. Dynamic loads on twin jet exhaust nozzles due to shock noise

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Shearin, J. G.

    1986-01-01

    Acoustic near field data were collected with model single and twin jet nozzles to determine if closely spaced nozzles produce higher acoustic loading than do single nozzles. The tests were spurred by structural failure of the B-1 exhaust nozzle external flaps and similar damage on the F-15. The test was performed using two 5/8 in. ID pipes machined and placed side-by-side to mimic B-1 nozzles. A microphone mounted on the internozzle fairing measured acoustic levels near the nozzle exit plane. The nozzles oscillated significantly more than did a single nozzle over a wide range of nozzle pressure ratios. Acoustic levels in the dual jets exceeded single jet noise by as much as 20 dB, making acoustic resonance a definite candidate for structural damage in the twin jet configuration.

  3. Flow Separation Side Loads Excitation of Rocket Nozzle FEM

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John

    2007-01-01

    Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time.

  4. A programmable and self-adjusting class E amplifier for efficient wireless powering of biomedical implants.

    PubMed

    Stoecklin, S; Volk, T; Yousaf, A; Reindl, L

    2015-01-01

    In this paper, an enhanced approach of a class E amplifier being insensitive to coil impedance variations is presented. While state of the art class E amplifiers widely being used to supply implanted systems show a strong degradation of efficiency when powering distance, coil orientation or the implant current consumption deviate from the nominal design, the presented concept is able to detect these deviations on-line and to reconfigure the amplifier automatically. The concept is facilitated by a new approach of sensing the load impedance without interruption of the power supply to the implant, while the main components of the class E amplifier are programmable by software. Therefore, the device is able to perform dynamic impedance matching. Besides presenting the operational principle and the design equations, we show an adaptive prototype reader system which achieves a drain efficiency of up to 92% for a wide range of reflected coil impedances from 1 to 40 Ω. The integrated communication concept allows downlink data rates of up to 500 kBit/s, while the load modulation based uplink from implant to reader was verified of providing up to 1.35 MBit/s.

  5. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  6. Special Considerations in Selection of Fabric Film Laminates for Use in Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Said, Magdi A.

    1999-01-01

    Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.

  7. An analysis of fiber-matrix interface failure stresses for a range of ply stress states

    NASA Technical Reports Server (NTRS)

    Crews, J. H.; Naik, R. A.; Lubowinski, S. J.

    1993-01-01

    A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.

  8. Physician activity during outpatient visits and subjective workload.

    PubMed

    Calvitti, Alan; Hochheiser, Harry; Ashfaq, Shazia; Bell, Kristin; Chen, Yunan; El Kareh, Robert; Gabuzda, Mark T; Liu, Lin; Mortensen, Sara; Pandey, Braj; Rick, Steven; Street, Richard L; Weibel, Nadir; Weir, Charlene; Agha, Zia

    2017-05-01

    We describe methods for capturing and analyzing EHR use and clinical workflow of physicians during outpatient encounters and relating activity to physicians' self-reported workload. We collected temporally-resolved activity data including audio, video, EHR activity, and eye-gaze along with post-visit assessments of workload. These data are then analyzed through a combination of manual content analysis and computational techniques to temporally align streams, providing a range of process measures of EHR usage, clinical workflow, and physician-patient communication. Data was collected from primary care and specialty clinics at the Veterans Administration San Diego Healthcare System and UCSD Health, who use Electronic Health Record (EHR) platforms, CPRS and Epic, respectively. Grouping visit activity by physician, site, specialty, and patient status enables rank-ordering activity factors by their correlation to physicians' subjective work-load as captured by NASA Task Load Index survey. We developed a coding scheme that enabled us to compare timing studies between CPRS and Epic and extract patient and visit complexity profiles. We identified similar patterns of EHR use and navigation at the 2 sites despite differences in functions, user interfaces and consequent coded representations. Both sites displayed similar proportions of EHR function use and navigation, and distribution of visit length, proportion of time physicians attended to EHRs (gaze), and subjective work-load as measured by the task load survey. We found that visit activity was highly variable across individual physicians, and the observed activity metrics ranged widely as correlates to subjective workload. We discuss implications of our study for methodology, clinical workflow and EHR redesign. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Postpollination discrimination between self and outcross pollen covaries with the mating system of a self-compatible flowering plant.

    PubMed

    Cruzan, Mitchell B; Barrett, Spencer C H

    2016-03-01

    Variation in the mating system of hermaphroditic plant populations is determined by interactions between genetic and environmental factors operating via both pre- and postmating processes. Models predicting the maintenance of intermediate outcrossing rates in animal-pollinated plants often assume that the mating system is primarily controlled by floral morphology and pollinator availability, but rarely has the influence of postpollination processes on variation in outcrossing been examined. We investigated the influence of stylar discrimination between illegitimate and legitimate pollen-tube growth and the pollen-load capacity of stigmas on mating-system variation in the annual, tristylous species Eichhornia paniculata using controlled crosses and genetic markers. This species exhibits an exceptionally broad range of outcrossing rates in natural populations. There was significant variation among populations in the pollen-load capacity of stigmas and the ability of styles to discriminate between illegitimate vs. legitimate pollen. There was strong correspondence between stylar-discrimination ability and variation in outcrossing rate among populations and style morphs. The combination of stigmatic pollen-load capacity and stylar discrimination explained more than 80% of the variation in outcrossing rates among populations. The finding that stigmatic pollen-load capacity and stylar-discrimination ability contributed significantly to explaining the wide range of outcrossing rates in E. paniculata suggests that postpollination mechanisms play an important role in governing mating patterns in this species. The difference in levels of stylar discrimination between outcrossing and selfing populations may reflect a trade-off between selection for increased outcrossing and greater reproductive assurance. © 2016 Botanical Society of America.

  10. Force transformation in spider strain sensors: white light interferometry

    PubMed Central

    Schaber, Clemens F.; Gorb, Stanislav N.; Barth, Friedrich G.

    2012-01-01

    Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strain sensors in the spider exoskeleton. Two compound or ‘lyriform’ organs consisting of arrays of closely neighbouring, roughly parallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle, which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organ HS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was as small as 1.4 nm and hardly more than 30 nm, depending on the slit in the array. The corresponding stimulus forces were as small as 0.01 mN. The linearity of the loading curve seems reasonable considering the sensor's relatively narrow biological intensity range of operation. The slits' mechanical sensitivity (slit compression/force) ranged from 106 down to 13 nm mN−1, and gradually decreased with decreasing slit length. (ii) Remarkably, in the vibration-sensitive lyriform organ HS-10 on the metatarsus, the loading curve was exponential. The organ is thus adapted to the detection of a wide range of vibration amplitudes, as they are found under natural conditions. The mechanical sensitivities of the two slits examined in this organ in detail differed roughly threefold (522 and 195 nm mN−1) in the biologically most relevant range, again reflecting stimulus range fractionation among the slits composing the array. PMID:22031733

  11. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  12. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals.

    PubMed

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H

    2014-07-24

    In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.

  13. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  14. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  15. Opto-mechanical design of small infrared cloud measuring device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  16. Microbial Breakdown of Organic Carbon in the Diverse Sediments of Guaymas Basin

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Snider, R.; Arnosti, C.

    2015-12-01

    Guaymas Basin is characterized by sediments under conditions ranging from hemipelagic to hydrothermal. This wide range in geochemical contexts results in diverse microbial communities that may have varying abilities to access organic matter. We can address these functional differences by comparing enzyme activities initializing the breakdown of organic matter across these sediment types; however, previous direct measurements of the extracellular hydrolysis of complex organic carbon in sediments are sparse. We measured this first step of heterotrophic processing of organic matter in sediments at 5-10cm and 55-60cm depth from a wide range of environmental settings in Guaymas Basin. Sediment sources included sulfidic seeps on the Sonora Margin, hemipelagic ridge flank sediments, and hydrothermically altered Sonora Margin sediments bordering a methane seep site. Hydrolysis of organic substrates varied by depth and by sediment source, but despite high energy potential and organic carbon load in sulfidic sediments, activity was not highest where hydrothermal influence was highest. These results suggest that heterotrophic breakdown of organic carbon in Guaymas Basin sediments may be sensitive to factors including varying composition of organic carbon available in different sediment types, or differences in microbial community capacities to access specific organic substrates.

  17. Portable Device Analyzes Rocks and Minerals

    NASA Technical Reports Server (NTRS)

    2008-01-01

    inXitu Inc., of Mountain View, California, entered into a Phase II SBIR contract with Ames Research Center to develop technologies for the next generation of scientific instruments for materials analysis. The work resulted in a sample handling system that could find a wide range of applications in research and industrial laboratories as a means to load powdered samples for analysis or process control. Potential industries include chemical, cement, inks, pharmaceutical, ceramics, and forensics. Additional applications include characterizing materials that cannot be ground to a fine size, such as explosives and research pharmaceuticals.

  18. Efficient and highly enantioselective construction of trifluoromethylated quaternary stereogenic centers via high-pressure mediated organocatalytic conjugate addition of nitromethane to β,β-disubstituted enones.

    PubMed

    Kwiatkowski, Piotr; Cholewiak, Agnieszka; Kasztelan, Adrian

    2014-11-21

    A very effective high-pressure-induced acceleration of asymmetric organocatalytic conjugate addition of nitromethane to sterically congested β,β-disubstituted β-CF3 enones has been developed. A combination of pressure (8-10 kbar) and noncovalent catalysis with low-loading of chiral tertiary amine-thioureas (0.5-3 mol %) is shown to provide very efficient access to a wide range of γ-nitroketones containing trifluoromethylated all-carbon quaternary stereogenic centers in the β-position (80-97%, 92-98% ee).

  19. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1981-01-01

    The results of the completed tests on Stack 561 and the on-going tests of 562 (23 cell stacks of the MK-1 and M-2 designs respectively) are reported and their performance is compared. Results of the on-going endurance test of Stack 560 (5 cell, MK-2) are reported. Plans for fabrication of Stacks 563 and 564 (23 cell stacks of the MK-1 and MK-2 design) are summarized. Results of the burner tests are given. Excellent performance was achieved on simulated anode exhaust gas over very wide load and air/fuel ranges.

  20. XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments

    PubMed Central

    2010-01-01

    We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans. PMID:20214801

  1. XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments.

    PubMed

    Swertz, Morris A; Velde, K Joeri van der; Tesson, Bruno M; Scheltema, Richard A; Arends, Danny; Vera, Gonzalo; Alberts, Rudi; Dijkstra, Martijn; Schofield, Paul; Schughart, Klaus; Hancock, John M; Smedley, Damian; Wolstencroft, Katy; Goble, Carole; de Brock, Engbert O; Jones, Andrew R; Parkinson, Helen E; Jansen, Ritsert C

    2010-01-01

    We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans.

  2. Stress-Dependent Matrix Cracking in 2D Woven SiC-Fiber Reinforced Melt-Infiltrated SiC Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.

  3. Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.

    PubMed

    Avramov, Ivan D

    2003-03-01

    This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.

  4. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting

    NASA Astrophysics Data System (ADS)

    Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.

    2018-02-01

    This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.

  5. Diagnosing acute HIV infection: The performance of quantitative HIV-1 RNA testing (viral load) in the 2014 laboratory testing algorithm.

    PubMed

    Wu, Hsiu; Cohen, Stephanie E; Westheimer, Emily; Gay, Cynthia L; Hall, Laura; Rose, Charles; Hightow-Weidman, Lisa B; Gose, Severin; Fu, Jie; Peters, Philip J

    2017-08-01

    New recommendations for laboratory diagnosis of HIV infection in the United States were published in 2014. The updated testing algorithm includes a qualitative HIV-1 RNA assay to resolve discordant immunoassay results and to identify acute HIV-1 infection (AHI). The qualitative HIV-1 RNA assay is not widely available; therefore, we evaluated the performance of a more widely available quantitative HIV-1 RNA assay, viral load, for diagnosing AHI. We determined that quantitative viral loads consistently distinguished AHI from a false-positive immunoassay result. Among 100 study participants with AHI and a viral load result, the estimated geometric mean viral load was 1,377,793copies/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Field evidences for the positive effects of aerosols on tree growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Wu, Jin; Chen, Min

    Theoretical and eddy-covariance studies demonstrate that aerosol-loading stimulates canopy photosynthesis, but field evidence for the aerosol effect on tree growth is limited. For this study, we measured in-situ daily stem growth rates of aspen trees under a wide range of aerosol-loading in China. The results showed that daily stem growth rates were positively correlated with aerosol-loading, even at exceptionally high aerosol levels. Using structural equation modelling analysis, we showed that variations in stem growth rates can be largely attributed to two environmental variables co-varying with aerosol loading: diffuse fraction of radiation and vapor pressure deficit (VPD). Furthermore, we found thatmore » these two factors influence stem growth by influencing photosynthesis from different parts of canopy. By using field observations and a mechanistic photosynthesis model, we demonstrate that photosynthetic rates of both sun and shade leaves increased under high aerosol-loading conditions but for different reasons. For sun leaves, the photosynthetic increase was primarily attributed to the concurrent lower VPD; for shade leaves, the positive aerosol effect was tightly connected with increased diffuse light. Overall, our study provides the first field-evidence of increased tree growth under high aerosol loading. We highlight the importance of understanding biophysical mechanisms of aerosol-meteorology interactions, and incorporating the different pathways of aerosol effects into earth system models to improve the prediction of large-scale aerosol impacts, and the associated vegetation-mediated climate feedbacks.« less

  7. A web tool for STORET/WQX water quality data retrieval and Best Management Practice scenario suggestion.

    PubMed

    Park, Youn Shik; Engel, Bernie A; Kim, Jonggun; Theller, Larry; Chaubey, Indrajeet; Merwade, Venkatesh; Lim, Kyoung Jae

    2015-03-01

    Total Maximum Daily Load is a water quality standard to regulate water quality of streams, rivers and lakes. A wide range of approaches are used currently to develop TMDLs for impaired streams and rivers. Flow and load duration curves (FDC and LDC) have been used in many states to evaluate the relationship between flow and pollutant loading along with other models and approaches. A web-based LDC Tool was developed to facilitate development of FDC and LDC as well as to support other hydrologic analyses. In this study, the FDC and LDC tool was enhanced to allow collection of water quality data via the web and to assist in establishing cost-effective Best Management Practice (BMP) implementations. The enhanced web-based tool provides use of water quality data not only from the US Geological Survey but also from the Water Quality Portal for the U.S. via web access. Moreover, the web-based tool identifies required pollutant reductions to meet standard loads and suggests a BMP scenario based on ability of BMPs to reduce pollutant loads, BMP establishment and maintenance costs. In the study, flow and water quality data were collected via web access to develop LDC and to identify the required reduction. The suggested BMP scenario from the web-based tool was evaluated using the EPA Spreadsheet Tool for the Estimation of Pollutant Load model to attain the required pollutant reduction at least cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determinants of PCR performance (Xpert MTB/RIF), including bacterial load and inhibition, for TB diagnosis using specimens from different body compartments

    PubMed Central

    Theron, Grant; Peter, Jonny; Calligaro, Greg; Meldau, Richard; Hanrahan, Colleen; Khalfey, Hoosain; Matinyenya, Brian; Muchinga, Tapuwa; Smith, Liezel; Pandie, Shaheen; Lenders, Laura; Patel, Vinod; Mayosi, Bongani M.; Dheda, Keertan

    2014-01-01

    The determinants of Xpert MTB/RIF sensitivity, a widely used PCR test for the diagnosis of tuberculosis (TB) are poorly understood. We compared culture time-to-positivity (TTP; a surrogate of bacterial load), MTB/RIF TB-specific and internal positive control (IPC)-specific CT values, and clinical characteristics in patients with suspected TB who provided expectorated (n = 438) or induced sputum (n = 128), tracheal aspirates (n = 71), bronchoalveolar lavage fluid (n = 152), pleural fluid (n = 76), cerebral spinal fluid (CSF; n = 152), pericardial fluid (n = 131), or urine (n = 173) specimens. Median bacterial load (TTP in days) was the strongest associate of MTB/RIF positivity in each fluid. TTP correlated with CT values in pulmonary specimens but not extrapulmonary specimens (Spearman's coefficient 0.5043 versus 0.1437; p = 0.030). Inhibition affected a greater proportion of pulmonary specimens than extrapulmonary specimens (IPC CT > 34: 6% (47/731) versus 1% (4/381; p < 0.0001). Pulmonary specimens had greater load than extrapulmonary specimens [TTPs (interquartile range) of 11 (7–16) versus 22 (18–33.5) days; p < 0.0001]. HIV-infection was associated with a decreased likelihood of MTB/RIF-positivity in pulmonary specimens but an increased likelihood in extrapulmonary specimens. Mycobacterial load, which displays significant variation across different body compartments, is the main determinant of MTB/RIF-positivity rather than PCR inhibition. MTB/RIF CT is a poor surrogate of load in extrapulmonary specimens. PMID:25014250

  9. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor.

    PubMed

    Terahara, Naoya; Noguchi, Yukina; Nakamura, Shuichi; Kami-Ike, Nobunori; Ito, Masahiro; Namba, Keiichi; Minamino, Tohru

    2017-04-05

    The flagellar motor of Bacillus subtilis possesses two distinct H + -type MotAB and Na + -type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner.

  10. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillus subtilis flagellar motor

    PubMed Central

    Terahara, Naoya; Noguchi, Yukina; Nakamura, Shuichi; Kami-ike, Nobunori; Ito, Masahiro; Namba, Keiichi; Minamino, Tohru

    2017-01-01

    The flagellar motor of Bacillus subtilis possesses two distinct H+-type MotAB and Na+-type MotPS stators. In contrast to the MotAB motor, the MotPS motor functions efficiently at elevated viscosity in the presence of 200 mM NaCl. Here, we analyzed the torque-speed relationship of the Bacillus MotAB and MotPS motors over a wide range of external loads. The stall torque of the MotAB and MotPS motors at high load was about 2,200 pN nm and 220 pN nm, respectively. The number of active stators in the MotAB and MotPS motors was estimated to be about ten and one, respectively. However, the number of functional stators in the MotPS motor was increased up to ten with an increase in the concentration of a polysaccharide, Ficoll 400, as well as in the load. The maximum speeds of the MotAB and MotPS motors at low load were about 200 Hz and 50 Hz, respectively, indicating that the rate of the torque-generation cycle of the MotPS motor is 4-fold slower than that of the MotAB motor. Domain exchange experiments showed that the C-terminal periplasmic domain of MotS directly controls the assembly and disassembly dynamics of the MotPS stator in a load- and polysaccharide-dependent manner. PMID:28378843

  11. Field evidences for the positive effects of aerosols on tree growth

    DOE PAGES

    Wang, Xin; Wu, Jin; Chen, Min; ...

    2018-06-01

    Theoretical and eddy-covariance studies demonstrate that aerosol-loading stimulates canopy photosynthesis, but field evidence for the aerosol effect on tree growth is limited. For this study, we measured in-situ daily stem growth rates of aspen trees under a wide range of aerosol-loading in China. The results showed that daily stem growth rates were positively correlated with aerosol-loading, even at exceptionally high aerosol levels. Using structural equation modelling analysis, we showed that variations in stem growth rates can be largely attributed to two environmental variables co-varying with aerosol loading: diffuse fraction of radiation and vapor pressure deficit (VPD). Furthermore, we found thatmore » these two factors influence stem growth by influencing photosynthesis from different parts of canopy. By using field observations and a mechanistic photosynthesis model, we demonstrate that photosynthetic rates of both sun and shade leaves increased under high aerosol-loading conditions but for different reasons. For sun leaves, the photosynthetic increase was primarily attributed to the concurrent lower VPD; for shade leaves, the positive aerosol effect was tightly connected with increased diffuse light. Overall, our study provides the first field-evidence of increased tree growth under high aerosol loading. We highlight the importance of understanding biophysical mechanisms of aerosol-meteorology interactions, and incorporating the different pathways of aerosol effects into earth system models to improve the prediction of large-scale aerosol impacts, and the associated vegetation-mediated climate feedbacks.« less

  12. Skeletal Adaptation to Daily Activity: A Biochemical Perspective

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Musculoskeletal forces generated by normal daily activity on Earth maintain the functional and structural properties of muscle and bone throughout most of one's adult life. A reduction in the level of cumulative daily loading caused by space flight, bed rest or spinal cord injury induces rapid muscle atrophy, functional changes in muscle, and bone resorption in regions subjected to the reduced loading. Bone cells in culture and bone tissue reportedly respond to a wide variety of non-mechanical and mechanical stimuli ranging, from electromagnetic fields, and hormones to small amplitude, high frequency vibrations, fluid flow, strain rate, and stress/strain magnitude. However, neither the transduction mechanism that transforms the mechanical input into a muscle or bone metabolic response nor the characteristics, of the loading history that directly or indirectly stimulates the cell is known. Identifying the factors contributing to the input stimulus will have a major impact on the design of effective countermeasures for long duration space flight. This talk will present a brief overview of current theories of bone remodeling and functional adaptation to mechanical loading. Work from our lab will be presented from the perspective of daily cumulative loading on Earth and its relationship to bone density and structure. Our objective is to use the tibia and calcaneus as model bone sites of cortical and cancellous bone adaptation, loaded daily by musculoskeletal forces in equilibrium with the ground reaction force. All materials that will be discussed are in the open scientific literature.

  13. A PWM Buck Converter With Load-Adaptive Power Transistor Scaling Scheme Using Analog-Digital Hybrid Control for High Energy Efficiency in Implantable Biomedical Systems.

    PubMed

    Park, Sung-Yun; Cho, Jihyun; Lee, Kyuseok; Yoon, Euisik

    2015-12-01

    We report a pulse width modulation (PWM) buck converter that is able to achieve a power conversion efficiency (PCE) of > 80% in light loads 100 μA) for implantable biomedical systems. In order to achieve a high PCE for the given light loads, the buck converter adaptively reconfigures the size of power PMOS and NMOS transistors and their gate drivers in accordance with load currents, while operating at a fixed frequency of 1 MHz. The buck converter employs the analog-digital hybrid control scheme for coarse/fine adjustment of power transistors. The coarse digital control generates an approximate duty cycle necessary for driving a given load and selects an appropriate width of power transistors to minimize redundant power dissipation. The fine analog control provides the final tuning of the duty cycle to compensate for the error from the coarse digital control. The mode switching between the analog and digital controls is accomplished by a mode arbiter which estimates the average of duty cycles for the given load condition from limit cycle oscillations (LCO) induced by coarse adjustment. The fabricated buck converter achieved a peak efficiency of 86.3% at 1.4 mA and > 80% efficiency for a wide range of load conditions from 45 μA to 4.1 mA, while generating 1 V output from 2.5-3.3 V supply. The converter occupies 0.375 mm(2) in 0.18 μm CMOS processes and requires two external components: 1.2 μF capacitor and 6.8 μH inductor.

  14. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  15. The Effects of Elevated Temperatures on the Response of Resins Under Dynamic and Static Loadings

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2005-01-01

    The overall objective of the research is to experimentally study the combined effects of temperature and strain rate on the response of two resins that are commonly used for the matrix material in composites. The resins are loaded at various temperatures in shear and in tension over a wide range of strain rates. These two types of loadings provide an opportunity to examine also the effect that temperature might have on the effects of the hydrostatic stress component on the material response. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate, and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 10(exp-4)/s and elevated temperatures of 50 and 8OC. The results show that the temperature significantly affects the response of epoxy.

  16. Modeling of plasticity and fracture of metals at shock loading

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.; Khishchenko, K. V.; Levashov, P. R.; Mayer, P. N.

    2013-05-01

    In this paper, we present a model of dislocation plasticity and fracture of metals, which in combination with the wide-range equation of state and the continuum mechanics equations is a necessary component for simulation of the shock-wave loading. We take into account immobilization of dislocations and nucleation of micro-voids in weakened zones of substance; this is distinguished feature of the present version of the model. Accounting of the dislocations immobilization provides a better description of the unloading wave structure, while the detailed consideration of processes in the weakened zones expands the domain of applicability of fracture model to higher strain rates. We compare our results with the experimental data for the shock loading of aluminum, copper, and nickel samples; the comparison indicates satisfactory description of the elastic precursor, unloading wave, and spall pulse. Using the model, we investigate intently the early stage of the shock formation in solids; it is found out that the elastic precursor is formed even for a strong shock wave, and initially the precursor has very large amplitude and propagation velocity.

  17. Modeling the Connectedness Between best Management Practices and Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Anandhi, A.; Bailey, N.; Thomas, M.; Bartnick, B.

    2015-12-01

    The overall goal of this study is to better understand the connectedness between Best management practices (BMPs) and vulnerability assessments (VA) in a changing landuse. Developing this connectedness will help understand key vulnerabilities and improve adaptive capacity important for ecosystem sustainability. BMPs are practical management practices or systems designed and installed in watersheds to provide a wide range of effects to protect or restore the physical, chemical, and biological condition of waterbodies (e.g. changing hydrology; improving vegetative habitat; mitigate adverse environmental change). VAs can be defined as "the degree to which the system is susceptible to and is unable to cope with adverse effects of change" and are often characterized as a function of exposure, sensitivity and adaptive capacity. There are many variables and factors used in calculating the impact of BMPs and VAs. The event mean concentration or load (e.g. nutrient, sediment,) associated with the specific landuse is an important variable. There is much data that predicts the loads associated with the major landuses (urban, agricultural). Loads greatly vary with region; rainfall characteristics (e.g. rainfall intensity, rainfall frequency); soil characteristics (e.g. soil type, hydrologic soil groups); hydrologic characteristics (e.g. runoff potential). A concern also exists that possibly all of the variables associated with changes in an individual land use have not been identified and distinguished for their impact on land use. For example, the loads associated with a high density residential with much green space may be more similar to medium density than loads associated with high rise apartment buildings. Other factors may include age of construction, % of families with children, % of families with pets, level of transiency, and construction activity The objective of our study is to develop an initial framework using multiple variables and factors to represent the connectedness between BMPs and VA in a changing landuse. In future we plan to develop this framework to be better suited across multiple regions and environmental change scenarios. We believe this would lead to improved selection of appropriate landuse load and reasonable load reduction range associated with a variety of BMPs.

  18. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting.

    PubMed

    Eaton, Samantha L; Roche, Sarah L; Llavero Hurtado, Maica; Oldknow, Karla J; Farquharson, Colin; Gillingwater, Thomas H; Wishart, Thomas M

    2013-01-01

    Western blotting has been a key technique for determining the relative expression of proteins within complex biological samples since the first publications in 1979. Recent developments in sensitive fluorescent labels, with truly quantifiable linear ranges and greater limits of detection, have allowed biologists to probe tissue specific pathways and processes with higher resolution than ever before. However, the application of quantitative Western blotting (QWB) to a range of healthy tissues and those from degenerative models has highlighted a problem with significant consequences for quantitative protein analysis: how can researchers conduct comparative expression analyses when many of the commonly used reference proteins (e.g. loading controls) are differentially expressed? Here we demonstrate that common controls, including actin and tubulin, are differentially expressed in tissues from a wide range of animal models of neurodegeneration. We highlight the prevalence of such alterations through examination of published "-omics" data, and demonstrate similar responses in sensitive QWB experiments. For example, QWB analysis of spinal cord from a murine model of Spinal Muscular Atrophy using an Odyssey scanner revealed that beta-actin expression was decreased by 19.3±2% compared to healthy littermate controls. Thus, normalising QWB data to β-actin in these circumstances could result in 'skewing' of all data by ∼20%. We further demonstrate that differential expression of commonly used loading controls was not restricted to the nervous system, but was also detectable across multiple tissues, including bone, fat and internal organs. Moreover, expression of these "control" proteins was not consistent between different portions of the same tissue, highlighting the importance of careful and consistent tissue sampling for QWB experiments. Finally, having illustrated the problem of selecting appropriate single protein loading controls, we demonstrate that normalisation using total protein analysis on samples run in parallel with stains such as Coomassie blue provides a more robust approach.

  19. Relationships between processing delay and microbial load of broiler neck skin samples.

    PubMed

    Lucianez, A; Holmes, M A; Tucker, A W

    2010-01-01

    The measurable microbial load on poultry carcasses during processing is determined by a number of factors including farm or origin, processing hygiene, and external temperature. This study investigated associations between carcass microbial load and progressive delays to processing. A total of 30 carcasses were delayed immediately after defeathering and before evisceration in a commercial abattoir in groups of five, and were held at ambient temperature for 1, 2, 3, 4, 6, and 8 h. Delayed carcasses were reintroduced to the processing line, and quantitative assessment of total viable count, coliforms, Staphylococcus aureus, and Pseudomonas spp. was undertaken on neck skin flap samples collected after carcass chilling and then pooled for each group. Sampling was repeated on 5 separate days, and the data were combined. Significant increases in total viable count (P = 0.001) and coliforms (P = 0.004), but not for S. aureus or Pseudomonas loads, were observed across the 8-h period of delay. In line with previous studies, there was significant variation in microbiological data according to sampling day. In conclusion, there is a significant and measurable decline in microbiological status of uneviscerated but defeathered poultry carcasses after an 8-h delay, but the variability of sampling results, reflecting the wide range of factors that impact microbial load, means that it is not possible to determine maximum or minimum acceptable periods of processing delay based on this criterion alone.

  20. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery.

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves

    2017-10-05

    Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The influence of loading frequency on the high-temperature fatigue behavior of a Nicalon-fabric-reinforced polymer-derived ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanswijgenhoven, E.; Holmes, J.; Wevers, M.

    Fiber-reinforced ceramic-matrix composites are under development for high-temperature structural applications. These applications involve fatigue loading under a wide range of frequencies. To date, high-temperature fatigue experiments have typically been performed at loading frequencies of 10 Hz or lower. At higher frequencies, a strong effect of loading frequency on fatigue life has been demonstrated for certain CMC`s tested at room temperature. The fatigue life of CMC`s with weak fiber-matrix interfaces typically decreases as the loading frequency increases. This decrease is attributed to frictional heating and frequency dependent interface and fiber damage. More recently, it has been shown that the room temperaturemore » fatigue life of a Nicalon-fabric-reinforced composite with a strong interface (SYLRAMIC{trademark}) appears to be independent of loading frequency. The high-temperature low-frequency fatigue behavior of the SYLRAMIC composite has also been investigated. For a fatigue peak stress {sigma}{sub peak} above a proportional limit stress of 70 MPa, the number of cycles to failure N{sub f} decreased with an increase in {sigma}{sub peak}. The material endured more than 10{sup 6} cycles for {sigma}{sub peak} below 70 MPa. In this paper, the influence of loading frequency on the high-temperature fatigue behavior of the SYLRAMIC composite is reported. It will be shown that the fatigue limit is unaffected by the loading frequency, that the number of fatigue cycles to failure N{sub f} increases with an increase in frequency, and that the time to failure t{sub f} decreases with an increase in frequency.« less

  2. [Use of macroalgae for the evaluation of organic pollution in the Preto river, northwest of São Paulo State].

    PubMed

    Necchi Júnior, O; Branco, H Z; Dip, M R

    1994-01-01

    The Preto River, located in the northwest of São Paulo State, receives a total wastewater load of 15.150 kg DBO day-1, from which 13.685 kg DBO day-1 (90.5%) corresponds to domestic sewage, and the city of São José do Rio Preto contributes with 12.400 kg DBO day-1 (90% of domestic sewage). During the period from August 1990 through January 1991, monthly sampling was carried out to evaluate the use of macroalgae as bioindicator of organic pollution. Five sampling sites were established along the main river and the following variables were analised: temperature, conductance, turbidity, dissolved oxygen, BOD, COD, total and fecal coliforms, and composition and abundance of macroalgal communities. Data were submitted to analysis of variance, correlation coefficient, cluster analysis (four different approaches) and converted to biological indices (species deficit, relative pollution, saprobity, diversity and uniformity indices). A wide range in water quality was found (particularly for conductance, oxygen, BOD and COD) among the sampling sites, which were classified into three groups (polluted, moderately polluted and unpolluted/weakly polluted). As regards the occurrence and abundance of macroalgae the Rhodophyta were found only in unpolluted or weakly polluted sites, whereas Cyanophyta occurred mostly under high pollution load; the Chlorophyta species were observed under a wide range of conditions. Among the biological indices, saprobity was the most sensitive and correlated to all water variables and the other indices. Cluster analyses showed that the composition of macroalgal communities was consistent with the levels of organic pollution in the Preto River.

  3. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric.

    PubMed

    Bondar, Yuliia; Kuzenko, Svetlana; Han, Do-Hung; Cho, Hyun-Kug

    2014-01-01

    A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions.

  4. Long period fiber grating transverse load effect-based sensor for the omnidirectional monitoring of rebar corrosion in concrete.

    PubMed

    Liu, Hong-yue; Liang, Da-kai; Han, Xiao-lin; Zeng, Jie

    2013-05-10

    From the angle of sensitivity of the long period fiber grating (LPFG) resonant transmission spectrum, we demonstrate the sensitivity of LPFG resonance peak amplitude changing with transverse loads. The design of a resonant peak modulation-based LPFG rebar corrosion sensor is described by combining the spectral characteristics of LPFG with the expansion state monitoring of rebar corrosion. LPFG spectrum curves corresponding with different rebar corrosion status of the environment under test are captured by the monitoring technique of LPFG transmission spectra, and the relationship between the resonance peak amplitude change and the state of rebar corrosion is obtained, that is, the variation of LPFG resonance peak amplitude increases with the intensifying of the degree of rebar corrosion. The experimental results numerically show that the sensor response has good regularity for a wide range of travel.

  5. A New Tribological Test for Candidate Brush Seal Materials Evaluation

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; Dellacorte, Christopher

    1994-01-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  6. Sensitive method for characterizing liquid helium cooled preamplifier feedback resistors

    NASA Technical Reports Server (NTRS)

    Smeins, L. G.; Arentz, R. F.

    1983-01-01

    It is pointed out that the simple and traditional method of measuring resistance using an electrometer is ineffective since it is limited to a narrow and nonrepresentative range of terminal voltages. The present investigation is concerned with a resistor measurement technique which was developed to select and calibrate the Transimpedance Mode Amplifier (TIA) load resistors on the Infrared Astronomical Satellite (IRAS) for the wide variety of time and voltage varying signals which will be processed during the flight. The developed method has great versatility and power, and makes it possible to measure the varied and complex responses of nonideal feedback resistors to IR photo-detector currents. When employed with a stable input coupling capacitor, and a narrow band RMS voltmeter, the five input waveforms thouroughly test and calibrate all the features of interest in a load resistor and its associated TIA circuitry.

  7. Rating the strength of coal mine roof rocks. Information circular/1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molinda, G.M.; Mark, C.

    1996-05-01

    The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less

  8. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric

    PubMed Central

    2014-01-01

    A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions. PMID:24725367

  9. The PLVCR 500 and HCPC, tests and results

    NASA Astrophysics Data System (ADS)

    Leuchsner, Volker

    1991-09-01

    Developments of volumetric receivers during the last decade which have pointed out the advantages and the wide range of applications in comparison with tube receivers are reported. During three test periods in 1990 the 500 kW version of the Pressure Loaded Volumetric Ceramic Receiver (PLVCR 500) and the Hexagonal Compound Parabolic Concentrator (HCPC) were mounted on the Small Solar Power System (SSPS) tower. Concerning the size of the experiment, it represents the most extensive research and development work on pressure loaded volumetric receivers until now. The receiver and the secondary concentrator were tested together and separately. A gauge pressure of 4.2 bars at air outlet temperatures of 960 C was reached. The secondary concentrator was tested under various flux conditions, the inlet and outlet flux distributions were measured. With this test the feasibility of a modular design of receiver and secondary concentrator could be shown.

  10. Aerodynamic Drag Reduction Technologies Testing of Heavy-Duty Vocational Vehicles and a Dry Van Trailer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragatz, Adam; Thornton, Matthew

    This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, butmore » are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.« less

  11. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  12. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.

    PubMed

    Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel

    2008-10-01

    This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting.

  13. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals.

    PubMed

    Ren, Bo; Or, Siu Wing; Wang, Feifei; Zhao, Xiangyong; Luo, Haosu; Li, Xiaobing; Zhang, Qinhui; Di, Wenning; Zhang, Yaoyao

    2010-06-01

    In this paper we theoretically and experimentally present a nonresonant vibration energy harvesting device based on the shear mode of 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals. The electrical properties of the energy harvesting device were evaluated using an analytical method. Good consistency was obtained between the analytical and experimental results. Under a mass load of 200 g, a peak voltage of 11.3 V and maximum power of 0.70 mW were obtained at 500 Hz when connecting a matching load resistance of 91 komega. A high output could always be obtained within a very wide frequency range. The results demonstrate the potential of the device in energy harvesting applied to low-power portable electronics and wireless sensors.

  14. Persistence length of collagen molecules based on nonlocal viscoelastic model.

    PubMed

    Ghavanloo, Esmaeal

    2017-12-01

    Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.

  15. Bolus Guide: A Novel Insulin Bolus Dosing Decision Support Tool Based on Selection of Carbohydrate Ranges

    PubMed Central

    Shapira, Gali; Yodfat, Ofer; HaCohen, Arava; Feigin, Paul; Rubin, Richard

    2010-01-01

    Background Optimal continuous subcutaneous insulin infusion (CSII) therapy emphasizes the relationship between insulin dose and carbohydrate consumption. One widely used tool (bolus calculator) requires the user to enter discrete carbohydrate values; however, many patients might not estimate carbohydrates accurately. This study assessed carbohydrate estimation accuracy in type 1 diabetes CSII users and compared simulated blood glucose (BG) outcomes using the bolus calculator and the “bolus guide,” an alternative system based on ranges of carbohydrate load. Methods Patients (n = 60) estimated the carbohydrate load of a representative sample of meals of known carbohydrate value. The estimated error distribution [coefficient of variation (CV)] was the basis for a computer simulation (n = 1.6 million observations) of insulin recommendations for the bolus guide and bolus calculator, translated into outcome blood glucose (OBG) ranges (≤60, 61–200, >201 mg/dl). Patients (n = 30) completed questionnaires assessing satisfaction with the bolus guide. Results The CV of typical meals ranged from 27.9% to 44.5%. The percentage of simulated OBG for the calculator and the bolus guide in the <60 mg/dl range were 20.8% and 17.2%, respectively, and 13.8% and 15.8%, respectively, in the >200 mg/dl range. The mean and median scores of all bolus guide satisfaction items and ease of learning and use were 4.17 and 4.2, respectively (of 5.0). Conclusion The bolus guide recommendation based on carbohydrate range selection is substantially similar to the calculator based on carbohydrate point estimation and appears to be highly accepted by type 1 diabetes insulin pump users. PMID:20663453

  16. Wear Behavior and Mechanism of a Cr-Mo-V Cast Hot-Working Die Steel

    NASA Astrophysics Data System (ADS)

    Wei, M. X.; Wang, S. Q.; Zhao, Y. T.; Chen, K. M.; Cui, X. H.

    2011-06-01

    The wear behavior and mechanisms of a Cr-Mo-V cast hot-working die steel with three microstructures (tempered martensite, troostite, and sorbite) were studied systematically through the dry-sliding wear tests within a normal load range of 50 to 300 N and an ambient temperature range of 298 K to 673 K (25 °C to 400 °C) by a pin-on-disk high-temperature wear machine. Five different mechanisms were observed in the experiments, namely adhesive, abrasive, mild oxidative, oxidative, and extrusive wear; one or more of those mechanisms would be dominant within particular ranges of load and temperature. The transition of wear mechanisms depended on the formation of tribo-oxides, which was related closely to load and temperature, and their delamination, which was mainly influenced by the matrix. By increasing the load and ambient temperature, the protective effect of tribo-oxides first strengthened, then decreased, and in some cases disappeared. Under a load ranging 50 to 300 N at 298 K (25 °C) and a load of 50 N at 473 K (200 °C), adhesive wear was the dominant wear mechanism, and abrasive wear appeared simultaneously. The wear was of mild oxidative type under a load ranging 100 to 300 N at 473 K (200 °C) and a load ranging 50 to 150 N at 673 K (400 °C) for tempered martensite and tempered troostite as well as under a load of 100 N at 473 K (200 °C) and a load ranging 50 to 100 N at 673 K (400 °C) for tempered sorbite. At the load of 200 N or greater, or the temperatures above 673 K (400 °C), oxidative wear (beyond mild oxidative wear) prevailed. When the highest load of 300 N at 673 K (400 °C) was applied, extrusive wear started to dominate for the tempered sorbite.

  17. A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

    PubMed

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

  18. A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands

    PubMed Central

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733

  19. Load sensing system

    DOEpatents

    Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  20. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure.

    PubMed

    Neidlinger-Wilke, Cornelia; Würtz, Karin; Urban, Jill P G; Börm, Wolfgang; Arand, Markus; Ignatius, Anita; Wilke, Hans-Joachim; Claes, Lutz E

    2006-08-01

    Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading exercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test(1) and a Wilcoxon 2-sample test(2) were performed to detect differences between the stimulated and control samples(1) and differences between low and high hydrostatic pressure(2). Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for the matrix forming proteins aggrecan and collagen type-I in response to the two different pressure magnitudes: Low hydrostatic-pressure (0.25 MPa) tended to increase collagen-I and aggrecan expression of human nucleus cells (P < 0.05) but only to a small degree. High hydrostatic pressure (2.5 MPa) tended to decrease gene expression of all anabolic proteins with significant effects on aggrecan expression of nucleus cells (P = 0.004). Low hydrostatic pressure had no influence on the expression of matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP13). In contrast, high hydrostatic pressure tended to increase the expression of MMP1, MMP3 and MMP13 of human nucleus cells with high individual-individual variations. The decreased expression of aggrecan (P = 0.008) and collagen type II (P = 0.023) and the increased MMP3 expression (P = 0.008) in response to high hydrostatic pressure could be confirmed in additional experiments with bovine nucleus cells. These results suggest that hydrostatic pressure as one of the physiological stimuli of the IVD may influence matrix turnover in a magnitude dependent way. Low hydrostatic pressure (0.25 MPa) has quite small influences with a tendency to anabolic effects, whereas high hydrostatic pressure (2.5 MPa) tends to decrease the matrix protein expression with a tendency to increase some matrix-turnover enzymes. Therefore, hydrostatic pressure may regulate disc matrix turnover in a dose-dependent way.

  1. Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys.

    PubMed

    Oemisch, Mariann; Johnston, Kevin; Paré, Martin

    2016-10-01

    Working memory is a limited-capacity cognitive process that retains relevant information temporarily to guide thoughts and behavior. A large body of work has suggested that catecholamines exert a major modulatory influence on cognition, but there is only equivocal evidence of a direct influence on working memory ability, which would be reflected in a dependence on working memory load. Here we tested the contribution of catecholamines to working memory by administering a wide range of acute oral doses of the dopamine and norepinephrine reuptake inhibitor methylphenidate (MPH, 0.1-9 mg/kg) to three female macaque monkeys (Macaca mulatta), whose working memory ability was measured from their performance in a visual sequential comparison task. This task allows the systematic manipulation of working memory load, and we therefore tested the specific hypothesis that MPH modulates performance in a manner that depends on both dose and memory load. We found no evidence of a dose- or memory load-dependent effect of MPH on performance. In contrast, significant effects on measures of motivation were observed. These findings suggest that an acute increase in catecholamines does not seem to affect the retention of visual information per se. As such, these results help delimit the effects of MPH on cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Edwards, P. R.

    1988-01-01

    An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.

  3. Impact of nitrogen deposition at the species level

    PubMed Central

    Payne, Richard J.; Dise, Nancy B.; Stevens, Carly J.; Gowing, David J.; Duprè, Cecilia; Dorland, Edu; Gaudnik, Cassandre; Bleeker, Albert; Diekmann, Martin; Alard, Didier; Bobbink, Roland; Fowler, David; Corcket, Emmanuel; Mountford, J. Owen; Vandvik, Vigdis; Aarrestad, Per Arild; Muller, Serge

    2013-01-01

    In Europe and, increasingly, the rest of the world, the key policy tool for the control of air pollution is the critical load, a level of pollution below which there are no known significant harmful effects on the environment. Critical loads are used to map sensitive regions and habitats, permit individual polluting activities, and frame international negotiations on transboundary air pollution. Despite their fundamental importance in environmental science and policy, there has been no systematic attempt to verify a critical load with field survey data. Here, we use a large dataset of European grasslands along a gradient of nitrogen (N) deposition to show statistically significant declines in the abundance of species from the lowest level of N deposition at which it is possible to identify a change. Approximately 60% of species change points occur at or below the range of the currently established critical load. If this result is found more widely, the underlying principle of no harm in pollution policy may need to be modified to one of informed decisions on how much harm is acceptable. Our results highlight the importance of protecting currently unpolluted areas from new pollution sources, because we cannot rule out ecological impacts from even relatively small increases in reactive N deposition. PMID:23271811

  4. Single cardiac ventricular myosins are autonomous motors

    PubMed Central

    Wang, Yihua; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta

    2018-01-01

    Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule. PMID:29669825

  5. Load capacity improvements in nucleic acid based systems using partially open feedback control.

    PubMed

    Kulkarni, Vishwesh; Kharisov, Evgeny; Hovakimyan, Naira; Kim, Jongmin

    2014-08-15

    Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.

  6. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation

    PubMed Central

    Weiffert, Tanja; Ní Mhurchú, Niamh; O’Connell, David; Linse, Sara

    2016-01-01

    Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation. PMID:27812162

  7. Applications of low lift to drag ratio aerobrakes using angle of attack variation for control

    NASA Technical Reports Server (NTRS)

    Mulqueen, J. A.

    1991-01-01

    Several applications of low lift to drag ratio aerobrakes are investigated which use angle of attack variation for control. The applications are: return from geosynchronous or lunar orbit to low Earth orbit; and planetary aerocapture at Earth and Mars. A number of aerobrake design considerations are reviewed. It was found that the flow impingement behind the aerobrake and the aerodynamic heating loads are the primary factors that control the sizing of an aerobrake. The heating loads and other loads, such as maximum acceleration, are determined by the vehicle ballistic coefficient, the atmosphere entry conditions, and the trajectory design. Several formulations for defining an optimum trajectory are reviewed, and the various performance indices that can be used are evaluated. The 'nearly grazing' optimal trajectory was found to provide the best compromise between the often conflicting goals of minimizing the vehicle propulsive requirements and minimizing vehicle loads. The relationship between vehicle and trajectory design is investigated further using the results of numerical simulations of trajectories for each aerobrake application. The data show the sensitivity of the trajectories to several vehicle parameters and atmospheric density variations. The results of the trajectory analysis show that low lift to drag ratio aerobrakes, which use angle of attack variation for control, can potentially be used for a wide range of aerobrake applications.

  8. Control of the low-load region in partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  9. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    NASA Astrophysics Data System (ADS)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  10. An efficient magnetron transmitter for superconducting accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  11. An efficient magnetron transmitter for superconducting accelerators

    DOE PAGES

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  12. A nonrecursive 'Order N' preconditioned conjugate gradient/range space formulation of MDOF dynamics

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Menon, R.; Sunkel, John

    1991-01-01

    This paper addresses the requirements of present-day mechanical system simulations of algorithms that induce parallelism on a fine scale and of transient simulation methods which must be automatically load balancing for a wide collection of system topologies and hardware configurations. To this end, a combination range space/preconditioned conjugage gradient formulation of multidegree-of-freedon dynamics is developed, which, by employing regular ordering of the system connectivity graph, makes it possible to derive an extremely efficient preconditioner from the range space metric (as opposed to the system coefficient matrix). Because of the effectiveness of the preconditioner, the method can achieve performance rates that depend linearly on the number of substructures. The method, termed 'Order N' does not require the assembly of system mass or stiffness matrices, and is therefore amenable to implementation on work stations. Using this method, a 13-substructure model of the Space Station was constructed.

  13. Simulation of the effects of different pilot helmets on neck loading during air combat.

    PubMed

    Mathys, R; Ferguson, S J

    2012-09-21

    New generation pilot helmets with mounted devices enhance the capabilities of pilots substantially. However, the additional equipment increases the helmet weight and shifts its center of mass forward. Two helmets with different mass properties were modeled to simulate their effects on the pilot's neck. A musculoskeletal computer model was used, with the methods of inverse dynamics and static optimization, to compute the muscle activations and joint reaction forces for a given range of quasi-static postures at various accelerations experienced during air combat. Head postures which induce much higher loads on the cervical spine than encountered in a neutral position could be identified. The increased weight and the forward shift of the center of mass of a new generation helmet lead to higher muscle activations and higher joint reaction loads over a wide range of head and neck movements. The muscle activations required to balance the head and neck in extreme postures increased the compressive force at the T1-C7 level substantially, while in a neutral posture the muscle activations remained low. The lateral neck muscles can reach activations of 100% and cause compressive joint forces up to 1100N during extensive rotations and extensions at high 'vertical' accelerations (Gz). The calculated values have to be interpreted with care as the model has not been validated. Nevertheless, this systematic analysis could separate the effects of head posture, acceleration and helmet mass on neck loading. More reliable data about mass properties and muscle morphometry with a more detailed motion analysis would help to refine the existing model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host† †Electronic supplementary information (ESI) available. CCDC 1504685–1504693. See DOI: 10.1039/c6sc04343g Click here for additional data file. Click here for additional data file.

    PubMed Central

    Morris, Christopher G.; Jacques, Nicholas M.; Godfrey, Harry G. W.; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A.; Potter, Jonathan; Cobb, Tom M.; Yuan, Fajin

    2017-01-01

    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(VIII) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(VIII) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N2 separation based on the ideal selectivity. PMID:28507700

  15. Identification of new loci involved in the host susceptibility to Salmonella Typhimurium in collaborative cross mice.

    PubMed

    Zhang, Jing; Malo, Danielle; Mott, Richard; Panthier, Jean-Jacques; Montagutelli, Xavier; Jaubert, Jean

    2018-04-27

    Salmonella is a Gram-negative bacterium causing a wide range of clinical syndromes ranging from typhoid fever to diarrheic disease. Non-typhoidal Salmonella (NTS) serovars infect humans and animals, causing important health burden in the world. Susceptibility to salmonellosis varies between individuals under the control of host genes, as demonstrated by the identification of over 20 genetic loci in various mouse crosses. We have investigated the host response to S. Typhimurium infection in 35 Collaborative Cross (CC) strains, a genetic population which involves wild-derived strains that had not been previously assessed. One hundred and forty-eight mice from 35 CC strains were challenged intravenously with 1000 colony-forming units (CFUs) of S. Typhimurium. Bacterial load was measured in spleen and liver at day 4 post-infection. CC strains differed significantly (P < 0.0001) in spleen and liver bacterial loads, while sex and age had no effect. Two significant quantitative trait loci (QTLs) on chromosomes 8 and 10 and one suggestive QTL on chromosome 1 were found for spleen bacterial load, while two suggestive QTLs on chromosomes 6 and 17 were found for liver bacterial load. These QTLs are caused by distinct allelic patterns, principally involving alleles originating from the wild-derived founders. Using sequence variations between the eight CC founder strains combined with database mining for expression in target organs and known immune phenotypes, we were able to refine the QTLs intervals and establish a list of the most promising candidate genes. Furthermore, we identified one strain, CC042/GeniUnc (CC042), as highly susceptible to S. Typhimurium infection. By exploring a broader genetic variation, the Collaborative Cross population has revealed novel loci of resistance to Salmonella Typhimurium. It also led to the identification of CC042 as an extremely susceptible strain.

  16. Scuffing Characteristics of High-Load Rolling/Sliding Contacts Operating in Liquid Oxygen: Effects of Materials and Surface Roughness

    NASA Technical Reports Server (NTRS)

    Chang, L.; Hall, P. B.; Thom, R.

    1996-01-01

    This research reports on an experimental study of the effects of materials and surface roughness on the scuffing characteristics of rolling/sliding contacts cooled and lubricated with liquid oxygen. Experiments were carried out under heavy loading with a Hertzian pressure in the range of 2.0 GPa to 3.0 GPa and with a high rolling velocity of up to 48 m/s. For contacts between AISI 440 C stainless-steel elements, the results showed that the scuffing behavior of the system was fairly consistent under a wide range of rolling velocity. Scuffing commenced at a small slide-to-roll ratio of around 0.02, and the scuffing behavior of the contact was not sensitive to surface roughness for the test-sample RMS roughness ranging from 0.02 microns to 0.10 microns. For contacts between 440 C and Si3N4 elements, on the other hand, the scuffing behavior of the system was not very consistent and somewhat unpredictable. The results were sensitive to surface roughness particularly that of the Si3N4 test sample. With well polished test samples, consistent results were obtained; the level of traction was lower than that with a 440 C toroid and scuffing did not take place up to a slide-to-roll ratio of near 0.03. The results strongly suggest that significant hydrodynamic effect can be generated by liquid oxygen under heavy loading and high velocity conditions. The results also suggest that the hydrodynamic action is likely generated by the conventional viscous mechanism as it can be largely destroyed by a narrow circumferential surface scratch running through the central region of the contact.

  17. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

    PubMed

    Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P

    2017-11-01

    During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (<5 cm). Stratification often accompanies no-till and mulch-till practices that reduce erosion and PP loading, practices that have been widely implemented throughout the Lake Erie Basin. To evaluate the extent of P stratification in the Sandusky Watershed, certified crop advisors were enlisted to collect stratified soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Steady state and transient simulation of anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  19. Final Report - Enhanced LAW Glass Formulation Testing, VSL-07R1130-1, Rev. 0, dated 10/05/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.

    2013-11-13

    The principal objective of this work was to extend the glass formulation methodology developed in the earlier work [2, 5, 6] for Envelope A, B and C waste compositions for development of compliant glass compositions targeting five high sodium-sulfur waste loading regions. This was accomplished through a combination of crucible-scale tests, and tests on the DM10 melter system. The DM10 was used for several previous tests on LAW compositions to determine the maximum feed sulfur concentrations that can be processed without forming secondary sulfate phases on the surface of the melt pool. This melter is the most efficient melter platformmore » for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The tests were conducted to provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning. As described above, the main objective was to identify the limits of waste loading in compliant glass formulations spanning the range of expected Na{sub 2}O and SO{sub 3} concentrations in the LAW glasses.« less

  20. A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection.

    PubMed

    Yu, Xiao-Guang; Li, Yuan-Qing; Zhu, Wei-Bin; Huang, Pei; Wang, Tong-Tong; Hu, Ning; Fu, Shao-Yun

    2017-05-25

    Melamine sponge, also known as nano-sponge, is widely used as an abrasive cleaner in our daily life. In this work, the fabrication of a wearable strain sensor for human motion detection is first demonstrated with a commercially available nano-sponge as a starting material. The key resistance sensitive material in the wearable strain sensor is obtained by the encapsulation of a carbonized nano-sponge (CNS) with silicone resin. The as-fabricated CNS/silicone sensor is highly sensitive to strain with a maximum gauge factor of 18.42. In addition, the CNS/silicone sensor exhibits a fast and reliable response to various cyclic loading within a strain range of 0-15% and a loading frequency range of 0.01-1 Hz. Finally, the CNS/silicone sensor as a wearable device for human motion detection including joint motion, eye blinking, blood pulse and breathing is demonstrated by attaching the sensor to the corresponding parts of the human body. In consideration of the simple fabrication technique, low material cost and excellent strain sensing performance, the CNS/silicone sensor is believed to have great potential in the next-generation of wearable devices for human motion detection.

  1. Neighborhood Socioeconomic Deprivation and Allostatic Load: A Scoping Review.

    PubMed

    Ribeiro, Ana Isabel; Amaro, Joana; Lisi, Cosima; Fraga, Silvia

    2018-05-28

    Residing in socioeconomically deprived neighborhoods may pose substantial physiological stress, which can then lead to higher allostatic load (AL), a marker of biological wear and tear that precedes disease. The aim of the present study was to map the current evidence about the relationship between neighborhood socioeconomic deprivation and AL. A scoping review approach was chosen to provide an overview of the type, quantity, and extent of research available. The review was conducted using three bibliographic databases (PubMed, SCOPUS, and Web of Science) and a standardized protocol. Fourteen studies were identified. Studies were predominantly from the USA, cross-sectional, focused on adults, and involved different races and ethnic groups. A wide range of measures of AL were identified: the mode of the number of biomarkers per study was eight but with large variability (range: 6⁻24). Most studies ( n = 12) reported a significant association between neighborhood deprivation and AL. Behaviors and environmental stressors seem to mediate this relationship and associations appear more pronounced among Blacks, men, and individuals with poor social support. Such conclusions have important public health implications as they enforce the idea that neighborhood environment should be improved to prevent physiological dysregulation and consequent chronic diseases.

  2. Synthesis and characterisation of the hollandite solid solution Ba1.2-xCsxFe2.4-xTi5.6+xO16 for partitioning and conditioning of radiocaesium

    NASA Astrophysics Data System (ADS)

    Bailey, Daniel J.; Stennett, Martin C.; Mason, Amber R.; Hyatt, Neil C.

    2018-05-01

    The geological disposal of high level radioactive waste requires careful budgeting of the heat load produced by radiogenic decay. Removal of high-heat generating radionuclides, such as 137Cs, reduces the heat load in the repository allowing the remaining high level waste to be packed closer together therefore reducing demand for repository space and the cost of the disposal of the remaining wastes. Hollandites have been proposed as a possible host matrix for the long-term disposal of Cs separated from HLW raffinate. The incorporation of Cs into the hollandite phase is aided by substitution of cations on the B-site of the hollandite structure, including iron. A range of Cs containing iron hollandites were synthesised via an alkoxide-nitrate route and the structural environment of Fe in the resultant material characterised by Mössbauer and X-ray Absorption Near Edge Spectroscopy. The results of spectroscopic analysis found that Fe was present as octahedrally co-ordinated Fe (III) in all cases and acts as an effective charge compensator over a wide solid solution range.

  3. Trends in nutrients

    USGS Publications Warehouse

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  4. The seating mechanics of head-neck modular tapers in vitro: Load-displacement measurements, moisture, and rate effects.

    PubMed

    Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L

    2018-04-01

    The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4  N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  6. Predicting maximal strength in trained postmenopausal woman.

    PubMed

    Kemmler, Wolfgang K; Lauber, Dirk; Wassermann, Alfred; Mayhew, Jerry L

    2006-11-01

    The purpose of this study was to present an equation that accurately predicts 1 repetition maximum (RM) over a wide range of repetitions to fatigue (RTF) for 4 different machine resistance exercises in postmenopausal women. Seventy trained women (age = 57.4 +/- 3.1 years) performed maximal and submaximal repetitions on leg press, bench press, rowing, and leg adduction machines at the conclusion of a 2-year training program. Maximal repetitions were performed on each exercise in the following ranges: 3-5RM, 6-10RM, 11-15RM, and 16-20RM. Special regard was taken to maintain the identical execution of each test (i.e., range of motion, starting angle, speed of movement). One cubic polynomial (w(i) [0.988-0.0000584 r(i)(3) + 0.00190 r(i)(2) + 0.0104 r(i),] where w(i) is the load of measurement I, and r(i) is the number of repetitions) accurately predicted 1RM from RTF with mean absolute differences between actual 1RM and predicted 1RM for the 4 exercises of 1.5-3.1% and with coefficients of variation of <3.3%. Equation accuracy was independent of the exercise type or the number of RTF. Thus, this study supported the validity of RTF to adequately estimate 1RM over a wide range of repetitions and within different exercises in trained, older female subjects.

  7. Platform switching: biomechanical evaluation using three-dimensional finite element analysis.

    PubMed

    Tabata, Lucas Fernando; Rocha, Eduardo Passos; Barão, Valentim Adelino Ricardo; Assunção, Wirley Goncalves

    2011-01-01

    The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system.

  8. An algorithmic interactive planning framework in support of sustainable technologies

    NASA Astrophysics Data System (ADS)

    Prica, Marija D.

    This thesis addresses the difficult problem of generation expansion planning that employs the most effective technologies in today's changing electric energy industry. The electrical energy industry, in both the industrialized world and in developing countries, is experiencing transformation in a number of different ways. This transformation is driven by major technological breakthroughs (such as the influx of unconventional smaller-scale resources), by industry restructuring, changing environmental objectives, and the ultimate threat of resource scarcity. This thesis proposes a possible planning framework in support of sustainable technologies where sustainability is viewed as a mix of multiple attributes ranging from reliability and environmental impact to short- and long-term efficiency. The idea of centralized peak-load pricing, which accounts for the tradeoffs between cumulative operational effects and the cost of new investments, is the key concept in support of long-term planning in the changing industry. To start with, an interactive planning framework for generation expansion is posed as a distributed decision-making model. In order to reconcile the distributed sub-objectives of different decision makers with system-wide sustainability objectives, a new concept of distributed interactive peak load pricing is proposed. To be able to make the right decisions, the decision makers must have sufficient information about the estimated long-term electricity prices. The sub-objectives of power plant owners and load-serving entities are profit maximization. Optimized long-term expansion plans based on predicted electricity prices are communicated to the system-wide planning authority as long-run bids. The long-term expansion bids are cleared by the coordinating planner so that the system-wide long-term performance criteria are satisfied. The interactions between generation owners and the coordinating planning authority are repeated annually. We view the proposed interactive planning framework as a necessary paradigm for planning in the changing industry where choice must be reconciled with societal public objectives.

  9. Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.

  10. Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

    PubMed Central

    Alvisi, Marco; Rossi, Riccardo; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa

    2017-01-01

    Multiwalled carbon nanotube (MWCNT)-based chemiresistors were electrochemically decorated with Au and Pd nanoparticles (NPs), resulting in an improvement in the detection of gaseous pollutants as compared to sensors based on pristine MWCNTs. Electrophoresis was used to decorate MWCNTs with preformed Au or Pd NPs, thus preserving their nanometer-sized dimensions and allowing the metal content to be tuned by simply varying the deposition time. The sensing response of unmodified and metal-decorated MWCNTs was evaluated towards different gaseous pollutants (e.g., NO2, H2S, NH3 and C4H10) at a wide range of concentrations in the operating temperature range of 45–200 °C. The gas sensing results were related to the presence, type and loading of metal NPs used in the MWCNT functionalization. Compared to pristine MWCNTs, metal-decorated MWCNTs revealed a higher gas sensitivity, a faster response, a better stability, reversibility and repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs with the highest Pd loading showed the highest sensitivity when operated at 100 °C. Finally, considering the reported gas sensing results, sensing mechanisms have been proposed, correlating the chemical composition and gas sensing responses. PMID:28382249

  11. Comparison of salivary collection and processing methods for quantitative HHV-8 detection.

    PubMed

    Speicher, D J; Johnson, N W

    2014-10-01

    Saliva is a proved diagnostic fluid for the qualitative detection of infectious agents, but the accuracy of viral load determinations is unknown. Stabilising fluids impede nucleic acid degradation, compared with collection onto ice and then freezing, and we have shown that the DNA Genotek P-021 prototype kit (P-021) can produce high-quality DNA after 14 months of storage at room temperature. Here we evaluate the quantitative capability of 10 collection/processing methods. Unstimulated whole mouth fluid was spiked with a mixture of HHV-8 cloned constructs, 10-fold serial dilutions were produced, and samples were extracted and then examined with quantitative PCR (qPCR). Calibration curves were compared by linear regression and qPCR dynamics. All methods extracted with commercial spin columns produced linear calibration curves with large dynamic range and gave accurate viral loads. Ethanol precipitation of the P-021 does not produce a linear standard curve, and virus is lost in the cell pellet. DNA extractions from the P-021 using commercial spin columns produced linear standard curves with wide dynamic range and excellent limit of detection. When extracted with spin columns, the P-021 enables accurate viral loads down to 23 copies μl(-1) DNA. The quantitative and long-term storage capability of this system makes it ideal for study of salivary DNA viruses in resource-poor settings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The Strength of Transosseous Medial Meniscal Root Repair Using a Simple Suture Technique Is Dependent on Suture Material and Position.

    PubMed

    Robinson, James R; Frank, Evelyn G; Hunter, Alan J; Jermin, Paul J; Gill, Harinderjit S

    2018-03-01

    A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair. (A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load. Controlled laboratory study. In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro-computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map. In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%. The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs. The results provide insight into material and location for optimal repair strength.

  13. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  14. Controller for a High-Power, Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  15. A high-speed fiber optic data bus for local data communications

    NASA Astrophysics Data System (ADS)

    Porter, D. R.; Couch, P. R.; Schelin, J. W.

    1983-04-01

    A 100 Mbit/s fiber optic data bus is described which is capable of inter-connecting up to 16 terminals by means of a passive optical star coupler for terminal separation distance of up to 2 km. The system shows substantial performance margins and a BER of less than 10 to the -10th. Descriptions are also given of techniques for rapid laser stabilization, clock recovery, and the detection of bursty data over a wide dynamic range. The dynamic time slot allocations (DTSA) access protocol, which makes efficient use of the data bus under heavy bus loading conditions, is defined.

  16. The vibrational spectrum and giant tunnelling effect of hydrogen dissolved in α-Mn

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. I.; Antonov, V. E.; Bennington, S. M.; Dorner, B.; Fedotov, V. K.; Grosse, G.; Li, J. C.; Parker, S. F.; Wagner, F. E.

    1999-03-01

    Vibrational spectra of α-MnH 0.07 and α-MnD 0.05 were studied by inelastic neutron scattering at temperatures from 1.7 to 200 K over a wide range of energy and momentum transfers. Together with the high-energy bands of the optical vibrations, pronounced peaks at 6.3 and 1.6 meV were observed in the spectra of the samples loaded with H and D, respectively. The study of the temperature, momentum-transfer and isotope dependence of the spectra demonstrated the tunnelling origin of these peaks.

  17. Towards the mass production of slow, trappable molecules

    NASA Astrophysics Data System (ADS)

    McCarron, Daniel J.

    2018-05-01

    The Fast Track Communication by Petzold et al (2018 New J. Phys. 20 042001) demonstrates the first Zeeman slowing scheme for species with type-II optical cycling transitions. This new approach is directly applicable to those 2Σ molecules that have recently been captured and cooled in molecular magneto-optical traps (MOTs) and has the potential to efficiently and continuously load these traps for the first time. This advance could produce molecular MOTs with populations comparable to their atomic counterparts and realize an ideal platform for a wide range of studies using large, dense samples of ultracold molecules.

  18. Dynamic-scanning-electron-microscope study of friction and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1974-01-01

    A friction and wear apparatus was built into a real time scanning electron microscope (SEM). The apparatus and SEM comprise a system which provides the capability of performing dynamic friction and wear experiments in situ. When the system is used in conjunction with dispersive X-ray analysis, a wide range of information on the wearing process can be obtained. The type of wear and variation with speed, load, and time can be investigated. The source, size, and distribution of wear particles can be determined and metallic transferal observed. Some typical results obtained with aluminum, copper, and iron specimens are given.

  19. Micro and Macro Mechanics of Fracture in Ceramics.

    DTIC Science & Technology

    1982-10-30

    XrP /Kc)21 (2.2) The validity of Eq. (2.2) has been tested with Vickers indentation in a wide range of ceramic materials (Anstis et al. 1981). J6...basis that the replacement of Kr in Eq. (2.1) with any function of the form Kr - XrP /cn (n > 0) yields a set of equations of the same form as (2.2) to...superposition of two components, one due to the residual stress (Eqn. 8) and the other due to the applied load (Eqn. 2) -272- K XrP /C 3/2 + G(7SIc)1/2

  20. A method for calculation of free-space sound pressures near a propeller in flight including considerations of the chordwise blade loading

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Durling, Barbara J

    1956-01-01

    This report presents tabulated values of certain definite integral that are involved in the calculation of near-field propeller noise when the chordwise forces are assumed to be either uniform or of a Dirac delta type. The tabulations are over a wide range of operating conditions and are useful for estimating propeller noise when either the concept of an effective radius or radial distributions of forces are considered. Use of the tabulations is illustrated by several examples of calculated results for some specific propellers.

  1. A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic.

    PubMed

    Zhou, Ye; Han, Su-Ting; Huang, Long-Biao; Huang, Jing; Yan, Yan; Zhou, Li; Roy, V A L

    2013-05-24

    A programmable low voltage unipolar inverter with saturated-load configuration has been demonstrated on a plastic substrate. A self-assembled monolayer of gold (Au) nanoparticles was inserted into the dielectric layer acting as a charge trapping layer. The inverter operated well with supply voltages of < - 5 V and the switching voltage was tuned in a wide range under low program/erase bias. The retention and endurance test at ambient conditions confirmed the reliability of the inverter. Furthermore, the programmable behavior was maintained well at various bending states, demonstrating the adequate flexibility of our devices.

  2. The second Sandia Fracture Challenge. Predictions of ductile failure under quasi-static and moderate-rate dynamic loading

    DOE PAGES

    Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.; ...

    2016-03-14

    Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive modelsmore » to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.« less

  3. Three-dimensional effects in nonlinear fracture explored with interferometry

    NASA Astrophysics Data System (ADS)

    Pfaff, Richard D.

    The prospects for understanding fracture mechanics in terms of a general material constitutive description are explored. The effort consists of three distinct components.First, optical interferometry, in its various forms (Twyman-Green, diffraction moire, etc.), can potentially be used under a wide range of conditions to very accurately measure the displacement and strain fields associated with the deformation surrounding a cracktip. To broaden the range of fracture problems to which interferometry may be applied, certain of the necessary experimental improvements have been developed:1. High speed camera designs capable of extremely high (> 10(9) frames/second) framing rates with large array sizes, (> 4000 x 4000 pixels per frame) so that the application of optical techniques to solid mechanics may be considered without limitation on the rate of deformation.2. An accurate and adaptable device for dynamic loading of fracture specimens to high load levels utilizing electromagnetic (Lorentz force) loading with ultrahigh (> 2,000,000 Amp/cm(2)) current flux densities.3. Implementation of high sensitivity (2 nm), large range (2 nm x 3,200,000) interferometry achieved with wide field array sizes of 50,000 x 50,000 and 8 bit gray scale (error restricted to 1 bit) for surface deformation measurements on fracture specimens.Second, functional descriptions for certain aspects of the displacement fields associated with fracture specimens are developed. It is found that the fully three-dimensional crack tip field surrounding a through-thickness crack in a plate of elastic-plastic material shows a hierarchical structure of organization and that the primary aspects of the deformation field would seem to have a relatively simple form of expression if the deformation is viewed in a properly normalized form.Third, a comparison is made between interferometrically measured surface displacements for a notched 3-point-bend speciemn of a ductile heat treatment of 4340 steel and a numerical simulation of the specimen based on a material constitutive description determined from uniaxial tests performed on the same material. The small but finite notch tip radius (0.15 mm) fabricated by a wire-cutting electrical discharge machine allows one to explore the limits of applicability of standard continuum plasticity theories without involving a process zone model for the very near tip region extent in a cracked specimen geometry.

  4. The second Sandia Fracture Challenge. Predictions of ductile failure under quasi-static and moderate-rate dynamic loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, B. L.; Kramer, S. L. B.; Bosiljevac, T. R.

    Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive modelsmore » to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.« less

  5. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less

  6. Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.

    PubMed

    Li, Guanghui; Zhao, Jun; Wang, Zike

    2018-06-16

    Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.

  7. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum.

    PubMed

    Naeimi, Reza; Safarpour, Fatemeh; Hashemian, Mona; Tashakorian, Hamed; Ahmadian, Seyed Raheleh; Ashrafpour, Manouchehr; Ghasemi-Kasman, Maryam

    2018-05-01

    Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Gas-liquid equilibrium in a CO{sub 2}-MDEA-H{sub 2}O system and the effect of piperazine on it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.W.; Zhang, C.F.; Qin, S.J.

    1998-04-01

    Aqueous N-methyldiethanolamine (MDEA) solutions are widely used for removal of the acid gas (H{sub 2}S and CO{sub 2}) from natural gas synthesis and refinery gas streams. Solubility data of CO{sub 2} and vapor pressure of water in 3.04--4.28 kmol/m{sup 3} aqueous N-methyldiethanolamine (MDEA) solutions were obtained at temperatures ranging from 40 to 100 C and CO{sub 2} partial pressures ranging from 0.876 to 1,013 kPa. A thermodynamic model was proposed and used for predicting CO{sub 2} solubility and water vapor pressure. An enthalpy change of absorption of CO{sub 2} in 4.28 kmol/m{sup 3} MDEA solution was estimated. The effect ofmore » piperazine (PZ) concentration on CO{sub 2} loading in MDEA solutions was determined at piperazine concentration ranging from 0 to 0.515 kmol/m{sup 3}. The results show that piperazine is beneficial to the CO{sub 2} loading. The equilibrium partial pressure of piperazine in the PZ-MDEA-H{sub 2}O system was measured in an Ellis Cell. Results show that the PZ-MDEA-H{sub 2}O system is a typical negative deviation system, with the strength of deviation decreasing with MDEA solutions.« less

  9. Ice sheet load cycling and fluid underpressures in the Eastern Michigan Basin, Ontario, Canada

    USGS Publications Warehouse

    Neuzil, Christopher E.; Provost, Alden M.

    2014-01-01

    Strong fluid underpressures have been detected in Paleozoic strata in the eastern Michigan Basin, with hydraulic heads reaching ~400 m below land surface (~4 MPa underpressure) and ~200 m below sea level in strata where unusually low permeabilities (~10−20–10−23 m2) were measured in situ. Multiple glaciations, including three with as much as 3 km of ice cover at the site in the last 120 ka, suggest a causal link with the underpressures. We examined this possibility using a one-dimensional groundwater flow model incorporating mechanical loading from both ice weight and lithospheric flexure. Because hydrologic and mechanical changes during glaciation are not well characterized and subsurface properties are imperfectly known, the model was used inversely to estimate flexural loads and loosely constrained permeabilities by matching observed pressures. Acceptable matches were obtained for a surprisingly wide range of scenarios with permeabilities close to measured values and plausible flexural loads. Matches were not obtained when too many parameters were preselected, or when permeabilities were constrained to be significantly larger than measured values. In successful model runs groundwater expulsion under glacial-mechanical loads caused the underpressuring, and flexural loads were important if aquifer and sub-glacial pressures were significantly elevated during glaciation. Simulated fluid pressures in the low-permeability strata fluctuated by 30–40 MPa during glacial cycles but resulted in advective transport of only tens of meters or less. Although other mechanisms cannot be ruled out, we conclude that glacial-mechanical forcing of a water-saturated system can explain the observed underpressures.

  10. Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

    NASA Astrophysics Data System (ADS)

    Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.

    2014-09-01

    While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.

  11. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    PubMed Central

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  12. Simulating subduction zone earthquakes using discrete element method: a window into elusive source processes

    NASA Astrophysics Data System (ADS)

    Blank, D. G.; Morgan, J.

    2017-12-01

    Large earthquakes that occur on convergent plate margin interfaces have the potential to cause widespread damage and loss of life. Recent observations reveal that a wide range of different slip behaviors take place along these megathrust faults, which demonstrate both their complexity, and our limited understanding of fault processes and their controls. Numerical modeling provides us with a useful tool that we can use to simulate earthquakes and related slip events, and to make direct observations and correlations among properties and parameters that might control them. Further analysis of these phenomena can lead to a more complete understanding of the underlying mechanisms that accompany the nucleation of large earthquakes, and what might trigger them. In this study, we use the discrete element method (DEM) to create numerical analogs to subduction megathrusts with heterogeneous fault friction. Displacement boundary conditions are applied in order to simulate tectonic loading, which in turn, induces slip along the fault. A wide range of slip behaviors are observed, ranging from creep to stick slip. We are able to characterize slip events by duration, stress drop, rupture area, and slip magnitude, and to correlate the relationships among these quantities. These characterizations allow us to develop a catalog of rupture events both spatially and temporally, for comparison with slip processes on natural faults.

  13. Comparison of a new integrated current source with the modified Howland circuit for EIT applications.

    PubMed

    Hong, Hongwei; Rahal, Mohamad; Demosthenous, Andreas; Bayford, Richard H

    2009-10-01

    Multi-frequency electrical impedance tomography (MF-EIT) systems require current sources that are accurate over a wide frequency range (1 MHz) and with large load impedance variations. The most commonly employed current source design in EIT systems is the modified Howland circuit (MHC). The MHC requires tight matching of resistors to achieve high output impedance and may suffer from instability over a wide frequency range in an integrated solution. In this paper, we introduce a new integrated current source design in CMOS technology and compare its performance with the MHC. The new integrated design has advantages over the MHC in terms of power consumption and area. The output current and the output impedance of both circuits were determined through simulations and measurements over the frequency range of 10 kHz to 1 MHz. For frequencies up to 1 MHz, the measured maximum variation of the output current for the integrated current source is 0.8% whereas for the MHC the corresponding value is 1.5%. Although the integrated current source has an output impedance greater than 1 MOmega up to 1 MHz in simulations, in practice, the impedance is greater than 160 kOmega up to 1 MHz due to the presence of stray capacitance.

  14. Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology.

    PubMed

    Kim, Kang-Hyun; Hong, Soon Kyu; Jang, Nam-Su; Ha, Sung-Hun; Lee, Hyung Woo; Kim, Jong-Man

    2017-05-24

    Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa -1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).

  15. Acoustical properties of individual liposome-loaded microbubbles.

    PubMed

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico

    2012-12-01

    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd

    Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral tomore » narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.« less

  17. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.

    PubMed

    Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-11-01

    Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery. Copyright © 2012 Wiley Periodicals, Inc.

  18. A Mechatronic System for Quantitative Application and Assessment of Massage-Like Actions in Small Animals

    PubMed Central

    Wang, Qian; Zeng, Hansong; Best, Thomas M.; Haas, Caroline; Heffner, Ned T.; Agarwal, Sudha; Zhao, Yi

    2013-01-01

    Massage therapy has a long history and has been widely believed effective in restoring tissue function, relieving pain and stress, and promoting overall well-being. However, the application of massage-like actions and the efficacy of massage are largely based on anecdotal experiences that are difficult to define and measure. This leads to a somewhat limited evidence-based interface of massage therapy with modern medicine. In this study, we introduce a mechatronic device that delivers highly reproducible massage-like mechanical loads to the hind limbs of small animals (rats and rabbits), where various massage-like actions are quantified by the loading parameters (magnitude, frequency and duration) of the compressive and transverse forces on the subject tissues. The effect of massage is measured by the difference in passive viscoelastic properties of the subject tissues before and after mechanical loading, both obtained by the same device. Results show that this device is useful in identifying the loading parameters that are most conducive to a change in tissue mechanical properties, and can determine the range of loading parameters that result in sustained changes in tissue mechanical properties and function. This device presents the first step in our effort for quantifying the application of massage-like actions used clinically and measurement of their efficacy that can readily be combined with various quantitative measures (e.g., active mechanical properties and physiological assays) for determining the therapeutic and mechanistic effects of massage therapies. PMID:23943071

  19. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  20. Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul

    2010-10-01

    Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3° at anterior/posterior, 3° at medial/lateral and 10° from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.

  1. Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings.

    PubMed

    Duong, Tu Van; Van Humbeeck, Jan; Van den Mooter, Guy

    2015-07-06

    The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.

  2. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants

    PubMed Central

    Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145

  3. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.

    PubMed

    Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.

  4. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task One Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.

    This is a report for task one of the tail event analysis project for BPA. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, the imbalance between generation and load becomes very significant. This type of events occurs infrequently and appears on the tails of the distribution of system power imbalance; therefore, is referred to as tail events. This report analyzes what happened during the Electric Reliability Council of Texas (ERCOT) reliability event on Februarymore » 26, 2008, which was widely reported because of the involvement of wind generation. The objective is to identify sources of the problem, solutions to it and potential improvements that can be made to the system. Lessons learned from the analysis include the following: (1) Large mismatch between generation and load can be caused by load forecast error, wind forecast error and generation scheduling control error on traditional generators, or a combination of all of the above; (2) The capability of system balancing resources should be evaluated both in capacity (MW) and in ramp rate (MW/min), and be procured accordingly to meet both requirements. The resources need to be able to cover a range corresponding to the variability of load and wind in the system, additional to other uncertainties; (3) Unexpected ramps caused by load and wind can both become the cause leading to serious issues; (4) A look-ahead tool evaluating system balancing requirement during real-time operations and comparing that with available system resources should be very helpful to system operators in predicting the forthcoming of similar events and planning ahead; and (5) Demand response (only load reduction in ERCOT event) can effectively reduce load-generation mismatch and terminate frequency deviation in an emergency situation.« less

  5. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces

    NASA Astrophysics Data System (ADS)

    Muthusamy, Manoranjan; Tait, Simon; Schellart, Alma; Beg, Md Nazmul Azim; Carvalho, Rita F.; de Lima, João L. M. P.

    2018-02-01

    Among the urban aquatic pollutants, the most common is sediment which also acts as a transport medium for many contaminants. Hence there is an increasing interest in being able to better predict the sediment wash-off from urban surfaces. The exponential wash-off model is the most widely used method to predict the sediment wash-off. Although a number of studies proposed various modifications to the original exponential wash-off equation, these studies mostly looked into one parameter in isolation thereby ignoring the interactions between the parameters corresponding to rainfall, catchment and sediment characteristics. Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface slope and initial load on wash-off load in an integrated and systematic way and (b) to subsequently improve the exponential wash-off equation focusing on the effect of the aforementioned three parameters. A series of laboratory experiments were carried out in a full-scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 50 to 200 g/m2 were selected based on values obtained from the literature. Fine sediment with a size range of 300-600 μm was used for all of the tests. Each test was carried out for one hour with at least 9 wash-off samples per test collected. Mass balance checks were carried out for all the tests as a quality control measure to make sure that there is no significant loss of sand during the tests. Results show that the washed off sediment load at any given time is proportional to initial load for a given combination of rainfall intensity and surface slope. This indicates the importance of dedicated modelling of build-up so as to subsequently predict wash-off load. It was also observed that the maximum fraction that is washed off from the surface increases with both rainfall intensity and the surface slope. This observation leads to the second part of the study where the existing wash-off model is modified by introducing a capacity factor which defines this maximum fraction. This capacity factor is derived as a function of wash-off coefficient, making use of the correlation between the maximum fraction and the wash-off rate. Values of the modified wash-off coefficient are presented for all combinations of rainfall intensities and surface slopes, which can be transferred to other urban catchments with similar conditions.

  6. The initial safe range of motion of the ankle joint after three methods of internal fixation of simulated fractures of the medial malleolus.

    PubMed

    Shimamura, Yoshio; Kaneko, Kazuo; Kume, Kazuhiko; Maeda, Mutsuhiro; Iwase, Hideaki

    2006-07-01

    Previous studies have demonstrated the safe passive range of ankle motion for inter-bone stiffness after internal fixation under load but there is a lack of information about the safe range of ankle motion for early rehabilitation in the absence of loading. The present study was designed to assess the effect of ankle movement on inter-bone displacement characteristics of medial malleolus fractures following three types of internal fixation to determine the safe range of motion. Five lower legs obtained during autopsy were used to assess three types of internal fixation (two with Kirschner-wires alone; two with Kirschner-wires plus tension band wiring; and, one with an AO/ASIF malleolar screw alone). Following a simulated fracture by sawing through the medial malleolus the displacement between the fractured bone ends was measured during a passive range of movement with continuous monitoring using omega (Omega) shaped transducers and a biaxial flexible goniometer. Statistical analysis was performed with repeated measures analysis of variance. Inter-bone displacement was not proportional to the magnitude of movement throughout the range of ankle motion as, when separation exceeded 25 microm, there was increasingly wide separation as plantar-flexion or dorsal-flexion was increased. There was no statistical significant difference between the small amount of inter-bone displacement observed with three types of fixation within the safe range of dorsal-flexion and plantar-flexion for early rehabilitation. However the inter-bone separation when fixation utilized two Kirschner-wires alone tended to be greater than when using the other two types of fixation during dorsal-flexion and eversion. The present study revealed a reproducible range of ankle motion for early rehabilitation which was estimated to be within the range of 20 degrees of dorsal-flexion and 10 degrees of plantar-flexion without eversion. Also, internal fixation with two Kirschner-wires alone does not seem to provide stability achieved by the other two forms of fixation.

  7. The hierarchical response of human corneal collagen to load.

    PubMed

    Bell, J S; Hayes, S; Whitford, C; Sanchez-Weatherby, J; Shebanova, O; Vergari, C; Winlove, C P; Terrill, N; Sorensen, T; Elsheikh, A; Meek, K M

    2018-01-01

    Fibrillar collagen in the human cornea is integral to its function as a transparent lens of precise curvature, and its arrangement is now well-characterised in the literature. While there has been considerable effort to incorporate fibrillar architecture into mechanical models of the cornea, the mechanical response of corneal collagen to small applied loads is not well understood. In this study the fibrillar and molecular response to tensile load was quantified using small and wide angle X-ray scattering (SAXS/WAXS), and digital image correlation (DIC) photography was used to calculate the local strain field that gave rise to the hierarchical changes. A molecular scattering model was used to calculate the tropocollagen tilt relative to the fibril axis and changes associated with applied strain. Changes were measured in the D-period, molecular tilt and the orientation and spacing of the fibrillar and molecular networks. These measurements were summarised into hierarchical deformation mechanisms, which were found to contribute at varying strains. The change in molecular tilt is indicative of a sub-fibrillar "spring-like" deformation mechanism, which was found to account for most of the applied strain under physiological and near-physiological loads. This deformation mechanism may play an important functional role in tissues rich in fibrils of high helical tilt, such as skin and cartilage. Collagen is the primary mediator of soft tissue biomechanics, and variations in its hierarchical structure convey the varying amounts of structural support necessary for organs to function normally. Here we have examined the structural response of corneal collagen to tensile load using X-rays to probe hierarchies ranging from molecular to fibrillar. We found a previously unreported deformation mechanism whereby molecules, which are helically arranged relative to the axis of their fibril, change in tilt akin to the manner in which a spring stretches. This "spring-like" mechanism accounts for a significant portion of the applied deformation at low strains (<3%). These findings will inform the future design of collagen-based artificial corneas being developed to address world-wide shortages of corneal donor tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. The Effects of Antifoam Agent on Dead End Filtration Process

    NASA Astrophysics Data System (ADS)

    Mohamad Pauzi, S.; Ahmad, N.; Yahya, M. F.; Arifin, M. A.

    2018-05-01

    The formation of foam as a result from introducing gases during cell culture process in the bioprocess industry has indirectly affected the throughput of the product of interest. Due to that, antifoams were developed and established as one of the means to minimize the formation of foam in the cell culture. There are many types of antifoams but the silicone-type of antifoams are widely used in the bioprocess industry. Although the establishment of antifoam has aided the cell culture process, the impacts of its presence in the cell culture to the downstream process especially the dead end filtration is not widely discussed. The findings in the study emphasized on the dead end filtration performance that includes flux rate profile and the resulted filtration capacity. In this study, the concentrations of antifoam injected into the solution were varied from 0.2% v/v – 1.0% v/v and the solutions were filtered using constant flow method. The resulted maximum pressure readings and final flux rates indicated that the resistance exerted to the feed flow rate increased as the concentration of antifoam loaded in the solution increased. This later has led to the decline in the flux rates with percentage reduction between 32 – 68%. The calculated filter capacity for flux rate of 1000LMH ranged from 53 – 63L/m2 while it is in the range of 40 – 43L/m2 for flux rate of 2000LMH. The presence of antifoam agents in the feed load was determined to have negative effects on the dead end filtration performance and it may reduce the efficiency of the dead end filtration process.

  9. Directivity and trends of noise generated by a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.; Gentry, C. L., Jr.

    1986-01-01

    An experimental study of the effects on far-field propeller noise of a pylon wake interaction was conducted with a scale model of a single-rotation propeller in a low-speed anechoic wind tunnel. A detailed mapping of the noise directivity was obtained at 10 test conditions covering a wide range of propeller power landings at several subsonic tip speeds. Two types of noise penalties were investigated-pulser and spacing. The pusher noise penalty is the difference in the average overall sound pressure level, OASPL, for pusher and tractor installations. (In a pusher installation, the propeller disk is downstream of a pylon or another aerodynamic surface.) The spacing noise penalty is the difference in the average OASPL for different distances between the pylon trailing edge and the propeller. The variations of these noise penalties with axial, or flyover, angle theta and circumferential angle phi are presented, and the trends in these noise penalties with tip Mach number and power loading are given for selected values of theta and phi. The circumferential directivity of the noise from a pusher installation showed that the addition noise due to the interaction of the pylon wake with the propeller had a broad peak over a wide range of circumferential angles approximately perpendicular to the pylon with a sharp minimum 90 deg. to the pylon for the majority of cases tested. The variation of the pusher noise penalty with theta had a minimum occurring near the propeller plane and maximum values of as much as 20 dB occurring toward the propeller axes. The magnitude of the pusher noise penalty generally decreased as propeller tip Mach number or power loading was increased.

  10. Three-dimensional analysis of surface crack-Hertzian stress field interaction

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Hsu, Y.

    1989-01-01

    The results are presented of a stress intensity factor analysis of semicircular surface cracks in the inner raceway of an engine bearing. The loading consists of a moving spherical Hertzian contact load and an axial stress due to rotation and shrink fit. A 3-D linear elastic Boundary Element Method code was developed to perform the stress analysis. The element library includes linear and quadratic isoparametric surface elements. Singular quarter point elements were employed to capture the square root displacement variation and the inverse square root stress singularity along the crack front. The program also possesses the capability to separate the whole domain into two subregions. This procedure enables one to solve nonsymmetric fracture mechanics problems without having to separate the crack surfaces a priori. A wide range of configuration parameters was investigated. The ratio of crack depth to bearing thickness was varied from one-sixtieth to one-fifth for several different locations of the Hertzian load. The stress intensity factors for several crack inclinations were also investigated. The results demonstrate the efficiency and accuracy of the Boundary Element Method. Moreover, the results can provide the basis for crack growth calculations and fatigue life prediction.

  11. Pretest predictions of the Fast Flux Test Facility Passive Safety Test Phase IIB transients using United States derived computer codes and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, F.J.; Harris, R.A.; Padilla, A.

    The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less

  12. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.

    PubMed

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-11-20

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.

  13. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots

    PubMed Central

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-01-01

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627

  14. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE PAGES

    Westerdale, S.; Xu, J.; Shields, E.; ...

    2017-08-03

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  15. Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui

    2017-09-01

    A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.

  16. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters o protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and dicult problem. In this article,more » we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements to predictions from different quenching models. We and that a modified Birks' model whose denominator is quadratic in dE=dx best describes the measurements, with χ 2/NDF = 1:6. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  17. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    We present that organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section of 10B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on 10B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem.more » In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57–467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in dE/dx best describes the measurements, with χ2/NDF=1.6. In conclusion, this result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  18. Quenching measurements and modeling of a boron-loaded organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerdale, S.; Xu, J.; Shields, E.

    Organic liquid scintillators are used in a wide variety of applications in experimental nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron captures, due to the high thermal neutron capture cross section ofmore » $$^{10}$$B. These scintillators are commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron may produce a signal when it scatters off protons in the scintillator or when it captures on $$^{10}$$B. Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic liquid scintillator at recoil energies ranging from 57--467 keV, and we compare these measurements to predictions from different quenching models. We find that a modified Birks' model whose denominator is quadratic in $dE/dx$ best describes the measurements, with $$\\chi^2$$/NDF$=1.6$. This result will help model nuclear recoil scintillation in similar detectors and can be used to improve their neutron tagging efficiency.« less

  19. Ultrasensitive thrombin detection based on direct electrochemistry of highly loaded hemoglobin spheres-encapsulated platinum nanoparticles as labels and electrocatalysts.

    PubMed

    Wu, Yongmei; Xu, Wenju; Bai, Lijuan; Yuan, Yali; Yi, Huayu; Chai, Yaqin; Yuan, Ruo

    2013-12-15

    For the first time, a sandwich-type electrochemical method was proposed for ultrasensitive thrombin (TB) detection based on direct electrochemistry of highly loaded hemoglobin spheres-encapsulated platinum nanoparticles (PtNPs@Hb) as labels and electrocatalysts. The prepared PtNPs@Hb not only exhibited good biocompatibility, excellent electrocatalytic activity, but also presented redox activity of Hb. Thus, it was employed for the fabrication of aptasensor without any extraneous redox mediators, leading to a simple preparation process for the aptasensor. The high loading of Hb spheres as redox mediators could enhance the electrochemical signal. Importantly, the synergetic electrocatalytic behavior of Hb and PtNPs toward H2O2 reduction greatly amplified the electrochemical signal, resulting in the high sensitivity of aptasensor. Consequently, under optimal conditions, the designed aptasensor exhibited a lower detection limit of 0.05 pM and wide dynamic linear range from 0.15 pM to 40 nM for TB detection. Additionally, the proposed mediator-free and signal-amplified electrochemical aptasensor showed great potential in portable and cost-effective TB sensing devices. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Short-period cyclic loading system for in situ X-ray observation of anelastic properties at high pressure.

    PubMed

    Yoshino, Takashi; Yamazaki, Daisuke; Tange, Yoshinori; Higo, Yuji

    2016-10-01

    To determine the anelastic properties of materials of the Earth's interior, a short-period cyclic loading system was installed for in situ X-ray radiographic observation under high pressure to the multi-anvil deformation DIA press at the bending magnet beam line BL04B1 at SPring-8. The hydraulic system equipped with a piston controlled by a solenoid was designed so as to enable producing smooth sinusoidal stress in a wide range of oscillation period from 0.2 to 100 s and generating variable amplitudes. Time resolved X-ray radiography imaging of the sample and reference material provides their strain as a function of time during cyclic loading. A synchrotron X-ray radiation source allows us to resolve their strain variation with time even at the short period (<1 s). The minimum resolved strain is as small as 10 -4 , and the shortest oscillation period to detect small strain is 0.5 s. Preliminary experimental results exhibited that the new system can resolve attenuation factor Q -1 at upper mantle conditions. These results are in quantitative agreement with previously reported data obtained at lower pressures.

  1. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  2. Development of New Contrast Agents for Imaging Function and Metabolism by Magnetic Resonance Imaging

    PubMed Central

    Carvalho, Alexandra; Gonçalves, M Clara; Corvo, M Luísa; Martins, M Bárbara F

    2017-01-01

    Liposomes are interesting nanosystems with a wide range of medical application. One particular application is their ability to enhance contrast in magnetic resonance images; when properly loaded with magnetic/superparamagnetic nanoparticles, this means to act as contrast agents. The design of liposomes loaded with magnetic particles, magnetoliposomes, presents a large number of possibilities depending on the application from image function to metabolism. More interesting is its double function application as theranostics (diagnostics and therapy). The synthesis, characterization, and possible medical applications of two types of magnetoliposomes are reviewed. Their performance will be compared, in particular, their efficiency as contrast agents for magnetic resonance imaging, measured by their relaxivities r1 and r2 relating to their particular composition. One of the magnetoliposomes had 1,2-diacyl-sn-glycero-3-phosphocholine (soy) as the main phospholipid component, with and without cholesterol, varying its phospholipid to cholesterol molar ratios. The other formulation is a long-circulating liposome composed of 1,2-diacyl-sn-glycero-3-phosphocholine (egg), cholesterol, and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. Both nanosystems were loaded with superparamagnetic iron oxide nanoparticles with different sizes and coatings. PMID:28804244

  3. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  4. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    PubMed

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. 3-D Mixed Mode Delamination Fracture Criteria - An Experimentalist's Perspective

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2006-01-01

    Many delamination failure criteria based on fracture toughness have been suggested over the past few decades, but most only covered the region containing mode I and mode II components of loading because that is where toughness data existed. With new analysis tools, more 3D analyses are being conducted that capture a mode III component of loading. This has increased the need for a fracture criterion that incorporates mode III loading. The introduction of a pure mode III fracture toughness test has also produced data on which to base a full 3D fracture criterion. In this paper, a new framework for visualizing 3D fracture criteria is introduced. The common 2D power law fracture criterion was evaluated to produce unexpected predictions with the introduction of mode III and did not perform well in the critical high mode I region. Another 2D criterion that has been shown to model a wide range of materials well was used as the basis for a new 3D criterion. The new criterion is based on assumptions that the relationship between mode I and mode III toughness is similar to the relation between mode I and mode II and that a linear interpolation can be used between mode II and mode III. Until mixed-mode data exists with a mode III component of loading, 3D fracture criteria cannot be properly evaluated, but these assumptions seem reasonable.

  6. Comparative Assessment of Models and Methods To Calculate Grid Electricity Emissions.

    PubMed

    Ryan, Nicole A; Johnson, Jeremiah X; Keoleian, Gregory A

    2016-09-06

    Due to the complexity of power systems, tracking emissions attributable to a specific electrical load is a daunting challenge but essential for many environmental impact studies. Currently, no consensus exists on appropriate methods for quantifying emissions from particular electricity loads. This paper reviews a wide range of the existing methods, detailing their functionality, tractability, and appropriate use. We identified and reviewed 32 methods and models and classified them into two distinct categories: empirical data and relationship models and power system optimization models. To illustrate the impact of method selection, we calculate the CO2 combustion emissions factors associated with electric-vehicle charging using 10 methods at nine charging station locations around the United States. Across the methods, we found an up to 68% difference from the mean CO2 emissions factor for a given charging site among both marginal and average emissions factors and up to a 63% difference from the average across average emissions factors. Our results underscore the importance of method selection and the need for a consensus on approaches appropriate for particular loads and research questions being addressed in order to achieve results that are more consistent across studies and allow for soundly supported policy decisions. The paper addresses this issue by offering a set of recommendations for determining an appropriate model type on the basis of the load characteristics and study objectives.

  7. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  8. Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high

    NASA Astrophysics Data System (ADS)

    Wilkins, Kayla; Aherne, Julian; Bleasdale, Andy

    2016-12-01

    It is widely accepted that elevated nitrogen deposition can have detrimental effects on semi-natural ecosystems, including changes to plant diversity. Empirical critical loads of nutrient nitrogen have been recommended to protect many sensitive European habitats from significant harmful effects. In this study, we used Threshold Indicator Taxa Analysis (TITAN) to investigate shifts in vegetation communities along an atmospheric nitrogen deposition gradient for twenty-two semi-natural habitat types (as described under Annex I of the European Union Habitats Directive) in Ireland. Significant changes in vegetation community, i.e., change points, were determined for twelve habitats, with seven habitats showing a decrease in the number of positive indicator species. Community-level change points indicated a decrease in species abundance along a nitrogen deposition gradient ranging from 3.9 to 15.3 kg N ha-1 yr-1, which were significantly lower than recommended critical loads (Wilcoxon signed-rank test; V = 6, p < 0.05). These results suggest that lower critical loads of empirical nutrient nitrogen deposition may be required to protect many European habitats. Changes to vegetation communities may mean a loss of sensitive indicator species and potentially rare species in these habitats, highlighting how emission reductions policies set under the National Emissions Ceilings Directive may be directly linked to meeting the goal set out under the European Union's Biodiversity Strategy of "halting the loss of biodiversity" across Europe by 2020.

  9. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368

  10. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    NASA Technical Reports Server (NTRS)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  11. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.

  12. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOEpatents

    Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Duffy, Kevin P [Metamora, IL; Liechty, Michael P [Chillicothe, IL

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  13. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.

    2015-01-01

    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  14. Load sensing system

    DOEpatents

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  15. The effect of load reductions on repetition performance for commonly performed multijoint resistance exercises.

    PubMed

    Willardson, Jeffrey M; Simão, Roberto; Fontana, Fabio E

    2012-11-01

    The purpose of this study was to compare 4 different loading schemes for the free weight bench press, wide grip front lat pull-down, and free weight back squat to determine the extent of progressive load reductions necessary to maintain repetition performance. Thirty-two recreationally trained women (age = 29.34 ± 4.58 years, body mass = 59.61 ± 4.72 kg, height = 162.06 ± 4.04 cm) performed 4 resistance exercise sessions that involved 3 sets of the free weight bench press, wide grip front lat pull-down, and free weight back squat, performed in this exercise order during all 4 sessions. Each of the 4 sessions was conducted under different randomly ordered loading schemes, including (a) a constant 10 repetition maximum (RM) load for all 3 sets and for all 3 exercises, (b) a 5% reduction after the first and second sets for all the 3 exercises, (c) a 10% reduction after the first and second sets for all the 3 exercises, and (d) a 15% reduction after the first and second sets for all the 3 exercises. The results indicated that for the wide grip front lat pull-down and free weight back squat, a 10% load reduction was necessary after the first and second sets to accomplish 10 repetitions on all the 3 sets. For the free weight bench press, a load reduction between 10 and 15% was necessary; specifically, a 10% reduction was insufficient and a 15% reduction was excessive, as evidenced by significantly >10 repetitions on the second and third sets for this exercise (p ≤ 0.05). In conclusion, the results of this study indicate that a resistance training prescription that involves 1-minute rest intervals between multiple 10RM sets does require load reductions to maintain repetition performance. Practitioners might apply these results by considering an approximate 10% load reduction after the first and second sets for the exercises examined, when training women of similar characteristics as in this study.

  16. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI {dy4140} steel from 10-6 to 10-2 mm per cycle.

  17. Exploring the role of flood transience in coarse bed load sediment transport

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.

    2015-12-01

    The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.

  18. HIV community viral load trends in South Carolina.

    PubMed

    Chakraborty, Hrishikesh; Weissman, Sharon; Duffus, Wayne A; Hossain, Akhtar; Varma Samantapudi, Ashok; Iyer, Medha; Albrecht, Helmut

    2017-03-01

    Community viral load is an aggregate measure of HIV viral load in a particular geographic location, community, or subgroup. Community viral load provides a measure of disease burden in a community and community transmission risk. This study aims to examine community viral load trend in South Carolina and identify differences in community viral load trends between selected population subgroups using a state-wide surveillance dataset that maintains electronic records of all HIV viral load measurements reported to the state health department. Community viral load trends were examined using random mixed effects models, adjusting for age, race, gender, residence, CD4 counts, HIV risk group, and initial antiretroviral regimen during the study period, and time. The community viral load gradually decreased from 2004 to 2013 ( p < 0.0001). The number of new infections also decreased ( p = 0.0001) over time. A faster rate of decrease was seen among men compared to women ( p < 0.0001), men who have sex with men ( p = 0.0001) compared to heterosexuals, patients diagnosed in urban areas compared to that in rural areas ( p = 0.0004), and patients prescribed single-tablet regimen compared to multiple-tablet regimen ( p < 0.0001). While the state-wide community viral load decreased over time, the decline was not uniform among residence at diagnosis, HIV risk group, and single-tablet regimen versus multiple-tablet regimen subgroups. Slower declines in community viral load among females, those in rural areas, and heterosexuals suggest possible disparities in care that require further exploration. The association between using single-tablet regimen and faster community viral load decline is noteworthy.

  19. Ovalization of Tubes Under Bending and Compression

    NASA Technical Reports Server (NTRS)

    Demer, L J; Kavanaugh, E S

    1944-01-01

    An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)

  20. New insights into prevalence, genetic diversity, and proviral load of human T-cell leukemia virus types 1 and 2 in pregnant women in Gabon in equatorial central Africa.

    PubMed

    Etenna, Sonia Lekana-Douki; Caron, Mélanie; Besson, Guillaume; Makuwa, Maria; Gessain, Antoine; Mahé, Antoine; Kazanji, Mirdad

    2008-11-01

    Human T-cell leukemia virus type 1 (HTLV-1) is highly endemic in areas of central Africa; mother-to-child transmission and sexual transmission are considered to be the predominant routes. To determine the prevalence and subtypes of HTLV-1/2 in pregnant women in Gabon, we conducted an epidemiological survey in the five main cities of the country. In 907 samples, the HTLV-1 seroprevalence was 2.1%, which is lower than that previously reported. Only one case of HTLV-2 infection was found. The HTLV-1 seroprevalence increased with age and differed between regions (P

  1. Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    NASA Astrophysics Data System (ADS)

    Meyer, H.; Eich, T.; Beurskens, M.; Coda, S.; Hakola, A.; Martin, P.; Adamek, J.; Agostini, M.; Aguiam, D.; Ahn, J.; Aho-Mantila, L.; Akers, R.; Albanese, R.; Aledda, R.; Alessi, E.; Allan, S.; Alves, D.; Ambrosino, R.; Amicucci, L.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Apruzzese, G.; Ariola, M.; Arnichand, H.; Arter, W.; Baciero, A.; Barnes, M.; Barrera, L.; Behn, R.; Bencze, A.; Bernardo, J.; Bernert, M.; Bettini, P.; Bilková, P.; Bin, W.; Birkenmeier, G.; Bizarro, J. P. S.; Blanchard, P.; Blanken, T.; Bluteau, M.; Bobkov, V.; Bogar, O.; Böhm, P.; Bolzonella, T.; Boncagni, L.; Botrugno, A.; Bottereau, C.; Bouquey, F.; Bourdelle, C.; Brémond, S.; Brezinsek, S.; Brida, D.; Brochard, F.; Buchanan, J.; Bufferand, H.; Buratti, P.; Cahyna, P.; Calabrò, G.; Camenen, Y.; Caniello, R.; Cannas, B.; Canton, A.; Cardinali, A.; Carnevale, D.; Carr, M.; Carralero, D.; Carvalho, P.; Casali, L.; Castaldo, C.; Castejón, F.; Castro, R.; Causa, F.; Cavazzana, R.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cesario, R.; Challis, C. D.; Chapman, I. T.; Chapman, S.; Chernyshova, M.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Clairet, F.; Classen, I.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Corre, Y.; Costea, S.; Crisanti, F.; Cruz, N.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; De Angeli, M.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; Decker, J.; Delogu, R. S.; Dendy, R.; Denner, P.; Di Troia, C.; Dimitrova, M.; D'Inca, R.; Dorić, V.; Douai, D.; Drenik, A.; Dudson, B.; Dunai, D.; Dunne, M.; Duval, B. P.; Easy, L.; Elmore, S.; Erdös, B.; Esposito, B.; Fable, E.; Faitsch, M.; Fanni, A.; Fedorczak, N.; Felici, F.; Ferreira, J.; Février, O.; Ficker, O.; Fietz, S.; Figini, L.; Figueiredo, A.; Fil, A.; Fishpool, G.; Fitzgerald, M.; Fontana, M.; Ford, O.; Frassinetti, L.; Fridström, R.; Frigione, D.; Fuchert, G.; Fuchs, C.; Furno Palumbo, M.; Futatani, S.; Gabellieri, L.; Gałązka, K.; Galdon-Quiroga, J.; Galeani, S.; Gallart, D.; Gallo, A.; Galperti, C.; Gao, Y.; Garavaglia, S.; Garcia, J.; Garcia-Carrasco, A.; Garcia-Lopez, J.; Garcia-Munoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaspar, J.; Gauthier, E.; Geelen, P.; Geiger, B.; Ghendrih, P.; Ghezzi, F.; Giacomelli, L.; Giannone, L.; Giovannozzi, E.; Giroud, C.; Gleason González, C.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Gruber, M.; Gude, A.; Guimarais, L.; Guirlet, R.; Gunn, J.; Hacek, P.; Hacquin, S.; Hall, S.; Ham, C.; Happel, T.; Harrison, J.; Harting, D.; Hauer, V.; Havlickova, E.; Hellsten, T.; Helou, W.; Henderson, S.; Hennequin, P.; Heyn, M.; Hnat, B.; Hölzl, M.; Hogeweij, D.; Honoré, C.; Hopf, C.; Horáček, J.; Hornung, G.; Horváth, L.; Huang, Z.; Huber, A.; Igitkhanov, J.; Igochine, V.; Imrisek, M.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Ivanova-Stanik, I.; Jacobsen, A. S.; Jacquet, P.; Jakubowski, M.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Jeppe Miki Busk, O.; Jessen, M.; Joffrin, E.; Jones, O.; Jonsson, T.; Kallenbach, A.; Kallinikos, N.; Kálvin, S.; Kappatou, A.; Karhunen, J.; Karpushov, A.; Kasilov, S.; Kasprowicz, G.; Kendl, A.; Kernbichler, W.; Kim, D.; Kirk, A.; Kjer, S.; Klimek, I.; Kocsis, G.; Kogut, D.; Komm, M.; Korsholm, S. B.; Koslowski, H. R.; Koubiti, M.; Kovacic, J.; Kovarik, K.; Krawczyk, N.; Krbec, J.; Krieger, K.; Krivska, A.; Kube, R.; Kudlacek, O.; Kurki-Suonio, T.; Labit, B.; Laggner, F. M.; Laguardia, L.; Lahtinen, A.; Lalousis, P.; Lang, P.; Lauber, P.; Lazányi, N.; Lazaros, A.; Le, H. B.; Lebschy, A.; Leddy, J.; Lefévre, L.; Lehnen, M.; Leipold, F.; Lessig, A.; Leyland, M.; Li, L.; Liang, Y.; Lipschultz, B.; Liu, Y. Q.; Loarer, T.; Loarte, A.; Loewenhoff, T.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Lupelli, I.; Lux, H.; Lyssoivan, A.; Madsen, J.; Maget, P.; Maggi, C.; Maggiora, R.; Magnussen, M. L.; Mailloux, J.; Maljaars, B.; Malygin, A.; Mantica, P.; Mantsinen, M.; Maraschek, M.; Marchand, B.; Marconato, N.; Marini, C.; Marinucci, M.; Markovic, T.; Marocco, D.; Marrelli, L.; Martin, Y.; Solis, J. R. Martin; Martitsch, A.; Mastrostefano, S.; Mattei, M.; Matthews, G.; Mavridis, M.; Mayoral, M.-L.; Mazon, D.; McCarthy, P.; McAdams, R.; McArdle, G.; McCarthy, P.; McClements, K.; McDermott, R.; McMillan, B.; Meisl, G.; Merle, A.; Meyer, O.; Milanesio, D.; Militello, F.; Miron, I. G.; Mitosinkova, K.; Mlynar, J.; Mlynek, A.; Molina, D.; Molina, P.; Monakhov, I.; Morales, J.; Moreau, D.; Morel, P.; Moret, J.-M.; Moro, A.; Moulton, D.; Müller, H. W.; Nabais, F.; Nardon, E.; Naulin, V.; Nemes-Czopf, A.; Nespoli, F.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nimb, S.; Nocente, M.; Nouailletas, R.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrčil, T.; Olsen, J.; Omotani, J.; O'Mullane, M. G.; Orain, F.; Osterman, N.; Paccagnella, R.; Pamela, S.; Pangione, L.; Panjan, M.; Papp, G.; Papřok, R.; Parail, V.; Parra, F. I.; Pau, A.; Pautasso, G.; Pehkonen, S.-P.; Pereira, A.; Perelli Cippo, E.; Pericoli Ridolfini, V.; Peterka, M.; Petersson, P.; Petrzilka, V.; Piovesan, P.; Piron, C.; Pironti, A.; Pisano, F.; Pisokas, T.; Pitts, R.; Ploumistakis, I.; Plyusnin, V.; Pokol, G.; Poljak, D.; Pölöskei, P.; Popovic, Z.; Pór, G.; Porte, L.; Potzel, S.; Predebon, I.; Preynas, M.; Primc, G.; Pucella, G.; Puiatti, M. E.; Pütterich, T.; Rack, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Ravera, G.; Réfy, D.; Reich, M.; Reimerdes, H.; Reimold, F.; Reinke, M.; Reiser, D.; Resnik, M.; Reux, C.; Ripamonti, D.; Rittich, D.; Riva, G.; Rodriguez-Ramos, M.; Rohde, V.; Rosato, J.; Ryter, F.; Saarelma, S.; Sabot, R.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Samaddar, D.; Sanchis-Sanchez, L.; Santos, J.; Sauter, O.; Scannell, R.; Scheffer, M.; Schneider, M.; Schneider, B.; Schneider, P.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Seidl, J.; Sertoli, M.; Šesnić, S.; Shabbir, A.; Shalpegin, A.; Shanahan, B.; Sharapov, S.; Sheikh, U.; Sias, G.; Sieglin, B.; Silva, C.; Silva, A.; Silva Fuglister, M.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spagnolo, S.; Spizzo, G.; Spolaore, M.; Stange, T.; Stejner Pedersen, M.; Stepanov, I.; Stober, J.; Strand, P.; Šušnjara, A.; Suttrop, W.; Szepesi, T.; Tál, B.; Tala, T.; Tamain, P.; Tardini, G.; Tardocchi, M.; Teplukhina, A.; Terranova, D.; Testa, D.; Theiler, C.; Thornton, A.; Tolias, P.; Tophøj, L.; Treutterer, W.; Trevisan, G. L.; Tripsky, M.; Tsironis, C.; Tsui, C.; Tudisco, O.; Uccello, A.; Urban, J.; Valisa, M.; Vallejos, P.; Valovic, M.; Van den Brand, H.; Vanovac, B.; Varoutis, S.; Vartanian, S.; Vega, J.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vicente, J.; Viezzer, E.; Vignitchouk, L.; Vijvers, W. A. J.; Villone, F.; Viola, B.; Vlahos, L.; Voitsekhovitch, I.; Vondráček, P.; Vu, N. M. T.; Wagner, D.; Walkden, N.; Wang, N.; Wauters, T.; Weiland, M.; Weinzettl, V.; Westerhof, E.; Wiesenberger, M.; Willensdorfer, M.; Wischmeier, M.; Wodniak, I.; Wolfrum, E.; Yadykin, D.; Zagórski, R.; Zammuto, I.; Zanca, P.; Zaplotnik, R.; Zestanakis, P.; Zhang, W.; Zoletnik, S.; Zuin, M.; ASDEX Upgrade, the; MAST; TCV Teams

    2017-10-01

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement {{H}\\text{H≤ft(98,\\text{y}2\\right)}}≈ 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes. In the future we will refer to the author list of the paper as the EUROfusion MST1 Team.

  2. Spatial working memory load affects counting but not subitizing in enumeration.

    PubMed

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  3. The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusten, B.; McCoy, M.; Proctor, R.

    1998-07-01

    The innovative moving bed biofilm reactor/solids contact reaeration (MBBR/SCR) process has been chosen for a new wastewater treatment plant serving a population of 200,000 at Moa Point, Wellington, New Zealand. Because the MBBR/SCR combination was new, a pilot-scale demonstration project was made part of the contract. Thorough pilot tests using a wide range of organic loads under both steady and transient-flow conditions demonstrated that the MBBR/SCR process produced the required effluent quality at loads higher than used in the original design. At 3 days mean cell residence time (MCRT) in the SCR stage, a final effluent with a 5-day biochemicalmore » oxygen demand (BOD{sub 5}) of less than 10 mg/L was achieved at an organic load on the MBBR of 15 g BOD{sub 5}/m{sup 2}{center_dot}d (5.0 kg BOD{sub 5}/m{sup 3}{center_dot}d). With the same MCRT, a final effluent of less than 15 mg BOD{sub 5}/L was achieved at an organic load on the MBBR of 20 g BOD{sub 5}/m{sup 2}{center_dot}d (6.7 kg BOD{sub 5}/m{sup 3}{center_dot}d). Dynamic loading tests demonstrated that a good-quality effluent was produced with a diurnal peak-hour load on the MBBR of more than 40 g BOD{sub 5}/m{sup 2}{center_dot}d (13.3 kg BOD{sub 5}/m{sup 3}{center_dot}d). The MBBR/SCR process was more compact and significantly cheaper than a conventional trickling filter/solids contact or activated-sludge process at the Moa Point site.« less

  4. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.

    PubMed

    Castillo, David J; Nakamura, Shuichi; Morimoto, Yusuke V; Che, Yong-Suk; Kami-Ike, Nobunori; Kudo, Seishi; Minamino, Tohru; Namba, Keiichi

    2013-01-01

    The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30-50), a stalk (51-100) and a C-terminal peptidoglycan-binding domain (101-309). Although the stalk is dispensable for torque generation by the motor, it is required for efficient motor performance. Residues 51 to 72 prevent premature proton leakage through the proton channel prior to stator assembly into the motor. However, the role of residues 72-100 remains unknown. Here, we analyzed the torque-speed relationship of the MotB(Δ72-100) motor. At a low speed near stall, this mutant motor produced torque at the wild-type level. Unlike the wild-type motor, however, torque dropped off drastically by slight decrease in external load and then showed a slow exponential decay over a wide range of load by its further reduction. Since it is known that the stator is a mechano-sensor and that the number of active stators changes in a load-dependent manner, we interpreted this unusual torque-speed relationship as anomaly in load-dependent control of the number of active stators. The results suggest that residues 72-100 of MotB is required for proper load-dependent control of the number of active stators around the rotor.

  5. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu

    2013-06-01

    Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.

  6. Dynamic load balance scheme for the DSMC algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin; Geng, Xiangren; Jiang, Dingwu

    The direct simulation Monte Carlo (DSMC) algorithm, devised by Bird, has been used over a wide range of various rarified flow problems in the past 40 years. While the DSMC is suitable for the parallel implementation on powerful multi-processor architecture, it also introduces a large load imbalance across the processor array, even for small examples. The load imposed on a processor by a DSMC calculation is determined to a large extent by the total of simulator particles upon it. Since most flows are impulsively started with initial distribution of particles which is surely quite different from the steady state, themore » total of simulator particles will change dramatically. The load balance based upon an initial distribution of particles will break down as the steady state of flow is reached. The load imbalance and huge computational cost of DSMC has limited its application to rarefied or simple transitional flows. In this paper, by taking advantage of METIS, a software for partitioning unstructured graphs, and taking the total of simulator particles in each cell as a weight information, the repartitioning based upon the principle that each processor handles approximately the equal total of simulator particles has been achieved. The computation must pause several times to renew the total of simulator particles in each processor and repartition the whole domain again. Thus the load balance across the processors array holds in the duration of computation. The parallel efficiency can be improved effectively. The benchmark solution of a cylinder submerged in hypersonic flow has been simulated numerically. Besides, hypersonic flow past around a complex wing-body configuration has also been simulated. The results have displayed that, for both of cases, the computational time can be reduced by about 50%.« less

  7. Modeling propellant-based stimulation of a borehole with peridynamics

    DOE PAGES

    Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.

    2017-02-27

    A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less

  8. Implant material and design alter construct stiffness in distal femur locking plate fixation: a pilot study.

    PubMed

    Schmidt, Ulf; Penzkofer, Rainer; Bachmaier, Samuel; Augat, Peter

    2013-09-01

    Construct stiffness affects healing of bones fixed with locking plates. However, variable construct stiffness reported in the literature may be attributable to differing test configurations and direct comparisons may clarify these differences. We therefore asked whether different distal femur locking plate systems and constructs will lead to different (1) axial and rotational stiffness and (2) fatigue under cyclic loading. We investigated four plate systems for distal femur fixation (AxSOS, LCP, PERI-LOC, POLYAX) of differing designs and materials using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). We created six constructs of each of the four plating systems. Stiffness under static and cyclic loading and fatigue under cyclic loading were measured. Mean construct stiffness under axial loading was highest for AxSOS (100.8 N/mm) followed by PERI-LOC (80.8 N/mm) and LCP (62.6 N/mm). POLYAX construct stiffness testing showed the lowest stiffness (51.7 N/mm) with 50% stiffness of AxSOS construct testing. Mean construct stiffness under torsional loading was similar in the group of AxSOS and PERI-LOC (3.40 Nm/degree versus 3.15 Nm/degree) and in the group of LCP and POLYAX (2.63 Nm/degree versus 2.56 Nm/degree). The fourth load level of > 75,000 cycles was reached by three of six AxSOS, three of six POLYAX, and two of six PERI-LOC constructs. All others including all LCP constructs failed earlier. Implant design and material of new-generation distal femur locking plate systems leads to a wide range of differences in construct stiffness. Assuming construct stiffness affects fracture healing, these data may influence surgical decision-making in choosing an implant system.

  9. Impact of body weight on virological and immunological responses to efavirenz-containing regimens in HIV-infected, treatment-naive adults.

    PubMed

    Marzolini, Catia; Sabin, Caroline; Raffi, François; Siccardi, Marco; Mussini, Cristina; Launay, Odile; Burger, David; Roca, Bernardino; Fehr, Jan; Bonora, Stefano; Mocroft, Amanda; Obel, Niels; Dauchy, Frederic-Antoine; Zangerle, Robert; Gogos, Charalambos; Gianotti, Nicola; Ammassari, Adriana; Torti, Carlo; Ghosn, Jade; Chêne, Genevieve; Grarup, Jesper; Battegay, Manuel

    2015-01-14

    The prevalence of overweight and obesity is increasing among HIV-infected patients. Whether standard antiretroviral drug dosage is adequate in heavy individuals remains unresolved. We assessed the virological and immunological responses to initial efavirenz (EFV)-containing regimens in heavy compared to normal-weight HIV-infected patients. Observational European cohort collaboration study. Eligible patients were antiretroviral-naïve with documented weight prior to EFV start and follow-up viral loads after treatment initiation. Cox regression analyses evaluated the association between weight and time to first undetectable viral load (<50 copies/ml) after treatment initiation, and time to viral load rebound (two consecutive viral load >50 copies/ml) after initial suppression over 5 years of follow-up. Recovery of CD4 cell count was evaluated 6 and 12 months after EFV initiation. Analyses were stratified by weight (kg) group (I - <55; II - >55, <80 (reference); III - >80, <85; IV - >85, <90; V - >90, <95; VI - >95). The study included 19,968 patients, of whom 9.1, 68.3, 9.1, 5.8, 3.5, and 4.3% were in weight groups I-VI, respectively. Overall, 81.1% patients attained virological suppression, of whom 34.1% subsequently experienced viral load rebound. After multiple adjustments, no statistical difference was observed in time to undetectable viral load and virological rebound for heavier individuals compared to their normal-weight counterparts. Although heaviest individuals had significantly higher CD4 cell count at baseline, CD4 cell recovery at 6 and 12 months after EFV initiation was comparable to normal-weight individuals. Virological and immunological responses to initial EFV-containing regimens were not impaired in heavy individuals, suggesting that the standard 600 mg EFV dosage is appropriate across a wide weight range.

  10. Modeling propellant-based stimulation of a borehole with peridynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.

    A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less

  11. Photoresist and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Hansen, Steven G.

    2018-01-01

    Analysis of physical modeling results can provide unique insights into extreme ultraviolet stochastic variation, which augment, and sometimes refute, conclusions based on physical intuition and even wafer experiments. Simulations verify the primacy of "imaging critical" counting statistics (photons, electrons, and net acids) and the image/blur-dependent dose sensitivity in describing the local edge or critical dimension variation. But the failure of simple counting when resist thickness is varied highlights a limitation of this exact analytical approach, so a calibratable empirical model offers useful simplicity and convenience. Results presented here show that a wide range of physical simulation results can be well matched by an empirical two-parameter model based on blurred image log-slope (ILS) for lines/spaces and normalized ILS for holes. These results are largely consistent with a wide range of published experimental results; however, there is some disagreement with the recently published dataset of De Bisschop. The present analysis suggests that the origin of this model failure is an unexpected blurred ILS:dose-sensitivity relationship failure in that resist process. It is shown that a photoresist mechanism based on high photodecomposable quencher loading and high quencher diffusivity can give rise to pitch-dependent blur, which may explain the discrepancy.

  12. Wedgethread pipe connection

    DOEpatents

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  13. Strain Induced Elastomer Buckling Instability for Mechanical Measurements (SIEBIMM)

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher; Stafford, Christopher M.; Amis, Eric J.; Karim, Alamgir

    2003-03-01

    We introduce a new technique (SIEBIMM) for high-throughput measurements of the mechanical properties of thin polymeric films. This technique relies upon a highly periodic strain-induced buckling instability that arises from a mismatch of the moduli of a relatively stiff polymer coating on a soft silicone sheet. The modulus-dependent buckling wavelength, typically 1-10 microns for 100 nm thick glassy films, is rapidly measured by conventional light scattering. The SIEBIMM-measured modulus is shown to agree with that measured by conventional Instron-like techniques. We directly show that the buckling instability is highly sinusoidal at low strain thereby insuring the suitability of simple mechanical analysis. Utilizing our expertise in preparing thickness gradients via flow coating, we demonstrate that the flexural rigidities of thin films having a wide range of thicknesses can be measured in minutes. By measuring the temporal decay of strain-induced diffraction peaks for plasticized coatings we show that this technique can evaluate viscoelastic properties, such as creep. We demonstrate SIEBIMM's capability with several academic and industrially-relevant polymeric systems, including polystyrene loaded with a wide range of plasticizer, a blend of block copolymers with polystyrene and polyisoprene blocks (Vector 4215 and 4411), and a thiolene-based ultraviolet curing adhesive.

  14. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold

    2015-09-01

    Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  15. Fiber-coupled dielectric-loaded plasmonic waveguides.

    PubMed

    Gosciniak, Jacek; Volkov, Valentyn S; Bozhevolnyi, Sergey I; Markey, Laurent; Massenot, Sébastien; Dereux, Alain

    2010-03-01

    Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagation over the 100-microm-long distance.

  16. Hierarchical honeycomb auxetic metamaterials

    NASA Astrophysics Data System (ADS)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  17. Method and apparatus for determining weldability of thin sheet metal

    DOEpatents

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  18. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms

    NASA Astrophysics Data System (ADS)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.

  19. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  20. Three-dimensional stress intensity factor analysis of a surface crack in a high-speed bearing

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Hsu, Yingchun

    1990-01-01

    The boundary element method is applied to calculate the stress intensity factors of a surface crack in the rotating inner raceway of a high-speed roller bearing. The three-dimensional model consists of an axially stressed surface cracked plate subjected to a moving Hertzian contact loading. A multidomain formulation and singular crack-tip elements were employed to calculate the stress intensity factors accurately and efficiently for a wide range of configuration parameters. The results can provide the basis for crack growth calculations and fatigue life predictions of high-performance rolling element bearings that are used in aircraft engines.

  1. Ultralow-quiescent-current and wide-load-range low-dropout linear regulator with self-biasing technique for micropower battery management

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshihiro; Hirose, Tetsuya; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro

    2017-04-01

    In this paper, we present a 151 nA quiescent and 6.8 mA maximum-output-current low-dropout (LDO) linear regulator for micropower battery management. The LDO regulator employs self-biasing and multiple-stacked cascode techniques to achieve efficient, accurate, and high-voltage-input-tolerant operation. Measurement results demonstrated that the proposed LDO regulator operates with an ultralow quiescent current of 151 nA. The maximum output currents with a 4.16 V output were 1.0 and 6.8 mA when the input voltages were 4.25 and 5.0 V, respectively.

  2. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  3. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  4. Single shaft automotive gas turbine engine characterization test

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.

  5. Investigation of the technology of conductive yarns manufacturing

    NASA Astrophysics Data System (ADS)

    Ryklin, Dzmitry; Medvetski, Sergey

    2017-10-01

    The paper is devoted to development of technology of electrically conductive yarn production. This technology allows manufacturing conductive yarns of copper wire and polyester filament yarns. Method of the predicting of the conductive yarn breaking force was developed on the base of analysing of load-elongation curves of each strand of the yarn. Also the method of the predicting of the conductive yarn diameter was offered. Investigation shows that conductive yarns can be integrated into the textiles structure using sewing or embroidery equipment. Application of developed conductive yarn is wearable electronics creating with wide range of functions, for example, for specific health issue monitoring, navigation tools or communication gadgets.

  6. Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Lukaszewicz, V.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    2000-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  7. Drug-loaded erythrocytes: on the road toward marketing approval

    PubMed Central

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available. PMID:26929599

  8. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  9. Experimental measurement and thermodynamic modeling of the solubility of carbon dioxide in aqueous blends of monoethanolamine and diethanolamine

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2017-12-01

    In this study, the solubilities of carbon dioxide in aqueous mixtures of monoethanolamine (MEA) and diethanolamine (DEA) were determined using a high pressure vapor-liquid equilibrium apparatus. The carbon dioxide loadings (mole of CO2/mole of amine mixture) were reported for a wide range of temperature (303.15, 323.15, 343.15 K) and pressure (100 - 4100 kPa). The carbon dioxide solubility shows an increase with increase in pressure and amine concentration and a decrease with increase in temperature in the aqueous blends of MEA and DEA. At carbon dioxide loadings above 1.0, the carbon dioxide solubility becomes a weak function of pressure and follows the general trend of carbon dioxide solubility in aqueous alkanolamines. The new experimental data points determined in this study were correlated by using a recently developed, enhanced Kent-Eisenberg model. An average absolute relative error of 9.4 % was observed between the model results and experimental data, indicating good correlative capability of the thermodynamic model.

  10. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction

    DOE PAGES

    Jung, Suho; McCrory, Charles C. L.; Ferrer, Ivonne M.; ...

    2016-11-27

    Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Here in this paper, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm -2, and evaluated the resulting nanoparticulate filmsmore » for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm -2 current densities per geometric area at overpotentials of ~0.35–0.5 V.« less

  11. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2014-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters-Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  12. Unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation in normal and supercritical helium conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrowicz, S.; Four, A.; Baudouy, B.

    To investigate the unsteady heat dissipation in accelerator superconducting coils insulated with porous ceramic insulation, two experimental mock-ups reproducing the thermal and the mechanical conditions of a superconducting coils were produced. The mock-ups with compressive load of 10 MPa and 20 MPa were tested at normal (T = 4.23 K and p = 1 bar) and supercritical helium conditions (T = 4.23 K and p = 2.0 to 3.75 bar) during unsteady heat dissipation. The paper presents the experimental results of temperature rise in both superconducting coils as a function of time for a wide range of a localized heatmore » load varying from 0.1 kJ/m{sup 3} up to 12.8 MJ m{sup −3} per pulse. A numerical model of the transient process in these coils has been developed and the computations are compared with the experimental results.« less

  13. Space Station Freedom power supply commonality via modular design

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Gangal, M. D.; Das, R.

    1990-01-01

    At mature operations, Space Station Freedom will need more than 2000 power supplies to feed housekeeping and user loads. Advanced technology power supplies from 20 to 250 W have been hybridized for terrestrial, aerospace, and industry applications in compact, efficient, reliable, lightweight packages compatible with electromagnetic interference requirements. The use of these hybridized packages as modules, either singly or in parallel, to satisfy the wide range of user power supply needs for all elements of the station is proposed. Proposed characteristics for the power supplies include common mechanical packaging, digital control, self-protection, high efficiency at full and partial loads, synchronization capability to reduce electromagnetic interference, redundancy, and soft-start capability. The inherent reliability is improved compared with conventional discrete component power supplies because the hybrid circuits use high-reliability components such as ceramic capacitors. Reliability is further improved over conventional supplies because the hybrid packages, which may be treated as a single part, reduce the parts count in the power supply.

  14. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo; Smith, Scott

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  15. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Rajiyah, Harindra (Inventor); Pla, Frederic G. (Inventor); Hedeen, Robert A. (Inventor); Renshaw, Anthony A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  16. New Platforms for Characterization of Biological Material Failure and Resilience Properties

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Butler, Benjamin J.; Nguyen, Thuy-Tien N.; Sorry, David; Williams, Alun; Proud, William G.

    2017-06-01

    Obtaining information about the material responses of viscoelastic soft matter, such as polymers and foams has, required adaptation of techniques traditionally used with hard condensed matter. More recently it has been recognized that understanding the strain-rate behavior of natural and synthetic soft biological materials poses even greater challenges for materials research due their heterogeneous composition and structural complexity. Expanding fundamental knowledge about how these classes of biomaterials function under different loading regimes is of considerable interest in both fundamental and applied research. A comparative overview of methods, developed in our laboratory or elsewhere, for determining material responses of cells and soft tissues over a wide range of strain rates (quasi-static to blast loading) will be presented. Examples will illustrate how data are obtained for studying material responses of cells and tissues. Strengths and weaknesses of current approaches will be discussed, with particular emphasis on challenges associated with the development of realistic experimental and computational models for trauma and other disease indications.

  17. Drug-loaded erythrocytes: on the road toward marketing approval.

    PubMed

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available.

  18. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2015-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  19. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE PAGES

    Sanborn, Brett; Song, Bo; Smith, Scott

    2015-12-29

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  20. Hydrodynamic and Aerodynamic Tests of Models of Floats for Single-float Seaplanes NACA Models 41-D, 41-E, 61-A, 73, and 73-A

    NASA Technical Reports Server (NTRS)

    Parkinson, J B; HOUSE R O

    1938-01-01

    Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.

Top