Sample records for wide parameter range

  1. A convenient and accurate wide-range parameter relationship between Buckingham and Morse potential energy functions

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng; Dawson, James Alexander

    2018-05-01

    This study explores the close-range, short-range and long-range relationships between the parameters of the Morse and Buckingham potential energy functions. The results show that the close-range and short-range relationships are valid for bond compression and for very small changes in bond length, respectively, while the long-range relationship is valid for bond stretching. A wide-range relationship is proposed to combine the comparative advantages of the close-range, short-range and long-range parameter relationships. The wide-range relationship is useful for replacing the close-range, short-range and long-range parameter relationships, thereby preventing the undesired effects of potential energy jumps resulting from functional switching between the close-range, short-range and long-range interaction energies.

  2. Scalable Online Network Modeling and Simulation

    DTIC Science & Technology

    2005-08-01

    ONLINE NETWORK MODELING AND SIMULATION 6. AUTHOR(S) Boleslaw Szymanski , Shivkumar Kalyanaraman, Biplab Sikdar and Christopher Carothers 5...performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature ...a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature interactions

  3. Swift Foxes and Ideal Free Distribution: Relative Influence of Vegetation and Rodent Prey Base on Swift Fox Survival, Density, and Home Range Size

    DTIC Science & Technology

    2012-01-01

    of exploiting a wide range of habitats, reported population parameters such as density and survival vary widely indicating variation in habitat quality...more strongly influenced by the “riskiness” of the habitat than by resource availability [8]. Swift fox population parameters in different landscapes...we explored the effects of landscape heterogeneity on population parameters likely to reflect habitat quality, such as population density, home range

  4. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  5. Simple Formulas and Results for Buckling-Resistance and Stiffness Design of Compression-Loaded Laminated-Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Mikulas, Martin M., Jr.

    2009-01-01

    Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.

  6. The shape parameter and its modification for defining coastal profiles

    NASA Astrophysics Data System (ADS)

    Türker, Umut; Kabdaşli, M. Sedat

    2009-03-01

    The shape parameter is important for the theoretical description of the sandy coastal profiles. This parameter has previously been defined as a function of the sediment-settling velocity. However, the settling velocity cannot be characterized over a wide range of sediment grains. This, in turn, limits the calculation of the shape parameter over a wide range. This paper provides a simpler and faster analytical equation to describe the shape parameter. The validity of the equation has been tested and compared with the previously estimated values given in both graphical and tabular forms. The results of this study indicate that the analytical solutions of the shape parameter improved the usability of profile better than graphical solutions, predicting better results both at the surf zone and offshore.

  7. Can benthic foraminifera be used as bio-indicators of pollution in areas with a wide range of physicochemical variability?

    NASA Astrophysics Data System (ADS)

    Martins, Maria Virgínia Alves; Pinto, Anita Fernandes Souza; Frontalini, Fabrizio; da Fonseca, Maria Clara Machado; Terroso, Denise Lara; Laut, Lazaro Luiz Mattos; Zaaboub, Noureddine; da Conceição Rodrigues, Maria Antonieta; Rocha, Fernando

    2016-12-01

    The Ria de Aveiro, a lagoon located in the NW coast of Portugal, presents a wide range of changes to the natural hydrodynamical and physicochemical conditions induced for instance by works of port engineering and pollution. In order to evaluate the response of living benthic foraminifera to the fluctuations in physicochemical parameters and pollution (metals and TOC), eight sediment samples were collected from canals and salt pans within the Aveiro City, in four different sampling events. During the sampling events, salinity showed the most significant fluctuations among the physicochemical parameters with the maximum range of variation at Troncalhada and Santiago salt pans. Species such as Haynesina germanica, Trochammina inflata and Entzia macrescens were found inhabiting these hypersaline environments with the widest fluctuations of physicochemical parameters. In contrast, Ammonia tepida dominated zones with high concentrations of metals and organic matter and in lower salinity waters. Parameters related to benthic foraminiferal assemblages (i.e., diversity and evenness) were found to significantly decline in stations polluted by metals and characterized by higher TOC content. Foraminiferal density reduced significantly in locations with a wide range of physicochemical temporal variability. This work shows that, even under extreme conditions caused by highly variable physicochemical parameters, benthic foraminiferal assemblages might be used as valuable bioindicators of environmental stress.

  8. Modular compact solid-state modulators for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.

    2017-12-01

    The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.

  9. An Information-theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Howe, Alex R.; Burrows, Adam; Deming, Drake

    2017-01-01

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  10. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Sadegh, Mojtaba; Ragno, Elisa; AghaKouchak, Amir

    2017-06-01

    We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.

  11. Stochastic Modeling of Empirical Storm Loss in Germany

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-04-01

    Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.

  12. AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Alex R.; Burrows, Adam; Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs ofmore » combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.« less

  13. Rapid Debris Analysis Project Task 3 Final Report - Sensitivity of Fallout to Source Parameters, Near-Detonation Environment Material Properties, Topography, and Meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Peter

    2014-01-24

    This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.

  14. METHODOLOGIES FOR CALIBRATION AND PREDICTIVE ANALYSIS OF A WATERSHED MODEL

    EPA Science Inventory

    The use of a fitted-parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can l...

  15. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  16. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  17. Effect of hydrostatic pressure on physical properties of strontium based fluoroperovskites for novel applications

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2018-02-01

    Density functional theory (DFT) is employed to calculate the effect of pressure variation on electronic structure, elastic parameters, mechanical durability, and thermodynamic aspects of SrRbF3, in combination with Quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which cubic stability of SrRbF3 fluoroperovskite remains valid. Significant influence of compression on wide range of elastic parameters and related mechanical properties have been discussed, to utilize this material in low birefringence lens fabrication technology. Apart of linear dependence on elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. Moreover, successful prediction of important thermodynamic aspects such as volume expansion coefficient (α), Debye temperature (θ D), heat capacities (Cp and Cv) are also done within wide pressure and temperature ranges.

  18. Hazards To The Eye From UV

    NASA Astrophysics Data System (ADS)

    Zuclich, Joseph A.

    1980-10-01

    Ocular effects of ultraviolet radiation, 200-400 nm, are reviewed. Depending upon the exposure parameter involved, UV radiation may be harmful to the cornea, lens and/or retina. Ranges of exposure parameters (wavelength, exposure duration, etc.) for which each of the tissues is susceptible are specified and the nature of the tissue is described. Present understanding of the thermal and photochemical damage mechanism operative for various conditions of exposure are discussed Ocular damage thresholds for wide ranges of exposure parameters are summarized and compared to existing safety standards.

  19. Exploratory studies of the cruise performance of upper surface blown configuration: Experimental program, high-speed force tests

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.; Hackett, J. E.

    1979-01-01

    The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers.

  20. Effective-range parameters and vertex constants for Λ-nuclear systems

    NASA Astrophysics Data System (ADS)

    Rakityansky, S. A.; Gopane, I. M.

    For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.

  1. Elastic, optical and structural features of wide range of CdO- Na2B4O7 glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Y. B.; Aly, K. A.; Shaaban, Kh S.; Mossad Ali, Atif; Sayed, M. A.

    2018-06-01

    Wide range of CdO—Na2B4O7 glasses have been prepared and characterized via XRD, FTIR and UV spectroscopies along with DTA and ultrasonic techniques. The compositional dependence of the physical parameters such as the density, the molar volume, the optical transmittance, the optical band gap, the ultrasonic velocities and the elastic moduli on CdO content were determined. The profiles of XRD assured the amorphous nature of the explored glasses. The clarification of the borate and cadmium functional groups besides their linkages was extracted from the deconvoluted FTIR spectra. Such a clarification was used in the analysis of the relation of the mechanical, T g and optical parameters versus CdO content. These physical parameters revealed the glass modifier role of CdO.

  2. Extraordinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides

    DTIC Science & Technology

    2015-01-23

    excitations of spin degrees of freedom. We measmed for the first time the magnon -phonon coupling parameter of a spin-ladder compound over a wide temperatme...the first time the magnon -phonon coupling parameter of a spin-ladder compound over a wide temperature range. We developed advances in the analysis of...Scientific Instruments, (10 2014): 104903. doi: 10.1063/1.4897622 Gregory T. Hohensee, R. B. Wilson, Joseph P. Feser, David G. Cahill. Magnon -phonon

  3. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  4. Thermofluid Analysis of Magnetocaloric Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan

    While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While themore » goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.« less

  5. Parameter Estimation for GRACE-FO Geometric Ranging Errors

    NASA Astrophysics Data System (ADS)

    Wegener, H.; Mueller, V.; Darbeheshti, N.; Naeimi, M.; Heinzel, G.

    2017-12-01

    Onboard GRACE-FO, the novel Laser Ranging Instrument (LRI) serves as a technology demonstrator, but it is a fully functional instrument to provide an additional high-precision measurement of the primary mission observable: the biased range between the two spacecraft. Its (expectedly) two largest error sources are laser frequency noise and tilt-to-length (TTL) coupling. While not much can be done about laser frequency noise, the mechanics of the TTL error are widely understood. They depend, however, on unknown parameters. In order to improve the quality of the ranging data, it is hence essential to accurately estimate these parameters and remove the resulting TTL error from the data.Means to do so will be discussed. In particular, the possibility of using calibration maneuvers, the utility of the attitude information provided by the LRI via Differential Wavefront Sensing (DWS), and the benefit from combining ranging data from LRI with ranging data from the established microwave ranging, will be mentioned.

  6. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry.

    PubMed

    Fujito, Yuka; Hayakawa, Yoshihiro; Izumi, Yoshihiro; Bamba, Takeshi

    2017-07-28

    Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logP ow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for practical use in the multiresidue analysis of a wide range of compounds that requires high sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nitrous oxide emissions from cropland: A procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon (SOC) and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameter...

  8. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Bunn; Steve Fetter; John P. Holdren

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less

  9. DISCOUNTING OF DELAYED AND PROBABILISTIC LOSSES OVER A WIDE RANGE OF AMOUNTS

    PubMed Central

    Green, Leonard; Myerson, Joel; Oliveira, Luís; Chang, Seo Eun

    2014-01-01

    The present study examined delay and probability discounting of hypothetical monetary losses over a wide range of amounts (from $20 to $500,000) in order to determine how amount affects the parameters of the hyperboloid discounting function. In separate conditions, college students chose between immediate payments and larger, delayed payments and between certain payments and larger, probabilistic payments. The hyperboloid function accurately described both types of discounting, and amount of loss had little or no systematic effect on the degree of discounting. Importantly, the amount of loss also had little systematic effect on either the rate parameter or the exponent of the delay and probability discounting functions. The finding that the parameters of the hyperboloid function remain relatively constant across a wide range of amounts of delayed and probabilistic loss stands in contrast to the robust amount effects observed with delayed and probabilistic rewards. At the individual level, the degree to which delayed losses were discounted was uncorrelated with the degree to which probabilistic losses were discounted, and delay and probability loaded on two separate factors, similar to what is observed with delayed and probabilistic rewards. Taken together, these findings argue that although delay and probability discounting involve fundamentally different decision-making mechanisms, nevertheless the discounting of delayed and probabilistic losses share an insensitivity to amount that distinguishes it from the discounting of delayed and probabilistic gains. PMID:24745086

  10. Global alpha-particle optical potentials

    NASA Astrophysics Data System (ADS)

    Ferdous, N.

    1991-12-01

    A search for a global optical potential (for alpha-particles) is described. It was not possible to find a potential that was valid for a wide range of energies and nuclei, even treating the absorbing potential as an adjustable parameter for each nucleus. For practical purposes the best that can be done is to define an average potential, and such a potential is compared with a wide range of experimental data. Its energy variation is determined by fitting the total reaction cross-section.

  11. Phytoplankton productivity in relation to light intensity: A simple equation

    USGS Publications Warehouse

    Peterson, D.H.; Perry, M.J.; Bencala, K.E.; Talbot, M.C.

    1987-01-01

    A simple exponential equation is used to describe photosynthetic rate as a function of light intensity for a variety of unicellular algae and higher plants where photosynthesis is proportional to (1-e-??1). The parameter ?? (=Ik-1) is derived by a simultaneous curve-fitting method, where I is incident quantum-flux density. The exponential equation is tested against a wide range of data and is found to adequately describe P vs. I curves. The errors associated with photosynthetic parameters are calculated. A simplified statistical model (Poisson) of photon capture provides a biophysical basis for the equation and for its ability to fit a range of light intensities. The exponential equation provides a non-subjective simultaneous curve fitting estimate for photosynthetic efficiency (a) which is less ambiguous than subjective methods: subjective methods assume that a linear region of the P vs. I curve is readily identifiable. Photosynthetic parameters ?? and a are used widely in aquatic studies to define photosynthesis at low quantum flux. These parameters are particularly important in estuarine environments where high suspended-material concentrations and high diffuse-light extinction coefficients are commonly encountered. ?? 1987.

  12. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  13. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay.

    PubMed

    Eberle, Henry; Nasuto, Slawomir J; Hayashi, Yoshikatsu

    2018-03-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a 'slave' system predicts a 'master' via delayed self-feedback. By treating the delayed output of the plant as one half of a 'sensory' AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target's motion. We use two simulated robotic systems with differing arrangements of the plant and internal model ('parallel' and 'serial') to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed.

  14. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Relation between ultrasonic properties, rheology and baking quality for bread doughs of widely differing formulation.

    PubMed

    Peressini, Donatella; Braunstein, Dobrila; Page, John H; Strybulevych, Anatoliy; Lagazio, Corrado; Scanlon, Martin G

    2017-06-01

    The objective was to evaluate whether an ultrasonic reflectance technique has predictive capacity for breadmaking performance of doughs made under a wide range of formulation conditions. Two flours of contrasting dough strength augmented with different levels of ingredients (inulin, oil, emulsifier or salt) were used to produce different bread doughs with a wide range of properties. Breadmaking performance was evaluated by conventional large-strain rheological tests on the dough and by assessment of loaf quality. The ultrasound tests were performed with a broadband reflectance technique in the frequency range of 0.3-6 MHz. Principal component analysis showed that ultrasonic attenuation and phase velocity at frequencies between 0.3 and 3 MHz are good predictors for rheological and bread scoring characteristics. Ultrasonic parameters had predictive capacity for breadmaking performance for a wide range of dough formulations. Lower frequency attenuation coefficients correlated well with conventional quality indices of both the dough and the bread. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Clinical biochemistry, haematology and body weight in piglets.

    PubMed

    Egeli, A K; Framstad, T; Morberg, H

    1998-01-01

    Reference ranges for clinical biochemical parameters commonly investigated in pigs were determined in one- (day 1), 21- and 35-day old piglets. The mean and standard deviation were also estimated for body weight, and haematological and clinical biochemical parameters at these ages. The piglets were divided into 2 investigation groups according to whether they had a haemoglobin concentration < or = 80 g/l ("anaemic group") or > 80 g/l ("normal group") on days 14, 21 and 28. The "anaemic group" was compared to the "normal group" on days 21 and 35. Many of the clinical biochemical parameters varied according to age. Some of the enzymes had high average values and wide reference ranges in piglets, especially on day 1, compared to the reference ranges for sows given in the literature. The reference ranges for some of the metabolic parameters were broader on day 1 than later in the preweaning period. The reference ranges for albumin, total iron-binding capacity and serum iron were, however, lower and more narrow on day 1. On days 21 and 35, relatively high values for phosphorus must be considered "normal" compared to the figures given in the literature for adult pigs. The other minerals seemed to be quite unaffected of age, but some were affected by anaemia. The anaemic piglets had lower average serum iron but higher total iron-binding capacity than the "normal" piglets on days 21 and 35. However, variation between piglets gave wide reference ranges, indicating that these parameters will only have limited usefulness in detecting iron deficiency anaemia in piglets. The electrolytes seemed also to be affected by the existence of anaemia. The body weight and leukocyte counts were significantly lower in the "anaemic group" than the "normal group" on day 35, while the greatest differences in clinical biochemical parameters between the groups were found on day 21, when the piglets in the "anaemic group" were most severely anaemic. Although these piglets suffered from severe iron-deficiency anaemia, only a few clinical biochemical parameters were affected, and the differences between groups were mostly small.

  17. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering.

    PubMed

    Akbarzadeh, Rosa; Yousefi, Azizeh-Mitra

    2014-08-01

    Tissue engineering makes use of 3D scaffolds to sustain three-dimensional growth of cells and guide new tissue formation. To meet the multiple requirements for regeneration of biological tissues and organs, a wide range of scaffold fabrication techniques have been developed, aiming to produce porous constructs with the desired pore size range and pore morphology. Among different scaffold fabrication techniques, thermally induced phase separation (TIPS) method has been widely used in recent years because of its potential to produce highly porous scaffolds with interconnected pore morphology. The scaffold architecture can be closely controlled by adjusting the process parameters, including polymer type and concentration, solvent composition, quenching temperature and time, coarsening process, and incorporation of inorganic particles. The objective of this review is to provide information pertaining to the effect of these parameters on the architecture and properties of the scaffolds fabricated by the TIPS technique. © 2014 Wiley Periodicals, Inc.

  18. Fundamental frequency estimation of singing voice

    NASA Astrophysics Data System (ADS)

    de Cheveigné, Alain; Henrich, Nathalie

    2002-05-01

    A method of fundamental frequency (F0) estimation recently developped for speech [de Cheveigné and Kawahara, J. Acoust. Soc. Am. (to be published)] was applied to singing voice. An electroglottograph signal recorded together with the microphone provided a reference by which estimates could be validated. Using standard parameter settings as for speech, error rates were low despite the wide range of F0s (about 100 to 1600 Hz). Most ``errors'' were due to irregular vibration of the vocal folds, a sharp formant resonance that reduced the waveform to a single harmonic, or fast F0 changes such as in high-amplitude vibrato. Our database (18 singers from baritone to soprano) included examples of diphonic singing for which melody is carried by variations of the frequency of a narrow formant rather than F0. Varying a parameter (ratio of inharmonic to total power) the algorithm could be tuned to follow either frequency. Although the method has not been formally tested on a wide range of instruments, it seems appropriate for musical applications because it is accurate, accepts a wide range of F0s, and can be implemented with low latency for interactive applications. [Work supported by the Cognitique programme of the French Ministry of Research and Technology.

  19. High Entropy Alloys: Criteria for Stable Structure

    NASA Astrophysics Data System (ADS)

    Tripathy, Snehashish; Gupta, Gaurav; Chowdhury, Sandip Ghosh

    2018-01-01

    An effort has been made to reassess the phase predicting capability of various thermodynamic and topological parameters across a wide range of HEA systems. These parameters are valence electron concentration, atomic mismatch ( δ), electronegativity difference (Δ χ), mixing entropy (Δ S mix), entropy of fusion (Δ S f), and mismatch entropy ( S σ ). In continuation of that, two new parameters (a) Modified Darken-Gurry parameter ( A = Sσ * χ) and (b) Modified Mismatch Entropy parameter ( B = δ* Sσ) have been designed to predict the stable crystal structure that would form in the HEA systems considered for assessment.

  20. Synchronization of oscillations in coupled multimode optoelectronic oscillators: bifurcation analysis

    NASA Astrophysics Data System (ADS)

    Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.

    2018-04-01

    We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.

  1. A mathematical model for predicting fire spread in wildland fuels

    Treesearch

    Richard C. Rothermel

    1972-01-01

    A mathematical fire model for predicting rate of spread and intensity that is applicable to a wide range of wildland fuels and environment is presented. Methods of incorporating mixtures of fuel sizes are introduced by weighting input parameters by surface area. The input parameters do not require a prior knowledge of the burning characteristics of the fuel.

  2. Evaluating Uncertainty of Runoff Simulation using SWAT model of the Feilaixia Watershed in China Based on the GLUE Method

    NASA Astrophysics Data System (ADS)

    Chen, X.; Huang, G.

    2017-12-01

    In recent years, distributed hydrological models have been widely used in storm water management, water resources protection and so on. Therefore, how to evaluate the uncertainty of the model reasonably and efficiently becomes a hot topic today. In this paper, the soil and water assessment tool (SWAT) model is constructed for the study area of China's Feilaixia watershed, and the uncertainty of the runoff simulation is analyzed by GLUE method deeply. Taking the initial parameter range of GLUE method as the research core, the influence of different initial parameter ranges on model uncertainty is studied. In this paper, two sets of parameter ranges are chosen as the object of study, the first one (range 1) is recommended by SWAT-CUP and the second one (range 2) is calibrated by SUFI-2. The results showed that under the same number of simulations (10,000 times), the overall uncertainty obtained by the range 2 is less than the range 1. Specifically, the "behavioral" parameter sets for the range 2 is 10000 and for the range 1 is 4448. In the calibration and the validation, the ratio of P-factor to R-factor for range 1 is 1.387 and 1.391, and for range 2 is 1.405 and 1.462 respectively. In addition, the simulation result of range 2 is better with the NS and R2 slightly higher than range 1. Therefore, it can be concluded that using the parameter range calibrated by SUFI-2 as the initial parameter range for the GLUE is a way to effectively capture and evaluate the simulation uncertainty.

  3. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  4. Logarithmic amplifiers.

    PubMed

    Gandler, W; Shapiro, H

    1990-01-01

    Logarithmic amplifiers (log amps), which produce an output signal proportional to the logarithm of the input signal, are widely used in cytometry for measurements of parameters that vary over a wide dynamic range, e.g., cell surface immunofluorescence. Existing log amp circuits all deviate to some extent from ideal performance with respect to dynamic range and fidelity to the logarithmic curve; accuracy in quantitative analysis using log amps therefore requires that log amps be individually calibrated. However, accuracy and precision may be limited by photon statistics and system noise when very low level input signals are encountered.

  5. Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.

    2018-01-01

    Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.

  6. A PARMELA model of the CEBAF injector valid over a wide range of beam parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhong Zhang; Kevin Beard; Jay Benesch

    A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used formore » simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.« less

  7. Anticipation from sensation: using anticipating synchronization to stabilize a system with inherent sensory delay

    PubMed Central

    Nasuto, Slawomir J.; Hayashi, Yoshikatsu

    2018-01-01

    We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a ‘slave’ system predicts a ‘master’ via delayed self-feedback. By treating the delayed output of the plant as one half of a ‘sensory’ AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target’s motion. We use two simulated robotic systems with differing arrangements of the plant and internal model (‘parallel’ and ‘serial’) to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed. PMID:29657750

  8. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  9. A Toolkit to Study Sensitivity of the Geant4 Predictions to the Variations of the Physics Model Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Laura; Genser, Krzysztof; Hatcher, Robert

    Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less

  10. Core Flight System (cFS) a Low Cost Solution for SmallSats

    NASA Technical Reports Server (NTRS)

    McComas, David; Strege, Susanne; Wilmot, Jonathan

    2015-01-01

    The cFS is a FSW product line that uses a layered architecture and compile-time configuration parameters which make it portable and scalable for a wide range of platforms. The software layers that defined the application run-time environment are now under a NASA-wide configuration control board with the goal of sustaining an open-source application ecosystem.

  11. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    PubMed

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  12. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    PubMed Central

    Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-01-01

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929

  13. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  14. Wolf survival and population trend using non-invasive capture-recapture techniques in the Western Alps

    Treesearch

    Francesca Marucco; Daniel H. Pletscher; Luigi Boitani; Michael K. Schwartz; Kristy L. Pilgrim; Jean-Dominique Lebreton

    2009-01-01

    Population abundance and related parameters need to be assessed to implement effective wildlife management. These essential parameters are often very hard to obtain for rare, wide-ranging and elusive species, particularly those listed as endangered or threatened (IUCN 2001). In Italy, wolves Canis lupus Linnaeus 1758, now a fully protected species in Western Europe,...

  15. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaut, Arkadiusz

    We present the results of the estimation of parameters with LISA for nearly monochromatic gravitational waves in the low and high frequency regimes for the time-delay interferometry response. Angular resolution of the detector and the estimation errors of the signal's parameters in the high frequency regimes are calculated as functions of the position in the sky and as functions of the frequency. For the long-wavelength domain we give compact formulas for the estimation errors valid on a wide range of the parameter space.

  17. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  18. A dual-process approach to exploring the role of delay discounting in obesity.

    PubMed

    Price, Menna; Higgs, Suzanne; Maw, James; Lee, Michelle

    2016-08-01

    Delay discounting of financial rewards has been related to overeating and obesity. Neuropsychological evidence supports a dual-system account of both discounting and overeating behaviour where the degree of impulsive decision making is determined by the relative strength of reward desire and executive control. A dual-parameter model of discounting behaviour is consistent with this theory. In this study, the fit of the commonly used one-parameter model was compared to a new dual-parameter model for the first time in a sample of adults with wide ranging BMI. Delay discounting data from 79 males and females (males=26) across a wide age (M=28.44years (SD=8.81)) and BMI range (M=25.42 (SD=5.16)) was analysed. A dual-parameter model (saturating-hyperbolic; Doya, [Doya (2008) ]) was applied to the data and compared on model fit indices to the single-parameter model. Discounting was significantly greater in the overweight/obese participants using both models, however, the two parameter model showed a superior fit to data (p<0.0001). The two parameters were shown to be related yet distinct measures consistent with a dual-system account of inter-temporal choice behaviour. The dual-parameter model showed superior fit to data and the two parameters were shown to be related yet distinct indices sensitive to differences between weight groups. Findings are discussed in terms of the impulsive reward and executive control systems that contribute to unhealthy food choice and within the context of obesity related research. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.

    PubMed

    Banks, Jonathan M

    2017-08-01

    This review introduces, defines and critically reviews a number of chlorophyll fluorescence parameters with specific reference to those derived from continuous excitation chlorophyll fluorescence. A number of common issues and criticisms are addressed. The parameters fluorescence origin (F0) and the performance indices (PI) are discussed as examples. This review attempts to unify definitions for the wide range of parameters available for measuring plant vitality, facilitating their calculation and use. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Order parameters and synchronization of FitzHugh-Nagumo small-world networks

    NASA Astrophysics Data System (ADS)

    Li, Yan-Long; Ma, Jun; Zhang, Wei; Liu, Yan-Jun

    2009-10-01

    This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh-Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g.

  1. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  2. An experimental system for symmetric capacitive rf discharge studies

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.

    1990-09-01

    An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.

  3. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    NASA Astrophysics Data System (ADS)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  4. Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide

    NASA Astrophysics Data System (ADS)

    Yakub, Eugene; Ronchi, Claudio; Staicu, Dragos

    2007-09-01

    Results of molecular dynamics (MD) simulation of UO2 in a wide temperature range are presented and discussed. A new approach to the calibration of a partly ionic Busing-Ida-type model is proposed. A potential parameter set is obtained reproducing the experimental density of solid UO2 in a wide range of temperatures. A conventional simulation of the high-temperature stoichiometric UO2 on large MD cells, based on a novel fast method of computation of Coulomb forces, reveals characteristic features of a premelting λ transition at a temperature near to that experimentally observed (Tλ=2670K ). A strong deviation from the Arrhenius behavior of the oxygen self-diffusion coefficient was found in the vicinity of the transition point. Predictions for liquid UO2, based on the same potential parameter set, are in good agreement with existing experimental data and theoretical calculations.

  5. Seven-parameter statistical model for BRDF in the UV band.

    PubMed

    Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua

    2012-05-21

    A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.

  6. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    NASA Astrophysics Data System (ADS)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  7. Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging.

    PubMed

    Kanick, Stephen Chad; McClatchy, David M; Krishnaswamy, Venkataramanan; Elliott, Jonathan T; Paulsen, Keith D; Pogue, Brian W

    2014-10-01

    This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.

  8. Skin friction and heat transfer correlations for high-speed low-density flow past a flat plate

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Baganoff, Donald

    1991-01-01

    The independent and dependent variables associated with drag and heat transfer to a flat plate at zero incidence in high-speed, rarefied flow are analyzed anew to reflect the importance of kinetic effects occurring near the plate surface on energy and momentum transfer, rather than following arguments normally used to describe continuum, higher density flowfields. A new parameter, the wall Knudsen number Knx,w, based on an estimate of the mean free path length of molecules having just interacted with the surface of the plate, is introduced and used to correlate published drag and heat transfer data. The new parameter is shown to provide better correlation than either the viscous interaction parameter X or the widely-used slip parameter Voo for drag and heat transfer data over a wide range of Mach numbers, Reynolds numbers, and plate-to-freestream stagnation temperature ratios.

  9. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    PubMed

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preliminary design approach for large high precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  11. Repair welding of gamma titanium aluminide castings

    NASA Astrophysics Data System (ADS)

    Kelly, T. J.

    This paper examines the GTA repair welding of cast Ti-48Al-2Cr-2Nb gamma titanium aluminide. Pre-weld heat treatment, preheat and welding parameters are evaluated and discussed. A wide range of GTAW parameters is demonstrated for use with this alloy and the resulting weld structure is examined. The effects of postweld heat treatment on the structure of the weld deposit is also determined.

  12. Beyond harmonic sounds in a simple model for birdsong production.

    PubMed

    Amador, Ana; Mindlin, Gabriel B

    2008-12-01

    In this work we present an analysis of the dynamics displayed by a simple bidimensional model of labial oscillations during birdsong production. We show that the same model capable of generating tonal sounds can present, for a wide range of parameters, solutions which are spectrally rich. The role of physiologically sensible parameters is discussed in each oscillatory regime, allowing us to interpret previously reported data.

  13. Treadmill based reference running data for healthy subjects is dependent on speed and morphological parameters.

    PubMed

    Schulze, Stephan; Schwesig, René; Edel, Melanie; Fieseler, Georg; Delank, Karl-Stefan; Hermassi, Souhail; Laudner, Kevin G

    2017-10-01

    To obtain spatiotemporal and dynamic running parameters of healthy participants and to identify relationships between running parameters, speed, and physical characteristics. A dynamometric treadmill was used to collect running data among 417 asymptomatic subjects during speeds ranging from 10 to 24km/h. Spatiotemporal and dynamic running parameters were calculated and measured. Results of the analyses showed that assessing running parameters is dependent on running speed. Body height correlated with stride length (r=0.5), cadence (r=-0.5) and plantar forefoot force (r=0.6). Body mass also had a strong relationship to plantar forefoot forces at 14 and 24km/h and plantar midfoot forces at 14 and 24km/h. This reference data base can be used in the kinematic and kinetic evaluation of running under a wide range of speeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The thermodynamic parameters of solution of L-phenylalanine in water

    NASA Astrophysics Data System (ADS)

    Kustov, A. V.; Korolev, V. P.

    2007-02-01

    The heat effects of solution of L-phenylalanine in water were measured over wide concentration and temperature ranges. The enthalpies of solution of L-phenylalanine were found to be independent of the content of the amino acid in solution over the concentration range studied. The standard enthalpies, heat capacities, and entropies of solution of the amino acid and the solubility of L-phenylalanine over the temperature range studied were calculated.

  15. Liquid detection circuit

    DOEpatents

    Regan, Thomas O.

    1987-01-01

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  16. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  17. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis

    PubMed Central

    Zou, Shenao; Yan, Fengying; Yang, Guoan; Sun, Wei

    2017-01-01

    The acoustic emission (AE) signals of metal materials have been widely used to identify the deformation stage of a pressure vessel. In this work, Q235 steel samples with different propagation distances and geometrical structures are stretched to get the corresponding acoustic emission signals. Then the obtained acoustic emission signals are de-noised by empirical mode decomposition (EMD), and then decomposed into two different frequency ranges, i.e., one mainly corresponding to metal deformation and the other mainly corresponding to friction signals. The ratio of signal energy between two frequency ranges is defined as a new acoustic emission characteristic parameter. Differences can be observed at different deformation stages in both magnitude and data distribution range. Compared with other acoustic emission parameters, the proposed parameter is valid in different setups of the propagation medium and the coupled stiffness. PMID:28387703

  18. Hemicellulose block copolymers made from woods for wide-range directed self-assembly lithography enabling wider range of applicable patterning size

    NASA Astrophysics Data System (ADS)

    Morita, Kazuyo; Yamamoto, Kimiko

    2017-03-01

    Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.

  19. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  20. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    Treesearch

    Shuguang Liua; Pamela Anderson; Guoyi Zhoud; Boone Kauffman; Flint Hughes; David Schimel; Vicente Watson; Joseph Tosi

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in...

  1. Probabilistic assessment of the dynamic interaction between multiple pedestrians and vertical vibrations of footbridges

    NASA Astrophysics Data System (ADS)

    Tubino, Federica

    2018-03-01

    The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.

  2. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  3. SPOTting Model Parameters Using a Ready-Made Python Package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2017-04-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  4. SPOTting Model Parameters Using a Ready-Made Python Package.

    PubMed

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  5. SPOTting Model Parameters Using a Ready-Made Python Package

    PubMed Central

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. PMID:26680783

  6. Stability of half-metallic behavior with lattice variation for Fe2-xCoxMnAl Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-04-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2-xCoxMnAl Heusler alloys have been studied. Total magnetic moments predicted by the Slater Pauling rule is maintained over a wide range of lattice variation for the series. Half metallic ferromagnetic nature with 100% spin polarization is observed for a lattice range from 5.40-5.70 Å, 5.35-5.55 Å, 5.30-5.60 Å and 5.25-5.55 Å respectively for x = 0.5, 1.0 1.5, 2.0. Due to the stability of half metallic character for a wide range of lattice parameters, these alloys are promising, robust materials suitable for spintronics device applications.

  7. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    NASA Astrophysics Data System (ADS)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  8. Damping of short gravity-capillary waves due to oil derivatives film on the water surface

    NASA Astrophysics Data System (ADS)

    Sergievskaya, Irina; Ermakov, Stanislav; Lazareva, Tatyana

    2016-10-01

    In this paper new results of laboratory studies of damping of gravity-capillary waves on the water surface covered by kerosene are presented and compared with our previous analysis of characteristics of crude oil and diesel fuel films. Investigations of kerosene films were carried out in a wide range values of film thicknesses (from some hundreds millimetres to a few millimetres) and in a wide range of surface wave frequencies (from 10 to 27 Hz). The selected frequency range corresponds to the operating wavelengths of microwave, X- to Ka-band radars typically used for the ocean remote sensing. The studied range of film thickness covers typical thicknesses of routine spills in the ocean. It is obtained that characteristics of waves, measured in the presence of oil derivatives films differ from those for crude oil films, in particular, because the volume viscosity of oil derivatives and crude oil is strongly different. To retrieve parameters of kerosene films from the experimental data the surface wave damping was analyzed theoretically in the frame of a model of two-layer fluid. The films are assumed to be soluble, so the elasticity on the upper and lower boundaries is considered as a function of wave frequency. Physical parameters of oil derivative films were estimated when tuning the film parameters to fit theory and experiment. Comparison between wave damping due to crude oil, kerosene and diesel fuel films have shown some capabilities of distinguishing of oil films from remote sensing of short surface waves.

  9. Gene flow analysis method, the D-statistic, is robust in a wide parameter space.

    PubMed

    Zheng, Yichen; Janke, Axel

    2018-01-08

    We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.

  10. Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  11. End-to-end performance measurement of Internet based medical applications.

    PubMed

    Dev, P; Harris, D; Gutierrez, D; Shah, A; Senger, S

    2002-01-01

    We present a method to obtain an end-to-end characterization of the performance of an application over a network. This method is not dependent on any specific application or type of network. The method requires characterization of network parameters, such as latency and packet loss, between the expected server or client endpoints, as well as characterization of the application's constraints on these parameters. A subjective metric is presented that integrates these characterizations and that operates over a wide range of applications and networks. We believe that this method may be of wide applicability as research and educational applications increasingly make use of computation and data servers that are distributed over the Internet.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigand, Steven J.; Keane, Denis T.

    The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditionalmore » WAXS and SAXS ranges.« less

  13. Measuring Thermoelectric Properties Automatically

    NASA Technical Reports Server (NTRS)

    Chmielewski, A.; Wood, C.

    1986-01-01

    Microcomputer-controlled system speeds up measurements of Hall voltage, Seebeck coefficient, and thermal diffusivity in semiconductor compounds for thermoelectric-generator applications. With microcomputer system, large data base of these parameters gathered over wide temperature range. Microcomputer increases measurement accuracy, improves operator productivity, and reduces test time.

  14. Climate change economics: Make carbon pricing a priority

    NASA Astrophysics Data System (ADS)

    Hepburn, Cameron

    2017-06-01

    Estimates of the social cost of carbon vary widely as a function of different ethical parameters. Faced with values ranging from US$10 to US$1,000 per tCO2 and above, some perplexed policymakers have adopted 'target-consistent' carbon pricing instead.

  15. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes).

    PubMed

    Yuan, Hongwei; Poeggel, Sven; Newe, Thomas; Lewis, Elfed; Viphavakit, Charusluk; Leen, Gabriel

    2017-03-10

    A comprehensive study of the effect of a wide range of controlled human subject motion on Photoplethysmographic signals is reported. The investigation includes testing of two separate groups of 5 and 18 subjects who were asked to undertake set exercises whilst simultaneously monitoring a wide range of physiological parameters including Breathing Rate, Heart Rate and Localised Blood Pressure using commercial clinical sensing systems. The unique finger mounted PPG probe equipped with miniature three axis accelerometers for undertaking this investigation was a purpose built in-house version which is designed to facilitate reproducible application to a wide range of human subjects and the study of motion. The subjects were required to undertake several motion based exercises including standing, sitting and lying down and transitions between these states. They were also required to undertake set arm movements including arm-swinging and wrist rotation. A comprehensive set of experimental results corresponding to all motion inducing exercises have been recorded and analysed including the baseline (BL) value (DC component) and the amplitude of the oscillation of the PPG. All physiological parameters were also recorded as a simultaneous time varying waveform. The effects of the motion and specifically the localised Blood Pressure (BP) have been studied and related to possible influences of the Autonomic Nervous System (ANS) and hemodynamic pressure variations. It is envisaged that a comprehensive study of the effect of motion and the localised pressure fluctuations will provide valuable information for the future minimisation of motion artefact effect on the PPG signals of this probe and allow the accurate assessment of total haemoglobin concentration which is the primary function of the probe.

  16. Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.

  17. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  18. Kinetics of Mixed Microbial Assemblages Enhance Removal of Highly Dilute Organic Substrates

    PubMed Central

    Lewis, David L.; Hodson, Robert E.; Hwang, Huey-Min

    1988-01-01

    Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S. PMID:16347715

  19. Femtosecond soliton source with fast and broad spectral tunability.

    PubMed

    Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E

    2009-03-15

    We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters.

  20. Gas metal arc welding fume generation using pulsed current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, H.R.

    1994-12-31

    This paper describes a study of the effects of pulsed welding current on the amount of welding fume and ozone produced during gas metal arc welding (GMAW) using a range of welding procedures and pulse parameters. The results reported in this paper show that pulsed current can reduce GMAW fumes compared to steady current. This research also shows that welding parameters need to be properly controlled if pulsed current is to be used to reduce welding fumes. Fume and ozone generation rates were measured during this study for GMAW of mild steel using copper-coated ER70S-3 electrode wire and 95%Ar-5%CO{sub 2}more » and 85%Ar-15%CO{sub 2} shielding gases. Welds were made with both steady current and pulsed current over a wide range of welding parameters. Fume generation rates for steady current were found to be typically between 0.2 g/min and 0.8 g/min which agrees with other researchers. No significant difference was found in the chemical composition of welding fumes from pulsed current compared to the composition of fumes generated by steady current. New technology that can reduce arc welding fumes is of significant interest to a wide range of companies that use arc welding processes and this research should assist these users in evaluating the potential for the application of this technology to their own operations.« less

  1. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  2. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  3. Bone histomorphometry using free and commonly available software.

    PubMed

    Egan, Kevin P; Brennan, Tracy A; Pignolo, Robert J

    2012-12-01

    Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially available programs that measure histomorphometric parameters can be cost-prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Image J and Adobe Photoshop(®) were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner's trichrome-stained femurs were used to generate black-and-white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop(®) . The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and differences found to be statistically non-significant. The wide-ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially available software program. © 2012 Blackwell Publishing Limited.

  4. Bone histomorphometry using free and commonly available software

    PubMed Central

    Egan, Kevin P.; Brennan, Tracy A.; Pignolo, Robert J.

    2012-01-01

    Aims Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially-available programs that measure histomorphometric parameters can be cost prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Methods and results Image J and Adobe Photoshop® were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner’s Trichrome stained femurs were used to generate black and white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop®. The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface, and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and found to be statistically non-significant. Conclusions The wide ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options that are available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially-available software program. PMID:22882309

  5. Time-varying BRDFs.

    PubMed

    Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K

    2007-01-01

    The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.

  6. Laser range measurement for a satellite navigation scheme and mid-range path selection and obstacle avoidance. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Zuraski, G. D.

    1972-01-01

    The functions of a laser rangefinder on board an autonomous Martian roving vehicle are discussed. The functions are: (1) navigation by means of a passive satellite and (2) mid-range path selection and obstacle avoidance. The feasibility of using a laser to make the necessary range measurements is explored and a preliminary design is presented. The two uses of the rangefinder dictate widely different operating parameters making it impossible to use the same system for both functions.

  7. Multiscale Modeling of Stiffness, Friction and Adhesion in Mechanical Contacts

    DTIC Science & Technology

    2012-02-29

    over a lateral length l scales as a power law: h  lH, where H is called the Hurst exponent . For typical experimental surfaces, H ranges from 0.5 to 0.8...surfaces with a wide range of Hurst exponents using fully atomistic calculations and the Green’s function method. A simple relation like Eq. (2...described above to explore a full range of parameter space with different rms roughness h0, rms slope h’0, Hurst exponent H, adhesion energy

  8. New insights into galaxy structure from GALPHAT- I. Motivation, methodology and benchmarks for Sérsic models

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Weinberg, Martin D.; Katz, Neal

    2011-06-01

    We introduce a new galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes), which is a front-end application of the Bayesian Inference Engine (BIE), a parallel Markov chain Monte Carlo package, to provide full posterior probability distributions and reliable confidence intervals for all model parameters. The BIE relies on GALPHAT to compute the likelihood function. GALPHAT generates scale-free cumulative image tables for the desired model family with precise error control. Interpolation of this table yields accurate pixellated images with any centre, scale and inclination angle. GALPHAT then rotates the image by position angle using a Fourier shift theorem, yielding high-speed, accurate likelihood computation. We benchmark this approach using an ensemble of simulated Sérsic model galaxies over a wide range of observational conditions: the signal-to-noise ratio S/N, the ratio of galaxy size to the point spread function (PSF) and the image size, and errors in the assumed PSF; and a range of structural parameters: the half-light radius re and the Sérsic index n. We characterize the strength of parameter covariance in the Sérsic model, which increases with S/N and n, and the results strongly motivate the need for the full posterior probability distribution in galaxy morphology analyses and later inferences. The test results for simulated galaxies successfully demonstrate that, with a careful choice of Markov chain Monte Carlo algorithms and fast model image generation, GALPHAT is a powerful analysis tool for reliably inferring morphological parameters from a large ensemble of galaxies over a wide range of different observational conditions.

  9. Simulation Model for DVB-SH Systems Based on OFDM for Analyzing Quasi-error-free Communication over Different Channel Models

    NASA Astrophysics Data System (ADS)

    Bačić, Iva; Malarić, Krešimir; Dumić, Emil

    2014-05-01

    Mobile users today expect wide range of multimedia services to be available in different mobility scenarios, and among the others is mobile TV service. The Digital Video Broadcasting - Satellite services to Handheld (DVB-SH) is designed to provide mobile TV services, supporting a wide range of mobile multimedia services, like audio and data broadcasting as well as file downloading services. In this paper we present our simulation model for the performance evaluation of the DVB-SH system following the ETSI standard EN 302 583. Simulation model includes complete DVB-SH system, supporting all standardized system modes and parameters. From transmitter to receiver, the information may be sent over different channel models, thus simulating real case scenarios. To the best of authors' knowledge, this is the first complete model of DVB-SH system that includes all standardized system parameters and may be used for examining real DVB-SH communication as well as for educational purposes.

  10. A study of numerical methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Yee, H. C.

    1988-01-01

    The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained.

  11. Methane storage in nanoporous material at supercritical temperature over a wide range of pressures

    PubMed Central

    Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu

    2016-01-01

    The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747

  12. On the Influence of Material Parameters in a Complex Material Model for Powder Compaction

    NASA Astrophysics Data System (ADS)

    Staf, Hjalmar; Lindskog, Per; Andersson, Daniel C.; Larsson, Per-Lennart

    2016-10-01

    Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

  13. The Atacama Cosmology Telescope: Calibration with the Wilkinson Microwave Anisotropy Probe Using Cross-Correlations

    NASA Technical Reports Server (NTRS)

    Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; hide

    2011-01-01

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < I < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  14. Viscous dissipation impact on MHD free convection radiating fluid flow past a vertical porous plate

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Reddy, G. Jithender; Kumar, M. Anil

    2018-05-01

    An attempt has been made to study the radiation effects on unsteady MHD free convective flow of an incompressible fluid past an infinite vertical porous plate in the presence of viscous dissipation. The governing partial differential equations are solved numerically by using Galerkin finite element method. Computations were performed for a wide range of governing flow parameters viz., Magnetic Parameter, Schmidt number, Thermal radiation, Prandtl number, Eckert number and Permeability parameter. The effects of these flow parameters on velocity, temperature are shown graphically. In addition the local values of the Skin friction coefficient are shown in tabular form.

  15. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    PubMed Central

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  16. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  17. Contribution of nanointerfaces to colossal permittivity of doped Ba(Ti,Sn)O3 ceramics

    NASA Astrophysics Data System (ADS)

    V'yunov, Oleg; Reshytko, Borys; Belous, Anatolii; Kovalenko, Leonid

    2018-03-01

    The microstructure, crystal chemical parameters and electrical-physical properties of samples of barium titanate-based dielectric and semiconductor ceramics were investigated in a wide frequency range. The contributions of different nanointerfaces to the permittivity of samples under investigation have been determined.

  18. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  19. Haematology and plasma chemistry of the red top ice blue mbuna cichlid (Metriaclima greshakei).

    PubMed

    Snellgrove, Donna L; Alexander, Lucille G

    2011-10-01

    Clinical haematology and blood plasma chemistry can be used as a valuable tool to provide substantial diagnostic information for fish. A wide range of parameters can be used to assess nutritional status, digestive function, disease identification, routine metabolic levels, general physiological status and even the assessment and management of wild fish populations. However to evaluate such data accurately, baseline reference intervals for each measurable parameter must be established for the species of fish in question. Baseline data for ornamental fish species are limited, as research is more commonly conducted using commercially cultured fish. Blood samples were collected from sixteen red top ice blue cichlids (Metriaclima greshakei), an ornamental freshwater fish, to describe a range of haematology and plasma chemistry parameters. Since this cichlid is fairly large in comparison with most tropical ornamental fish, two independent blood samples were taken to assess a large range of parameters. No significant differences were noted between sample periods for any parameter. Values obtained for a large number of parameters were similar to those established for other closely related fish species such as tilapia (Oreochromis spp.). In addition to reporting the first set of blood values for M. Greshakei, to our knowledge, this study highlights the possibility of using previously established data for cultured cichlid species in studies with ornamental cichlid fish.

  20. Determination of extra trajectory parameters of projectile layout motion

    NASA Astrophysics Data System (ADS)

    Ishchenko, A.; Burkin, V.; Faraponov, V.; Korolkov, L.; Maslov, E.; Diachkovskiy, A.; Chupashev, A.; Zykova, A.

    2017-11-01

    The paper presents a brief description of the experimental track developed and implemented on the base of the RIAMM TSU for external trajectory investigations on determining the main aeroballistic parameters of various shapes projectiles, in the wide velocity range. There is comparison between the experimentally obtained dependence of the fin-stabilized projectile mock-up aerodynamic drag coefficient on the Mach number with the 1958 aerodynamic drag law and aerodynamic tests of the same mock-up

  1. Effect of atmospheric parameters on silicon cell performance

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.

    1976-01-01

    The effects of changing atmospheric parameters on the performance of a typical silicon solar cell were calculated. The precipitable water vapor content, airmass and turbidity were varied over wide ranges and the normal terrestrial distribution of spectral irradiance was studied. The cell short-circuit current was then computed for each spectral irradiance distribution using the cell spectral response. Data are presented in the form of calibration number (cell current/incident irradiance) vs. water vapor content or turbidity.

  2. Optimization of Empirical Force Fields by Parameter Space Mapping: A Single-Step Perturbation Approach.

    PubMed

    Stroet, Martin; Koziara, Katarzyna B; Malde, Alpeshkumar K; Mark, Alan E

    2017-12-12

    A general method for parametrizing atomic interaction functions is presented. The method is based on an analysis of surfaces corresponding to the difference between calculated and target data as a function of alternative combinations of parameters (parameter space mapping). The consideration of surfaces in parameter space as opposed to local values or gradients leads to a better understanding of the relationships between the parameters being optimized and a given set of target data. This in turn enables for a range of target data from multiple molecules to be combined in a robust manner and for the optimal region of parameter space to be trivially identified. The effectiveness of the approach is illustrated by using the method to refine the chlorine 6-12 Lennard-Jones parameters against experimental solvation free enthalpies in water and hexane as well as the density and heat of vaporization of the liquid at atmospheric pressure for a set of 10 aromatic-chloro compounds simultaneously. Single-step perturbation is used to efficiently calculate solvation free enthalpies for a wide range of parameter combinations. The capacity of this approach to parametrize accurate and transferrable force fields is discussed.

  3. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  4. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  5. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase.

    PubMed

    Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji

    2014-09-09

    Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.

  6. Phase diagram of the Shastry-Sutherland Kondo lattice model with classical localized spins: a variational calculation study

    NASA Astrophysics Data System (ADS)

    Shahzad, Munir; Sengupta, Pinaki

    2017-08-01

    We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.

  7. Preliminary design of a mini-Brayton Compressor-Alternator-Turbine (CAT)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary design of a mini-Brayton compressor-alternator-turbine system is discussed. The program design goals are listed. The optimum system characteristics over the entire range of power output were determined by performing a wide-range parametric study. The ability to develop the required components to the degree necessary within the limitations of present technology is evaluated. The sensitivity of the system to various individual design parameters was analyzed.

  8. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Treesearch

    William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver

    2009-01-01

    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...

  9. Qualitative Meta-Analysis on the Hospital Task: Implications for Research

    ERIC Educational Resources Information Center

    Noll, Jennifer; Sharma, Sashi

    2014-01-01

    The "law of large numbers" indicates that as sample size increases, sample statistics become less variable and more closely estimate their corresponding population parameters. Different research studies investigating how people consider sample size when evaluating the reliability of a sample statistic have found a wide range of…

  10. GENETIC DAMAGE INDICATORS IN FISH EXPOSED TO VARYING STREAM CONDITIONS IN AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    Micronucleus (MN) and single cell gel electrophoresis (SCG) measures of genetic damage in fish erythrocytes were included in an evaluation of a wide range of biological and physical stream condition parameters being developed for use in watershed and regional scale assessments. B...

  11. Estimation of Errors in Force Platform Data

    ERIC Educational Resources Information Center

    Psycharakis, Stelios G.; Miller, Stuart

    2006-01-01

    Force platforms (FPs) are regularly used in the biomechanical analysis of sport and exercise techniques, often in combination with image-based motion analysis. Force time data, particularly when combined with joint positions and segmental inertia parameters, can be used to evaluate the effectiveness of a wide range of movement patterns in sport…

  12. Efficiency of laser beam utilization in gas laser cutting of materials

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  13. Conditions for synchronization in Josephson-junction arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernikov, A.A.; Schmidt, G.

    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  14. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  15. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    USGS Publications Warehouse

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago metropolitan area. Unlike temperature, dissolved oxygen, and specific conductivity that have been typically measured over a wide range of historical streamflow conditions in many streams, there are few historical turbidity data and the full range of turbidity values is not well known for many streams. Because proposed regional criteria for turbidity in regional streams are based on upper 25th percentiles of concentration in reference streams, accurate determination of the distribution of turbidity in monitored streams is important. Digital data from all five sensors were recorded within each of the eight sondes deployed in the streams and in automated data recorders in the nearby streamflow-gaging houses at each station. The data recorded on each sonde were retrieved to a field laptop computer at each station visit. The feasibility of transmitting these data in near-real time to a central processing point for dissemination on the World-Wide Web was tested successfully. Data collected at all eight stations indicate that a number of factors affect the dissolved-oxygen concentration in the streams and rivers monitored. These factors include: temperature, biological activity, nutrient runoff, and weather (storm runoff). During brief periods usually in late summer, dissolved-oxygen concentrations in half or more of the eight streams and rivers monitored were below the 5 milligrams per liter minimum established by the Illinois Pollution Control Board to protect aquatic life. Because the streams monitored represent a wide range in water-quality and environmental conditions, including diffuse (non-point) runoff and wastewater-effluent contributions, this result indicates that deleterious low dissolved-oxygen concentrations during late summer may be widespread in Illinois streams.

  16. Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach.

    PubMed

    Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry J; Turányi, Tamás

    2016-08-01

    A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. ( Combust Flame , 2013, 160, 995-1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst , 2015, 35, 589-596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet-stirred reactors. The experimental conditions covered wide ranges of temperatures (800-2500 K), pressures (0.5-50 bar), equivalence ratios ( ϕ = 0.3-5.0), and C/H ratios (0-3). In total, 48 Arrhenius parameters and 5 third-body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H 2 /CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature-dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data.

  17. Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach

    PubMed Central

    Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy.; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry. J.

    2016-01-01

    ABSTRACT A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. (Combust Flame, 2013, 160, 995–1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst, 2015, 35, 589–596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet‐stirred reactors. The experimental conditions covered wide ranges of temperatures (800–2500 K), pressures (0.5–50 bar), equivalence ratios (ϕ = 0.3–5.0), and C/H ratios (0–3). In total, 48 Arrhenius parameters and 5 third‐body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H2/CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature‐dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data. PMID:27840549

  18. Estimation of line dimensions in 3D direct laser writing lithography

    NASA Astrophysics Data System (ADS)

    Guney, M. G.; Fedder, G. K.

    2016-10-01

    Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

  19. Polyakov loop modeling for hot QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Skokov, Vladimir

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  20. Polyakov loop modeling for hot QCD

    DOE PAGES

    Fukushima, Kenji; Skokov, Vladimir

    2017-06-19

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  1. Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation

    PubMed Central

    Tu, Haohua; Boppart, Stephen A.

    2010-01-01

    Spectrally-isolated narrowband Cherenkov radiation from commercial nonlinear photonic crystal fibers is demonstrated as an ultrafast optical source with a visible tuning range of 485–690 nm, which complementarily extends the near-infrared tuning range of 690–1020 nm from the corresponding femtosecond Ti:sapphire pump laser. Pump-to-signal conversion efficiency routinely surpasses 10%, enabling multimilliwatt visible output across the entire tuning range. Appropriate selection of fiber parameters and pumping conditions efficiently suppresses the supercontinuum generation typically associated with Cherenkov radiation. PMID:19506636

  2. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    NASA Astrophysics Data System (ADS)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  3. Generic NICA-Donnan model parameters for metal-ion binding by humic substances.

    PubMed

    Milne, Christopher J; Kinniburgh, David G; van Riemsdijk, Willem H; Tipping, Edward

    2003-03-01

    A total of 171 datasets of literature and experimental data for metal-ion binding by fulvic and humic acids have been digitized and re-analyzed using the NICA-Donnan model. Generic parameter values have been derived that can be used for modeling in the absence of specific metalion binding measurements. These values complement the previously derived generic descriptions of proton binding. For ions where the ranges of pH, concentration, and ionic strength conditions are well covered by the available data,the generic parameters successfully describe the metalion binding behavior across a very wide range of conditions and for different humic and fulvic acids. Where published data for other metal ions are too sparse to constrain the model well, generic parameters have been estimated by interpolating trends observable in the parameter values of the well-defined data. Recommended generic NICA-Donnan model parameters are provided for 23 metal ions (Al, Am, Ba, Ca, Cd, Cm, Co, CrIII, Cu, Dy, Eu, FeII, FeIII, Hg, Mg, Mn, Ni, Pb, Sr, Thv, UVIO2, VIIIO, and Zn) for both fulvic and humic acids. These parameters probably represent the best NICA-Donnan description of metal-ion binding that can be achieved using existing data.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhnovskii, Yurii A.; Berezhkovskii, Alexander M.; Antipov, Anatoly E.

    This paper is devoted to particle transport in a tube formed by alternating wide and narrow sections, in the presence of an external biasing force. The focus is on the effective transport coefficients—mobility and diffusivity, as functions of the biasing force and the geometric parameters of the tube. Dependences of the effective mobility and diffusivity on the tube geometric parameters are known in the limiting cases of no bias and strong bias. The approximations used to obtain these results are inapplicable at intermediate values of the biasing force. To bridge the two limits Brownian dynamics simulations were run to determinemore » the transport coefficients at intermediate values of the force. The simulations were performed for a representative set of tube geometries over a wide range of the biasing force. They revealed that there is a range of the narrow section length, where the force dependence of the mobility has a maximum. In contrast, the diffusivity is a monotonically increasing function of the force. A simple formula is proposed, which reduces to the known dependences of the diffusivity on the tube geometric parameters in both limits of zero and strong bias. At intermediate values of the biasing force, the formula catches the diffusivity dependence on the narrow section length, if the radius of these sections is not too small.« less

  5. Memprot: a program to model the detergent corona around a membrane protein based on SEC–SAXS data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, Javier, E-mail: javier.perez@synchrotron-soleil.fr; Koutsioubas, Alexandros; Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette

    Systematic SAXS simulations have been analysed over a wide range of parameters in order to better understand the detergent corona around a membrane protein. The application of small-angle X-ray scattering (SAXS) to structural investigations of transmembrane proteins in detergent solution has been hampered by two main inherent hurdles. On the one hand, the formation of a detergent corona around the hydrophobic region of the protein strongly modifies the scattering curve of the protein. On the other hand, free micelles of detergent without a precisely known concentration coexist with the protein–detergent complex in solution, therefore adding an uncontrolled signal. To gainmore » robust structural information on such systems from SAXS data, in previous work, advantage was taken of the online combination of size-exclusion chromatography (SEC) and SAXS, and the detergent corona around aquaporin-0, a membrane protein of known structure, could be modelled. A precise geometrical model of the corona, shaped as an elliptical torus, was determined. Here, in order to better understand the correlations between the corona model parameters and to discuss the uniqueness of the model, this work was revisited by analyzing systematic SAXS simulations over a wide range of parameters of the torus.« less

  6. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2017-06-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  7. Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns.

    PubMed

    Hassaninia, Iman; Bostanabad, Ramin; Chen, Wei; Mohseni, Hooman

    2017-11-10

    Fabricated tissue phantoms are instrumental in optical in-vitro investigations concerning cancer diagnosis, therapeutic applications, and drug efficacy tests. We present a simple non-invasive computational technique that, when coupled with experiments, has the potential for characterization of a wide range of biological tissues. The fundamental idea of our approach is to find a supervised learner that links the scattering pattern of a turbid sample to its thickness and scattering parameters. Once found, this supervised learner is employed in an inverse optimization problem for estimating the scattering parameters of a sample given its thickness and scattering pattern. Multi-response Gaussian processes are used for the supervised learning task and a simple setup is introduced to obtain the scattering pattern of a tissue sample. To increase the predictive power of the supervised learner, the scattering patterns are filtered, enriched by a regressor, and finally characterized with two parameters, namely, transmitted power and scaled Gaussian width. We computationally illustrate that our approach achieves errors of roughly 5% in predicting the scattering properties of many biological tissues. Our method has the potential to facilitate the characterization of tissues and fabrication of phantoms used for diagnostic and therapeutic purposes over a wide range of optical spectrum.

  8. Design and Evolution of a Modular Tensegrity Robot Platform

    NASA Technical Reports Server (NTRS)

    Bruce, Jonathan; Caluwaerts, Ken; Iscen, Atil; Sabelhaus, Andrew P.; SunSpiral, Vytas

    2014-01-01

    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters.

  9. Comprehensive non-dimensional normalization of gait data.

    PubMed

    Pinzone, Ornella; Schwartz, Michael H; Baker, Richard

    2016-02-01

    Normalizing clinical gait analysis data is required to remove variability due to physical characteristics such as leg length and weight. This is particularly important for children where both are associated with age. In most clinical centres conventional normalization (by mass only) is used whereas there is a stronger biomechanical argument for non-dimensional normalization. This study used data from 82 typically developing children to compare how the two schemes performed over a wide range of temporal-spatial and kinetic parameters by calculating the coefficients of determination with leg length, weight and height. 81% of the conventionally normalized parameters had a coefficient of determination above the threshold for a statistical association (p<0.05) compared to 23% of those normalized non-dimensionally. All the conventionally normalized parameters exceeding this threshold showed a reduced association with non-dimensional normalization. In conclusion, non-dimensional normalization is more effective that conventional normalization in reducing the effects of height, weight and age in a comprehensive range of temporal-spatial and kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  11. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  12. Digital simulation of an arbitrary stationary stochastic process by spectral representation.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2011-04-01

    In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes. © 2011 Optical Society of America

  13. Effects of fragility and reduced glass transition temperature on the glass formation ability of amorphous alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jin; Long, Zhi-Lin; Liu, Wei; Liao, Guang-Kai

    2017-11-01

    In this paper, based on the reduced glass transition temperature ({{T}rg} ) proposed by Turnbull and the relation between the glass-forming ability (GFA) and the short-range bond ordering of liquids demonstrated by Tanaka, a detailed analysis on the specific roles of {{T}rg} and fragility of the glass forming liquid (m) in characterizing the GFA has been conducted, and then a novel GFA parameter α [=2/3× (100{{T}rg}{)}-(16/100)× m=67{{T}rg}-0.16m] was put forward. This new GFA parameter α , which increases with a decrease in the critical cooling rate (R c) for glass formation, is a complex function of {{T}rg} and m. The relationship between R c and the parameter α was identified and verified using available literature data for broad range of amorphous alloys with widely varying GFA. The correlation coefficient (R 2) of 0.9 clearly shows an excellent correlation between GFA and the parameter α and that α is a more superior indicator compared to currently reported similar GFA parameters.

  14. Deriving aerosol parameters from in-situ spectrometer measurements for validation of remote sensing products

    NASA Astrophysics Data System (ADS)

    Riedel, Sebastian; Janas, Joanna; Gege, Peter; Oppelt, Natascha

    2017-10-01

    Uncertainties of aerosol parameters are the limiting factor for atmospheric correction over inland and coastal waters. For validating remote sensing products from these optically complex and spatially inhomogeneous waters the spatial resolution of automated sun photometer networks like AERONET is too coarse and additional measurements on the test site are required. We have developed a method which allows the derivation of aerosol parameters from measurements with any spectrometer with suitable spectral range and resolution. This method uses a pair of downwelling irradiance and sky radiance measurements for the extraction of the turbidity coefficient and aerosol Ångström exponent. The data can be acquired fast and reliable at almost any place during a wide range of weather conditions. A comparison to aerosol parameters measured with a Cimel sun photometer provided by AERONET shows a reasonable agreement for the Ångström exponent. The turbidity coefficient did not agree well with AERONET values due to fit ambiguities, indicating that future research should focus on methods to handle parameter correlations within the underlying model.

  15. Determination of the glass-transition temperature of proteins from a viscometric approach.

    PubMed

    Monkos, Karol

    2015-03-01

    All fully hydrated proteins undergo a distinct change in their dynamical properties at glass-transition temperature Tg. To determine indirectly this temperature for dry albumins, the viscosity measurements of aqueous solutions of human, equine, ovine, porcine and rabbit serum albumin have been conducted at a wide range of concentrations and at temperatures ranging from 278 K to 318 K. Viscosity-temperature dependence of the solutions is discussed on the basis of the three parameters equation resulting from Avramov's model. One of the parameter in the Avramov's equation is the glass-transition temperature. For all studied albumins, Tg of a solution monotonically increases with increasing concentration. The glass-transition temperature of a solution depends both on Tg for a dissolved dry protein Tg,p and water Tg,w. To obtain Tg,p for each studied albumin the modified Gordon-Taylor equation was applied. This equation describes the dependence of Tg of a solution on concentration, and Tg,p and a parameter depending on the strength of the protein-solvent interaction are the fitting parameters. Thus determined the glass-transition temperature for the studied dry albumins is in the range (215.4-245.5)K. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  17. An open circuit voltage decay system for performing injection dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacouture, Shelby; Schrock, James; Hirsch, Emily; Bayne, Stephen; O'Brien, Heather; Ogunniyi, Aderinto A.

    2017-09-01

    Of all of the material parameters associated with a semiconductor, the carrier lifetime is by far the most complex and dynamic, being a function of the dominant recombination mechanism, the equilibrium number of carriers, the perturbations in carriers (e.g., carrier injection), and the temperature, to name the most prominent variables. The carrier lifetime is one of the most important parameters in bipolar devices, greatly affecting conductivity modulation, on-state voltage, and reverse recovery. Carrier lifetime is also a useful metric for device fabrication process control and material quality. As it is such a dynamic quantity, carrier lifetime cannot be quoted in a general range such as mobility; it must be measured. The following describes a stand-alone, wide-injection range open circuit voltage decay system with unique lifetime extraction algorithms. The system is initially used along with various lifetime spectroscopy techniques to extract fundamental recombination parameters from a commercial high-voltage PIN diode.

  18. Interference substructure of above-threshold ionization peaks in the stabilization regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2008-09-01

    The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.

  19. Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters

    NASA Astrophysics Data System (ADS)

    Selyutina, N. S.; Petrov, Yu. V.

    2018-02-01

    The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.

  20. Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saveleva, Natalia, E-mail: saveleva@icmm.ru; Bayandin, Yuriy, E-mail: buv@icmm.ru; Naimark, Oleg, E-mail: naimark@icmm.ru

    2015-10-27

    The aim of this paper is numerical study of deformation processes and failure of vanadium under shock-wave loading. According developed statistical theory of solid with mesoscopic defects the constitutive equations were proposed in terms of two structural variables characterizing behavior of defects ensembles: defect density tensor and structural scaling parameter. On the basis of wide-range constitutive equations the mathematical model of deformation behavior and failure of vanadium was developed taking into account the bond relaxation mechanisms, multistage of fracture and nonlinearity kinetic of defects. Results of numerical simulation allow the description of the major effects of shock wave propagation (elasticmore » precursor decay, grow of spall strength under grow strain rate)« less

  1. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    ERIC Educational Resources Information Center

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  2. Reliability of tanoak volume equations when applied to different areas

    Treesearch

    Norman H. Pillsbury; Philip M. McDonald; Victor Simon

    1995-01-01

    Tree volume equations for tanoak (Lithocarpus densiflorus) were developed for seven stands throughout its natural range and compared by a volume prediction and a parameter difference method. The objective was to test if volume estimates from a species growing in a local, relatively uniform habitat could be applied more widely. Results indicated...

  3. Star formation in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Leichenauer, Stefan

    2009-03-15

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  4. Continuous Toxicological Dose-Response Relationships Are Pretty Homogeneous (Society for Risk Analysis Annual Meeting)

    EPA Science Inventory

    Dose-response relationships for a wide range of in vivo and in vitro continuous datasets are well-described by a four-parameter exponential or Hill model, based on a recent analysis of multiple historical dose-response datasets, mostly with more than five dose groups (Slob and Se...

  5. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  6. Evaluation of the tau-omega model for passive microwave soil moisture retrieval using SMAPEx data sets

    USDA-ARS?s Scientific Manuscript database

    The parameters used for passive soil moisture retrieval algorithms reported in the literature encompass a wide range, leading to a large uncertainty in the applicability of those values. This paper presents an evaluation of the proposed parameterizations of the tau-omega model from 1) SMAP ATBD for ...

  7. Constructing temporary sampling platforms for hydrologic studies

    Treesearch

    Manuel H. Martinez; Sandra E. Ryan

    2000-01-01

    This paper presents instructions for constructing platforms that span the width of stream channels to accommodate the measurement of hydrologic parameters over a wide range of discharges. The platforms provide a stable, safe, noninvasive, easily constructed, and relatively inexpensive means for permitting data collection without wading in the flow. We have used the...

  8. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  9. Comparing the efficiency of supersonic oxygen-iodine laser with different mixing designs

    NASA Astrophysics Data System (ADS)

    Vyskubenko, Boris A.; Adamenkov, A. A.; Bakshin, V. V.; Efremov, V. I.; Ilyin, S. P.; Kolobyanin, Yu. V.; Krukovsky, I. M.; Kudryashov, E. A.; Moiseyev, V. B.

    2003-11-01

    The paper presents experimental studies of supersonic oxygen-iodine laser (OIL) using twisted-flow singlet oxygen generator (SOG) over a wide range of the singlet oxygen pressures and the buffer gas flow rates. The experiments used different designs of the nozzle unit and mixing system for singlet oxygen and iodine gas with the carrier gas (such as nitrogen or helium). For a wide range of the key parameters, the study looked at the efficiency of supersonic OIL with variation of the singlet oxygen pressure. The measurements were made for different positions of the iodine injection plane with respect to the critical cross-section (both in the subsonic part of the nozzle and in the supersonic flow). The gas pressure at the nozzle unit entry was varied from 50 to 250 Torr. The total pressure loss have been found for different mixing designs. Experimental curves are given for energy performance and chemical efficiency of the supersonic OIL as a function of the key parameters. Comparison is made between the calculated and experimental data. For the optimum conditions of OIL operation, chemical efficiency of 25-30% has been achieved.

  10. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    NASA Astrophysics Data System (ADS)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  11. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  12. Level density parameter behaviour at high excitation energy

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Giardina, G.; Taccone, A.

    1991-06-01

    We present a formalism to calculate the intrinsic (without collective effects) and effective (with collective effects) level density parameters over a wide range of excitation energy up to 180 MeV. The behaviour of aint and aeff as an energy function is shown for several typical nuclei (115Cd, 129Te, 148Pm, 173Yb, 192Ir and 248Cm). Moreover, local systematics of the parameter aeff as a function of the neutron number N, also for nuclei extremely far from the β-line, is shown for some typical nuclei (Rb, Pd, Sn, Ba and Hg) at excitation energies of 15, 80 and 150 MeV.

  13. Hubble Space Telescope: Faint object camera instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    Paresce, Francesco (Editor)

    1990-01-01

    The Faint Object Camera (FOC) is a long focal ratio, photon counting device designed to take high resolution two dimensional images of areas of the sky up to 44 by 44 arcseconds squared in size, with pixel dimensions as small as 0.0007 by 0.0007 arcseconds squared in the 1150 to 6500 A wavelength range. The basic aim of the handbook is to make relevant information about the FOC available to a wide range of astronomers, many of whom may wish to apply for HST observing time. The FOC, as presently configured, is briefly described, and some basic performance parameters are summarized. Also included are detailed performance parameters and instructions on how to derive approximate FOC exposure times for the proposed targets.

  14. Optical properties of LiGaS2: an ab initio study and spectroscopic ellipsometry measurement

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Lin, Z. S.; Isaenko, L. I.; Kesler, V. G.; Kruchinin, V. N.; Lobanov, S. I.

    2009-11-01

    Electronic and optical properties of lithium thiogallate crystal, LiGaS2, have been investigated by both experimental and theoretical methods. The plane-wave pseudopotential method based on DFT theory has been used for band structure calculations. The electronic parameters of Ga 3d orbitals have been corrected by the DFT+U methods to be consistent with those measured with x-ray photoemission spectroscopy. Evolution of optical constants of LiGaS2 over a wide spectral range was determined by developed first-principles theory and dispersion curves were compared with optical parameters defined by spectroscopic ellipsometry in the photon energy range 1.2-5.0 eV. Good agreement has been achieved between theoretical and experimental results.

  15. Application of physicochemical properties and process parameters in the development of a neural network model for prediction of tablet characteristics.

    PubMed

    Sovány, Tamás; Papós, Kitti; Kása, Péter; Ilič, Ilija; Srčič, Stane; Pintye-Hódi, Klára

    2013-06-01

    The importance of in silico modeling in the pharmaceutical industry is continuously increasing. The aim of the present study was the development of a neural network model for prediction of the postcompressional properties of scored tablets based on the application of existing data sets from our previous studies. Some important process parameters and physicochemical characteristics of the powder mixtures were used as training factors to achieve the best applicability in a wide range of possible compositions. The results demonstrated that, after some pre-processing of the factors, an appropriate prediction performance could be achieved. However, because of the poor extrapolation capacity, broadening of the training data range appears necessary.

  16. Applying stochastic small-scale damage functions to German winter storms

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-03-01

    Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes.

  17. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  18. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  19. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

  20. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  1. Characterizations of additive manufactured porous titanium implants.

    PubMed

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  2. Nonlinear unstable viscous fingers in Hele--Shaw flows. I. Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopf-Sill, A.R.; Homsy, G.M.

    1988-02-01

    Post-instability viscous fingering in rectilinear flow in a Hele--Shaw cell has been studied experimentally. Of particular interest was the characterization of the range of length scales associated with tip splitting, over a reasonably wide range of parameters. A digital imaging system was used to record the patterns as a function of time, which allowed properties such as the tip velocity, finger width, perimeter, and area to be studied as functions of time and capillary number. The tip velocity was observed to be approximately constant regardless of the occurrence of splitting events, and the average finger width decreased as the degreemore » of supercriticality increased. Quantitative measures of the fact that there is a limit to the complexity of viscous fingers are provided, and that over the range of parameters studied, no evidence for fractal fingering exists. A discussion of the dynamics of tip splitting explains why this is so.« less

  3. Visualization in mechanics: the dynamics of an unbalanced roller

    NASA Astrophysics Data System (ADS)

    Cumber, Peter S.

    2017-04-01

    It is well known that mechanical engineering students often find mechanics a difficult area to grasp. This article describes a system of equations describing the motion of a balanced and an unbalanced roller constrained by a pivot arm. A wide range of dynamics can be simulated with the model. The equations of motion are embedded in a graphical user interface for its numerical solution in MATLAB. This allows a student's focus to be on the influence of different parameters on the system dynamics. The simulation tool can be used as a dynamics demonstrator in a lecture or as an educational tool driven by the imagination of the student. By way of demonstration the simulation tool has been applied to a range of roller-pivot arm configurations. In addition, approximations to the equations of motion are explored and a second-order model is shown to be accurate for a limited range of parameters.

  4. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspi, Yohai; Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relativemore » humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.« less

  5. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V.; Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  6. The dependence of the wavelength on MBE growth parameters of GaAs quantum dot in AlGaAs NWs on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.

    2017-11-01

    The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.

  7. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis

    NASA Astrophysics Data System (ADS)

    Malczewski, Jacek

    2006-12-01

    The objective of this paper is to incorporate the concept of fuzzy (linguistic) quantifiers into the GIS-based land suitability analysis via ordered weighted averaging (OWA). OWA is a multicriteria evaluation procedure (or combination operator). The nature of the OWA procedure depends on some parameters, which can be specified by means of fuzzy (linguistic) quantifiers. By changing the parameters, OWA can generate a wide range of decision strategies or scenarios. The quantifier-guided OWA procedure is illustrated using land-use suitability analysis in a region of Mexico.

  8. Structural damage identification using an enhanced thermal exchange optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kaveh, A.; Dadras, A.

    2018-03-01

    The recently developed optimization algorithm-the so-called thermal exchange optimization (TEO) algorithm-is enhanced and applied to a damage detection problem. An offline parameter tuning approach is utilized to set the internal parameters of the TEO, resulting in the enhanced heat transfer optimization (ETEO) algorithm. The damage detection problem is defined as an inverse problem, and ETEO is applied to a wide range of structures. Several scenarios with noise and noise-free modal data are tested and the locations and extents of damages are identified with good accuracy.

  9. Dynamic N -occupancy models: estimating demographic rates and local abundance from detection-nondetection data

    Treesearch

    Sam Rossman; Charles B. Yackulic; Sarah P. Saunders; Janice Reid; Ray Davis; Elise F. Zipkin

    2016-01-01

    Occupancy modeling is a widely used analytical technique for assessing species distributions and range dynamics. However, occupancy analyses frequently ignore variation in abundance of occupied sites, even though site abundances affect many of the parameters being estimated (e.g., extinction, colonization, detection probability). We introduce a new model (“dynamic

  10. Vertical dielectric screening of few-layer van der Waals semiconductors.

    PubMed

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  11. Correlation of Tc and coefficient of T 2 resistivity term of Fe-based pnictide & chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Castro, P. B.; Ferreira, J. L.; Silva Neto, M. B.; ElMassalami, M.

    2018-03-01

    Normal-state of many Fe-based pnictides and chalcogenides superconductors exhibit a quadratic-in-temperature, ρtot – ρo – ρ ph = AT 2, over wide ranges of temperature and pressure. Moreover, these systems exhibit a correlation between their T c and A, namely ln(Tc /θ)∝ A ‑1/2(θ is an energy scale parameter), even when a control parameter such as pressure is widely varied. This manifestation, as well as that of \\frac{1}{{T}c}{≤ft(-\\frac{d{H}c2}{dT}\\right)}{Tc}\\propto \\frac{A}{n} [Phys. Rev. B 89, 220509 (2014), n is charge density, H c2 is the upper critical field] suggests a common Landau Fermi Liquid scenario for both superconductivity and quadratic-in-T contribution.

  12. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  13. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber.

    PubMed

    Koptev, M Yu; Anashkina, E A; Andrianov, A V; Dorofeev, V V; Kosolapov, A F; Muravyev, S V; Kim, A V

    2015-09-01

    A turnkey fiber laser source generating high-quality pulses with a spectral sech shape and Fourier transform-limited duration of order 100 fs widely tunable in the 1.6-2.65 μm range is presented. It is based on Raman soliton self-frequency shifting in the suspended-core microstructured TeO2-WO3-La2O3 glass fiber pumped by a hybrid Er/Tm fiber system. Detailed experimental and theoretical studies, which are in a very good agreement, of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters are reported. A quantitatively verified numerical model is used to show Raman soliton shift in the range well beyond 3 μm for increased pump energy.

  14. Generalization of turbojet and turbine-propeller engine performance in windmilling condition

    NASA Technical Reports Server (NTRS)

    Wallner, Ewis E; Welna, Henry J

    1951-01-01

    Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.

  15. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  16. Simulation and scaling analysis of a spherical particle-laden blast wave

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  17. Small-signal modeling with direct parameter extraction for impact ionization effect in high-electron-mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn

    2015-11-21

    Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less

  18. From global to local: exploring the relationship between parameters and behaviors in models of electrical excitability.

    PubMed

    Fletcher, Patrick; Bertram, Richard; Tabak, Joel

    2016-06-01

    Models of electrical activity in excitable cells involve nonlinear interactions between many ionic currents. Changing parameters in these models can produce a variety of activity patterns with sometimes unexpected effects. Further more, introducing new currents will have different effects depending on the initial parameter set. In this study we combined global sampling of parameter space and local analysis of representative parameter sets in a pituitary cell model to understand the effects of adding K (+) conductances, which mediate some effects of hormone action on these cells. Global sampling ensured that the effects of introducing K (+) conductances were captured across a wide variety of contexts of model parameters. For each type of K (+) conductance we determined the types of behavioral transition that it evoked. Some transitions were counterintuitive, and may have been missed without the use of global sampling. In general, the wide range of transitions that occurred when the same current was applied to the model cell at different locations in parameter space highlight the challenge of making accurate model predictions in light of cell-to-cell heterogeneity. Finally, we used bifurcation analysis and fast/slow analysis to investigate why specific transitions occur in representative individual models. This approach relies on the use of a graphics processing unit (GPU) to quickly map parameter space to model behavior and identify parameter sets for further analysis. Acceleration with modern low-cost GPUs is particularly well suited to exploring the moderate-sized (5-20) parameter spaces of excitable cell and signaling models.

  19. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  20. Asymmetric dark matter and baryogenesis from pseudoscalar inflation

    NASA Astrophysics Data System (ADS)

    Cado, Yann; Sabancilar, Eray

    2017-04-01

    We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7-15 GeV . The novelty of our mechanism stems from the fact that the same source of CP violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.

  1. Asymmetric dark matter and baryogenesis from pseudoscalar inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cado, Yann; Sabancilar, Eray, E-mail: yann.cado@epfl.ch, E-mail: eray.sabancilar@epfl.ch

    2017-04-01

    We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7–15 GeV . The novelty of our mechanism stems from the fact that the same source of CPmore » violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.« less

  2. Using string invariants for prediction searching for optimal parameters

    NASA Astrophysics Data System (ADS)

    Bundzel, Marek; Kasanický, Tomáš; Pinčák, Richard

    2016-02-01

    We have developed a novel prediction method based on string invariants. The method does not require learning but a small set of parameters must be set to achieve optimal performance. We have implemented an evolutionary algorithm for the parametric optimization. We have tested the performance of the method on artificial and real world data and compared the performance to statistical methods and to a number of artificial intelligence methods. We have used data and the results of a prediction competition as a benchmark. The results show that the method performs well in single step prediction but the method's performance for multiple step prediction needs to be improved. The method works well for a wide range of parameters.

  3. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    PubMed

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  4. A new algorithm for design, operation and cost assessment of struvite (MgNH4PO4) precipitation processes.

    PubMed

    Birnhack, Liat; Nir, Oded; Telzhenski, Marina; Lahav, Ori

    2015-01-01

    Deliberate struvite (MgNH4PO4) precipitation from wastewater streams has been the topic of extensive research in the last two decades and is expected to gather worldwide momentum in the near future as a P-reuse technique. A wide range of operational alternatives has been reported for struvite precipitation, including the application of various Mg(II) sources, two pH elevation techniques and several Mg:P ratios and pH values. The choice of each operational parameter within the struvite precipitation process affects process efficiency, the overall cost and also the choice of other operational parameters. Thus, a comprehensive simulation program that takes all these parameters into account is essential for process design. This paper introduces a systematic decision-supporting tool which accepts a wide range of possible operational parameters, including unconventional Mg(II) sources (i.e. seawater and seawater nanofiltration brines). The study is supplied with a free-of-charge computerized tool (http://tx.technion.ac.il/~agrengn/agr/Struvite_Program.zip) which links two computer platforms (Python and PHREEQC) for executing thermodynamic calculations according to predefined kinetic considerations. The model can be (inter alia) used for optimizing the struvite-fluidized bed reactor process operation with respect to P removal efficiency, struvite purity and economic feasibility of the chosen alternative. The paper describes the algorithm and its underlying assumptions, and shows results (i.e. effluent water quality, cost breakdown and P removal efficiency) of several case studies consisting of typical wastewaters treated at various operational conditions.

  5. Outdoor ground impedance models.

    PubMed

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  6. Critical overview of all available animal models for abdominal wall hernia research.

    PubMed

    Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D

    2017-10-01

    Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.

  7. Thermal nanostructure: An order parameter multiscale ensemble approach

    NASA Astrophysics Data System (ADS)

    Cheluvaraja, S.; Ortoleva, P.

    2010-02-01

    Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.

  8. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, F.; Bohler, D.; Ding, Y.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less

  9. Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge

    NASA Astrophysics Data System (ADS)

    Rashad, A. M.

    2017-01-01

    This article is concerned with the problem of magnetohydrodynamic (MHD) mixed convection flow of Cobalt-kerosene ferrofluid adjacent a non-isothermal wedge under the influence of thermal radiation and partial slip. Such type of problems are posed by electric generators and biomedical enforcement. The governing equations are solved using the Thomas algorithm with finite-difference type and solutions for a wide range of magnet parameter are presented. It is found that local Nusselt number manifests a considerable diminishing for magnetic parameter and magnifies intensively in case of slip factor, thermal radiation and surface temperature parameters. Further, the skin friction coefficient visualizes a sufficient enhancement for the parameters thermal radiation, surface temperature and magnetic field, but a huge reduction is recorded by promoting the slip factor.

  10. A fortran program for Monte Carlo simulation of oil-field discovery sequences

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Davis, J.C.

    1993-01-01

    We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.

  11. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  12. Application of a statistical emulator to fire emission modeling

    Treesearch

    Marwan Katurji; Jovanka Nikolic; Shiyuan Zhong; Scott Pratt; Lejiang Yu; Warren E. Heilman

    2015-01-01

    We have demonstrated the use of an advanced Gaussian-Process (GP) emulator to estimate wildland fire emissions over a wide range of fuel and atmospheric conditions. The Fire Emission Production Simulator, or FEPS, is used to produce an initial set of emissions data that correspond to some selected values in the domain of the input fuel and atmospheric parameters for...

  13. Development of a Landforms Model for Puerto Rico and its Application for Land Cover Change Analysis

    Treesearch

    Sebastian Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez; Brook E. Edwards

    2007-01-01

    Comprehensive analysis of land morphology is essential to supporting a wide range environmental studies. We developed a landforms model that identifies eleven landform units for Puerto Rico based on parameters of land position and slope. The model is capable of extracting operational information in a simple way and is adaptable to different environments and objectives...

  14. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  15. The NASA supercritical-wing technology

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Patterson, J. C., Jr.

    1978-01-01

    A number of high aspect ratio supercritical wings in combination with a representative wide body type fuselage were tested in the Langley 8 foot transonic pressure tunnel. The wing parameters investigated include aspect ratio, sweep, thickness to chord ratio, and camber. Subsequent to these initial series of tests, a particular wing configuration was selected for further study and development. Tests on the selected wing involved the incorporation of a larger inboard trailing edge extension, an inboard leading edge extension, and flow through nacelles. Range factors for the various supercritical wing configurations are compared with those for a reference wide body transport configuration.

  16. Gamma shielding properties of Tamoxifen drug

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Gulsah Saydan; Oto, Berna; Gulebaglan, Sinem Erden

    2017-02-01

    Tamoxifen (MW=371 g/mol) is an endocrine therapeutic drug widely prescribed as chemopreventive in women to prevent and to treat all stages of breast cancer. It is also being studied for other types of cancer. In this study, we have calculated some gamma shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) for Tamoxifen drug. The values of μρ were calculated using WinXCom computer program and then the values of Zeff and Nel were derived using μρ values in the wide energy range (1 keV - 100 GeV).

  17. The nonlinear wave equation for higher harmonics in free-electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1981-01-01

    The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.

  18. Near-field thermal radiation of deep- subwavelength slits in the near infrared range.

    PubMed

    Guo, Yan; Li, Kuanbiao; Xu, Ying; Wei, Kaihua

    2017-09-18

    We numerically investigate the thermal radiation of one-dimensional deep subwavelength slits in the near infrared range. Using numerical calculations of single-slit and multi-slit structures, we find that high-level radiation efficiency can be achieved for a wide spectrum when ultra-thin intermediate layers are used, and it is less affected by structure parameters. The underlying mechanisms involve Surface Plasmon Polaritons resonance and Fabry-Perot interference at each slit and the interaction between adjacent slits. This structure helps understand and improve the design of thermal radiation control devices.

  19. Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1985-01-01

    Dynamic dielectric analysis (DDA) is used to study curing polymer systems and thermoplastics. Measurements are made over a frequency range of six decades. This wide range of frequencies increases the amount of information which can be obtained. The data is analyzed in terms of the frequency dependence of the complex permittivity epsilon sup *, specific conductivity sigma (ohm/cm) and the relaxation time tau, parameters which are characteristic of the cure state of the material and independent of the size of the sample.

  20. Transport and reconnection in tokamak sawteeth.

    PubMed

    Gentle, K W; Austin, M E; Phillips, P E

    2003-12-19

    The core of a tokamak discharge often undergoes periodic relaxation oscillations, sawteeth, as the steepening current and temperature profiles are flattened by fast reconnection events. Careful analysis of the electron temperature evolution over this cycle gives an estimate of the energy dissipated in the electrons during reconnection and a measure of the transport characteristic (energy flux versus temperature gradient) over the range of parameters occurring over the remainder of the cycle. The energy dissipated is consistent with estimates of the loss of poloidal magnetic energy. The transport characteristics exhibit a wide range of behaviors.

  1. Applications of flow cytometry to toxicological mycotoxin effects in cultured mammalian cells: a review.

    PubMed

    Juan-García, Ana; Manyes, Lara; Ruiz, María-José; Font, Guillermina

    2013-06-01

    This review gives an overview of flow cytometry applications to toxicological studies of several physiological target sites of mycotoxins on different mammalian cell lines. Mycotoxins are secondary metabolites of fungi that may be present in food, feed, air and water. The increasing presence of mycotoxins in crops, their wide distribution in the food chain, and their potential for toxicity demonstrate the need for further knowledge. Flow cytometry has become a valuable tool in mycotoxin studies in recent years for the rapid analysis of single cells in a mixture. In toxicology, the power of these methods lies in the possibility of determining a wide range of cell parameters, providing valuable information to elucidate cell growth and viability, metabolic activity, mitochondrial membrane potential and membrane integrity mechanisms. There are studies using flow cytometry technique on Alternaria, Aspergillus, Fusarium and Penicillium mycotoxins including information about cell type, assay conditions and functional parameters. Most of the studies collected in the literature are on deoxynivalenol and zearalenone mycotoxins. Cell cycle analysis and apoptosis are the processes more widely investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction.

    PubMed

    Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T

    2013-11-01

    Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. © 2013 American Society of Andrology and European Academy of Andrology.

  3. Semiempirical models for description of shear modulus in wide ranges of temperatures and pressures of shock compression

    NASA Astrophysics Data System (ADS)

    El'Kin, V. M.; Mikhailov, V. N.; Mikhailova, T. Yu.

    2011-12-01

    In this paper, we discuss the potentials of the Steinberg-Cochran-Guinan (SCG) and Burakovsky-Preston (BP) models for the description of the shear-modulus behavior at temperatures and pressures that arise behind the shock-wave front. A modernized variant of the SCG model is suggested, which reduces to the introduction of a free parameter and the representation of the model in the volume-temperature coordinates (( V, T) model). A systematic comparison is performed of all three models of shear modulus with experimental data and data of ab initio calculations for metals such as Al, Be, Cu, K, Na, Mg, Mo, W, and Ta in a wide range of pressures. In addition, for Al, Cu, Mo, W, and Ta there is performed a comparison with the known temperature dependences of the shear modulus and with the results of measurements of the velocities of longitudinal sound behind the shock-wave front. It is shown that in the original form the SCG and BP models give overestimated values of the shear modulus as compared to the data of ab initio calculations and shock-wave experiments. The ( V, T) model, due to the use of a free parameter, makes it possible to optimally describe the totality of experimental and calculated data. The same result is achieved in the case of the BP model after a redefining of its initial parameters. The adequate description of the shear modulus in the range of high intermediate pressures characteristic of the solid-phase states behind the shock-wave front is accompanied in both cases by the violation of the correct asymptotic behavior of the shear modulus at ultrahigh compressions which is originally laid into the SCG and BP models.

  4. Design and performance of the KSC Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.

    1987-01-01

    NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.

  5. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Schütz, Gisela; Goering, Eberhard J.

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  6. A new technology for determining transport parameters in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, J.L.; Wright, J.

    The UFA Method can directly and rapidly measure transport parameters for any porous medium over a wide range of water contents and conditions. UFA results for subsurface sediments at a mixed-waste disposal site at the Hanford Site in Washington State provided the data necessary for detailed hydrostratigraphic mapping, subsurface flux and recharge distributions, and subsurface chemical mapping. Seven hundred unsaturated conductivity measurements along with pristine pore water extractions were obtained in only six months using the UFA. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies.

  7. Verification techniques for x-ray and mammography applications

    NASA Astrophysics Data System (ADS)

    Kotsopoulos, Stavros A.; Lymberopoulos, Dimitris C.

    1993-07-01

    The integration of Medical Information Environment demands the study and development of high speed data communication systems with special designed 'endsystems' (MWS, etc.) for flexible and reliable data transmission/reception, handling and manipulation. An important parameter which affects the overall system's performance is the 'quality factor' of the communicated medical data produced by a wide range of modern modalities. The present paper describes a set of tests, done in a medical communication network based on a teleworking platform, in order to optimize the sensitivity parameters of the modalities by remote fine re-adjustments guided by experts.

  8. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  9. Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters

    NASA Astrophysics Data System (ADS)

    Kruglov, Vladimir I.; Harvey, John D.

    2006-12-01

    We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.

  10. No detectable bioeffects following acute exposure to high peak power ultra-wide band electromagnetic radiation in rats.

    PubMed

    Walters, T J; Mason, P A; Sherry, C J; Steffen, C; Merritt, J H

    1995-06-01

    A wide range assessment of the possible bioeffects of an acute exposure to high peak power ultra-wide band (UWB) electromagnetic radiation was performed in rats. The UWB-exposure consisted of 2 min of pulsed (frequency: 60 Hz, pulse width: 5-10 ns) UWB (bandwidth: 0.25-2.50 GHz) electromagnetic radiation. Rats were examined using one of the following: 1) a functional observational battery (FOB); 2) a swimming performance test; 3) a complete panel of blood chemistries; or 4) determination of the expression of the c-fos protein in immunohistologically-stained sections of the brain. No significant differences were found between UWB- or sham-exposed rats on any of the measured parameters.

  11. Nucleosynthesis of Iron-Peak Elements in Type-Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Leung, Shing-Chi; Nomoto, Ken'ichi

    The observed features of typical Type Ia supernovae are well-modeled as the explosions of carbon-oxygen white dwarfs both near Chandrasekhar mass and sub-Chandrasekhar mass. However, observations in the last decade have shown that Type Ia supernovae exhibit a wide diversity, which implies models for wider range of parameters are necessary. Based on the hydrodynamics code we developed, we carry out a parameter study of Chandrasekhar mass models for Type Ia supernovae. We conduct a series of two-dimensional hydrodynamics simulations of the explosion phase using the turbulent flame model with the deflagration-detonation-transition (DDT). To reconstruct the nucleosynthesis history, we use the particle tracer scheme. We examine the role of model parameters by examining their influences on the final product of nucleosynthesis. The parameters include the initial density, metallicity, initial flame structure, detonation criteria and so on. We show that the observed chemical evolution of galaxies can help constrain these model parameters.

  12. Dynamic Stability Analysis of Blunt Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments

    NASA Technical Reports Server (NTRS)

    Kazemba, Cole D.; Braun, Robert D.; Schoenenberger, Mark; Clark, Ian G.

    2013-01-01

    This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch damping sum coefficient present in the standard formulation of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. From this, parameter identification is carried out through the use of a least squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic range test series. The trajectories produced by the identified parameters were found to match closely those from the MER ballistic range tests for a wide array of initial conditions and can be identified with a reasonable number of ballistic range shots and computational effort.

  13. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  14. Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing

    NASA Astrophysics Data System (ADS)

    Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2018-05-01

    SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.

  15. Sub-picosecond streak camera measurements at LLNL: From IR to x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Shepherd, R; Booth, R

    An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2)more » temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.« less

  16. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  17. Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-05-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.

  18. Sandpile-based model for capturing magnitude distributions and spatiotemporal clustering and separation in regional earthquakes

    NASA Astrophysics Data System (ADS)

    Batac, Rene C.; Paguirigan, Antonino A., Jr.; Tarun, Anjali B.; Longjas, Anthony G.

    2017-04-01

    We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy distributions closely follow power-law probability density functions (PDFs) with a scaling exponent of around -1. 6, consistent with the expectations of the Gutenberg-Richter (GR) law, for a wide range of the targeted triggering probability values. Additionally, for targeted triggering probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, the foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile. We believe that the critical targeting probability parameterizes the memory that is inherently present in earthquake-generating regions.

  19. Sensitivity regularization of the Cramér-Rao lower bound to minimize B1 nonuniformity effects in quantitative magnetization transfer imaging.

    PubMed

    Boudreau, Mathieu; Pike, G Bruce

    2018-05-07

    To develop and validate a regularization approach of optimizing B 1 insensitivity of the quantitative magnetization transfer (qMT) pool-size ratio (F). An expression describing the impact of B 1 inaccuracies on qMT fitting parameters was derived using a sensitivity analysis. To simultaneously optimize for robustness against noise and B 1 inaccuracies, the optimization condition was defined as the Cramér-Rao lower bound (CRLB) regularized by the B 1 -sensitivity expression for the parameter of interest (F). The qMT protocols were iteratively optimized from an initial search space, with and without B 1 regularization. Three 10-point qMT protocols (Uniform, CRLB, CRLB+B 1 regularization) were compared using Monte Carlo simulations for a wide range of conditions (e.g., SNR, B 1 inaccuracies, tissues). The B 1 -regularized CRLB optimization protocol resulted in the best robustness of F against B 1 errors, for a wide range of SNR and for both white matter and gray matter tissues. For SNR = 100, this protocol resulted in errors of less than 1% in mean F values for B 1 errors ranging between -10 and 20%, the range of B 1 values typically observed in vivo in the human head at field strengths of 3 T and less. Both CRLB-optimized protocols resulted in the lowest σ F values for all SNRs and did not increase in the presence of B 1 inaccuracies. This work demonstrates a regularized optimization approach for improving the robustness of auxiliary measurements (e.g., B 1 ) sensitivity of qMT parameters, particularly the pool-size ratio (F). Predicting substantially less B 1 sensitivity using protocols optimized with this method, B 1 mapping could even be omitted for qMT studies primarily interested in F. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Sensitivity study of Space Station Freedom operations cost and selected user resources

    NASA Technical Reports Server (NTRS)

    Accola, Anne; Fincannon, H. J.; Williams, Gregory J.; Meier, R. Timothy

    1990-01-01

    The results of sensitivity studies performed to estimate probable ranges for four key Space Station parameters using the Space Station Freedom's Model for Estimating Space Station Operations Cost (MESSOC) are discussed. The variables examined are grouped into five main categories: logistics, crew, design, space transportation system, and training. The modification of these variables implies programmatic decisions in areas such as orbital replacement unit (ORU) design, investment in repair capabilities, and crew operations policies. The model utilizes a wide range of algorithms and an extensive trial logistics data base to represent Space Station operations. The trial logistics data base consists largely of a collection of the ORUs that comprise the mature station, and their characteristics based on current engineering understanding of the Space Station. A nondimensional approach is used to examine the relative importance of variables on parameters.

  1. A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form.

    PubMed

    Monkos, Karol

    2013-03-01

    The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.

  2. Estimation of distributional parameters for censored trace level water quality data: 1. Estimation techniques

    USGS Publications Warehouse

    Gilliom, Robert J.; Helsel, Dennis R.

    1986-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.

  3. Imposing constraints on parameter values of a conceptual hydrological model using baseflow response

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.

    Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The result is that a broad range of parameter values can be identified that will give an equally good calibration to the available observations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas water quality issues are more frequently associated with low flow condition. This paper demonstrates how model distinctions between surface an sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response. This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncertainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, baseflow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter uncertainties with data and model error, if inadequate likelihood measures are defined.

  4. Estimation of distributional parameters for censored trace level water quality data. 1. Estimation Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1986-02-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less

  5. Estimation of distributional parameters for censored trace-level water-quality data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1984-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less

  6. Homogeneous alignment of nematic liquid crystals by ion beam etched surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Mahmood, R.; Johnson, D. L.

    1979-01-01

    A wide range of ion beam etch parameters capable of producing uniform homogeneous alignment of nematic liquid crystals on SiO2 films are discussed. The alignment surfaces were generated by obliquely incident (angles of 5 to 25 deg) argon ions with energies in the range of 0.5 to 2.0 KeV, ion current densities of 0.1 to 0.6 mA sq cm and etch times of 1 to 9 min. A smaller range of ion beam parameters (2.0 KeV, 0.2 mA sq cm, 5 to 10 deg and 1 to 5 min.) were also investigated with ZrO2 films and found suitable for homogeneous alignment. Extinction ratios were very high (1000), twist angles were small ( or = 3 deg) and tilt-bias angles very small ( or = 1 deg). Preliminary scanning electron microscopy results indicate a parallel oriented surface structure on the ion beam etched surfaces which may determine alignment.

  7. Metallic nano-structures for polarization-independent multi-spectral filters

    NASA Astrophysics Data System (ADS)

    Tang, Yongan; Vlahovic, Branislav; Brady, David Jones

    2011-05-01

    Cross-shaped-hole arrays (CSHAs) are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.

  8. Automated airplane surface generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitablemore » for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.« less

  9. Relativistic effects in electron impact ionization from the p-orbital

    NASA Astrophysics Data System (ADS)

    Haque, A. K. F.; Uddin, M. A.; Basak, A. K.; Karim, K. R.; Saha, B. C.; Malik, F. B.

    2006-06-01

    The parameters of our recent modification of BELI formula (MBELL) [A.K.F. Haque, M.A. Uddin, A.K. Basak, K.R. Karim, B.C. Saha, Phys. Rev. A 73 (2006) 012708] are generalized in terms of the orbital quantum numbers nl to evaluate the electron impact ionization (EII) cross sections of a wide range of isoelectronic targets (H to Ne series) and incident energies. For both the open and closed p-shell targets, the present MBELL results with a single parameter set, agree nicely with the experimental cross sections. The relativistic effect of ionization in the 2p subshell of U82+ for incident energies up to 250 MeV is well accounted for by the prescribed parameters of the model.

  10. Charting the parameter space of the global 21-cm signal

    NASA Astrophysics Data System (ADS)

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan; Lotem, Matan

    2017-12-01

    The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.

  11. Fiber-Optic Strain Sensors With Linear Characteristics

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.

  12. Value of Responsive Launch Safety Toolsets

    NASA Astrophysics Data System (ADS)

    Devoid, Wayne E.

    2013-09-01

    This paper will discuss the advantages and disadvantages of all-in-one risk assessment toolsets as they are applied to a wide variety of orbital, suborbital, lander, and unmanned vehicles. Toolsets like APT's SafeLab and Horizon, that are designed from the ground up specifically to address ever- changing vehicle and mission parameters, reduce the need for additional software development costs for launch ranges and vehicle manufacturers.

  13. Experimental setup for investigation of two-phase (water-air) flows in a tube

    NASA Astrophysics Data System (ADS)

    Kazunin, D. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.

    2018-05-01

    A special setup was designed and built at St. Petersburg State University for providing experimental research in flow dynamics of the of air-water mixtures in a pipeline. The test section of the setup allows simulating a wide range of flow regimes of a gas-liquid mixture. The parameters of the experimental setup are given; the initial test results are discussed.

  14. Jet meandering by a foil pitching in quiescent fluid

    NASA Astrophysics Data System (ADS)

    Shinde, Sachin Y.; Arakeri, Jaywant H.

    2013-04-01

    The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.

  15. Sap sugar parameters of silver maple provenances and clones grown on upland and bottomland sites

    Treesearch

    J. J. Zaczek; A. D. Carver; K. W. J. Williard; J. K. Buchheit; J. E. Preece; J. C. Mangun

    2003-01-01

    Sap sugar concentration (SSC), sap volume, and stem diameter were measured for 49 different silver maple clones representing a range-wide collection of 13 provenances within replicated upland and bottomland plantations in southern Illinois during the winter of 2001. For comparison, 42 sugar maple trees were sampled in a local sugarbush. Silver maple SSC averaged 1.51...

  16. Temporal contrast enhancement of a femtosecond fiber CPA system by filtering of SPM broadened spectra

    NASA Astrophysics Data System (ADS)

    Buldt, J.; Müller, M.; Klas, R.; Eidam, T.; Limpert, J.; Tünnermann, A.

    2018-02-01

    We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered SPM broadened spectra. A measured temporal contrast enhancement by at least 7 orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.

  17. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  18. Solution of multi-element LED light sources development automation problem

    NASA Astrophysics Data System (ADS)

    Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.

    2014-09-01

    The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.

  19. Strategies of offspring investment and dispersal in a spatially structured environment: a theoretical study using ants.

    PubMed

    Cronin, Adam L; Loeuille, Nicolas; Monnin, Thibaud

    2016-02-05

    Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition-colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism-spatial structuring of the environment-remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments.

  20. Introducing a new family of short-range potentials and their numerical solutions using the asymptotic iteration method

    NASA Astrophysics Data System (ADS)

    Assi, I. A.; Sous, A. J.

    2018-05-01

    The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.

  1. Study of pseudo noise CW diode laser for ranging applications

    NASA Technical Reports Server (NTRS)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  2. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  3. An Algorithm and R Program for Fitting and Simulation of Pharmacokinetic and Pharmacodynamic Data.

    PubMed

    Li, Jijie; Yan, Kewei; Hou, Lisha; Du, Xudong; Zhu, Ping; Zheng, Li; Zhu, Cairong

    2017-06-01

    Pharmacokinetic/pharmacodynamic link models are widely used in dose-finding studies. By applying such models, the results of initial pharmacokinetic/pharmacodynamic studies can be used to predict the potential therapeutic dose range. This knowledge can improve the design of later comparative large-scale clinical trials by reducing the number of participants and saving time and resources. However, the modeling process can be challenging, time consuming, and costly, even when using cutting-edge, powerful pharmacological software. Here, we provide a freely available R program for expediently analyzing pharmacokinetic/pharmacodynamic data, including data importation, parameter estimation, simulation, and model diagnostics. First, we explain the theory related to the establishment of the pharmacokinetic/pharmacodynamic link model. Subsequently, we present the algorithms used for parameter estimation and potential therapeutic dose computation. The implementation of the R program is illustrated by a clinical example. The software package is then validated by comparing the model parameters and the goodness-of-fit statistics generated by our R package with those generated by the widely used pharmacological software WinNonlin. The pharmacokinetic and pharmacodynamic parameters as well as the potential recommended therapeutic dose can be acquired with the R package. The validation process shows that the parameters estimated using our package are satisfactory. The R program developed and presented here provides pharmacokinetic researchers with a simple and easy-to-access tool for pharmacokinetic/pharmacodynamic analysis on personal computers.

  4. Alternative chitosan-based EPR dosimeter applicable for a relatively wide range of gamma radiation doses

    NASA Astrophysics Data System (ADS)

    Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol

    2017-12-01

    Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.

  5. New methods of data calibration for high power-aperture lidar.

    PubMed

    Guan, Sai; Yang, Guotao; Chang, Qihai; Cheng, Xuewu; Yang, Yong; Gong, Shaohua; Wang, Jihong

    2013-03-25

    For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes' (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers' fluorescence signal. Pursuit for sophisticated description of metal layers' characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 10(2) to 10(8) counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs' distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20-110km) and guaranteeing good SNR (i.e. 10(4):1 around 90km) without debasing QE, in one single detecting channel. For the first time, PMT in photon-counting mode is independently applied to subtract reliable information of atmospheric parameters with wide acceptable linearity over an altitude range from stratosphere up to lower thermosphere (20-110km).

  6. Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.

    2018-01-01

    Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.

  7. Radiophysical methods of diagnostics the Earth's ionosphere and the underlying earth's surface by remote sensing in the short-wave range of radio waves

    NASA Astrophysics Data System (ADS)

    Belov, S. Yu.; Belova, I. N.

    2017-11-01

    Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.

  8. Shock Layer Radiation Modeling and Uncertainty for Mars Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Brandis, Aaron M.; Sutton, Kenneth

    2012-01-01

    A model for simulating nonequilibrium radiation from Mars entry shock layers is presented. A new chemical kinetic rate model is developed that provides good agreement with recent EAST and X2 shock tube radiation measurements. This model includes a CO dissociation rate that is a factor of 13 larger than the rate used widely in previous models. Uncertainties in the proposed rates are assessed along with uncertainties in translational-vibrational relaxation modeling parameters. The stagnation point radiative flux uncertainty due to these flowfield modeling parameter uncertainties is computed to vary from 50 to 200% for a range of free-stream conditions, with densities ranging from 5e-5 to 5e-4 kg/m3 and velocities ranging from of 6.3 to 7.7 km/s. These conditions cover the range of anticipated peak radiative heating conditions for proposed hypersonic inflatable aerodynamic decelerators (HIADs). Modeling parameters for the radiative spectrum are compiled along with a non-Boltzmann rate model for the dominant radiating molecules, CO, CN, and C2. A method for treating non-local absorption in the non-Boltzmann model is developed, which is shown to result in up to a 50% increase in the radiative flux through absorption by the CO 4th Positive band. The sensitivity of the radiative flux to the radiation modeling parameters is presented and the uncertainty for each parameter is assessed. The stagnation point radiative flux uncertainty due to these radiation modeling parameter uncertainties is computed to vary from 18 to 167% for the considered range of free-stream conditions. The total radiative flux uncertainty is computed as the root sum square of the flowfield and radiation parametric uncertainties, which results in total uncertainties ranging from 50 to 260%. The main contributors to these significant uncertainties are the CO dissociation rate and the CO heavy-particle excitation rates. Applying the baseline flowfield and radiation models developed in this work, the radiative heating for the Mars Pathfinder probe is predicted to be nearly 20 W/cm2. In contrast to previous studies, this value is shown to be significant relative to the convective heating.

  9. Design of Experiments for the Thermal Characterization of Metallic Foam

    NASA Technical Reports Server (NTRS)

    Crittenden, Paul E.; Cole, Kevin D.

    2003-01-01

    Metallic foams are being investigated for possible use in the thermal protection systems of reusable launch vehicles. As a result, the performance of these materials needs to be characterized over a wide range of temperatures and pressures. In this paper a radiation/conduction model is presented for heat transfer in metallic foams. Candidates for the optimal transient experiment to determine the intrinsic properties of the model are found by two methods. First, an optimality criterion is used to find an experiment to find all of the parameters using one heating event. Second, a pair of heating events is used to determine the parameters in which one heating event is optimal for finding the parameters related to conduction, while the other heating event is optimal for finding the parameters associated with radiation. Simulated data containing random noise was analyzed to determine the parameters using both methods. In all cases the parameter estimates could be improved by analyzing a larger data record than suggested by the optimality criterion.

  10. Parameter calibration for synthesizing realistic-looking variability in offline handwriting

    NASA Astrophysics Data System (ADS)

    Cheng, Wen; Lopresti, Dan

    2011-01-01

    Motivated by the widely accepted principle that the more training data, the better a recognition system performs, we conducted experiments asking human subjects to do evaluate a mixture of real English handwritten text lines and text lines altered from existing handwriting with various distortion degrees. The idea of generating synthetic handwriting is based on a perturbation method by T. Varga and H. Bunke that distorts an entire text line. There are two purposes of our experiments. First, we want to calibrate distortion parameter settings for Varga and Bunke's perturbation model. Second, we intend to compare the effects of parameter settings on different writing styles: block, cursive and mixed. From the preliminary experimental results, we determined appropriate ranges for parameter amplitude, and found that parameter settings should be altered for different handwriting styles. With the proper parameter settings, it should be possible to generate large amount of training and testing data for building better off-line handwriting recognition systems.

  11. Determination of material distribution in heading process of small bimetallic bar

    NASA Astrophysics Data System (ADS)

    Presz, Wojciech; Cacko, Robert

    2018-05-01

    The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.

  12. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  14. Development and evaluation of a predictive algorithm for telerobotic task complexity

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.

    1993-01-01

    There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.

  15. Hybrid Modeling of Cell Signaling and Transcriptional Reprogramming and Its Application in C. elegans Development.

    PubMed

    Fertig, Elana J; Danilova, Ludmila V; Favorov, Alexander V; Ochs, Michael F

    2011-01-01

    Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extracellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs) in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1) the effects of varying scaffold protein concentration on signal strength, (2) amplification of signals in expression, (3) the relative external ligand concentration in a known geometry, and (4) feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.

  16. Towards a Comprehensive Understanding of Planet Occurrence Rates: Extending the Kepler Legacy Across a Wide Stellar Parameter Space with K2

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel

    Measuring the occurrence rate of extrasolar planets is one of the most fundamental constraints on our understanding of planets throughout the Galaxy. By studying planet populations across a wide parameter space in stellar age, type, metallicity, and multiplicity, we can inform planet formation, migration and evolution theories. The ground-based ELTs and the flagship space missions that NASA is planning in the next decades and beyond will be designed to make the first observations of potential biomarkers in the atmospheres of extrasolar planets understanding how common these planets and how they are distributed will be crucial for this effort. One of the most important results of the main Kepler mission was a measurement of the frequency of planets orbiting FGK dwarfs. Although that result is crucial for estimating the frequency of planetary systems orbiting middle-aged Sun-like stars, the majority of stars in the galaxy have lower masses. We propose to extend the Kepler occurrence rates to lower stellar masses by using publicly available data from the second-generation K2 mission to estimate the frequency of planets orbiting low-mass stars. The confluence of the lower temperature, smaller size, and relative abundance of M dwarfs makes them attractive and efficient targets for habitable planet detection and characterization. The archived K2 data contain nearly an order of magnitude more M dwarfs than the original Kepler data set ( 30,000 compared to 3700), allowing us to constrain occurrence rates both more precisely and with more granularity across the M dwarf parameter range. We will also take advantage of the wide variety of stellar environments sampled by the community-driven K2 mission to estimate the frequency of planets orbiting stars with a range of metallicities and ages. The K2 mission has observed several clusters across a wide range of ages, including the Upper Scorpius OB association (10My old), the Pleiades cluster (115My old), and the Hyades and Praesepe clusters (600My old). One goal of this proposal is to pinpoint when and if the planet occurrence rate converges with that of the Kepler field, whose stars have a median age of 4Gy. This will inform the timescales of the dominant formation and migration mechanisms, and improve our ability to discriminate between competing proposed theories. The proposed work encompasses the following tasks: (1) Generating and publishing a uniform, repeatable, robust catalogue of planet candidates using the publicly available K2 data comprising the first 33 months of observations; (2) Measuring the completeness (false negative rate) and reliability (false positive rate) of the resulting candidate catalogue; (3) Systematically and accurately characterizing the properties of the stellar sample (both exoplanet hosts and non-hosts); (4) Calculating the distribution of the underlying planet population across a wide range of stellar host parameters. The proposed work is relevant to several of NASA s strategic goals, including ascertaining the content, origin, and evolution of the solar system and the potential for life elsewhere , and discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars . With respect to the Astrophysics Data Analysis Program call, the proposed work builds on the legacy of Kepler occurrence rate calculations by placing them in the wider context afforded by the publicly available K2 data.

  17. SU-G-TeP1-02: Analytical Stopping Power and Range Parameterization for Therapeutic Energy Intervals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, W; Newhauser, W; Mary Bird Perkins Cancer Center, Baton Rouge, LA

    Purpose: To develop a simple, analytic parameterization of stopping power and range, which covers a wide energy interval and is applicable to many species of projectile ions and target materials, with less than 15% disagreement in linear stopping power and 1 mm in range. Methods: The new parameterization was required to be analytically integrable from stopping power to range, and continuous across the range interval of 1 µm to 50 cm. The model parameters were determined from stopping power and range data for hydrogen, carbon, iron, and uranium ions incident on water, carbon, aluminum, lead and copper. Stopping power andmore » range data was taken from SRIM. A stochastic minimization algorithm was used to find model parameters, with 10 data points per energy decade. Additionally, fitting was performed with 2 and 26 data points per energy decade to test the model’s robustness to sparse Results: 6 free parameters were sufficient to cover the therapeutic energy range for each projectile ion species (e.g. 1 keV – 300 MeV for protons). The model agrees with stopping power and range data well, with less than 9% relative stopping power difference and 0.5 mm difference in range. As few as, 4 bins per decade were required to achieve comparable fitting results to the full data set. Conclusion: This study successfully demonstrated that a simple analytic function can be used to fit the entire energy interval of therapeutic ion beams of hydrogen and heavier elements. Advantages of this model were the small number (6) of free parameters, and that the model calculates both stopping power and range. Applications of this model include GPU-based dose calculation algorithms and Monte Carlo simulations, where available memory is limited. This work was supported in part by a research agreement between United States Naval Academy and Louisiana State University: Contract No N00189-13-P-0786. In addition, this work was accepted for presentation at the American Nuclear Society Annual Meeting 2016.« less

  18. Time-derivative preconditioning for viscous flows

    NASA Technical Reports Server (NTRS)

    Choi, Yunho; Merkle, Charles L.

    1991-01-01

    A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.

  19. Nonempirical range-separated hybrid functionals for solids and molecules

    DOE PAGES

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show thatmore » these functionals may be generalized to finite systems.« less

  20. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  1. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  2. Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics

    PubMed Central

    Hall, Charlotte A.; Chilcott, Robert P.

    2018-01-01

    The pupillary light reflex (PLR) describes the constriction and subsequent dilation of the pupil in response to light as a result of the antagonistic actions of the iris sphincter and dilator muscles. Since these muscles are innervated by the parasympathetic and sympathetic nervous systems, respectively, different parameters of the PLR can be used as indicators for either sympathetic or parasympathetic modulation. Thus, the PLR provides an important metric of autonomic nervous system function that has been exploited for a wide range of clinical applications. Measurement of the PLR using dynamic pupillometry is now an established quantitative, non-invasive tool in assessment of traumatic head injuries. This review examines the more recent application of dynamic pupillometry as a diagnostic tool for a wide range of clinical conditions, varying from neurodegenerative disease to exposure to toxic chemicals, as well as its potential in the non-invasive diagnosis of infectious disease. PMID:29534018

  3. Oxygen Buffering in High Pressure Solid Media Assemblies: New Approach Enabling Study of fO2 from IW-4 to IW+4.5

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K. M.; Ross, D. K.; Butterworth, A. L.; Gainsforth, Z.; Jilly-Rehak, C. E.; Westphal, A. J.

    2017-01-01

    Oxygen fugacity is an intensive parameter that controls some fundamental chemical and physical properties in planetary materials. In terrestrial magmas high fO2 promotes magnetite stability and low fO2 causes Fe-enrichment due to magnetite suppression. In lunar and asteroidal basalts, low fO2 can allow metal to be stable. Experimental studies will therefore be most useful if they are done at a specific and relevant fO2 for the samples under consideration. Control of fO2 in the solid media apparatus (piston cylinder multi-anvil) has relied on either sliding sensors or graphite capsule buffering, which are of limited application to the wide range of fO2 recorded in planetary or astromaterials. Here we describe a new approach that allows fO2 to be specified across a wide range of values relevant to natural samples.

  4. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  5. Self-regulation of turbulence in low rotation DIII-D QH-mode with an oscillating transport barrier

    NASA Astrophysics Data System (ADS)

    Barada, Kshitish; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Chen, Xi

    2016-10-01

    We present observations of turbulence and flow shear limit cycle oscillations (LCOs) in wide pedestal QH-mode DIII-D tokamak plasmas that are consistent with turbulence self-regulation. In this low input torque regime, both edge harmonic oscillations (EHOs) and ELMs are absent. LCOs of ExB velocity shear and ñ present predator-prey like behavior in these fully developed QH-mode plasmas. During these limit cycle oscillations, the ExB poloidal flows possess a long-range toroidal correlation consistent with turbulence generated zonal flow activity. Further, these limit cycle oscillations are observed in a broad range of edge parameters including ne, Te, floor Langmuir probe ion saturation current, and radial electric field Er. TRANSP calculations of transport indicate little change between the EHO and LCO wide pedestal phases. These observations are consistent with LCO driven transport that may play a role in maintaining the profiles below ELM threshold in the EHO-free steady state wide pedestal QH-mode regime. Work supported by the US DOE under DE-FG02-08ER54984 and DE-FC02-04ER54698.

  6. A Monte Carlo model for 3D grain evolution during welding

    NASA Astrophysics Data System (ADS)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-09-01

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.

  7. Siberian lidar station: instruments and results

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennadii G.; Balin, Yurii S.; Bobrovnikov, Sergey M.; Romanovskii, Oleg A.; Kokhanenko, Grigirii P.; Samoilova, Svetlana V.; Penner, Ioganes E.; Gorlov, Evgenii V.; Zharkov, Victir I.; Sadovnikov, Sergey A.; Yakovlev, Semen V.; Bazhenov, Oleg E.; Dolgii, Sergey I.; Makeev, Andrey P.; Nevzorov, Alexey A.; Nevzorov, Alexey V.; Kharchenko, Olga V.

    2018-04-01

    The Siberian Lidar Station created at V.E. Zuev Institute of Atmospheric Optics and operating in Tomsk (56.5° N, 85.0° E) is a unique atmospheric observatory. It combines up-to-date instruments for remote laser and passive sounding for the study of aerosol and cloud fields, air temperature and humidity, and ozone and gaseous components of the ozone cycles. In addition to controlling a wide range of atmospheric parameters, the observatory allows simultaneous monitoring of the atmosphere throughout the valuable altitude range 0-75 km. In this paper, the instruments and results received at the Station are described.

  8. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  9. Gravitational collapse in Husain space-time for Brans-Dicke gravity theory with power-law potential

    NASA Astrophysics Data System (ADS)

    Rudra, Prabir; Biswas, Ritabrata; Debnath, Ujjal

    2014-12-01

    The motive of this work is to study gravitational collapse in Husain space-time in Brans-Dicke gravity theory. Among many scalar-tensor theories of gravity, Brans-Dicke is the simplest and the impact of it can be regulated by two parameters associated with it, namely, the Brans-Dicke parameter, ω, and the potential-scalar field dependency parameter n respectively. V. Husain's work on exact solution for null fluid collapse in 1996 has influenced many authors to follow his way to find the end-state of the homogeneous/inhomogeneous dust cloud. Vaidya's metric is used all over to follow the nature of future outgoing radial null geodesics. Detecting whether the central singularity is naked or wrapped by an event horizon, by the existence of future directed radial null geodesic emitted in past from the singularity is the basic objective. To point out the existence of positive trajectory tangent solution, both particular parametric cases (through tabular forms) and wide range contouring process have been applied. Precisely, perfect fluid's EoS satisfies a wide range of phenomena: from dust to exotic fluid like dark energy. We have used the EoS parameter k to determine the end state of collapse in different cosmological era. Our main target is to check low ω (more deviations from Einstein gravity-more Brans Dicke effect) and negative k zones. This particularly throws light on the nature of the end-state of collapse in accelerated expansion in Brans Dicke gravity. It is seen that for positive values of EoS parameter k, the collapse results in a black hole, whereas for negative values of k, naked singularity is the only outcome. It is also to be noted that "low ω" leads to the possibility of getting more naked singularities even for a non-accelerating universe.

  10. Gravitational Collapse in Husain space-time for Brans-Dicke Gravity Theory with Power-law Potential.

    NASA Astrophysics Data System (ADS)

    Rudra, Prabir

    2016-07-01

    The motive of this work is to study gravitational collapse in Husain space-time in Brans-Dicke gravity theory. Among many scalar-tensor theories of gravity, Brans-Dicke is the simplest and the impact of it can be regulated by two parameters associated with it, namely, the Brans-Dicke parameter, ω, and the potential-scalar field dependency parameter 'n' respectively. V. Husain's work on exact solution for null fluid collapse in 1996 has influenced many authors to follow his way to find the end-state of the homogeneous/inhomogeneous dust cloud. Vaidya's metric is used all over to follow the nature of future outgoing radial null geodesics. Detecting whether the central singularity is naked or wrapped by an event horizon, by the existence of future directed radial null geodesic emitted in past from the singularity is the basic objective. To point out the existence of positive trajectory tangent solution, both particular parametric cases(through tabular forms) and wide range contouring process have been applied. Precisely, perfect fluid's equation of state satisfies a wide range of phenomena : from dust to exotic fluid like dark energy. We have used the equation of state parameter 'k' to determine the end state of collapse in different cosmological era. Our main target is to check low ω (more deviations from Einstein gravity-more Brans Dicke effect) and negative 'k' zones. This particularly throws light on the nature of the end-state of collapse in accelerated expansion in Brans Dicke gravity. It is seen that for positive values of EoS parameter 'k', the collapse results in a black hole, whereas for negative values of 'k', naked singularity is the only outcome. It is also to be noted that "low ω" leads to the possibility of getting more naked singularities even for a non-accelerating universe.

  11. Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Peter J.; Feddema, Johannes J.; Bonan, Gordon B.

    To assess the climate impacts of historical and projected land cover change and land use in the Community Climate System Model (CCSM4) we have developed new time series of transient Community Land Model (CLM4) Plant Functional Type (PFT) parameters and wood harvest parameters. The new parameters capture the dynamics of the Coupled Model Inter-comparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005, and for the four Representative Concentration Pathways (RCP) periods from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 with the parametersmore » found the model produced an historical cumulative land use flux of 148.4 PgC from 1850 to 2005, which was in good agreement with other global estimates of around 156 PgC for the same period. The biogeophysical impacts of only applying the transient land cover change parameters in CCSM4 were cooling of the near surface atmospheric over land by -0.1OC, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was overwhelmed at global scales by decreases in snow albedo from black carbon deposition and from high latitude warming. At regional scales however the land cover change forcing persisted resulting in reduced warming, with the biggest impacts in eastern North America. The future CCSM4 RCP simulations showed that the CLM4 transient PFT and wood harvest parameters could be used to represent a wide range of human land cover change and land use scenarios. Furthermore, these simulations ranged from the RCP 4.5 reforestation scenario that was able to draw down 82.6 PgC from the atmosphere, to the RCP 8.5 wide scale deforestation scenario that released 171.6 PgC to the atmosphere.« less

  12. Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ormiston, R. A.

    1975-01-01

    Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.

  13. Studies of vorticity imbalance and stability, moisture budget, atmospheric energetics, and gradients of meteorological parameters during AVE 3

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R. (Editor)

    1978-01-01

    Four diagnostic studies of AVE 3. are presented. AVE 3 represents a high wind speed wintertime situation, while most AVE's analyzed previously represented springtime conditions with rather low wind speeds. The general areas of analysis include the examination of budgets of vorticity, moisture, kinetic energy, and potential energy and a synoptic and statistical study of the horizontal gradients of meteorological parameters. Conclusions are integrated with and compared to those obtained in previously analyzed experiments (mostly springtime weather situations) so as to establish a more definitive understanding of the structure and dynamics of the atmosphere under a wide range of synoptic conditions.

  14. Empirical expression for DC magnetization curve of immobilized magnetic nanoparticles for use in biomedical applications

    NASA Astrophysics Data System (ADS)

    Elrefai, Ahmed L.; Sasayama, Teruyoshi; Yoshida, Takashi; Enpuku, Keiji

    2018-05-01

    We studied the magnetization (M-H) curve of immobilized magnetic nanoparticles (MNPs) used for biomedical applications. First, we performed numerical simulation on the DC M-H curve over a wide range of MNPs parameters. Based on the simulation results, we obtained an empirical expression for DC M-H curve. The empirical expression was compared with the measured M-H curves of various MNP samples, and quantitative agreements were obtained between them. We can also estimate the basic parameters of MNP from the comparison. Therefore, the empirical expression is useful for analyzing the M-H curve of immobilized MNPs for specific biomedical applications.

  15. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  16. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2006-01-01

    Multichannel analysis of surface waves is a developing method widely used in shallow subsurface investigations. The field procedures and related parameters are very important for successful applications. Among these parameters, the source-receiver offset range is seldom discussed in theory and normally determined by empirical or semi-quantitative methods in current practice. This paper discusses the problem from a theoretical perspective. A formula for quantitatively evaluating a layered homogenous elastic model was developed. The analytical results based on simple models and experimental data demonstrate that the formula is correct for surface wave surveys for near-surface applications. ?? 2005 Elsevier B.V. All rights reserved.

  17. Response of bed mobility to sediment supply in natural gravel bed channels: A detailed examination and evaluation of mobility parameters

    Treesearch

    T. E. Lisle; J. M. Nelson; B. L. Barkett; J. Pitlick; M. A. Madej

    1998-01-01

    Recent laboratory experiments have shown that bed mobility in gravel bed channels responds to changes in sediment supply, but detailed examinations of this adjustment in natural channels have been lacking, and practical methodologies to measure bed mobility have not been tested. We examined six gravel-bed, alternate-bar channels which have a wide range in annual...

  18. Theory of a general class of dissipative processes.

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Lasalle, J. P.; Slemrod, M.

    1972-01-01

    Development of a theory of periodic processes that is of sufficient generality for being applied to systems defined by partial differential equations (distributed parameter systems) and functional differential equations of the retarded and neutral type (hereditary systems), as well as to systems arising in the theory of elasticity. In particular, the attempt is made to develop a meaningful general theory of dissipative periodic systems with a wide range of applications.

  19. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  20. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  1. Cosmological stochastic Higgs field stabilization

    NASA Astrophysics Data System (ADS)

    Gong, Jinn-Ouk; Kitajima, Naoya

    2017-09-01

    We show that the stochastic evolution of an interacting system of the Higgs field and a spectator scalar field naturally gives rise to an enhanced probability of settling down at the electroweak vacuum at the end of inflation. Subsequent destabilization due to parametric resonance between the Higgs field and the spectator field can be avoided in a wide parameter range. We further argue that the spectator field can play the role of dark matter.

  2. Analysis of intrinsic optical bistability in Tm-doped laser-related crystals

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Vondrova, M.; Casimir, D.

    2003-11-01

    We predict and theoretically study intrinsic optical bistability (IOB) mediated by nonlinear energy transfer processes in rare-earth-doped laser-related crystals. In particular, we investigate Tm-Ho and Tm-Yb systems, in which avalanche pumping is overimposed by energy transfer up-conversion. We predict that IOB can be experimentally observed in (Tm,Yb):BaY2F8 crystals in a wide range of experimentally achievable parameters.

  3. Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators

    NASA Astrophysics Data System (ADS)

    Stankevich, Nataliya V.; Dvorak, Anton; Astakhov, Vladimir; Jaros, Patrycja; Kapitaniak, Marcin; Perlikowski, Przemysław; Kapitaniak, Tomasz

    2018-01-01

    The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.

  4. The VLT Interferometer and its AMBER Instrument: Simulations of Interferometric Imaging in the Wide-Field Mode

    NASA Astrophysics Data System (ADS)

    Blöcker, T.; Hofmann, K.-H.; Przygodda, F.; Weigelt, G.

    We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modelling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read-out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref. ranging between 0.9 m and 1.2 m), different residual tip-tilt error (δtt,object and δtt,ref. ranging between 0.1% and 20% of the Airy disk diameter), and object brightness (Kobject=3.5 mag to 13 mag, Kref.=3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC +10 420 that is rapidly evolving on human timescales. We show computer simulations of VLT interferometry of IRC +10 420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.

  5. An achromatic four-mirror compensator for spectral ellipsometers

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.

    2017-07-01

    Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.

  6. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  7. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  8. Tuning Structural Properties of Biocompatible Block Copolymer Micelles by Varying Solvent Composition

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Mai Le, Kim; Wang, Shu; Kelley, Elizabeth; He, Lilin; Vajjala Kesava, Sameer; Gomez, Enrique; Kidd, Bryce; Madsen, Louis; Robertson, Megan

    The self-assembly of block copolymers into micelles when introduced to selective solvents enables a wide array of applications, ranging from drug delivery to personal care products to nanoreactors. In order to probe the assembly and dynamics of micellar systems, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b- ɛ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D2O) / tetrahydrofuran (THFd8) mixtures were investigated using small-angle neutron scattering in combination with nuclear magnetic resonance. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the composition from 10 to 60 % by volume THFd8\\ in D2O / THFd8 mixtures was a means of varying the core-corona interfacial tension in the micelle system. An increase in THFd8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Differences in the behaviors of the micelle size parameters as the solvent composition varied originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR allowed refinement of extracted micelle parameters.

  9. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  10. Analytic EoS and PTW strength model recommendation for Starck Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjue, Sky K.; Prime, Michael B.

    2016-09-01

    The purpose of this document is to provide an analytic EoS and PTW strength model for Starck Ta that can be consistently used between different platforms and simulations at three labs. This should provide a consistent basis for comparison of the results of calculations, but not the best implementation for matching a wide variety of experimental data. Another version using SESAME tables should follow, which will provide a better physical representation over a broader range of conditions. The data sets available at the time only include one Hopkinson bar at a strain rate of 1800/s; a broader range of high-ratemore » calibration data would be preferred. The resulting fit gives the PTW parameter p = 0. To avoid numerical issues, p = 0:001 has been used in FLAG. The PTW parameters that apply above the maximum strain rate in the data use the values from the original publication.« less

  11. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    NASA Astrophysics Data System (ADS)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  12. Acoustics of Idakkā: An Indian snare drum with definite pitch.

    PubMed

    Jose, Kevin; Chatterjee, Anindya; Gupta, Anurag

    2018-05-01

    The vibration of a homogeneous circular membrane backed by two taut strings is shown to yield several harmonic overtones for a wide range of physical and geometric parameters. Such a membrane is present at each end of the barrel of an idakkā, an Indian snare drum well known for its rich musicality. The audio recordings of the musical drum are analyzed and a case is made for the strong sense of pitch associated with the drum. A computationally inexpensive model of the string-membrane interaction is proposed assuming the strings to be without inertia. The interaction essentially entails wrapping/unwrapping of the string around a curve on the deforming membrane unlike the colliding strings in Western snare drums. The range of parameters for which harmonicity is achieved is examined and is found to be conforming with what is used in actual drum playing and construction.

  13. The dynamics of Black Smokers: a heated-salty plume analog.

    NASA Astrophysics Data System (ADS)

    Maxworthy, Tony

    2004-11-01

    Experiments have been carried out on the dynamical processes that govern the evolution of hot, salty plumes injected into cold surroundings. Under the appropriate circumstances these are then used as an analoque system to understand some features of particle-laden, deep-ocean, hydrothermal plumes, e.g., Black Smokers. Details of the temperature distributions over a wide range of parameters are presented and these, coupled with flow visualization experiments, have yielded a fairly complete picture of the important features of the flow. As a result it has been concluded that cabelling processes are critical to an understanding of the flow reversals found in a certain parameter range and that double diffusive processes, though present, are of minor importance. As a final exercise an example is worked through in which the circumstances for flow reversal in deep-sea plumes have been estimated based on the best available knowledge of these interesting entities.

  14. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  15. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  16. Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Maekawa, T.; Igami, H.

    2005-09-26

    A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less

  17. Three-parameter optical studies in Scottish coastal waters

    NASA Astrophysics Data System (ADS)

    McKee, David; Cunningham, Alex; Jones, Ken

    1997-02-01

    A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.

  18. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.

    PubMed

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  19. Wind-tunnel based definition of the AFE aerothermodynamic environment. [Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.; Wells, W. L.

    1992-01-01

    The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV's) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.

  20. Influence analysis of fluctuation parameters on flow stability based on uncertainty method

    NASA Astrophysics Data System (ADS)

    Meng, Tao; Fan, Shangchun; Wang, Chi; Shi, Huichao

    2018-05-01

    The relationship between flow fluctuation and pressure in a flow facility is studied theoretically and experimentally in this paper, and a method for measuring the flow fluctuation is proposed. According to the synchronicity of pressure and flow fluctuation, the amplitude of the flow fluctuation is calculated using the pressure measured in the flow facility and measurement of the flow fluctuation in a wide range of frequency is realized. Based on the method proposed, uncertainty analysis is used to evaluate the influences of different parameters on the flow fluctuation by the help of a sample-based stochastic model established and the parameters that have great influence are found, which can be a reference for the optimization design and the stability improvement of the flow facility.

  1. Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

    NASA Astrophysics Data System (ADS)

    Imperato, C. M.; Ranepura, G. A.; Deych, L. I.; Kuskovsky, I. L.

    2018-03-01

    Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley-Queisser limit. In this work we present calculations to determine parameters of type-II Zn1-xCdxTe/Zn1-yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35-44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50-0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

  2. Analysis of exceptionally large tremors in two gold mining districts of South Africa

    USGS Publications Warehouse

    McGarr, A.; Bicknell, J.; Sembera, E.; Green, R.W.E.

    1989-01-01

    An investigation of ground motion, recorded using broad-band, wide dynamic-range digital seismographs, of large mine tremors from two South African mining districts with different geologic settings, reveals some essential differences in both seismic source and ground motion parameters. In the Klerksdorp district where the strata are offset by major throughgoing normal faults, the largest tremors, with magnitudes ranging as high as 5.2, tend to be associated with slip on these pre-existing faults. Moreover, the seismic source and ground motion parameters are quite similar to those of natural crustal earthquakes. In the Carletonville district, by contrast, where substantial faults do not exist, the large-magnitude tremors appear to result from the failure of relatively intact rock and cause seismic stress drops and ground motion parameters higher than normally observed for natural shocks. Additionally, there appears to be an upper magnitude limit of about 4 in the Carletonville district. Detailed analyses of an exceptionally large event recorded locally from each of these districts serve to highlight these contrasts. ?? 1989 Birkha??user Verlag.

  3. Gamma rays shielding parameters for white metal alloys

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  4. Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model

    NASA Astrophysics Data System (ADS)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.

    2017-12-01

    Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.

  5. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  6. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.

    PubMed

    Lee, Eunwoo; Kim, Chanhoi; Jang, Jyongsik

    2013-07-29

    High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells (DSSCs) have been successfully fabricated through the optimized design of a CdSe/CdS quantum-dot (QD) donor and a dye acceptor. This simple approach enables quantum dots and dyes to simultaneously utilize the wide solar spectrum, thereby resulting in high conversion efficiency over a wide wavelength range. In addition, major parameters that affect the FRET interaction between donor and acceptor have been investigated including the fluorescent emission spectrum of QD, and the content of deposited QDs into the TiO2 matrix. By judicious control of these parameters, the FRET interaction can be readily optimized for high photovoltaic performance. In addition, the as-synthesized water-soluble quantum dots were highly dispersed in a nanoporous TiO2 matrix, thereby resulting in excellent contact between donors and acceptors. Importantly, high-performance FRET-based DSSCs can be prepared without any infrared (IR) dye synthetic procedures. This novel strategy offers great potential for applications of dye-sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  8. Editors pp iii Effects of long-range magnetic interactions on DLA aggregation [rapid communication

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Jun; Cai, Ping-Gen; Ye, Quan-Lin; Xia, A.-Gen; Ye, Gao-Xiang

    2005-04-01

    An extra degree of freedom is introduced in the well-known diffusion-limited aggregation model, i.e., the growth entities are “spin” taking. The model with long-range magnetic interactions that decay as βC/rα on two-dimensional square lattices is studied for different values of α. This model leads to a wide variety of kinetic processes and morphology distribution with both the coupling energy βC and the range of the interactions, i.e., the exponent α. The simulated result of the model shows that the “quenching” of the degree of freedom on the cluster by the long-range magnetic interactions leads to branching or compactness, but, moreover, to combined geometric and physical “transitions” of the aggregations with the growth parameters.

  9. Stopping power in D6Li plasmas for target ignition studies

    NASA Astrophysics Data System (ADS)

    Cortez, Ross J.; Cassibry, Jason T.

    2018-02-01

    The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.

  10. Extension of the operational regime of the LHD towards a deuterium experiment

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.

    2017-10-01

    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.

  11. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    PubMed

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  12. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    NASA Astrophysics Data System (ADS)

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas

    2017-09-01

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k˜ 5 Mpc-1 and redshift z≤slant 2. In addition to covering the standard set of ΛCDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve ˜ 1 % accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.

  13. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    DOE PAGES

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; ...

    2017-09-20

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k ~ 5Mpc -1 and redshift z ≤ 2. Besides covering the standard set of CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with sixteen medium-resolution simulations and TimeRG perturbation theory resultsmore » to provide accurate coverage of a wide k-range; the dataset generated as part of this project is more than 1.2Pbyte. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-on results with more than a hundred cosmological models will soon achieve ~1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.« less

  14. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k similar to 5 Mpc(-1) and redshift z <= 2. In addition to covering the standard set of Lambda CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations andmore » TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve similar to 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches.« less

  15. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k ~ 5Mpc -1 and redshift z ≤ 2. Besides covering the standard set of CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with sixteen medium-resolution simulations and TimeRG perturbation theory resultsmore » to provide accurate coverage of a wide k-range; the dataset generated as part of this project is more than 1.2Pbyte. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-on results with more than a hundred cosmological models will soon achieve ~1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available.« less

  16. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  17. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  18. Vortex variable range hopping in a conventional superconducting film

    NASA Astrophysics Data System (ADS)

    Percher, Ilana M.; Volotsenko, Irina; Frydman, Aviad; Shklovskii, Boris I.; Goldman, Allen M.

    2017-12-01

    The behavior of a disordered amorphous thin film of superconducting indium oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance versus temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long-range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.

  19. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer.

    PubMed

    Zhukov, Ivan V; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Grishin, Yuri A; Vieth, Hans-Martin; Ivanov, Konstantin L

    2018-05-09

    An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.

  20. One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ulibarri, P.; Beruete, M.; Serebryannikov, A. E.

    2017-10-01

    A concept of quasiplanar one-way transparent terahertz absorbers made of linear isotropic materials is presented. The resulting structure consists of a homogeneous absorbing layer of polar dielectric, GaAs, a dispersion-free substrate, and an ultrathin frequency-selective reflector. It is demonstrated that perfect absorption can be obtained for forward illumination, along with total reflection at backward illumination and transparency windows in the adjacent bands. The design is particularized for the polaritonic gap range where permittivity of GaAs varies in a wide range and includes epsilon-near-zero and transparency regimes. The underlying physics can be explained with the aid of a unified equivalent-circuit (EC) analytical model. Perfect matching of input impedance in forward operation and, simultaneously, strong mismatch in the backward case are the universal criteria of one-way absorption. It is shown that perfect one-way absorption can be achieved at rather arbitrary permittivity values, provided these criteria are fulfilled. The EC results are in good agreement with full-wave simulations in a wide range of material and geometrical parameters. The resulting one-way absorbers are very compact and geometrically simple, and enable transparency in the neighboring frequency ranges and, hence, multifunctionality that utilizes both absorption- and transmission-related regimes.

  1. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. D.; Jogler, T.; Dumm, J.

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  2. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  3. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  4. Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2014-12-01

    In this paper we propose various types of two-dimensional (2D) square zigzag lattice structures, and we study their bandgaps and directional propagation of elastic waves. The band structures and the transmission spectra of the systems are calculated by using the finite element method. The effects of the geometry parameters of the 2D-zigzag lattices on the bandgaps are investigated and discussed. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. Multiple wide complete bandgaps are found in a wide porosity range owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the systems. The deformed displacement fields of the transient response of finite structures subjected to time-harmonic loads are presented to show the directional wave propagation. The research in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.

  5. Local Variability of Parameters for Characterization of the Corneal Subbasal Nerve Plexus.

    PubMed

    Winter, Karsten; Scheibe, Patrick; Köhler, Bernd; Allgeier, Stephan; Guthoff, Rudolf F; Stachs, Oliver

    2016-01-01

    The corneal subbasal nerve plexus (SNP) offers high potential for early diagnosis of diabetic peripheral neuropathy. Changes in subbasal nerve fibers can be assessed in vivo by confocal laser scanning microscopy (CLSM) and quantified using specific parameters. While current study results agree regarding parameter tendency, there are considerable differences in terms of absolute values. The present study set out to identify factors that might account for this high parameter variability. In three healthy subjects, we used a novel method of software-based large-scale reconstruction that provided SNP images of the central cornea, decomposed the image areas into all possible image sections corresponding to the size of a single conventional CLSM image (0.16 mm2), and calculated a set of parameters for each image section. In order to carry out a large number of virtual examinations within the reconstructed image areas, an extensive simulation procedure (10,000 runs per image) was implemented. The three analyzed images ranged in size from 3.75 mm2 to 4.27 mm2. The spatial configuration of the subbasal nerve fiber networks varied greatly across the cornea and thus caused heavily location-dependent results as well as wide value ranges for the parameters assessed. Distributions of SNP parameter values varied greatly between the three images and showed significant differences between all images for every parameter calculated (p < 0.001 in each case). The relatively small size of the conventionally evaluated SNP area is a contributory factor in high SNP parameter variability. Averaging of parameter values based on multiple CLSM frames does not necessarily result in good approximations of the respective reference values of the whole image area. This illustrates the potential for examiner bias when selecting SNP images in the central corneal area.

  6. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    PubMed

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electrification of the transportation sector offers limited country-wide greenhouse gas reductions

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2014-03-01

    Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.

  8. Dielectric function in the spectral range (0.5–8.5)eV of an (Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} thin film with continuous composition spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt-Grund, R., E-mail: Schmidt-Grund@physik.uni-leipzig.de; Kranert, C.; Wenckstern, H. von

    2015-04-28

    We determined the dielectric function of the alloy system (Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} by spectroscopic ellipsometry in the wide spectral range from 0.5 eV to 8.5 eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x < 0.4, we observe single phase material in the β-modification and for larger Al content also the occurrence of γ-(Al,Ga){sub 2}O{sub 3}. We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic band-band transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on xmore » is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering.« less

  9. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    NASA Astrophysics Data System (ADS)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  10. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  11. Radial Photonic Crystal for Detection of Frequency and Position of Radiation Sources

    DTIC Science & Technology

    2012-08-06

    Dehesa, J. Acoustic resonances in two-dimensional radial sonic crystal shells. New J. Phys. 12, 073034 (2010). 15. Kurs, A. et al. Wireless power...microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal . This type of device was...parameters, those that define the solution of the wave propagation equations, has opened a very wide range of possibilities going from negative

  12. Nanothermodynamics Applied to Thermal Processes in Heterogeneous Materials

    DTIC Science & Technology

    2012-08-03

    models agree favorably with a wide range of measurements of local thermal and dynamic properties. Progress in understanding basic thermodynamic...Monte- Carlo (MC) simulations of the Ising model .7 The solid black lines in Fig. 4 show results using the uncorrected (Metropolis) algorithm on the...parameter g=0.5 (green, dash-dot), g=1 (black, solid ), and g=2 (blue, dash-dot-dot). Note the failure of the standard Ising model (g=0) to match

  13. The landing flare: An analysis and flight-test investigation

    NASA Technical Reports Server (NTRS)

    Seckel, E.

    1975-01-01

    Results are given of an extensive investigation of conventional landing flares in general aviation type airplanes. A wide range of parameters influencing flare behavior are simulated in experimental landings in a variable-stability Navion. The most important feature of the flare is found to be the airplane's deceleration in the flare. Various effects on this are correlated in terms of the average flare load factor. Piloting technique is extensively discussed. Design criteria are presented.

  14. Microwave Plasma Propulsion Systems for Defensive Counter-Space

    DTIC Science & Technology

    2007-09-01

    microwave/ECR-based propulsion system. No electron cathode or neutralizer is needed. There are no electrodes to erode, sputter or damage. Measurement of...without the need for a cathode neutralizer, a wide range of performance parameters can be achieved by selecting the size and length of the resonance...EC • Earth Coverage Antenna NCA • Narrow coverege Antenna LNA • Low Noise Amplifier Rx • Receive Tx =Transmit IV IV TI.IO CMOI Figure 53

  15. Growth of InAs NWs with controlled morphology by CVD

    NASA Astrophysics Data System (ADS)

    Huang, Y. S.; Li, M.; Wang, J.; Xing, Y.; Xu, H. Q.

    2017-06-01

    We report on the growth of single crystal InAs NWs on Si/SiOx substrates by chemical vapor deposition (CVD). By adjusting growth parameters, the diameters, morphology, length and the proportion of superlattice ZB InAs NWs (NWs) can be controlled on a Si/SiOx substrate. Our work provides a low-cost route to grow and phase-engineer single crystal InAs NWs for a wide range of potential applications.

  16. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Astrophysics Data System (ADS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-08-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  17. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrish, Yu. N., E-mail: gavrish@luts.niiefa.spb.su; Koloskov, S. A.; Smirnov, V. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  18. Advanced electrical power, distribution and control for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Brandhorst, Henry W., Jr.

    1990-01-01

    High frequency power distribution and management is a technology ready state of development. As such, a system employs the fewest power conversion steps, and employs zero current switching for those steps. It results in the most efficiency, and lowest total parts system count when equivalent systems are compared. The operating voltage and frequency are application specific trade off parameters. However, a 20 kHz Hertz system is suitable for wide range systems.

  19. Limb darkening and exoplanets - II. Choosing the best law for optimal retrieval of transit parameters

    NASA Astrophysics Data System (ADS)

    Espinoza, Néstor; Jordán, Andrés

    2016-04-01

    Very precise measurements of exoplanet transit light curves both from ground- and space-based observatories make it now possible to fit the limb-darkening coefficients in the transit-fitting procedure rather than fix them to theoretical values. This strategy has been shown to give better results, as fixing the coefficients to theoretical values can give rise to important systematic errors which directly impact the physical properties of the system derived from such light curves such as the planetary radius. However, studies of the effect of limb-darkening assumptions on the retrieved parameters have mostly focused on the widely used quadratic limb-darkening law, leaving out other proposed laws that are either simpler or better descriptions of model intensity profiles. In this work, we show that laws such as the logarithmic, square-root and three-parameter law do a better job that the quadratic and linear laws when deriving parameters from transit light curves, both in terms of bias and precision, for a wide range of situations. We therefore recommend to study which law to use on a case-by-case basis. We provide code to guide the decision of when to use each of these laws and select the optimal one in a mean-square error sense, which we note has a dependence on both stellar and transit parameters. Finally, we demonstrate that the so-called exponential law is non-physical as it typically produces negative intensities close to the limb and should therefore not be used.

  20. Effect of wavelength on cutaneous pigment using pulsed irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, K.A.; Murray, S.; Kurban, A.K.

    Several reports have been published over the last two decades describing the successful removal of benign cutaneous pigmented lesions such as lentigines, cafe au lait macules' nevi, nevus of Ota, and lentigo maligna by a variety of lasers such as the excimer (351 nm), argon (488,514 nm), ruby (694 nm), Nd:YAG (1060 nm), and CO/sub 2/ (10,600 nm). Laser treatment has been applied to lesions with a range of pigment depths from superficial lentigines in the epidermis to the nevus of Ota in the reticular dermis. Widely divergent laser parameters of wavelength, pulse duration, energy density, and spotsizes have beenmore » used, but the laser parameters used to treat this range of lesions have been arbitrary, with little effort focused on defining optimal laser parameters for removal of each type. In this study, miniature black pig skin was exposed to five wavelengths (504, 590, 694, 720, and 750 nm) covering the absorption spectrum of melanin. At each wavelength, a range of energy densities was examined. Skin biopsies taken from laser-exposed sites were examined histologically in an attempt to establish whether optimal laser parameters exist for destroying pigment cells in skin. Of the five wavelengths examined, 504 nm produced the most pigment specific injury; this specificity being maintained even at the highest energy density of 7.0 J/cm2. Thus, for the destruction of melanin-containing cells in the epidermal compartment, 504 nm wavelength appears optimal.« less

  1. GRCop-84 Rolling Parameter Study

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2008-01-01

    This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.

  2. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response

    PubMed Central

    Nakano, Masahiro; Arai, Yoshiyuki; Kotera, Ippei; Okabe, Kohki; Kamei, Yasuhiro; Nagai, Takeharu

    2017-01-01

    Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species. PMID:28212432

  3. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  4. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  5. Electron impact ionization from p-orbital targets

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.

    2006-05-01

    Electron impact ionization cross sections are evaluated using a modified version [1] of the BELL formula [2] for a wide range of isoelectronic targets, ranging from Li to Ne targets with both the open and closed shell configurations. In this report the MBELL parameters are generalized for treating the orbital quantum numbers nl dependency; its accuracy has been tested by evaluating cross sections for a wider range of species and energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 012708 (2005). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).

  6. Design of crossed planar phase grating for metrology

    NASA Astrophysics Data System (ADS)

    Tang, Yu; Chen, Xinrong; Li, Chaoming; Wang, Rui; Xu, Haiyan; Cheng, Yushui

    2018-01-01

    Crossed-grating is widely used as the standard element for metrology in two-dimensional precision positioning system. It has many advantages such as high resolution, compact structure, good environmental adaptability and less Abbe error. In this paper, the design of crossed planar reflecting phase grating used under the Littrow condition with circularly polarized light at 780nm wavelength has been carried out. The aim of the design is to find out the range of structure parameters of crossed-grating that has higher -1st order diffraction efficiency and good efficiency equilibrium for both of TE- and TM-polarized incident lights. By adoption of the Fourier modal method (FMM), the microstructure parameters of the 1200lines/mm crossed grating with the duty cycle range of 10% to 50% and the profile depth of 150nm to 350nm have been searched exactly. The calculation results show that: When the duty cycle range of the grating is 42% to 44% and profile depth is 210nm to 220nm, the -1st diffraction efficiencies of TE- and TM-polarized lights are both above 60% and the efficiency equilibrium is better than 80%.

  7. Identification of Anisotropic Criteria for Stratified Soil Based on Triaxial Tests Results

    NASA Astrophysics Data System (ADS)

    Tankiewicz, Matylda; Kawa, Marek

    2017-09-01

    The paper presents the identification methodology of anisotropic criteria based on triaxial test results. The considered material is varved clay - a sedimentary soil occurring in central Poland which is characterized by the so-called "layered microstructure". The strength examination outcomes were identified by standard triaxial tests. The results include the estimated peak strength obtained for a wide range of orientations and confining pressures. Two models were chosen as potentially adequate for the description of the tested material, namely Pariseau and its conjunction with the Jaeger weakness plane. Material constants were obtained by fitting the model to the experimental results. The identification procedure is based on the least squares method. The optimal values of parameters are searched for between specified bounds by sequentially decreasing the distance between points and reducing the length of the searched range. For both considered models the optimal parameters have been obtained. The comparison of theoretical and experimental results as well as the assessment of the suitability of selected criteria for the specified range of confining pressures are presented.

  8. Application of Model Based Parameter Estimation for Fast Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy C. J.

    1998-01-01

    Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.

  9. Impact of relativistic effects on cosmological parameter estimation

    NASA Astrophysics Data System (ADS)

    Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.

    2018-01-01

    Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.

  10. Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USGS Publications Warehouse

    Rafique, Rashad; Fienen, Michael N.; Parkin, Timothy B.; Anex, Robert P.

    2013-01-01

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameterized through a traditional “trial and error” approach and has not been calibrated using statistical inverse modelling (i.e. algorithmic parameter estimation). The aim of this study is to establish and demonstrate a procedure for calibration of DayCent to improve estimation of GHG emissions. We coupled DayCent with the parameter estimation (PEST) software for inverse modelling. The PEST software can be used for calibration through regularized inversion as well as model sensitivity and uncertainty analysis. The DayCent model was analysed and calibrated using N2O flux data collected over 2 years at the Iowa State University Agronomy and Agricultural Engineering Research Farms, Boone, IA. Crop year 2003 data were used for model calibration and 2004 data were used for validation. The optimization of DayCent model parameters using PEST significantly reduced model residuals relative to the default DayCent parameter values. Parameter estimation improved the model performance by reducing the sum of weighted squared residual difference between measured and modelled outputs by up to 67 %. For the calibration period, simulation with the default model parameter values underestimated mean daily N2O flux by 98 %. After parameter estimation, the model underestimated the mean daily fluxes by 35 %. During the validation period, the calibrated model reduced sum of weighted squared residuals by 20 % relative to the default simulation. Sensitivity analysis performed provides important insights into the model structure providing guidance for model improvement.

  11. An Approximate Solution and Master Curves for Buckling of Symmetrically Laminated Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.

  12. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods.

    PubMed

    Chawla, A; Mukherjee, S; Karthikeyan, B

    2009-02-01

    The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.

  13. The added value of remote sensing products in constraining hydrological models

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus

    2017-04-01

    The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.

  14. Remote sensing of cloud droplet size distributions in DC3 with the UMBC-LACO Rainbow Polarimetric Imager (RPI)

    NASA Astrophysics Data System (ADS)

    Buczkowski, S.; Martins, J.; Fernandez-Borda, R.; Cieslak, D.; Hall, J.

    2013-12-01

    The UMBC Rainbow Polarimetric Imager is a small form factor VIS imaging polarimeter suitable for use on a number of platforms. An optical system based on a Phillips prism with three Bayer filter color detectors, each detecting a separate polarization state, allows simultaneous detection of polarization and spectral information. A Mueller matrix-like calibration scheme corrects for polarization artifacts in the optical train and allows retrieval of the polarization state of incoming light to better than 0.5%. Coupled with wide field of view optics (~90°), RPI can capture images of cloudbows over a wide range of aircraft headings and solar zenith angles for retrieval of cloud droplet size distribution (DSD) parameters. In May-June 2012, RPI was flown in a nadir port on the NASA DC-8 during the DC3 field campaign. We will show examples of cloudbow DSD parameter retrievals from the campaign to demonstrate the efficacy of such a system to terrestrial atmospheric remote sensing. RPI image from DC3 06/15/2012 flight. Left panel is raw image from the RPI 90° camera. Middle panel is Stokes 'q' parameter retrieved from full three camera dataset. Right panel is a horizontal cut in 'q' through the glory. Both middle and right panels clearly show cloudbow features which can be fit to infer cloud DSD parameters.

  15. Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories.

    PubMed

    Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro

    2003-09-01

    We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.

  16. Source parameters and rupture velocities of microearthquakes in western Nagano, Japan, determined using stopping phases

    USGS Publications Warehouse

    Imanishi, K.; Takeo, M.; Ellsworth, W.L.; Ito, H.; Matsuzawa, T.; Kuwahara, Y.; Iio, Y.; Horiuchi, S.; Ohmi, S.

    2004-01-01

    We use an inversion method based on stopping phases (Imanishi and Takeo, 2002) to estimate the source dimension, ellipticity, and rupture velocity of microearthquakes and investigate the scaling relationships between source parameters. We studied 25 earthquakes, ranging in size from M 1.3 to M 2.7, that occurred between May and August 1999 at the western Nagano prefecture, Japan, which is characterized by a high rate of shallow earthquakes. The data consist of seismograms recorded in an 800-m borehole and at 46 surface and 2 shallow borehole seismic stations whose spacing is a few kilometers. These data were recorded with a sampling frequency of 10 kHz. In particular, the 800-m-borehole data provide a wide frequency bandwidth with greatly reduced ground noise and coda wave amplitudes compared with surface recordings. High-frequency stopping phases appear in the body waves in Hilbert transform pairs and are readily detected on seismograms recorded in the 800-m borehole. After correcting both borehole and surface data for attenuation, we also measure the rise time, which is defined as the interval from the arrival time of the direct wave to the timing of the maximum amplitude in the displacement pulse. The differential time of the stopping phases and the rise times were used to obtain source parameters. We found that several microearthquakes propagated unilaterally, suggesting that all microearthquakes cannot be modeled as a simple circular crack model. Static stress drops range from approximately 0.1 to 2 MPa and do not vary with seismic moment. It seems that the breakdown in stress drop scaling seen in previous studies using surface data is simply an artifact of attenuation in the crust. The average value of rupture velocity does not depend on earthquake size and is similar to those reported for moderate and large earthquakes. It is likely that earthquakes are self-similar over a wide range of earthquake size and that the dynamics of small and large earthquakes are similar.

  17. Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer.

    PubMed

    Ristić, Davor; Mazzola, Maurizio; Chiappini, Andrea; Rasoloniaina, Alphonse; Féron, Patrice; Ramponi, Roberta; Righini, Giancarlo C; Cibiel, Gilles; Ivanda, Mile; Ferrari, Maurizio

    2014-09-01

    The modal dispersion of a whispering gallery mode (WGM) resonator is a very important parameter for use in all nonlinear optics applications. In order to tailor the WGM modal dispersion of a microsphere, we have coated a silica microsphere with a high-refractive-index coating in order to study its effect on the WGM modal dispersion. We used Er(3+) ions as a probe for a modal dispersion assessment. We found that, by varying the coating thickness, the geometrical cavity dispersion can be used to shift overall modal dispersion in a very wide range in both the normal and anomalous dispersion regime.

  18. Economics of food irradiation

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.; Steeves, Colyn; Beaulieu, Daniel; Eng, P.

    1993-07-01

    The number of products being radiation processed worldwide is constantly increasing and today includes such diverse items as medical disposables, fruits and vegetables, spices, meats, seafoods and waste products. This range of products to be processed has resulted in a wide range of irradiator designs and capital and operating cost requirements. This paper discusses the economics of low dose food irradiation applications and the effects of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operating costs and annual throughputs. It is intended to provide the reader with a general knowledge of how unit processing costs are derived.

  19. Real-gas effects associated with one-dimensional transonic flow of cryogenic nitrogen

    NASA Technical Reports Server (NTRS)

    Adcock, J. B.

    1976-01-01

    Real gas solutions for one-dimensional isentropic and normal-shock flows of nitrogen were obtained for a wide range of temperatures and pressures. These calculations are compared to ideal gas solutions and are presented in tables. For temperatures (300 K and below) and pressures (1 to 10 atm) that cover those anticipated for transonic cryogenic tunnels, the solutions are analyzed to obtain indications of the magnitude of inviscid flow simulation errors. For these ranges, the maximum deviation of the various isentropic and normal shock parameters from the ideal values is about 1 percent or less, and for most wind tunnel investigations this deviation would be insignificant.

  20. Robust transmission of non-Gaussian entanglement over optical fibers

    NASA Astrophysics Data System (ADS)

    Biswas, Asoka; Lidar, Daniel A.

    2006-12-01

    We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved against decoherence for long-range quantum communication through an optical fiber. We apply protection via decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by inserting phase shifters at regular intervals Δ inside the fiber, where Δ is roughly the ratio of the speed of light in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the boson-boson model of system-bath interaction for silica fibers and Δ is found to be on the order of a millimeter.

  1. Helicopter TEM parameters analysis and system optimization based on time constant

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou

    2018-03-01

    Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.

  2. On better estimating and normalizing the relationship between clinical parameters: comparing respiratory modulations in the photoplethysmogram and blood pressure signal (DPOP versus PPV).

    PubMed

    Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D

    2015-01-01

    DPOP (ΔPOP or Delta-POP) is a noninvasive parameter which measures the strength of respiratory modulations present in the pulse oximeter waveform. It has been proposed as a noninvasive alternative to pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. We considered a number of simple techniques for better determining the underlying relationship between the two parameters. It was shown numerically that baseline-induced signal errors were asymmetric in nature, which corresponded to observation, and we proposed a method which combines a least-median-of-squares estimator with the requirement that the relationship passes through the origin (the LMSO method). We further developed a method of normalization of the parameters through rescaling DPOP using the inverse gradient of the linear fitted relationship. We propose that this normalization method (LMSO-N) is applicable to the matching of a wide range of clinical parameters. It is also generally applicable to the self-normalizing of parameters whose behaviour may change slightly due to algorithmic improvements.

  3. On Better Estimating and Normalizing the Relationship between Clinical Parameters: Comparing Respiratory Modulations in the Photoplethysmogram and Blood Pressure Signal (DPOP versus PPV)

    PubMed Central

    Addison, Paul S.; Wang, Rui; Uribe, Alberto A.; Bergese, Sergio D.

    2015-01-01

    DPOP (ΔPOP or Delta-POP) is a noninvasive parameter which measures the strength of respiratory modulations present in the pulse oximeter waveform. It has been proposed as a noninvasive alternative to pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. We considered a number of simple techniques for better determining the underlying relationship between the two parameters. It was shown numerically that baseline-induced signal errors were asymmetric in nature, which corresponded to observation, and we proposed a method which combines a least-median-of-squares estimator with the requirement that the relationship passes through the origin (the LMSO method). We further developed a method of normalization of the parameters through rescaling DPOP using the inverse gradient of the linear fitted relationship. We propose that this normalization method (LMSO-N) is applicable to the matching of a wide range of clinical parameters. It is also generally applicable to the self-normalizing of parameters whose behaviour may change slightly due to algorithmic improvements. PMID:25691912

  4. Parameter-space metric of semicoherent searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Pletsch, Holger J.

    2010-08-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical “semicoherent” search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  5. Influence of spray nozzle shape upon atomization process

    NASA Astrophysics Data System (ADS)

    Beniuga, Marius; Mihai, Ioan

    2016-12-01

    The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.

  6. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  7. Energy balance in high-quality cutting of steel by fiber and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Golyshev, A. A.; Orishich, A. M.; Shulyat'ev, V. B.

    2017-03-01

    The energy balance of laser cutting of low-carbon and stainless steel sheets with the minimum roughness of the cut surface is experimentally studied. Experimental data obtained in wide ranges of cutting parameters are generalized with the use of dimensionless parameters (Peclet number and absorbed laser energy). It is discovered for the first time that the minimum roughness is ensured at a certain value of energy per unit volume of the melt (approximately 26 J/mm3), regardless of the gas type (oxygen or nitrogen) and laser type (fiber laser with a wavelength of 1.07 μm or CO2 laser with a wavelength of 10.6 μm).

  8. Revived STIS. II. Properties of Stars in the Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.

    2010-01-01

    Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.

  9. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  10. Algebraic expressions for the polarisation response of spin-VCSELs

    NASA Astrophysics Data System (ADS)

    Adams, Mike; Li, Nianqiang; Cemlyn, Ben; Susanto, Hadi; Henning, Ian

    2018-06-01

    Closed-form expressions are derived for the relationship between the polarisation of the output and that of the pump for spin-polarised vertical-cavity surface-emitting lasers. These expressions are based on the spin-flip model (SFM) combined with the condition that the carrier recombination time is much greater than both the spin relaxation time and the photon lifetime. Allowance is also included for misalignment between the principal axes of birefringence and dichroism. These expressions yield results that are in excellent agreement both with previously published numerical calculations and with further tests for a wide range of parameters. Trends with key parameters of the SFM are easily deduced from these expressions.

  11. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  12. A novel approach to Hough Transform for implementation in fast triggers

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi

    2016-10-01

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  13. Comparing Ultraviolet Spectra against Calculations: Year 2 Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2004-01-01

    The five-year goal of this effort is to calculate high fidelity mid-W spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this second year, the comparison of our calculations against observed high-resolution mid- W spectra was extended to stars as metal-rich as the Sun, and to hotter and cooler stars, further improving the list of atomic line parameters used in the calculations. We also published the application of our calculations based on the earlier list of line parameters to the observed mid-UV and optical spectra of a mildly metal-poor globular cluster in the nearby Andromeda galaxy, Messier 3 1.

  14. Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.

    2017-06-01

    The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.

  15. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.

    PubMed

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-04

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  16. Characterization of the Shuttle Landing Facility as a laser range for testing and evaluation of EO systems

    NASA Astrophysics Data System (ADS)

    Stromqvist Vetelino, Frida; Borbath, Michael R.; Andrews, Larry C.; Phillips, Ronald L.; Burdge, Geoffrey L.; Chin, Peter G.; Galus, Darren J.; Wayne, David; Pescatore, Robert; Cowan, Doris; Thomas, Frederick

    2005-08-01

    The Shuttle Landing Facility runway at the Kennedy Space Center in Cape Canaveral, Florida is almost 5 km long and 100 m wide. Its homogeneous environment makes it a unique and ideal place for testing and evaluating EO systems. An experiment, with the goal of characterizing atmospheric parameters on the runway, was conducted in June 2005. Weather data was collected and the refractive index structure parameter was measured with a commercial scintillometer. The inner scale of turbulence was inferred from wind speed measurements and surface roughness. Values of the crosswind speed obtained from the scintillometer were compared with wind measurements taken by a weather station.

  17. Comparative analysis of quality parameters of Italian extra virgin olive oils according to their region of origin

    NASA Astrophysics Data System (ADS)

    Mignani, Anna Grazia; García-Allende, Pilar Beatriz; Ciaccheri, Leonardo; Conde, Olga M.; Cimato, Antonio; Attilio, Cristina; Tura, Debora

    2008-04-01

    Italian extra virgin olive oils from four regions covering different latitudes of the country were considered. They were analyzed by means of absorption spectroscopy in the wide 200-2800 nm spectral range, and multivariate data processing was applied. These spectra were virtually a signature identification from which to extract information on the region of origin and on the most important quality indicators. A classification map was created which was able to group the 80 oils on the basis of their region of origin. Furthermore, a model for the prediction of quality parameters such as oleic acidity, peroxide number, K232, K270 and Delta K, was developed.

  18. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  19. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The influence of parameters such as CO2 concentration, gas flow patterns, quartz in the bulk melt, melt doping level and growth speed on ribbon properties was examined for 10 cm wide ribbon. Ribbon quality is optimized for ambient CO2 in argon concentrations in the range from 1000 to 5000 ppm. Cell performance degrades at CO2 concentrations above 5000 ppm and IR interstitial oxygen levels decrease. These experiments were done primarily at a growth speed of 3.5 cm/minute. Cartridge parameters influencing the ribbon thickness were studied and thickness uniformity at 200 micrometers (8 mils) has been improved. Growth stability at the target speed of 4.0 cm/minute was improved significantly.

  20. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2018-01-01

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations?

    NASA Astrophysics Data System (ADS)

    Martin, R. R.; Montero, S.; Silva, E.; Bizzarri, M.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M.

    2017-11-01

    Experimental evidence confirms the existence of glycolytic oscillations in cancer, which allows it to self-organize in time and space far from thermodynamic equilibrium, and provides it with high robustness, complexity and adaptability. A kinetic model is proposed for HeLa tumor cells grown in hypoxia conditions. It shows oscillations in a wide range of parameters. Two control parameters (glucose and inorganic phosphate concentration) were varied to explore the phase space, showing also the presence of limit cycles and bifurcations. The complexity of the system was evaluated by focusing on stationary state stability and Lempel-Ziv complexity. Moreover, the calculated entropy production rate was demonstrated behaving as a Lyapunov function.

  2. HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2014-01-01

    Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.

  3. Numerical simulations of bistable flows in precessing spheroidal shells

    NASA Astrophysics Data System (ADS)

    Vormann, J.; Hansen, U.

    2018-05-01

    Precession of the rotation axis is an often neglected mechanical driving mechanism for flows in planetary interiors, through viscous coupling at the boundaries and topographic forcing in non-spherical geometries. We investigate precession-driven flows in spheroidal shells over a wide range of parameters and test the results against theoretical predictions. For Ekman numbers down to 8.0 × 10-7, we see a good accordance with the work of Busse, who assumed the precession-driven flow to be dominated by a rigid rotation component that is tilted to the main rotation axis. The velocity fields show localized small-scale structures for lower Ekman numbers and clear signals of inertial waves for some parameters. For the case of moderate viscosity and strong deformation, we report the realization of multiple solutions at the same parameter combination, depending on the initial condition.

  4. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, S A; Trunov, V I; Pestryakov, Efim V

    2013-05-31

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberianmore » Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)« less

  5. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGES

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; ...

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  6. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  7. Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals

    PubMed Central

    Kim, Tyson N.; Goodwill, Patrick W.; Chen, Yeni; Conolly, Steven M.; Schaffer, Chris B.; Liepmann, Dorian; Wang, Rong A.

    2012-01-01

    Background The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. Methodology/Principal Findings We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. Conclusions/Significance To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies. PMID:22761686

  8. The Noble-Abel Stiffened-Gas equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Métayer, Olivier, E-mail: olivier.lemetayer@univ-amu.fr; Saurel, Richard, E-mail: richard.saurel@univ-amu.fr; RS2N, 371 Chemin de Gaumin, 83640 Saint-Zacharie

    2016-04-15

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOSmore » named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.« less

  9. The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-01-01

    New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.

  10. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    NASA Astrophysics Data System (ADS)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  11. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  12. Solvent, temperature and concentration effects on the optical rotatory dispersion of (R)-3-methylcyclohexanone

    NASA Astrophysics Data System (ADS)

    Alenaizan, Asem; Al-Basheer, Watheq; Musa, Musa M.

    2017-02-01

    Optical rotatory dispersion (ORD) spectra are reported for isolated and solvated (R)-3-methylcyclohexanone (R-3MCH) in 10 solvents, of wide polarity range, and over the spectral range 350-650 nm. Sample concentration effects on ORD spectra of R-3MCH were also recorded and investigated over widely varying concentrations from 2.5 × 10-3 to 2.5 × 10-1 g/mL where an observed sensitivity of optical rotation (OR) to incident light wavelength at low concentrations is correlated to solvent effects. Temperature effects were also studied by recording ORD spectra over the temperature range 0-65 °C in toluene. Recorded specific OR was plotted against various solvent parameters, namely, dipole moment, polarity, refractive index and polarizability to probe solvent effects. Furthermore, solvent effects were studied by incorporating Kamlet's and Taft's solvent parameters in the multi-parametric linear fitting. Theoretically, ORD spectra and populations of optimized geometries of equatorial and axial conformers of R-3MCH were calculated in the gas and solvated phases. All theoretical calculations were performed employing the polarizable continuum model using density functional theoretical and composite scheme (G4) methods with aug-cc-pVTZ and aug-cc-pVDZ basis sets. Net ORD spectra of R-3MCH were generated by the Boltzmann-weighted sum of the contributions of the dominant conformers. Upon comparing theoretical and experimental ORD spectra, a very good agreement is observed for the ORD spectra in the gas phase and high polarity solvents compared to relatively lesser agreement in low polarity solvents.

  13. Non-Condon equilibrium Fermi’s golden rule electronic transition rate constants via the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi’s golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar modelmore » for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.« less

  14. HOx Radical Behavior in Urban, Biogenic and Mixed Environments

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.; Mauldin, L.; Schardt, N.; Mukherjee, A. D.

    2014-12-01

    The importance of HOx radicals in tropospheric chemistry is well-recognized. These roles include control of the lifetimes of a wide variety of trace gases, and control of photochemical ozone formation. The continued advance in understanding comes from laboratory investigations and field observations especially as part of comprehensive measurement campaigns. We participated in two recent observational campaigns aboard the NSF/NCAR C-130 aircraft platform: NOMADSS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks) and FRAPPE (Front Range Atmospheric Pollution and Photochemistry Experiment). During these studies, a wide varieties of air masses were sampled ranging from fresh urban to rural both without and without biogenic influence to marine, and including the impacts of emissions from oil and gas extraction and animal production. Among the wide variety of parameters and species related to tropospheric chemistry that were measured, our group made observations of HOx and related species: OH, HO2, HO2+RO2, H2SO4, and stabilized Criegee intermediates (sCIs) using selected ion chemical ionization mass spectrometry. The paper discusses the functional dependence of these species on other measures of the chemical environment (e.g. NO, VOCs, j-values) as well as comparison of model estimates with the observations.

  15. A Monte Carlo model for 3D grain evolution during welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  16. A Monte Carlo model for 3D grain evolution during welding

    DOE PAGES

    Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena

    2017-08-04

    Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less

  17. Demonstration of LiDAR and Orthophotography for Wide Area Assessment at Pueblo Precision Bombing Range #2, Colorado

    DTIC Science & Technology

    2008-01-01

    Figure 11. Screenshot of OrthoPro seam lines (pink), tiles (blue), and photos (green)................ 26 Figure 12. Calibration craters (existing...with aerial targets for the orthophotography data collection, 1 per data collection tile (1 sq km). For the Phase I data collection, 9 LiDAR ground...Orthophotography data were collected concurrently with the LiDAR data collection. Based on the LiDAR flight line spacing parameters, the orthophoto images were

  18. ATM observations - X-ray results. [solar coronal structure from Skylab experiments

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Zombeck, M.; Krieger, A. S.; Timothy, A. F.

    1976-01-01

    Preliminary results of the solar X-ray observations from Skylab are reviewed which indicate a highly structured nature for the corona, with closed magnetic-loop structures over a wide range of size scales. A description of the S-054 experiments is provided, and values are given for the parameters - including size, density, and temperature - describing a variety of typical coronal features. The structure and evolution of active regions, coronal holes, and bright points are discussed.

  19. INTEGRATED AND FIBER OPTICS: Electrodiffusion of Cs+ ions into glass from molten CsNO3. Planar waveguides

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Tishchenko, A. V.

    1989-02-01

    A new method for electrodiffusion of Cs+ ions from molten CsNO3 into glass was developed. A study was made of the dependences of the parameters of the refractive index profile of planar waveguides on the conditions during diffusion. These waveguides were characterized by low losses (less than 0.2 dB/cm) in a wide spectral range and they were stable under heating to 300 °C.

  20. Power-law distributions for a trapped ion interacting with a classical buffer gas.

    PubMed

    DeVoe, Ralph G

    2009-02-13

    Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.

  1. Distorted neutrino oscillations from time varying cosmic fields

    NASA Astrophysics Data System (ADS)

    Krnjaic, Gordan; Machado, Pedro A. N.; Necib, Lina

    2018-04-01

    Cold, ultralight (≪eV ) bosonic fields can induce fast temporal variation in neutrino couplings, thereby distorting neutrino oscillations. In this paper, we exploit this effect to introduce a novel probe of neutrino time variation and dark matter at long-baseline experiments. We study several representative observables and find that current and future experiments, including DUNE and JUNO, are sensitive to a wide range of model parameters over many decades in mass reach and time-variation periodicity.

  2. Modeling Protective Anti-Tumor Immunity via Preventative Cancer Vaccines Using a Hybrid Agent-based and Delay Differential Equation Approach

    PubMed Central

    Kim, Peter S.; Lee, Peter P.

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry. PMID:23133347

  3. Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles.

    PubMed

    Carrillo, José Antonio; Colombi, Annachiara; Scianna, Marco

    2018-05-14

    The description of the cell spatial pattern and characteristic distances is fundamental in a wide range of physio-pathological biological phenomena, from morphogenesis to cancer growth. Discrete particle models are widely used in this field, since they are focused on the cell-level of abstraction and are able to preserve the identity of single individuals reproducing their behavior. In particular, a fundamental role in determining the usefulness and the realism of a particle mathematical approach is played by the choice of the intercellular pairwise interaction kernel and by the estimate of its parameters. The aim of the paper is to demonstrate how the concept of H-stability, deriving from statistical mechanics, can have important implications in this respect. For any given interaction kernel, it in fact allows to a priori predict the regions of the free parameter space that result in stable configurations of the system characterized by a finite and strictly positive minimal interparticle distance, which is fundamental when dealing with biological phenomena. The proposed analytical arguments are indeed able to restrict the range of possible variations of selected model coefficients, whose exact estimate however requires further investigations (e.g., fitting with empirical data), as illustrated in this paper by series of representative simulations dealing with cell colony reorganization, sorting phenomena and zebrafish embryonic development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Horndeski extension of the minimal theory of quasidilaton massive gravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele

    2017-11-01

    The minimal theory of quasidilaton massive gravity allows for a stable self-accelerating de Sitter solution in a wide range of parameters. On the other hand, in order for the theory to be compatible with local gravity tests, the fifth force due to the quasidilaton scalar needs to be screened at local scales. The present paper thus extends the theory by inclusion of a cubic Horndeski term in a way that (i) respects the quasidilaton global symmetry, that (ii) maintains the physical degrees of freedom in the theory being 3, that (iii) can accommodate the Vainshtein screening mechanism, and that (iv) still allows for a stable self-accelerating de Sitter solution. After adding the Horndeski term (and a k -essence type nonlinear kinetic term as well) to the precursor action, we switch to the Hamiltonian language and find a complete set of independent constraints. We then construct the minimal theory with 3 physical degrees of freedom by carefully adding a pair of constraints to the total Hamiltonian of the precursor theory. Switching back to the Lagrangian language, we study cosmological solutions and their stability in the minimal theory. In particular, we show that a self-accelerating de Sitter solution is stable for a wide range of parameters. Furthermore, as in the minimal theory of massive gravity, the propagation speed of the massive gravitational waves in the high momentum limit precisely agrees with the speed of light.

  5. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  6. Retention and Migration of Chlorpyrifos in Aquatic Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Gebremariam, S. Y.; Beutel, M.; Yonge, D.; Flury, M.; Harsh, J. B.

    2010-12-01

    The accurate description of the fate and transport of potentially toxic agricultural pesticides in sediments and soils is of great interest to environmental scientists and regulators. Of particular concern is the widely documented detection of agricultural pesticides and their byproducts in drinking water wells. This presentation discusses results of a study of the fate and transport of chlorpyrifos, a strongly hydrophobic organophosphate-pesticide, in sediments and soils collected from a range of aquatic environments. Using radio-labeled chlorpyrifos, this study is unique in its comprehensive nature and focus on aquatic sediments, for which studies involving pesticide fate and transport are limited. Study components include: (1) batch equilibrium experiments to evaluate sorption/desorption parameters; (2) kinetic and non-equilibrium sorption experiments using miniaturized flow-cells; (3) column experiments to understand patterns of pesticide break through; and (4) numerical modeling of chlorpyrifos transport through aquatic sediments and soils. Initial results show that chlorpyrifos sorption, when corrected for reversible sorption to container walls, exhibited two component sorption, a large irreversible fraction and a smaller reversible fraction that can act as a secondary source. In addition, of a wide range of soil parameters measured, organic carbon content exhibited the highest correlation with chlorpyrifos retention in cranberry field soils. Simulation models developed in this study, which account for hysteretic and nonlinear sorption, will help to better predict the fate of chlorpyrifos and other hydrophobic chemicals in sediments and soils.

  7. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.

    PubMed

    Avilés, Leticia; Abbot, Patrick; Cutter, Asher D

    2002-02-01

    Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.

  8. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  9. Impacts of neodymium on structural, spectral and dielectric properties of LiNi0.5Fe2O4 nanocrystalline ferrites fabricated via micro-emulsion technique

    NASA Astrophysics Data System (ADS)

    Gilani, Zaheer Abbas; Warsi, Muhammad Farooq; Khan, Muhammad Azhar; Shakir, Imran; Shahid, Muhammad; Anjum, Muhammad Naeem

    2015-09-01

    Soft ferrites are technologically advanced smart materials and their properties can be tailored by controlling the chemical composition and judicial choice of the metal elements. In this article we discussed the effect of rare earth neodymium (Nd3+) on various properties of LiNi0.5NdxFe2-xO4 spinel ferrites. These ferrites have been synthesized by facile micro-emulsion route and characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), a.c. electrical conductivity and thermal analysis. The influence of Nd3+ doping on structural and electrical parameters has been investigated. XRD analysis revealed the formation of single cubic spinel structure for x≤0.07. Few traces of secondary phase (NdFeO3) were found for x≥0.105. The secondary phase induced owing to the solubility limit of Nd3+ cations in these ferrites. The lattice parameter (a) and crystallite size (D) both exhibit non-linear relation. The values of "a" and "D" were found in the range 8.322-8.329 Å and 25-32 nm respectively. These variations were attributed to the larger ionic radius of Nd3+ cations as compared to the host cations and lattice strain produced in these ferrites. The dielectric parameters were studied in the range 1 MHz to 3 GHz and these parameters were damped by Nd3+ incorporation and also by increasing the frequency. The reduced dielectric parameters observed in wide frequency range proposed that these nanocrystalline ferrites are potential candidates for fabricating the devices which are required to operate at GHz frequencies.

  10. CO2 fluxes and ecosystem dynamics at five European treeless peatlands - merging data and process oriented modelling

    NASA Astrophysics Data System (ADS)

    Metzger, C.; Jansson, P.-E.; Lohila, A.; Aurela, M.; Eickenscheidt, T.; Belelli-Marchesini, L.; Dinsmore, K. J.; Drewer, J.; van Huissteden, J.; Drösler, M.

    2014-06-01

    The carbon dioxide (CO2) exchange of five different peatland systems across Europe with a wide gradient in landuse intensity, water table depth, soil fertility and climate was simulated with the process oriented CoupModel. The aim of the study was to find out to what extent CO2 fluxes measured at different sites, can be explained by common processes and parameters implemented in the model. The CoupModel was calibrated to fit measured CO2 fluxes, soil temperature, snow depth and leaf area index (LAI) and resulting differences in model parameters were analysed. Finding site independent model parameters would mean that differences in the measured fluxes could be explained solely by model input data: water table, meteorological data, management and soil inventory data. The model, utilizing a site independent configuration for most of the parameters, captured seasonal variability in the major fluxes well. Parameters that differed between sites included the rate of soil organic decomposition, photosynthetic efficiency, and regulation of the mobile carbon (C) pool from senescence to shooting in the next year. The largest difference between sites was the rate coefficient for heterotrophic respiration. Setting it to a common value would lead to underestimation of mean total respiration by a factor of 2.8 up to an overestimation by a factor of 4. Despite testing a wide range of different responses to soil water and temperature, heterotrophic respiration rates were consistently lowest on formerly drained sites and highest on the managed sites. Substrate decomposability, pH and vegetation characteristics are possible explanations for the differences in decomposition rates. Applying common parameter values for the timing of plant shooting and senescence, and a minimum temperature for photosynthesis, had only a minor effect on model performance, even though the gradient in site latitude ranged from 48° N (South-Germany) to 68° N (northern Finland). This was also true for common parameters defining the moisture and temperature response for decomposition. CoupModel is able to describe measured fluxes at different sites or under different conditions, providing that the rate of soil organic decomposition, photosynthetic efficiency, and the regulation of the mobile carbon (C) pool are estimated from available information on specific soil conditions, vegetation and management of the ecosystems.

  11. Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.

    2012-09-01

    Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can be improved by the application of this methodology.

  12. Event-scale power law recession analysis: quantifying methodological uncertainty

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Karst, Nathaniel J.; Charalampous, Kyriakos; Veenstra, Andrew; Thompson, Sally E.

    2017-01-01

    The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship between the power-law recession scale parameter and catchment antecedent wetness varies depending on recession definition and fitting choices. Considering study results, we recommend a combination of four key methodological decisions to maximize the quality of fitted recession curves, and to minimize bias in the related populations of fitted recession parameters.

  13. A general model for techno-economic analysis of CSP plants with thermochemical energy storage systems

    NASA Astrophysics Data System (ADS)

    Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.

    2017-06-01

    Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.

  14. Characterization of a Track-and-Hold Amplifier for Application to a High Performance SAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUBBERT, DALE F.; HARDIN, TERRY LYNN; DELAPLAIN, GILBERT G.

    2002-07-01

    A Synthetic Aperture Radar (SAR) which employs direct IF sampling can significantly reduce the complexity of the analog electronics prior to the analog-to-digital converter (ADC). For relatively high frequency IF bands, a wide-bandwidth track-and-hold amplifier (THA) is required prior to the ADC. The THA functions primarily as a means of converting, through bandpass sampling, the IF signal to a baseband signal which can be sampled by the ADC. For a wide-band, high dynamic-range receiver system, such as a SAR receiver, stringent performance requirements are placed on the THA. We first measure the THA parameters such as gain, gain compression, third-ordermore » intercept (TOI), signal-to-noise ratio (SNR), spurious-free dynamic-range (SFDR), noise figure (NF), and phase noise. The results are then analyzed in terms of their respective impact on the overall performance of the SAR. The specific THA under consideration is the Rockwell Scientific RTH010.« less

  15. Underwater superoleophobicity, anti-oil and ultra-broadband enhanced absorption of metallic surfaces produced by a femtosecond laser inspired by fish and chameleons

    NASA Astrophysics Data System (ADS)

    Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.

    2016-11-01

    Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.

  16. Determining optimal parameters in magnetic spacecraft stabilization via attitude feedback

    NASA Astrophysics Data System (ADS)

    Bruni, Renato; Celani, Fabio

    2016-10-01

    The attitude control of a spacecraft using magnetorquers can be achieved by a feedback control law which has four design parameters. However, the practical determination of appropriate values for these parameters is a critical open issue. We propose here an innovative systematic approach for finding these values: they should be those that minimize the convergence time to the desired attitude. This a particularly diffcult optimization problem, for several reasons: 1) such time cannot be expressed in analytical form as a function of parameters and initial conditions; 2) design parameters may range over very wide intervals; 3) convergence time depends also on the initial conditions of the spacecraft, which are not known in advance. To overcome these diffculties, we present a solution approach based on derivative-free optimization. These algorithms do not need to write analytically the objective function: they only need to compute it in a number of points. We also propose a fast probing technique to identify which regions of the search space have to be explored densely. Finally, we formulate a min-max model to find robust parameters, namely design parameters that minimize convergence time under the worst initial conditions. Results are very promising.

  17. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    PubMed

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  18. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  19. Visualization and Quality Control Web Tools for CERES Products

    NASA Astrophysics Data System (ADS)

    Mitrescu, C.; Doelling, D. R.

    2017-12-01

    The NASA CERES project continues to provide the scientific communities a wide variety of satellite-derived data products such as observed TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. They encompass a wide range of temporal and spatial resolutions, suited to specific applications. CERES data is used mostly by climate modeling communities but also by a wide variety of educational institutions. To better serve our users, a web-based Ordering and Visualization Tool (OVT) was developed by using Opens Source Software such as Eclipse, java, javascript, OpenLayer, Flot, Google Maps, python, and others. Due to increased demand by our own scientists, we also implemented a series of specialized functions to be used in the process of CERES Data Quality Control (QC) such as 1- and 2-D histograms, anomalies and differences, temporal and spatial averaging, side-by-side parameter comparison, and others that made the process of QC far easier and faster, but more importantly far more portable. With the integration of ground site observed surface fluxes we further facilitate the CERES project to QC the CERES computed surface fluxes. An overview of the CERES OVT basic functions using Open Source Software, as well as future steps in expanding its capabilities will be presented at the meeting.

  20. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  1. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    PubMed Central

    Li, Jian; Wu, Dan; Han, Yan

    2016-01-01

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039

  2. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.

    PubMed

    Li, Jian; Wu, Dan; Han, Yan

    2016-09-30

    Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  3. Analytical modeling of light transport in scattering materials with strong absorption.

    PubMed

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  4. Rooster semen cryopreservation: effect of pedigree line and male age on postthaw sperm function.

    PubMed

    Long, J A; Bongalhardo, D C; Pelaéz, J; Saxena, S; Settar, P; O'Sullivan, N P; Fulton, J E

    2010-05-01

    The fertility rates of cryopreserved poultry semen are highly variable and not reliable for use in preservation of commercial genetic stocks. Our objective was to evaluate the cryosurvival of semen from 8 pedigreed layer lines at 2 different ages: the onset and end of commercial production. Semen from 160 roosters (20/line) was frozen individually with 11% glycerol at 6 and 12 mo of age. Glycerol was removed from thawed semen by Accudenz gradient centrifugation. The viability of thawed sperm from each male was determined using fluorescent live-dead staining and flow cytometry; sperm velocity parameters were measured using computerized motion analysis. The fertilizing ability of thawed sperm was evaluated in vitro by assessing hydrolysis of the inner perivitelline membrane. The postthaw function of sperm from the elite lines varied widely, despite the fact that fresh semen from all of these lines typically yielded high fertility rates. The percentage of thawed sperm with intact plasma membranes ranged from 27.8 + or - 2.1 to 49.6 + or - 1.9 and varied among lines and between age groups. Thawed sperm from 2 lines consistently demonstrated the highest and lowest motility parameters, whereas the velocity parameters of the remaining 6 lines varied widely. The mean number of hydrolysis points per square millimeter of inner perivitelline membrane ranged from 12.5 + or - 4.1 (line 2) to 103.3 + or - 30.2 (line 6). Age effects were observed for 4 out of 8 lines; however, improved postthaw sperm function at 12 mo of age was not consistent for all 3 assays. These results demonstrate variability among pedigreed lines in withstanding glycerol-based semen cryopreservation and provide a model for delineating genotypic and phenotypic factors affecting sperm cryosurvival.

  5. Primordial black hole production in Critical Higgs Inflation

    NASA Astrophysics Data System (ADS)

    Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester

    2018-01-01

    Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  6. Drifting oscillations in axion monodromy

    DOE PAGES

    Flauger, Raphael; McAllister, Liam; Silverstein, Eva; ...

    2017-10-31

    In this paper, we study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effectsmore » of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. Finally, we use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.« less

  7. Analysis of latency performance of bluetooth low energy (BLE) networks.

    PubMed

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2014-12-23

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes.

  8. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks

    PubMed Central

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  9. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  10. Effect of input signal and filter parameters on patterning effect in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta

    2013-11-01

    A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.

  11. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    PubMed Central

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  12. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  13. SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2008-01-01

    Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.

  14. Detecting microsatellites within genomes: significant variation among algorithms.

    PubMed

    Leclercq, Sébastien; Rivals, Eric; Jarne, Philippe

    2007-04-18

    Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions.

  15. Detecting microsatellites within genomes: significant variation among algorithms

    PubMed Central

    Leclercq, Sébastien; Rivals, Eric; Jarne, Philippe

    2007-01-01

    Background Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Results Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Conclusion Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions. PMID:17442102

  16. Using satellite image data to estimate soil moisture

    NASA Astrophysics Data System (ADS)

    Chuang, Chi-Hung; Yu, Hwa-Lung

    2017-04-01

    Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.

  17. SlugIn 1.0: A Free Tool for Automated Slug Test Analysis.

    PubMed

    Martos-Rosillo, Sergio; Guardiola-Albert, Carolina; Padilla Benítez, Alberto; Delgado Pastor, Joaquín; Azcón González, Antonio; Durán Valsero, Juan José

    2018-05-01

    The correct characterization of aquifer parameters is essential for water-supply and water-quality investigations. Slug tests are widely used for these purposes. While free software is available to interpret slug tests, some codes are not user-friendly, or do not include a wide range of methods to interpret the results, or do not include automatic, inverse solutions to the test data. The private sector has also generated several good programs to interpret slug test data, but they are not free of charge. The computer program SlugIn 1.0 is available online for free download, and is demonstrated to aid in the analysis of slug tests to estimate hydraulic parameters. The program provides an easy-to-use Graphical User Interface. SlugIn 1.0 incorporates automated parameter estimation and facilitates the visualization of several interpretations of the same test. It incorporates solutions for confined and unconfined aquifers, partially penetrating wells, skin effects, shape factor, anisotropy, high hydraulic conductivity formations and the Mace test for large-diameter wells. It is available in English and Spanish and can be downloaded from the web site of the Geological Survey of Spain. Two field examples are presented to illustrate how the software operates. © 2018, National Ground Water Association.

  18. Error Analysis of Indirect Broadband Monitoring of Multilayer Optical Coatings using Computer Simulations

    NASA Astrophysics Data System (ADS)

    Semenov, Z. V.; Labusov, V. A.

    2017-11-01

    Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.

  19. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Alex W.; Rivas, Angel; Huelga, Susana F.

    2010-09-15

    By using the properties of orthogonal polynomials, we present an exact unitary transformation that maps the Hamiltonian of a quantum system coupled linearly to a continuum of bosonic or fermionic modes to a Hamiltonian that describes a one-dimensional chain with only nearest-neighbor interactions. This analytical transformation predicts a simple set of relations between the parameters of the chain and the recurrence coefficients of the orthogonal polynomials used in the transformation and allows the chain parameters to be computed using numerically stable algorithms that have been developed to compute recurrence coefficients. We then prove some general properties of this chain systemmore » for a wide range of spectral functions and give examples drawn from physical systems where exact analytic expressions for the chain properties can be obtained. Crucially, the short-range interactions of the effective chain system permit these open-quantum systems to be efficiently simulated by the density matrix renormalization group methods.« less

  20. Plasmonic metamaterial based unified broadband absorber/near infrared emitter for thermophotovoltaic system based on hexagonally packed tungsten doughnuts

    NASA Astrophysics Data System (ADS)

    Behera, Saraswati; Joseph, Joby

    2017-11-01

    In this paper, we report a simple and effective design of a polarization independent and wide incident angle plasmonic metamaterial based unified broadband absorber and thermal emitter consisting of hexagonally packed tungsten doughnuts (hexa-rings) for thermophotovoltaic system. The proposed design shows more than 85% of absorption over 0.3 to 2.18 μm, that is, over the broad spectral range from the ultraviolet to the near infrared (NIR), and 100% absorption and thermal emission at 2.18 μm. Further, the NIR plasmonic absorption and thermal emission peak is tuned from the spectral range 2.18 to 3 μm for different low bandgap photovoltaic materials by varying the design parameters such as inner and outer ring radius, instead of varying any other design parameters in the proposed design. The possibility of the realization of hexa-doughnut structures through a single-step phase engineered interference lithography technique is also demonstrated through the realization of micro/nanostructure samples over large area.

  1. Mode structure of a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. A.; Suris, R. A.

    2011-03-01

    We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.

  2. Calculation of absorption parameters for selected narcotic drugs in the energy range from 1 keV to 100 GeV

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Kaçal, Mustafa Recep; Akdemir, Fatma; Araz, Aslı; Turhan, Mehmet Fatih; Durak, Rıdvan

    2017-04-01

    The total mass attenuation coefficients (μ/ρ), total molecular (σt,m), atomic (σt,a) and electronic (σt,e) cross sections, effective atomic numbers (Zeff) and electron density (NE) were computed in the wide energy region from 1 keV to 100 GeV for the selected narcotic drugs such as morphine, heroin, cocaine, ecstasy and cannabis. The changes of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE with photon energy for total photon interaction shows the dominance of different interaction process in different energy regions. The variations of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE depend on the atom number, photon energy and chemical composition of narcotic drugs. Also, these parameters change with number of elements, the range of atomic numbers in narcotic drugs and total molecular weight. These data can be useful in the field of forensic sciences and medical diagnostic.

  3. Effect of Reynolds and Grashof numbers on mixed convection inside a lid-driven square cavity filled with water-Al2O3 nanofluid

    NASA Astrophysics Data System (ADS)

    Jaman, Md. Shah; Islam, Showmic; Saha, Sumon; Hasan, Mohammad Nasim; Islam, Md. Quamrul

    2016-07-01

    A numerical analysis is carried out to study the performance of steady laminar mixed convection flow inside a square lid-driven cavity filled with water-Al2O3 nanofluid. The top wall of the cavity is moving at a constant velocity and is heated by an isothermal heat source. Two-dimensional Navier-stokes equations along with the energy equations are solved using Galerkin finite element method. Results are obtained for a range of Reynolds and Grashof numbers by considering with and without the presence of nanoparticles. The parametric studies for a wide range of governing parameters in case of pure mixed convective flow show significant features of the present problem in terms of streamline and isotherm contours, average Nusselt number and average temperature profiles. The computational results indicate that the heat transfer coeffcient is strongly influenced by the above governing parameters at the pure mixed convection regime.

  4. Data decomposition of Monte Carlo particle transport simulations via tally servers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithmmore » in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.« less

  5. Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland

    NASA Astrophysics Data System (ADS)

    Szuszkiewicz, Marcin; Magiera, Tadeusz; Kapička, Aleš; Petrovský, Eduard; Grison, Hanna; Gołuchowska, Beata

    2015-05-01

    Dust emission and deposition in topsoil have negative effect on individual components of the ecosystem. In addition to routine geochemical analyses, magnetic measurements may provide useful complementary information related to the type, concentration and grain-size distribution of the technogenic magnetic particles (TMPs) and thus the degree of contamination of the environment. The aim of this contribution is to use magnetic parameters in distinguishing dust from a wide range of sources of air pollution (power industry, cement, coke, ceramic industries and biomass combustion). We measured magnetic susceptibility, hysteresis parameters and thermomagnetic curves. Our results suggest that predominant component in tested samples is magnetite, only dust from coking plant and the combustion of lignite contained also maghemite and/or hematite. Mixture of sizes, ranging from fine single-domain to coarse multi-domain grains, was detected. Our results indicate that industrial dusts from various sources of emissions have different specific magnetic properties and magnetic measurements may provide very helpful information.

  6. Fabrication of Titania Nanotubes for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  7. On the Active and Passive Flow Separation Control Techniques over Airfoils

    NASA Astrophysics Data System (ADS)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  8. Molecular size and molecular size distribution affecting traditional balsamic vinegar aging.

    PubMed

    Falcone, Pasquale Massimiliano; Giudici, Paolo

    2008-08-27

    A first attempt at a semiquantitative study of molecular weight (MW) and molecular weight distribution (MWD) in cooked grape must and traditional balsamic vinegar (TBV) with increasing well-defined age was performed by high-performance liquid size exclusion chromatography (SEC) using dual detection, that is, differential refractive index (DRI) and absorbance (UV-vis) based detectors. With this aim, MW and MWD, including number- and weight-average MW and polydispersity, were determined with respect to a secondary standard and then analyzed. All investigated vinegar samples were recognized as compositionally and structurally heterogeneous blends of copolymers (melanoidins) spreading over a wide range of molecular sizes: the relative MW ranged from 2 to >2000 kDa. The extent of the polymerization reactions was in agreement with the TBV browning kinetics. MWD parameters varied asymptotically toward either upper or lower limits during aging, reflecting a nonequilibrium status of the balance between polymerization and depolymerization reactions in TBV. MWD parameters were proposed as potential aging markers of TBV.

  9. LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme

    NASA Technical Reports Server (NTRS)

    Hadjadj, A; Yee, H. C.; Sjogreen, B.

    2011-01-01

    An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).

  10. Image simulations of quantum dots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, C.; Liao, Xiaozhou; Cockayne, D. J.

    2001-01-01

    Quantum dot (QD) nanostructures have drawn increased interest in recent years. Their small size leads to quantum confinement of the electrons, which is responsible for their unique electronic and optical properties. They promise to find use in a wide range of devices ranging from semiconductor lasers (Bimberg et al (2001), Ribbat et al (2001)) to quantum computing. The properties of QDs are also determined by their shape and composition. All three parameters (size, shape and composition) have a significant impact on their contrast in the transmission electron microscope (TEM), and consequently the possibility arises that these parameters can be extractedmore » from the images. Zone axis plan view images are especially sensitive to the composition of QDs, and image simulation is an important way to understand how the composition determines the contrast. This paper outlines a method of image simulation of QDs developed by Liao et. al. (1999) and presents an application of the method to QDs in wurtzite InN/GaN.« less

  11. Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinsu; Ko, Pyungwon; Park, Wan-Il, E-mail: kimjinsu@kias.re.kr, E-mail: pko@kias.re.kr, E-mail: Wanil.Park@uv.es

    We show that the Higgs portal interactions involving extra dark Higgs field can save generically the original Higgs inflation of the standard model (SM) from the problem of a deep non-SM vacuum in the SM Higgs potential. Specifically, we show that such interactions disconnect the top quark pole mass from inflationary observables and allow multi-dimensional parameter space to save the Higgs inflation, thanks to the additional parameters (the dark Higgs boson mass m {sub φ}, the mixing angle α between the SM Higgs H and dark Higgs Φ, and the mixed quartic coupling) affecting RG-running of the Higgs quartic coupling.more » The effect of Higgs portal interactions may lead to a larger tensor-to-scalar ratio, 0.08 ∼< r ∼< 0.1, by adjusting relevant parameters in wide ranges of α and m {sub φ}, some region of which can be probed at future colliders. Performing a numerical analysis we find an allowed region of parameters, matching the latest Planck data.« less

  12. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  13. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE PAGES

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  14. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  15. Performance analysis and evaluation of direct phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Gao, Nan; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2018-04-01

    Three-dimensional (3D) shape measurement of specular objects plays an important role in intelligent manufacturing applications. Phase measuring deflectometry (PMD)-based methods are widely used to obtain the 3D shapes of specular surfaces because they offer the advantages of a large dynamic range, high measurement accuracy, full-field and noncontact operation, and automatic data processing. To enable measurement of specular objects with discontinuous and/or isolated surfaces, a direct PMD (DPMD) method has been developed to build a direct relationship between phase and depth. In this paper, a new virtual measurement system is presented and is used to optimize the system parameters and evaluate the system's performance in DPMD applications. Four system parameters are analyzed to obtain accurate measurement results. Experiments are performed using simulated and actual data and the results confirm the effects of these four parameters on the measurement results. Researchers can therefore select suitable system parameters for actual DPMD (including PMD) measurement systems to obtain the 3D shapes of specular objects with high accuracy.

  16. Parameter Estimation of Actuators for Benchmark Active Control Technology (BACT) Wind Tunnel Model with Analysis of Wear and Aerodynamic Loading Effects

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Fung, Jimmy

    1998-01-01

    This report describes the development of transfer function models for the trailing-edge and upper and lower spoiler actuators of the Benchmark Active Control Technology (BACT) wind tunnel model for application to control system analysis and design. A simple nonlinear least-squares parameter estimation approach is applied to determine transfer function parameters from frequency response data. Unconstrained quasi-Newton minimization of weighted frequency response error was employed to estimate the transfer function parameters. An analysis of the behavior of the actuators over time to assess the effects of wear and aerodynamic load by using the transfer function models is also presented. The frequency responses indicate consistent actuator behavior throughout the wind tunnel test and only slight degradation in effectiveness due to aerodynamic hinge loading. The resulting actuator models have been used in design, analysis, and simulation of controllers for the BACT to successfully suppress flutter over a wide range of conditions.

  17. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    PubMed Central

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650

  18. Use of Multiple Linear Regression Models for Setting Water Quality Criteria for Copper: A Complementary Approach to the Biotic Ligand Model.

    PubMed

    Brix, Kevin V; DeForest, David K; Tear, Lucinda; Grosell, Martin; Adams, William J

    2017-05-02

    Biotic Ligand Models (BLMs) for metals are widely applied in ecological risk assessments and in the development of regulatory water quality guidelines in Europe, and in 2007 the United States Environmental Protection Agency (USEPA) recommended BLM-based water quality criteria (WQC) for Cu in freshwater. However, to-date, few states have adopted BLM-based Cu criteria into their water quality standards on a state-wide basis, which appears to be due to the perception that the BLM is too complicated or requires too many input variables. Using the mechanistic BLM framework to first identify key water chemistry parameters that influence Cu bioavailability, namely dissolved organic carbon (DOC), pH, and hardness, we developed Cu criteria using the same basic methodology used by the USEPA to derive hardness-based criteria but with the addition of DOC and pH. As an initial proof of concept, we developed stepwise multiple linear regression (MLR) models for species that have been tested over wide ranges of DOC, pH, and hardness conditions. These models predicted acute Cu toxicity values that were within a factor of ±2 in 77% to 97% of tests (5 species had adequate data) and chronic Cu toxicity values that were within a factor of ±2 in 92% of tests (1 species had adequate data). This level of accuracy is comparable to the BLM. Following USEPA guidelines for WQC development, the species data were then combined to develop a linear model with pooled slopes for each independent parameter (i.e., DOC, pH, and hardness) and species-specific intercepts using Analysis of Covariance. The pooled MLR and BLM models predicted species-specific toxicity with similar precision; adjusted R 2 and R 2 values ranged from 0.56 to 0.86 and 0.66-0.85, respectively. Graphical exploration of relationships between predicted and observed toxicity, residuals and observed toxicity, and residuals and concentrations of key input parameters revealed many similarities and a few key distinctions between the performances of the two models. The pooled MLR model was then applied to the species sensitivity distribution to derive acute and chronic criteria equations similar in form to the USEPA's current hardness-based criteria equations but with DOC, pH, and hardness as the independent variables. Overall, the MLR is less responsive to DOC than the BLM across a range of hardness and pH conditions but more responsive to hardness than the BLM. Additionally, at low and intermediate hardness, the MLR model is less responsive than the BLM to pH, but the two models respond comparably at high hardness. The net effect of these different response profiles is that under many typical water quality conditions, MLR- and BLM-based criteria are quite comparable. Indeed, conditions where the two models differ most (high pH/low hardness and low pH/high hardness) are relatively rare in natural aquatic systems. We suggest that this MLR-based approach, which includes the mechanistic foundation of the BLM but is also consistent with widely accepted hardness-dependent WQC in terms of development and form, may facilitate adoption of updated state-wide Cu criteria that more accurately account for the parameters influencing Cu bioavailability than current hardness-based criteria.

  19. OPEN CLUSTERS AS PROBES OF THE GALACTIC MAGNETIC FIELD. I. CLUSTER PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoq, Sadia; Clemens, D. P., E-mail: shoq@bu.edu, E-mail: clemens@bu.edu

    2015-10-15

    Stars in open clusters are powerful probes of the intervening Galactic magnetic field via background starlight polarimetry because they provide constraints on the magnetic field distances. We use 2MASS photometric data for a sample of 31 clusters in the outer Galaxy for which near-IR polarimetric data were obtained to determine the cluster distances, ages, and reddenings via fitting theoretical isochrones to cluster color–magnitude diagrams. The fitting approach uses an objective χ{sup 2} minimization technique to derive the cluster properties and their uncertainties. We found the ages, distances, and reddenings for 24 of the clusters, and the distances and reddenings formore » 6 additional clusters that were either sparse or faint in the near-IR. The derived ranges of log(age), distance, and E(B−V) were 7.25–9.63, ∼670–6160 pc, and 0.02–1.46 mag, respectively. The distance uncertainties ranged from ∼8% to 20%. The derived parameters were compared to previous studies, and most cluster parameters agree within our uncertainties. To test the accuracy of the fitting technique, synthetic clusters with 50, 100, or 200 cluster members and a wide range of ages were fit. These tests recovered the input parameters within their uncertainties for more than 90% of the individual synthetic cluster parameters. These results indicate that the fitting technique likely provides reliable estimates of cluster properties. The distances derived will be used in an upcoming study of the Galactic magnetic field in the outer Galaxy.« less

  20. Dynamics of Mass Transfer in Wide Symbiotic Systems

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Karovska, M.; Sasselov, D.

    2010-01-01

    We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.

  1. Growth and structure of the World Wide Web: Towards realistic modeling

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2002-08-01

    We simulate evolution of the World Wide Web from the dynamic rules incorporating growth, bias attachment, and rewiring. We show that the emergent double-hierarchical structure with distinct distributions of out- and in-links is comparable with the observed empirical data when the control parameter (average graph flexibility β) is kept in the range β=3-4. We then explore the Web graph by simulating (a) Web crawling to determine size and depth of connected components, and (b) a random walker that discovers the structure of connected subgraphs with dominant attractor and promoter nodes. A random walker that adapts its move strategy to mimic local node linking preferences is shown to have a short access time to "important" nodes on the Web graph.

  2. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    PubMed

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  3. Design and calibration of zero-additional-phase SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Peter; Riedle, Eberhard

    2005-09-01

    Zero-additional-phase spectral phase interferometry for direct electric field reconstruction (ZAP-SPIDER) is a novel technique for measuring the temporal shape and phase of ultrashort optical pulses directly at the interaction point of a spectroscopic experiment. The scheme is suitable for an extremely wide wavelength region from the ultraviolet to the near infrared. We present a comprehensive description of the experimental setup and design guidelines to effectively apply the technique to various wavelengths and pulse durations. The calibration of the setup and procedures to check the consistency of the measurement are discussed in detail. We show experimental data for various center wavelengthsmore » and pulse durations down to 7 fs to verify the applicability to a wide range of pulse parameters.« less

  4. Phase Change Characteristics of InxSb40-xTe60 Chalcogenide Alloy for Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yun, Jae-Jin; Lee, Won-Jong

    2011-07-01

    The InxSb40-xTe60 alloy was selected as a new alternative phase change material for Ge2Sb2Te5 (GST) for phase change random access memory (PRAM). The crystal structure of InxSb40-xTe60 was an α(Sb2Te3) rhombohedral (a=b=c, α=β=γ≠90°) single phase with identical lattice parameters in a wide composition range of In (0-28 at. %). The crystallization temperature and melting point of InxSb40-xTe60 were in the ranges of 149-219 °C and 608-614 °C, respectively, and similar to those of GST. The electric properties of InxSb40-xTe60 with a wide composition range of In contents showed the typical PRAM properties such as current-voltage (I-V), resistance-voltage (R-V), and switching behavior. The reset current of InxSb40-xTe60 decreased with increasing In content and the low power consumption and good retention can be realized by controlling In content. The ratio of the cell resistance and sheet resistance of amorphous InxSb40-xTe60 to those crystalline InxSb40-xTe60 were almost the same as or larger than those of GST. The cycling endurance test of InxSb40-xTe60 with a wide range of In contents showed the comparable results to GST. InxSb40-xTe60 was concluded to be a very promising phase change material for PRAM.

  5. Deterministic phase slips in mesoscopic superconducting rings

    PubMed Central

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-01-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity. PMID:27882924

  6. Deterministic phase slips in mesoscopic superconducting rings.

    PubMed

    Petković, I; Lollo, A; Glazman, L I; Harris, J G E

    2016-11-24

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  7. Temperature anisotropy instabilities stimulated by the interplay of the core and halo electrons in space plasmas

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Shaaban, S. M.; Fichtner, H.; Poedts, S.

    2018-02-01

    Two central components are revealed by electron velocity distributions measured in space plasmas, a thermal bi-Maxwellian core and a bi-Kappa suprathermal halo. A new kinetic approach is proposed to characterize the temperature anisotropy instabilities driven by the interplay of core and halo electrons. Suggested by the observations in the solar wind, direct correlations of these two populations are introduced as co-variations of the key parameters, e.g., densities, temperature anisotropies, and (parallel) plasma betas. The approach involving correlations enables the instability characterization in terms of either the core or halo parameters and a comparative analysis to depict mutual effects. In the present paper, the instability conditions are described for an extended range of plasma beta parameters, making the new dual approach relevant for a wide variety of space plasmas, including the solar wind and planetary magnetospheres.

  8. Beyond Description in Interpersonal Construct Validation: Methodological Advances in the Circumplex Structural Summary Approach.

    PubMed

    Zimmermann, Johannes; Wright, Aidan G C

    2017-01-01

    The interpersonal circumplex is a well-established structural model that organizes interpersonal functioning within the two-dimensional space marked by dominance and affiliation. The structural summary method (SSM) was developed to evaluate the interpersonal nature of other constructs and measures outside the interpersonal circumplex. To date, this method has been primarily descriptive, providing no way to draw inferences when comparing SSM parameters across constructs or groups. We describe a newly developed resampling-based method for deriving confidence intervals, which allows for SSM parameter comparisons. In a series of five studies, we evaluated the accuracy of the approach across a wide range of possible sample sizes and parameter values, and demonstrated its utility for posing theoretical questions on the interpersonal nature of relevant constructs (e.g., personality disorders) using real-world data. As a result, the SSM is strengthened for its intended purpose of construct evaluation and theory building. © The Author(s) 2015.

  9. Polar alignment of a protoplanetary disc around an eccentric binary II: Effect of binary and disc parameters

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Lubow, Stephen H.

    2018-06-01

    In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity and inclination. We compare results with predictions of linear theory. We show that polar alignment of a low mass disc may occur over a wide range of binary-disc parameters. We discuss the application of our results to the formation of planetary systems around eccentric binary stars.

  10. An improved model of the Earth's gravitational field: GEM-T1

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F. J.; Christodoulidis, D. C.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Martin, T. V.; Pavlis, E. C.

    1987-01-01

    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested.

  11. WaveAR: A software tool for calculating parameters for water waves with incident and reflected components

    NASA Astrophysics Data System (ADS)

    Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.

    2012-09-01

    The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.

  12. On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship.

    PubMed

    Koyama, Shinsuke

    2015-07-01

    We propose a statistical method for modeling the non-Poisson variability of spike trains observed in a wide range of brain regions. Central to our approach is the assumption that the variance and the mean of interspike intervals are related by a power function characterized by two parameters: the scale factor and exponent. It is shown that this single assumption allows the variability of spike trains to have an arbitrary scale and various dependencies on the firing rate in the spike count statistics, as well as in the interval statistics, depending on the two parameters of the power function. We also propose a statistical model for spike trains that exhibits the variance-to-mean power relationship. Based on this, a maximum likelihood method is developed for inferring the parameters from rate-modulated spike trains. The proposed method is illustrated on simulated and experimental spike trains.

  13. A general mixture theory. I. Mixtures of spherical molecules

    NASA Astrophysics Data System (ADS)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  14. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  15. Evaluating the use of electronegativity in band alignment models through the experimental slope parameter of lanthanum aluminate heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Chim, W. K.; Chiam, S. Y

    2011-11-01

    In this work, photoelectron spectroscopy is used to characterize the band alignment of lanthanum aluminate heterostructures which possess a wide range of potential applications. It is found that our experimental slope parameter agrees with theory using the metal-induced gap states model while the interface induced gap states (IFIGS) model yields unsatisfactory results. We show that this discrepancy can be attributed to the correlation between the dielectric work function and the electronegativity in the IFIGS model. It is found that the original trend, as established largely by metals, may not be accurate for larger band gap materials. By using a newmore » correlation, our experimental data shows good agreement of the slope parameter using the IFIGS model. This correlation, therefore, plays a crucial role in heterostructures involving wider bandgap materials for accurate band alignment prediction using the IFIGS model.« less

  16. Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model

    DOE PAGES

    Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.; ...

    2014-11-17

    Here, we study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V ) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V and μ) where this phase exists and how it competes with other phases such as the supersolid (SS) phase, is incompletely understood. We use the Stochastic Green Function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. The HI exists only at = 1, the SS phase existsmore » for a very wide range of parameters (including commensurate fillings) and displays power law decay in the one body Green function were our main conclusions. Additionally, we show that at fixed integer density, the system exhibits phase separation in the (U, V ) plane.« less

  17. Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.

    PubMed

    Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul

    2010-03-01

    We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.

  18. Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII

    PubMed Central

    2012-01-01

    Background Human carbonic anhydrases (CAs) play crucial role in various physiological processes including carbon dioxide and hydrocarbon transport, acid homeostasis, biosynthetic reactions, and various pathological processes, especially tumor progression. Therefore, CAs are interesting targets for pharmaceutical research. The structure-activity relationships (SAR) of designed inhibitors require detailed thermodynamic and structural characterization of the binding reaction. Unfortunately, most publications list only the observed thermodynamic parameters that are significantly different from the intrinsic parameters. However, only intrinsic parameters could be used in the rational design and SAR of the novel compounds. Results Intrinsic binding parameters for several inhibitors, including ethoxzolamide, trifluoromethanesulfonamide, and acetazolamide, binding to recombinant human CA XIII isozyme were determined. The parameters were the intrinsic Gibbs free energy, enthalpy, entropy, and the heat capacity. They were determined by titration calorimetry and thermal shift assay in a wide pH and temperature range to dissect all linked protonation reaction contributions. Conclusions Precise determination of the inhibitor binding thermodynamics enabled correct intrinsic affinity and enthalpy ranking of the compounds and provided the means for SAR analysis of other rationally designed CA inhibitors. PMID:22676044

  19. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    PubMed

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  20. A method for computing ion energy distributions for multifrequency capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.

    2007-03-01

    The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.

Top