Sample records for wide rectangular channels

  1. Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.

    DOT National Transportation Integrated Search

    2011-07-01

    Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...

  2. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  3. Critical heat flux for free convection boiling in thin rectangular channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the threemore » mechanisms of burnout. 17 refs., 7 figs.« less

  4. Jetting of a shear banding fluid in rectangular ducts

    PubMed Central

    Salipante, Paul F.; Little, Charles A. E.; Hudson, Steven D.

    2017-01-01

    Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report the characteristics and causes of a jetting flow instability of shear banding wormlike micelle solutions in microfluidic channels with rectangular cross sections over an intermediate volumetric flow regime. Particle-tracking methods are used to measure the three-dimensional flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting occurs, it is self-contained within a portion of the channel where the flow velocity is greater than the surroundings. We observe that the instability forms in channels with aspect ratio greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress localizations. Jetting is not observed in a lower concentration solution without shear banding. Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar behavior to the experimental observations and indicate that compressive normal stresses in the cross-stream directions support the development of the jetting flow. Our results show that nonuniform flow of shear thinning fluids can develop across the wide dimension in rectangular microfluidic channels, with implications for microfluidic rheometry. PMID:28691108

  5. Polydisperse particle-driven gravity currents in non-rectangular cross section channels

    NASA Astrophysics Data System (ADS)

    Zemach, T.

    2018-01-01

    We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.

  6. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  7. Bend losses in rectangular culverts.

    DOT National Transportation Integrated Search

    2008-09-01

    This study investigated bend losses for open channel flow in rectangular channels or culverts. Laboratory experiments were performed for sub-critical flow in rectangular channels with abrupt bends. Bend angles of approximately 30, 45, 60, 75 and 90 d...

  8. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers.

    PubMed

    Liu, Chao; Hu, Guoqing; Jiang, Xingyu; Sun, Jiashu

    2015-02-21

    Inertial microfluidics has emerged as an important tool for manipulating particles and cells. For a better design of inertial microfluidic devices, we conduct 3D direct numerical simulations (DNS) and experiments to determine the complicated dependence of focusing behaviour on the particle size, channel aspect ratio, and channel Reynolds number. We find that the well-known focusing of the particles at the two centers of the long channel walls occurs at a relatively low Reynolds number, whereas additional stable equilibrium positions emerge close to the short walls with increasing Reynolds number. Based on the numerically calculated trajectories of particles, we propose a two-stage particle migration which is consistent with experimental observations. We further present a general criterion to secure good focusing of particles for high flow rates. This work thus provides physical insight into the multiplex focusing of particles in rectangular microchannels with different geometries and Reynolds numbers, and paves the way for efficiently designing inertial microfluidic devices.

  9. Three-dimensional numerical simulations of turbulent cavitating flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Iben, Uwe; Makhnov, Andrei; Schmidt, Alexander

    2018-05-01

    Cavitation is a phenomenon of formation of bubbles (cavities) in liquid as a result of pressure drop. Cavitation plays an important role in a wide range of applications. For example, cavitation is one of the key problems of design and manufacturing of pumps, hydraulic turbines, ship's propellers, etc. Special attention is paid to cavitation erosion and to performance degradation of hydraulic devices (noise, fluctuations of the mass flow rate, etc.) caused by the formation of a two-phase system with an increased compressibility. Therefore, development of a model to predict cavitation inception and collapse of cavities in high-speed turbulent flows is an important fundamental and applied task. To test the algorithm three-dimensional simulations of turbulent flow of a cavitating liquid in a rectangular channel have been conducted. The obtained results demonstrate the efficiency and robustness of the formulated model and the algorithm.

  10. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  11. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels

    PubMed Central

    Nivedita, Nivedita; Ligrani, Phillip; Papautsky, Ian

    2017-01-01

    A wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude. In this work, we investigate these secondary flows in low aspect ratio spiral rectangular microchannels and define their development with respect to the channel aspect ratio and Dean number. This work is the first to experimentally and numerically investigate Dean flows in microchannels for Re > 100, and show presence of secondary Dean vortices beyond a critical Dean number. We further demonstrate the impact of these multiple vortices on particle and cell focusing. Ultimately, this work offers new insights into secondary flow instabilities for low-aspect ratio, spiral microchannels, with improved flow models for design of more precise and efficient microfluidic devices for applications such as cell sorting and micromixing. PMID:28281579

  12. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    NASA Astrophysics Data System (ADS)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  13. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    NASA Astrophysics Data System (ADS)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  14. Study of gas-water flow in horizontal rectangular channels

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.

  15. A Simplified Analytic Investigation of the Riverside Effects of Sediment Diversions

    DTIC Science & Technology

    2013-09-01

    demonstrated that the river bed consists of a sand layer of variable thickness, underlain by erosion resistant strata (either relict glacial deposits...following analysis. Simplifications and Initial Conditions. Consider a river modeled as a wide rectangular channel of constant width (Figure 1). The...CHETN-VII-13 September 2013 14  Short term effects include the redistribution of sediment by erosion upstream of the diversion to deposition

  16. Regimes of Two-Phase Flow in Short Rectangular Channel

    NASA Astrophysics Data System (ADS)

    Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.

    2009-08-01

    Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.

  17. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Yang, R.-J.

    2004-04-01

    Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in microchannels with various numbers of incorporated patterned rectangular blocks. Furthermore, a novel approach is introduced which patterns heterogeneous surfaces on the upper faces of these rectangular blocks in order to enhance species mixing. The simulation results confirm that the introduction of rectangular blocks within the mixing channel slightly enhances species mixing by constricting the bulk flow, hence creating a stronger diffusion effect. However, it is noted that a large number of blocks and hence a long mixing channel are required if a complete mixing of the species is to be obtained. The results also indicate that patterning heterogeneous upper surfaces on the rectangular blocks is an effective means of enhancing the species mixing. It is shown that increasing the magnitude of the heterogeneous surface zeta potential enables a reduction in the mixing channel length and an improved degree of mixing efficiency.

  18. Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.

    2006-08-01

    A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.

  19. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  20. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    PubMed

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  2. National Dam Safety Program. Roxbury Dam (Inventory Number 788) Delaware River Basin, Delaware County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-05-21

    service spillway was analyzed as a sharp - crested weir with:.a discharge coefficient (c) of 3.1. The auxiliary spillway channel was analyzed as a broad ...upstream portion of this channel is a concrete structure which forms a 27.4 foot long rectangular weir . There is a 5 foot vertical drop beyond the crest ...I on 1.5 Crest Width (ft) 12 g. Service Spillway Type: Concrete channel-rectangular weir . Five foot vertical drop beyond crest . Masonry and laid up

  3. Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.

  4. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  5. Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogeneous roughness.

    PubMed

    Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.

  6. Analytical Model of Advection and Erosion in a Rectangular Channel

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron

    2007-03-01

    We consider the Boussinesq pressure driven creeping flow in a rectangular channel. We assume a particle to be made of primary fragments bound together. Particles are advected by the flow and they erode because of the shear stresses imparted by the fluid. The time evolution of the numbers of particles of different sizes is described by the Bateman equations of nuclear radioactivity. We find, by solving these differential equations, the numbers of particles of each possible size as functions of time.

  7. Application of the Wiener-Hopf method for describing the propagation of sound in cylindrical and rectangular channels with an impedance jump in the presence of a flow

    NASA Astrophysics Data System (ADS)

    Sobolev, A. F.; Yakovets, M. A.

    2017-11-01

    Exact solutions to problems of the propagation of acoustic modes in lined channels with an impedance jump in the presence of a uniform flow are constructed. Two problems that can be solved by the Wiener- Hopf method—the propagation of acoustic modes in an infinite cylindrical channel with a transverse impedance jump and the propagation of acoustic modes in a rectangular channel with an impedance jump on one of its walls—are considered. On the channel walls, the Ingard-Myers boundary conditions are imposed and, as an additional boundary condition in the vicinity of the junction of the linings, the condition expressing the finiteness of the acoustic energy. Analytical expressions for the amplitudes of the transmitted and reflected fields are obtained.

  8. Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman

    2017-06-01

    Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.

  9. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.

    PubMed

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali

    2017-11-01

    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  10. Design of open rectangular and trapezoidal channels

    NASA Astrophysics Data System (ADS)

    González, C. P.; Vera, P. E.; Carrillo, G.; García, S.

    2018-04-01

    In this work, the results of designing open channels in rectangular and trapezoidal form are presented. For the development of the same important aspects were taken as determination of flows by means of formula of the rational method, area of the surface for its implementation, optimal form of the flow to meet the needs of that environment. In the design the parameter of the hydraulic radius expressed in terms of the hydraulic area and wet perimeter was determined, considering that the surface on which the fluid flows is the product of the perimeter of the section and the length of the channel and where shear is generated by the condition of no slippage.

  11. Performance analysis of SOI MOSFET with rectangular recessed channel

    NASA Astrophysics Data System (ADS)

    Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.

    2016-03-01

    In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.

  12. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    NASA Astrophysics Data System (ADS)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  13. Transition regime analytical solution to gas mass flow rate in a rectangular micro channel

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou; Dongari, Nishanth

    2012-11-01

    We present an analytical model predicting the experimentally observed gas mass flow rate in rectangular micro channels over slip and transition regimes without the use of any fitting parameter. Previously, Sone reported a class of pure continuum regime flows that requires terms of Burnett order in constitutive equations of shear stress to be predicted appropriately. The corrective terms to the conventional Navier-Stokes equation were named the ghost effect. We demonstrate in this paper similarity between Sone ghost effect model and newly so-called 'volume diffusion hydrodynamic model'. A generic analytical solution to gas mass flow rate in a rectangular micro channel is then obtained. It is shown that the volume diffusion hydrodynamics allows to accurately predict the gas mass flow rate up to Knudsen number of 5. This can be achieved without necessitating the use of adjustable parameters in boundary conditions or parametric scaling laws for constitutive relations. The present model predicts the non-linear variation of pressure profile along the axial direction and also captures the change in curvature with increase in rarefaction.

  14. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  15. System and method for chromatography and electrophoresis using circular optical scanning

    DOEpatents

    Balch, Joseph W.; Brewer, Laurence R.; Davidson, James C.; Kimbrough, Joseph R.

    2001-01-01

    A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.

  16. Flow field induced particle accumulation inside droplets in rectangular channels.

    PubMed

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  17. Numerical study of mixed convection heat transfer enhancement in a channel with active flow modulation

    NASA Astrophysics Data System (ADS)

    Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim

    2017-06-01

    A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.

  18. The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning

    NASA Astrophysics Data System (ADS)

    Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.

    2017-01-01

    In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.

  19. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  20. Transition between free, mixed and forced convection

    NASA Astrophysics Data System (ADS)

    Jaeger, W.; Trimborn, F.; Niemann, M.; Saini, V.; Hering, W.; Stieglitz, R.; Pritz, B.; Fröhlich, J.; Gabi, M.

    2017-07-01

    In this contribution, numerical methods are discussed to predict the heat transfer to liquid metal flowing in rectangular flow channels. A correct representation of the thermo-hydraulic behaviour is necessary, because these numerical methods are used to perform design and safety studies of components with rectangular channels. Hence, it must be proven that simulation results are an adequate representation of the real conditions. Up to now, the majority of simulations are related to forced convection of liquid metals flowing in circular pipes or rod bundle, because these geometries represent most of the components in process engineering (e.g. piping, heat exchanger). Open questions related to liquid metal heat transfer, among others, is the behaviour during the transition of the heat transfer regimes. Therefore, this contribution aims to provide useful information related to the transition from forced to mixed and free convection, with the focus on a rectangular flow channel. The assessment of the thermo-hydraulic behaviour under transitional heat transfer regimes is pursued by means of system code simulations, RANS CFD simulations, LES and DNS, and experimental investigations. Thereby, each of the results will compared to the others. The comparison of external experimental data, DNS data, RANS data and system code simulation results shows that the global heat transfer can be consistently represented for forced convection in rectangular flow channels by these means. Furthermore, LES data is in agreement with RANS CFD results for different Richardson numbers with respect to temperature and velocity distribution. The agreement of the simulation results among each other and the hopefully successful validation by means of experimental data will fosters the confidence in the predicting capabilities of numerical methods, which can be applied to engineering application.

  1. Numerical Simulation of Passage of a Neutrophil through a Rectangular Channel with a Moderate Constriction

    PubMed Central

    Shirai, Atsushi; Masuda, Sunao

    2013-01-01

    The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries. PMID:23527190

  2. Mixed convection in a horizontal rectangular channel - Experimental and numerical velocity distributions

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Quazzani, Jalil; Durand-Daubin, Arnaud; Rosenberger, Franz

    1992-01-01

    Mixed convection in a rectangular channel (width/height = 2) with bottom-heated and top-cooled sections is studied by laser Doppler anemometry in nitrogen at Ra = 22,200 and Re = 18.75, 36, and 54. At the lower Re values, symmetry breaking is observed in steady but spatially oscillating flows that prevail over a certain distance from the leading edge of the differentially heated section. Further downstream, unsteady flows are found even for Re = 18.75. Numerical models are used to investigate the effects of adiabatic, conducting (with a conductive-convective heat transfer coefficient), and perfectly conducting side walls; channel tilts and Prandtl number dependence. Good agreement between calculations and experiment is obtained for longitudinal convective roll velocities. The transverse velocities are found to be independent of Re.

  3. Propagation and switching of light in rectangular waveguiding structures

    NASA Astrophysics Data System (ADS)

    Sala, Anca L.

    1998-10-01

    In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.

  4. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel

    NASA Astrophysics Data System (ADS)

    Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali

    2018-02-01

    In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.

  5. Study of proton radiation effects among diamond and rectangular gate MOSFET layouts

    NASA Astrophysics Data System (ADS)

    Seixas, L. E., Jr.; Finco, S.; Silveira, M. A. G.; Medina, N. H.; Gimenez, S. P.

    2017-01-01

    This paper describes an experimental comparative study of proton ionizing radiation effects between the metal-oxide-semiconductor (MOS) Field Effect Transistors (MOSFETs) implemented with hexagonal gate shapes (diamond) and their respective counterparts designed with the classical rectangular ones, regarding the same gate areas, channel widths and geometrical ratios (W/L). The devices were manufactured by using the 350 nm bulk complementary MOS (CMOS) integrated circuits technology. The diamond MOSFET with α angles higher or equal to 90° tends to present a smaller vulnerability to the high doses ionizing radiation than those observed in the typical rectangular MOSFET counterparts.

  6. Gravity-driven, dry granular flows over a loose bed in stationary and homogeneous conditions

    NASA Astrophysics Data System (ADS)

    Meninno, Sabrina; Armanini, Aronne; Larcher, Michele

    2018-02-01

    Flows involving solid particulates have been widely studied in recent years, but their dynamics are still a complex issue to model because they strongly depend on the interaction with the boundary conditions. We report on laboratory investigations regarding homogeneous and steady flows of identical particles over a loose bed in a rectangular channel. Accurate measurements were carried out through imaging techniques to estimate profiles of the mean velocity, solid concentration, and granular temperature for a large set of flow rates and widths. Vertical and transversal structures observed in the flow change as interparticle interactions become more collisional, and they depend on the bottom over which the flow develops. The lateral confinement has a remarkable effect on the flow, especially for narrow channels compared with the grain size, and a hydraulic analogy is able to show how the walls influence the mechanisms of friction and energy dissipation.

  7. Pattern selection in an anisotropic Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloud, K.V.; Maher, J.V.

    1995-02-01

    The selection of steady-state viscous fingers has been measured in Hele-Shaw cells that are perturbed by having rectangular and square lattices etched on one of their plates. The strength of the perturbation was varied by varying the cell gap, and over a wide range of observable tip velocities this local perturbation was also made microscopic in the sense that the capillary length of the flow was large in comparison to the cell size of the underlying lattice. Above threshold the microscopic perturbation results in the selection of wider fingers than those selected in the unperturbed flow for all channel orientationsmore » in the experiment. All observed solutions are symmetric, centered in the channel, and have the relation between tip curvature and finger width expected of members of the Saffman-Taylor family of solutions. Selected solutions narrow again at tip velocities where the perturbations can no longer be considered microscopic.« less

  8. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equationmore » can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.« less

  9. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.

    PubMed

    Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A

    2006-02-01

    Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.

  10. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  11. Flow reversal and thermal limit in a heated rectangular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.; Yang, B.W.

    The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less

  12. High Quality Facade Segmentation Based on Structured Random Forest, Region Proposal Network and Rectangular Fitting

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Mayer, H.

    2018-05-01

    In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  13. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  14. New model for burnout prediction in channels of various cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, V.P.; Kozina, N.V.; Vinogrado, V.N.

    1995-09-01

    The model developed to predict a critical heat flux (CHF) in various channels is presented together with the results of data analysis. A model is the realization of relative method of CHF describing based on the data for round tube and on the system of correction factors. The results of data description presented here are for rectangular and triangular channels, annuli and rod bundles.

  15. Neutronic reactor

    DOEpatents

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  16. Spontaneous rise in open rectangular channels under gravity.

    PubMed

    Thammanna Gurumurthy, Vignesh; Roisman, Ilia V; Tropea, Cameron; Garoff, Stephen

    2018-05-17

    Fluid movement in microfluidic devices, porous media, and textured surfaces involves coupled flows over the faces and corners of the media. Spontaneous wetting of simple grooved surfaces provides a model system to probe these flows. This numerical study investigates the spontaneous rise of a liquid in an array of open rectangular channels under gravity, using the Volume-of-Fluid method with adaptive mesh refinement. The rise is characterized by the meniscus height at the channel center, outer face and the interior and exterior corners. At lower contact angles and higher channel aspect ratios, the statics and dynamics of the rise in the channel center show little deviation with the classical model for capillarity, which ignores the existence of corners. For contact angles smaller than 45°, rivulets are formed in the interior corners and a cusp at the exterior corner. The rivulets at long times obey the one-third power law in time, with a weak dependence on the geometry. The cusp behaviour at the exterior corner transforms into a smooth meniscus when the capillary force is higher in the channel, even for contact angles smaller than 45°. The width of the outer face does not influence the capillary rise inside the channel, and the channel size does not influence the rise on the outer face. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  18. Emancipating traditional channel network types: quantification of topology and geometry, and relation to geologic boundary conditions

    NASA Astrophysics Data System (ADS)

    Temme, A.; Langston, A. L.

    2017-12-01

    Traditional classification of channel networks is helpful for qualitative geologic and geomorphic inference. For instance, a dendritic network indicates no strong lithological control on where channels flow. However, an approach where channel network structure is quantified, is required to be able to indicate for instance how increasing levels of lithological control lead, gradually or suddenly, to a trellis-type drainage network Our contribution aims to aid this transition to a quantitative analysis of channel networks. First, to establish the range of typically occurring channel network properties, we selected 30 examples of traditional drainage network types from around the world. For each of these, we calculated a set of topological and geometric properties, such as total drainage length, average length of a channel segment and the average angle of intersection of channel segments. A decision tree was used to formalize the relation between these newly quantified properties on the one hand, and traditional network types on the other hand. Then, to explore how variations in lithological and geomorphic boundary conditions affect channel network structure, we ran a set of experiments with landscape evolution model Landlab. For each simulated channel network, the same set of topological and geometric properties was calculated as for the 30 real-world channel networks. The latter were used for a first, visual evaluation to find out whether a simulated network that looked, for instance, rectangular, also had the same set of properties as real-world rectangular channel networks. Ultimately, the relation between these properties and the imposed lithological and geomorphic boundary conditions was explored using simple bivariate statistics.

  19. Electroosmotic Flow in Rectangular Nanochannels with Variable Wall potential: Generation of Multiple Nano-Vortices

    NASA Astrophysics Data System (ADS)

    Chen, Lei

    2005-11-01

    Electroosmotic flow in nanochannels is characterized by a very small Reynolds number so that mixing is difficult. While several researchers have presented results for the case of periodic wall potential, and for a sudden change in potential there has been no systematic study of the effect of the variation of wall potential on the flow structure. We have calculated the flow and mass transport in a two-dimensional nanochannel having discontinuities in wall potential. Multiple nano-vortices are generated within the bulk flow due to the overpotential at the surface. The distributions of potential, velocity and mole fractions are calculated numerically and the structure of the flow within the ``nano-vortices'' resembles that of the classical Lamb vortex. The parameters that affect the circulation are investigated as well. The long electrode limit (the aspect ratio much less than one ) is investigated for small channels (EDLs are overlapped) and wide (thin EDL) channels as well. It is found that the flow is two-dimensional only near the corners of the electrode and is fully-developed elsewhere. The flow can be thus decomposed into one-dimensional electroosmotic flow and Poiseuille flow. For a wide channel, a singular perturbation analysis is performed for the electroosmotic component. The results are compared with recently generated experimental data. *This work is supported by the Air Force Office of Scientific Research through its Multi-University Research Initiative(MURI) program.

  20. Electro-osmotic flow in a rotating rectangular microchannel

    PubMed Central

    Ng, Chiu-On; Qi, Cheng

    2015-01-01

    An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inverse Ekman number), the Debye parameter, the aspect ratio of the channel and the distribution of zeta potentials on the channel walls. Under the conditions of fast rotation and a thin electric double layer (EDL), an Ekman–EDL develops on the horizontal walls. This is essentially an Ekman layer subjected to electrokinetic effects. The flow structure of this boundary layer as a function of the Ekman layer thickness normalized by the Debye length is investigated in detail in this study. It is also shown that the channel rotation may have qualitatively different effects on the flow rate, depending on the channel width and the zeta potential distributions. Axial and secondary flows are examined in detail to reveal how the development of a geostrophic core may lead to a rise or fall of the mean flow. PMID:26345088

  1. Study of design and technology factors influencing gas turbine blade cooling

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  2. Acoustic Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  3. Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid

    PubMed Central

    Kazi, Salim Newaz; Sadeghinezhad, Emad

    2014-01-01

    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236

  4. Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.

    PubMed

    Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza

    2014-01-01

    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.

  5. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  6. Boiling Visualization and Critical Heat Flux Phenomena In Narrow Rectangular Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. J. Kim; Y. H. Kim; S. J. Kim

    2004-12-01

    An experimental study was performed to investifate the pool boling critical hear flux (CHF) on one-dimensional inclined rectangular channels with narrow gaps by changing the orientation of a copper test heater assembly. In a pool of saturated water at atmospheric pressure, the test parameters include the gap sizes of 1,2,5, and 10 mm, andthe surface orientation angles from the downward facing position (180 degrees) to the vertical position (90 degress) respectively.

  7. Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters

    NASA Astrophysics Data System (ADS)

    Su, Jinghong; Chen, Xiaodong; Hu, Guoqing

    2018-03-01

    Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.

  8. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.

    PubMed

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results.

  9. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout

    PubMed Central

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975

  10. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  11. Enhanced Small Scale Heat Transfer in Rectangular Channels using Autonomous, Aero-Elastically Fluttering Reeds

    NASA Astrophysics Data System (ADS)

    Jha, Sourabh; Crittenden, Thomas; Glezer, Ari

    2017-11-01

    The limits of low Reynolds number forced convection heat transport within rectangular, mm-scale channels that model segments of air-cooled heat sinks are overcome by the deliberate formation of unsteady small-scale vortical motions that are induced by autonomous aero-elastic fluttering of cantilevered planar thin-film reeds. The coupled flow-structure interactions between the fluttering reeds and the embedding channel flow and the formation and evolution of the induced unsteady small-scale vortical motions are explored using video imaging and PIV. Concave/convex undulations of the reed's surface that are bounded by the channel's walls lead to the formation and advection of cells of vorticity concentration and ultimately to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the channel height, and result in increased turbulent kinetic energy and enhanced dissipation that persist far downstream from the reed and are reminiscent of a turbulent flow at significantly higher Reynolds numbers (e.g., at Re = 800, TKE increases by 86% ,40 channel widths downstream of reed tip). These small-scale motions lead to strong enhancement in heat transfer that increases with Re (e.g., at Re = 1,000 and 14,000, Nu increases by 36% and 91%, respectively). The utility of this approach is demonstrated in improving the thermal performance of low-Re heat sinks in air-cooled condensers of thermoelectric power plants. NSF-EPRI.

  12. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    PubMed

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of dynamic load on water flow boiling CHF in rectangular channels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Song, Baoyin; Li, Gang; Cao, Xi

    2018-06-01

    Experimental investigation into flow boiling critical heat flux (CHF) characteristics in narrow rectangular channels was performed under rotating state using distilled water as working fluids. The effects of mass velocity, inlet temperature and heating orientation on CHF under dynamic load were analyzed and discussed in this paper. The results show that the dynamic load obviously influences the CHF through enhancing two-phase mixing up and bubble separating. The greater the dynamic load, the higher the CHF values. The CHF values increase with the increase of mass velocity and inlet subcooling in the experimental range. The magnitude of CHF increase with the dynamic load for bottom heating is greater than that for up heating. The present study and its newly correlation may provide some technical supports in designing the airborne vapor cycle system.

  14. Wide range instantaneous temperature measurements of convective fluid flows by using a schlieren system based in color images

    NASA Astrophysics Data System (ADS)

    Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.

    2017-06-01

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as reference and it was found that the maximum temperature value obtained for green, blue and red color-channel was ∼275.6, ∼412.9, and ∼501.3 °C, respectively.

  15. Space shuttle orbit maneuvering engine reusable thrust chamber. Task 13: Subscale helium ingestion and two dimensional heating test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.

    1974-01-01

    Descriptions are given of the test hardware, facility, procedures, and results of electrically heated tube, channel and panel tests conducted to determine effects of helium ingestion, two dimensional conduction, and plugged coolant channels on operating limits of convectively cooled chambers typical of space shuttle orbit maneuvering engine designs. Helium ingestion in froth form, was studied in tubular and rectangular single channel test sections. Plugged channel simulation was investigated in a three channel panel. Burn-out limits (transition of film boiling) were studied in both single channel and panel test sections to determine 2-D conduction effects as compared to tubular test results.

  16. Fabrication of unique 3D microparticles in non-rectangular microchannels with flow lithography

    NASA Astrophysics Data System (ADS)

    Nam, Sung Min; Kim, Kibeom; Park, Wook; Lee, Wonhee

    Invention of flow lithography has offered a simple yet effective method of fabricating micro-particles. However particles produced with conventional techniques were largely limited to 2-dimensional shapes projected to form a column. We proposed inexpensive and simple soft-lithography techniques to fabricate micro-channels with various cross-sectional shapes. The non-rectangular channels are then used to fabricate micro-particles using flow lithography resulting in interesting 3D shapes such as tetrahedrals or half-pyramids. In addition, a microfluidic device capable of fabricating multi-layered micro-particles was developed. On-chip PDMS valves are used to trap and position the particle at the precise location in microchannel with varying cross-section. Multilayer particles are generated by sequential monomer exchange and polymerization along the channel. While conventional multi-layered particles made with droplet generators require their layer materials be dissolved in immiscible fluids, the new method allows diverse choice of materials, not limited to their diffusibility. The multilayer 3D particles can be applied in areas such as drug delivery and tissue engineering.

  17. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    NASA Astrophysics Data System (ADS)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  18. The Effect of Fluid Properties on Two-Phase Regimes of Flow in a Wide Rectangular Microchannel

    NASA Astrophysics Data System (ADS)

    Ronshin, F. V.; Cheverda, V. V.; Chinnov, E. A.; Kabov, O. A.

    2018-04-01

    We have experimentally studied a two-phase flow in a microchannel with a height of 150 μm and a width of 20 mm. Different liquids have been used, namely, a purified Milli-Q water, an 50% aqueous-ethanol solution, and FC-72. Before and after the experiment, the height of the microchannel was controlled, as well as the wettability of its walls and surface tension of liquids. Using the schlieren method, the main characteristics of two-phase flow in wide ranges of gas- and liquid-flow rates have been revealed. The flow regime-formation mechanism has been found to depend on the properties of the liquid used. The flow regime has been registered when the droplets moving along the microchannel are vertical liquid bridges. It has been shown that, when using FC-72 liquid, a film of liquid is formed on the upper channel wall in the whole range of gas- and liquid-flow rates.

  19. Structural characteristics of a gas-liquid flow in a microchannel with a T-shaped mixer

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. V.; Kozulin, I. A.

    2017-11-01

    The results of experimental studies of the structural characteristics of a nitrogen-water mixture flow in a horizontal microchannel provided with a T-shaped mixer are presented. The experiments are performed in a channel with a rectangular cross section of 250 × 315 μm under the conditions of a dominating influence of capillary forces. Structural characteristics of the flow are determined using the two-beam laser scanning and high-speed video capture at a distance of 500 calibers from the inlet in a wide range of reduced gas- and liquid-flow rates. A new method for the identification of flow regimes is proposed based on the statistical treatment of the laser-scanning data, and a map of flow patterns is constructed.

  20. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.

    PubMed

    Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H

    2004-07-15

    This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.

  1. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S

    2011-10-07

    Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.

  2. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  3. METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM

    DOEpatents

    Aaland, K.; Kuenning, R.W.; Harmon, R.K.

    1961-05-01

    A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.

  4. Gravity Effects in Microgap Flow Boiling

    NASA Technical Reports Server (NTRS)

    Robinson, Franklin; Bar-Cohen, Avram

    2017-01-01

    Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.

  5. Determination of the functioning parameters in asymmetrical flow field-flow fractionation with an exponential channel.

    PubMed

    Déjardin, P

    2013-08-30

    The flow conditions in normal mode asymmetric flow field-flow fractionation are determined to approach the high retention limit with the requirement d≪l≪w, where d is the particle diameter, l the characteristic length of the sample exponential distribution and w the channel height. The optimal entrance velocity is determined from the solute characteristics, the channel geometry (exponential to rectangular) and the membrane properties, according to a model providing the velocity fields all over the cell length. In addition, a method is proposed for in situ determination of the channel height. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    NASA Astrophysics Data System (ADS)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  7. New Subarray Readout Patterns for the ACS Wide Field Channel

    NASA Astrophysics Data System (ADS)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  8. Lattice Boltzmann Equation On a 2D Rectangular Grid

    NASA Technical Reports Server (NTRS)

    Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

  9. Analytical study of mixed electroosmotic-pressure-driven flow in rectangular micro-channels

    NASA Astrophysics Data System (ADS)

    Movahed, Saeid; Kamali, Reza; Eghtesad, Mohammad; Khosravifard, Amir

    2013-09-01

    Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson-Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson-Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.

  10. The Geomorphically Effective Hydrograph: An Emerging Concept For Interpreting Channel Morphology And Evolution

    NASA Astrophysics Data System (ADS)

    Grant, G.; Hempel, L. A.; Marwan, H.; Eaton, B. C.; Lewis, S.

    2017-12-01

    Predicting how alluvial channels adjust to changes in their flow and sediment regimes is one of the Holy Grails of geomorphology. Consider Lane's balance - one of the most widely recognized conceptual models in geomorphology - which graphically shows how a change in any one of the driving variables of slope, grain size, sediment transport rate, or discharge can be accommodated by changes in the other variables. Much of the history of process geomorphology addresses how channels respond to these controlling factors. Yet the emphasis has been disproportionately focused on the effects and consequences of changing sediment transport rates or grain size. Much less attention has been paid to how changing discharge itself, particularly over short, event-based timescales influences the channel. Discharge has typically been treated as a single value - often the bankfull discharge - with little attention paid to how the unsteady nature of flow during floods may influence the morphology of the channel. More attention has been paid recently to the effect of hydrograph shape on channel characteristics, notably the texture of the channel bed. There is little theory and scant data, however, that highlights how the hydrograph affects the channel. We have begun to address this problem through models and targeted experiments. Our goal is to explore the idea of the geomorphically effective hydrograph: the concept that hydrographs with different forms, durations, and sequences play a major, controlling role in shaping the form and organization of alluvial channels. We report on results from both field studies and flume experiments that lend support to this hypothesis. We compare channel forms in channels with radically different flow regimes. The distinctive rectangular shape, constant slope, and absence of alluvial bars in spring-fed channels are in sharp contrast to the more asymmetric channels with regular pool/riffle patterns observed in systems where discharge varies over orders of magnitude. Flume studies reveal how channel organization, defined as the tendency to form regularly-spaced pools, riffles, and bars, is related to the flashiness of the hydrograph. Drawing on these and other studies, we develop a conceptual model that accounts for hydrograph shape as an overarching control on channel development and evolution.

  11. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  12. Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

  13. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    PubMed

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  14. Advanced porous electrodes with flow channels for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  15. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  16. Analysis of the velocity distribution in different types of ventilation system ducts

    NASA Astrophysics Data System (ADS)

    Peszyński, Kazimierz; Olszewski, Lukasz; Smyk, Emil; Perczyński, Daniel

    2018-06-01

    The paper presents the results obtained during the preliminary studies of circular and rectangular ducts before testing the properties elements (elbows, tees, etc.)of rectangular with rounded corners ducts. The fundamental problem of the studies was to determine the flow rate in the ventilation duct. Due to the size of the channel it was decided to determine the flow rate based on the integration of flow velocity over the considered cross-section. This method requires knowledge of the velocity distribution in the cross section. Approximation of the measured actual profile by the classic and modified Prandtl power-law velocity profile was analysed.

  17. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  18. Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges

    NASA Astrophysics Data System (ADS)

    Vinogradova, Elena D.

    2017-11-01

    The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.

  19. Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Chang, Byong Hoon

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.

  20. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  1. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felde, David K.; Crye, Jason Michael; Wendel, Mark W.

    2017-03-01

    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  2. Space shuttle orbit maneuvering engine reusable thrust chamber: Adverse operating conditions test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.

    1974-01-01

    Test hardware, facilities, and procedures are described along with results of electrically heated tube and channel tests conducted to determine adverse operating condition limits for convectively cooled chambers typical of Space Shuttle Orbit Manuevering Engine designs. Hot-start tests were conducted with corrosion resistant steel and nickel tubes with both monomethylhydrazine and 50-50 coolants. Helium ingestion, in both bubble and froth form, was studied in tubular test sections. Helium bubble ingestion and burn-out limits in rectangular channels were also investigated.

  3. Split-Block Waveguide Polarization Twist for 220 to 325 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam

    2008-01-01

    A split-block waveguide circuit that rotates polarization by 90 has been designed with WR-3 input and output waveguides, which are rectangular waveguides used for a nominal frequency range of 220 to 325 GHz. Heretofore, twisted rectangular waveguides equipped with flanges at the input and output have been the standard means of rotating the polarizations of guided microwave signals. However, the fabrication and assembly of such components become difficult at high frequency due to decreasing wavelength, such that twisted rectangular waveguides become impractical at frequencies above a few hundred gigahertz. Conventional twisted rectangular waveguides are also not amenable to integration into highly miniaturized subassemblies of advanced millimeter- and submillimeter-wave detector arrays now undergoing development. In contrast, the present polarization- rotating waveguide can readily be incorporated into complex integrated waveguide circuits such as miniaturized detector arrays fabricated by either conventional end milling of metal blocks or by deep reactive ion etching of silicon blocks. Moreover, the present split-block design can be scaled up in frequency to at least 5 THz. The main step in fabricating a splitblock polarization-rotating waveguide of the present design is to cut channels having special asymmetrically shaped steps into mating upper and lower blocks (see Figure 1). The dimensions of the steps are chosen to be consistent with the WR-3 waveguide cross section, which is 0.864 by 0.432 mm. The channels are characterized by varying widths with constant depths of 0.432, 0.324, and 0.216 mm and by relatively large corner radii to facilitate fabrication. The steps effect both a geometric transition and the corresponding impedance-matched electromagnetic-polarization transition between (1) a WR-3 rectangular waveguide oriented with the electric field vector normal to the block mating surfaces and (2) a corresponding WR-3 waveguide oriented with its electric field vector parallel to the mating surfaces of the blocks. A prototype has been built and tested. Figure 2 presents test results indicative of good performance over nearly the entire WR-3 waveguide frequency band.

  4. Impact of selected parameters on the development of boiling and flow resistance in the minichannel

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Ziętala, Kinga

    2015-05-01

    The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure), geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.

  5. Encapsulated fuel unit and method of forming same

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Lewandowski, Edward F.

    1985-01-01

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1-2 inches wide and 2-4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3-10 microns size.

  6. Improved encapsulated fuel unit and method of forming same

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Lewandowski, E.

    1982-09-07

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1 to 2 inches wide and 2 to 4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3 to 10 microns size.

  7. From the generalized reflection law to the realization of perfect anomalous reflectors

    PubMed Central

    Díaz-Rubio, Ana; Asadchy, Viktar S.; Elsakka, Amr; Tretyakov, Sergei A.

    2017-01-01

    The use of the generalized Snell’s law opens wide possibilities for the manipulation of transmitted and reflected wavefronts. However, known structures designed to shape reflection wavefronts suffer from significant parasitic reflections in undesired directions. We explore the limitations of the existing solutions for the design of passive planar reflectors and demonstrate that strongly nonlocal response is required for perfect performance. A new paradigm for the design of perfect reflectors based on energy surface channeling is introduced. We realize and experimentally verify a perfect design of an anomalously reflective surface using an array of rectangular metal patches backed by a metallic plate. This conceptually new mechanism for wavefront manipulation allows the design of thin perfect reflectors, offering a versatile design method applicable to other scenarios, such as focusing reflectors, surface wave manipulations, or metasurface holograms, extendable to other frequencies. PMID:28819642

  8. Bacterial populations growth under co- and counter-flow condition

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico

    2014-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.

  9. ETF magnet design alternatives for the national MHD program

    NASA Astrophysics Data System (ADS)

    Marston, P. G.; Thome, R. J.; Dawson, A. M.; Bobrov, E. S.; Hatch, A. M.

    1981-01-01

    Five superconducting magnet designs are evaluated for a 200 MWe test facility requiring a magnet with an on-axis field of 6 T, an inlet bore area of 4 sq m, storing 6 x 10 to the 9th J. The designs include a straightforward rectangular saddle coil set, a 'Cask' configuration based on staves and corner blocks as the main support structure, and an internally cooled, cabled superconductor to minimize the substructure and eliminate the helium vessel. Also, a modular design using six coils with individual helium vessels and an integrated structure produces a simplest configuration which utilizes a natural rectangular interface for packaging the MHD channel and its connections, and results in a lower capital cost.

  10. Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    NASA Astrophysics Data System (ADS)

    Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.

    2018-03-01

    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.

  11. [Zn(INO) 2(DMF)]·DMF: A new three-dimensional supramolecular open framework containing one-dimensional channels

    NASA Astrophysics Data System (ADS)

    Hong, Jun

    2006-02-01

    A three-dimensional supramolecular compound, [Zn(INO) 2(DMF)]·DMF (1) (INO=isonicotinic acid N-oxide), has been prepared in the DMF solution at room temperature, and characterized by elemental analysis, TG and single crystal X-ray diffraction. The three-dimensional supramolecular open framework of 1 contains rectangular channels with the dimensions of 9.02×10.15 Å, assembled from one-dimensional helical chains via hydrogen-bonding and π-π stacking interactions. Furthermore, compound 1 shows blue photoluminescence at room temperature.

  12. Turbulence Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2015-01-01

    This paper covers particle image velocimetry measurements of a family of rectangular nozzles with aspect ratios 2, 4, and 8, in the high subsonic flow regime. Far-field acoustic results, presented previously, showed that increasing aspect ratios increased the high frequency noise, especially directed in the polar plane containing the minor axis of the nozzle. The measurements presented here have important implications in the modeling of turbulent sources for acoustic analogy theories. While the nonaxisymmetric mean flow from the rectangular nozzles can be studied reliably using computational solutions, the nonaxisymmetry of the turbulent fluctuations, particularly at the level of velocity components, cannot; only measurements such as these can determine the impact of nozzle geometry on acoustic source anisotropy. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. The paper first documents the velocity fields, mean and variance, from the round, rectangular, and beveled rectangular nozzles at high subsonic speeds. A second section introduces measures of the isotropy of the turbulence, such as component ratios and lengthscales, first by showing them for a round jet and then for the rectangular nozzles. From these measures the source models of acoustic analogy codes can be judged or modified to account for these anisotropies.

  13. Investigation on Convergence – Divergence Nozzle Shape for Microscale Channel in Harvesting Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Zakaria, M. S.; Zairi, S.; Misbah, M. N.; Saifizi, M.; Rakawi, Izzudin

    2018-03-01

    This paper presents performance evaluation of nozzle shapes on microscale channel by employing different types of NACA airfoils profile and conventional profile. The deploying nozzle used are NACA 0012, NACA 0021 and NACA 0024 airfoils while for conventional convergence-divergence nozzle diameter ratio (d2 / d1) in the range from 1/4 to 3/4 are applied. These nozzles are assembled on rectangular cross sectional microscale channel which has designated constant fluid flow velocity at the channel inlet. This study revealed reduction on diameter ratio increased dramatically fluid velocity but further reduction on diameter ratio exposed fluid flow to fluctuate which slightly slowing down the fluid velocity. Nevertheless, curved NACA profiles are favourable for convergence – divergence nozzle in microscale channel as it significantly improved flow characteristics by enhancing fluid velocity and resultant kinetic energy as compared to conventional profile.

  14. Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Zaman, Khairul B.

    2010-01-01

    Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.

  15. An analytical solution for Dean flow in curved ducts with rectangular cross section

    NASA Astrophysics Data System (ADS)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  16. Endwall shape modification using vortex generators and fences to improve gas turbine cooling and effectiveness

    NASA Astrophysics Data System (ADS)

    Gokce, Zeki Ozgur

    The gas turbine is one of the most important parts of the air-breathing jet engine. Hence, improving its efficiency and rendering it operable under high temperatures are constant goals for the aerospace industry. Two types of flow within the gas turbine are of critical relevance: The flow around the first row of stator blades (also known as the nozzle guide vane blade - NGV) and the cooling flow inside the turbine blade cooling channel. The subject of this thesis work was to search for methods that could improve the characteristics of these two types of flows, thus enabling superior engine performance. The innovative aspect of our work was to apply an endwall shape modification previously employed by non-aerospace industries for cooling applications, to the gas turbine cooling flow which is vital to aerospace propulsion. Since the costs of investigating the possible benefits of any idea via extensive experiments could be quite high, we decided to use computational fluid dynamics (CFD) followed by experimentation as our methodology. We decided to analyze the potential benefits of using vortex generators (VGs) as well as the rectangular endwall fence. Since the pin-fins used in cooling flow are circular cylinders, and since the boundary layer flow is mainly characterized by the leading edge diameter of the NGV blade, we modeled both the pin-fins and the NGV blade as vertical circular cylinders. The baseline case consisted of the cylinder(s) being subjected to cross flow and a certain amount of freestream turbulence. The modifications we made on the endwall consisted of rectangular fences. In the case of the cooling flow, we used triangular shaped, common flow up oriented, delta winglet type vortex generators as well as rectangular endwall fences. The channel contained singular cylinders as well as staggered rows of multiple cylinders. For the NGV flow, a rectangular endwall fence and a singular cylinder were utilized. Using extensive CFD modeling and analysis, we confirmed that placing a rectangular endwall fence upstream of the cylinder created additional turbulent mixing in the domain. This led to increased mixing of the cooler flow in the freestream and the hotter flow near the endwall. As a result, we showed that adding a rectangular fence created a 10% mean heat transfer increase downstream of the cylinder. When vortex generators are used, as the flow passes over the sharp edges of the vortex generators, it separates and continues downstream in a rolling, helical pattern. Combined with the effect generated by the orientation of the vortex generators, this flow structure mixes the higher momentum fluid in the freestream with lower momentum fluid in the boundary layer. Similar turbulent mixing behavior is observed over the entire domain, near the cylinders and the side walls. As a result, the heat transfer levels over the wall surfaces are increased and improved cooling is achieved. The improvements in heat transfer are obtained at the expense of acceptable pressure losses across the cooling channel. When the vortex generators are used, the CFD modeling studies showed that overall heat transfer improvements as high as 27% compared to the baseline case are observed inside a domain containing multiple rows of cylinders. A price in the form of 13% pressure loss increase across the channel is paid for the heat transfer benefits. Experiments conducted in the open loop wind tunnel of the Turbomachinery Aero-Heat Transfer Laboratory of the Department of Aerospace Engineering of Penn State University supported the general positive trend of these findings, with a 14% overall increase in heat transfer over the constant heat flux surface when vortex generators are installed, accompanied by an 8% increase in pressure loss. (Abstract shortened by UMI.)

  17. Flame front propagation in a channel with porous walls

    NASA Astrophysics Data System (ADS)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  18. Investigations regarding the drag characteristics of flow-disturbing bodies which are arranged in line and attached to the wall

    NASA Technical Reports Server (NTRS)

    Balkowski, M.; Schollmeyer, H.

    1980-01-01

    The flow characteristics of rectangular bodies mounted on the base area of a rectangular closed wind tunnel are investigated. As many as four bodies are mounted in line with equal distances between successive bodies. The Mach number of the flowing air is in the range from 0.1 to 0.5. Total and individual drag values could be charged within a wide range by a suitable selection of the distance between successive bodies.

  19. Planetary Geomorphology

    NASA Technical Reports Server (NTRS)

    Malin, Michael C.

    1990-01-01

    One of the major problems in the series of ice runs was that the subsurface temperature probes did not function. AIC re-evaluated the design and, after testing several suitable sensors, installed 50 type T thermocouples, each 2 m long. In this design, each thermocouple was soldered to a rectangular copper foil spreader 0.3 com wide by 2.8 cm long to ensure an acute reading. The long rectangular shape was used because it had a large area for good thermal connection to the test material.

  20. Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.

    2018-01-01

    The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).

  1. Quasistatic packings of droplets in flat microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan

    2016-02-01

    As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.

  2. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  3. A multi-channel coronal spectrophotometer.

    NASA Technical Reports Server (NTRS)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  4. Effect of confinements: Bending in Paramecium

    NASA Astrophysics Data System (ADS)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  5. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  6. Characterization of small microfluidic valves for studies of mechanical properties of bacteria

    DOE PAGES

    Yang, Da; Greer, Clayton M.; Jones, Branndon P.; ...

    2015-09-02

    Lab-on-a-chip platforms present many new opportunities to study bacterial cells and cellular assemblies. Here, the authors describe a new platform that allows us to apply uniaxial stress to individual bacterial cells while observing the cell and its subcellular assemblies using a high resolution optical microscope. The microfluidic chip consists of arrays of miniature pressure actuated valves. By placing a bacterium under one of such valves and partially closing the valve by externally applied pressure, the cell can be deformed. Although large pressure actuated valves used in integrated fluidic circuits have been extensively studied previously, here the authors downsize those microfluidicmore » valves and use flow channels with rectangular cross-sections to maintain the bacteria in contact with cell culture medium during the experiments. The closure of these valves has not been characterized before. First, these valves are modeled using finite element analysis, and then compared the modeling results with the actual closing profiles of the valves, which is determined from absorption measurements. The measurements and modeling show with good agreement that the deflection of valves is a linear function of externally applied pressure and the deflection scales proportionally to the width of the flow channel. In addition to characterizing the valve, the authors show at a proof-of-principle level that it can be used to deform a bacterial cell at considerable magnitude. They found the largest deformations in 5 μm wide channels where the bacterial width and length increase by 1.6 and 1.25 times, respectively. Narrower and broader channels are less optimal for these studies. Finally, the platform presents a promising approach to probe, in a quantitative and systematic way, the mechanical properties of not only bacterial cells but possibly also yeast and other single-celled organisms.« less

  7. 33 CFR 110.193 - Tampa Bay, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... anchorage east of Mullet Key. A rectangular area in Tampa Bay, approximately 4,459 yards long and 1,419... 400 feet west of Cut “D” Channel at a point beginning at latitude 27°54′34″, longitude 82°26′35... anchorage east of Mullet Key shall be used by vessels awaiting loading or unloading at Port Tampa that have...

  8. 33 CFR 110.193 - Tampa Bay, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... anchorage east of Mullet Key. A rectangular area in Tampa Bay, approximately 4,459 yards long and 1,419... 400 feet west of Cut “D” Channel at a point beginning at latitude 27°54′34″, longitude 82°26′35... anchorage east of Mullet Key shall be used by vessels awaiting loading or unloading at Port Tampa that have...

  9. 33 CFR 110.193 - Tampa Bay, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anchorage east of Mullet Key. A rectangular area in Tampa Bay, approximately 4,459 yards long and 1,419... 400 feet west of Cut “D” Channel at a point beginning at latitude 27°54′34″, longitude 82°26′35... anchorage east of Mullet Key shall be used by vessels awaiting loading or unloading at Port Tampa that have...

  10. 33 CFR 110.193 - Tampa Bay, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anchorage east of Mullet Key. A rectangular area in Tampa Bay, approximately 4,459 yards long and 1,419... 400 feet west of Cut “D” Channel at a point beginning at latitude 27°54′34″, longitude 82°26′35... anchorage east of Mullet Key shall be used by vessels awaiting loading or unloading at Port Tampa that have...

  11. 33 CFR 110.193 - Tampa Bay, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... anchorage east of Mullet Key. A rectangular area in Tampa Bay, approximately 4,459 yards long and 1,419... 400 feet west of Cut “D” Channel at a point beginning at latitude 27°54′34″, longitude 82°26′35... anchorage east of Mullet Key shall be used by vessels awaiting loading or unloading at Port Tampa that have...

  12. Evaluation of the influence of bottom roughness on parameters of wave flows in channels

    NASA Astrophysics Data System (ADS)

    Valov, A. O.; Degtyarev, V. V.; Fedorova, N. N.

    2018-03-01

    In this paper, a comparative analysis of the results of numerical and experimental studies of the parameters of displacement waves in trays of a rectangular cross-sectional shape with different bottom roughness is performed with the "instantaneous" elimination of the obstacle creating the initial level difference. The program ANSYS complex is used in work.

  13. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  14. Silicon waveguided components for the long-wave infrared region

    NASA Astrophysics Data System (ADS)

    Soref, Richard A.; Emelett, Stephen J.; Buchwald, Walter R.

    2006-10-01

    We propose that the operational wavelength of waveguided Si-based photonic integrated circuits and optoelectronic integrated circuits can be extended beyond the 1.55 µm telecom range into the wide infrared from 1.55 to 100 µm. The Si rib-membrane waveguide offers low-loss transmission from 1.2 to 6 µm and from 24 to 100 µm. This waveguide, which is compatible with Si microelectronics manufacturing, is constructed from silicon-on-insulator by etching away the oxide locally beneath the rib. Alternatively, low-loss waveguiding from 1.9 to 14.7 µm is assured by employing a crystal Ge rib grown directly upon the Si substrate. The Si-based hollow-core waveguide is an excellent device that minimizes loss due to silicon's 6-24 µm multi-phonon absorption. Here the rectangular air-filled core is surrounded by SiGe/Si multi-layer anti-resonant or Bragg claddings. The hollow channel offers less than 1.7 dB cm-1 loss from 1.2 to 100 µm. .

  15. Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2009-06-01

    Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 × 105. Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages.

  16. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2018-02-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  17. Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel

    NASA Astrophysics Data System (ADS)

    Ahmed, Najma; Vieru, Dumitru; Fetecau, Constantin; Shah, Nehad Ali

    2018-05-01

    Time-nonlocal generalized model of the natural convection heat transfer and nanofluid flows through a rectangular vertical channel with wall conditions of the Robin type are studied. The generalized mathematical model with time-nonlocality is developed by considering the fractional constitutive equations for the shear stress and thermal flux defined with the time-fractional Caputo derivative. The Caputo power-law non-local kernel provides the damping to the velocity and temperature gradient; therefore, transport processes are influenced by the histories at all past and present times. Analytical solutions for dimensionless velocity and temperature fields are obtained by using the Laplace transform coupled with the finite sine-cosine Fourier transform which is suitable to problems with boundary conditions of the Robin type. Particularizing the fractional thermal and velocity parameters, solutions for three simplified models are obtained (classical linear momentum equation with damped thermal flux; fractional shear stress constitutive equation with classical Fourier's law for thermal flux; classical shear stress and thermal flux constitutive equations). It is found that the thermal histories strongly influence the thermal transport for small values of time t. Also, the thermal transport can be enhanced if the thermal fractional parameter decreases or by increasing the nanoparticles' volume fraction. The velocity field is influenced on the one hand by the temperature of the fluid and on the other by the damping of the velocity gradient introduced by the fractional derivative. Also, the transport motions of the channel walls influence the motion of the fluid layers located near them.

  18. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  19. Continuous equal channel angular pressing

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Raab, Georgy J.

    2006-12-26

    An apparatus that continuously processes a metal workpiece without substantially altering its cross section includes a wheel member having an endless circumferential groove, and a stationary constraint die that surrounds the wheel member, covers most of the length of the groove, and forms a passageway with the groove. The passageway has a rectangular shaped cross section. An abutment member projects from the die into the groove and blocks one end of the passageway. The wheel member rotates relative to the die in the direction toward the abutment member. An output channel in the die adjacent the abutment member has substantially the same cross section as the passageway. A metal workpiece is fed through an input channel into the passageway and carried in the groove by frictional drag in the direction towards the abutment member, and is extruded through the output channel without any substantial change in cross section.

  20. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  1. Dynamic film thickness between bubbles and wall in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Damsohn, Manuel; Prasser, Horst-Michael; Aritomi, Masanori

    2011-09-01

    The present paper describes a novel technique to characterize the behavior of the liquid film between gas bubbles and the wall in a narrow channel. The method is based on the electrical conductance. Two liquid film sensors are installed on both opposite walls in a narrow rectangular channel. The liquid film thickness underneath the gas bubbles is recorded by the first sensor, while the void fraction information is obtained by measuring the conductance between the pair of opposite sensors. Both measurements are taken on a large two-dimensional domain and with a high speed. This makes it possible to obtain the two-dimensional distribution of the dynamic liquid film between the bubbles and the wall. In this study, this method was applied to an air-water flow ranging from bubbly to churn regimes in the narrow channel with a gap width of 1.5 mm.

  2. An experimental investigation of the cooling channel geometry effects on the internal forced convection of liquid methane

    NASA Astrophysics Data System (ADS)

    Trejo, Adrian

    Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier) and 106 respectively. Heat transfer predictions applied to the data yielded theoretical correlations within 40% of the experimental data. However, typical theoretical values fall within 10%-15% of the experimental values showing agreeable correlations and supporting theories stated in the present study.

  3. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassemi, S.A.

    1988-04-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  4. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    NASA Technical Reports Server (NTRS)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  5. Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements

    NASA Astrophysics Data System (ADS)

    Sessoms, D. A.; Belloul, M.; Engl, W.; Roche, M.; Courbin, L.; Panizza, P.

    2009-07-01

    We present experimental, numerical, and theoretical studies of droplet flows in hydrodynamic networks. Using both millifluidic and microfluidic devices, we study the partitioning of monodisperse droplets in an asymmetric loop. In both cases, we show that droplet traffic results from the hydrodynamic feedback due to the presence of droplets in the outlet channels. We develop a recently-introduced phenomenological model [W. Engl , Phys. Rev. Lett. 95, 208304 (2005)] and successfully confront its predictions to our experimental results. This approach offers a simple way to measure the excess hydrodynamic resistance of a channel filled with droplets. We discuss the traffic behavior and the variations in the corresponding hydrodynamic resistance length Ld and of the droplet mobility β , as a function of droplet interdistance and confinement for channels having circular or rectangular cross sections.

  6. Effect of Finite Chemical Reaction Rates on Heat Transfer to the Walls of Combustion-Driven Supersonic MHD Generator Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAILY, J. W. ..; RAEDER, J.; ZANKL, G.

    1974-03-01

    The effect of finite-rate homogeneous chemical reactions on the heat transfer rates to the walls of combustion-driven supersonic MHD generators was investigated. Experiments were performed on a 200 kW(e) combustion generator. The density of the heat flux to the wall was measured at various axial positions along both a circular cross section Hall-type channel and a diagonal wall channel with a rectangular cross section. From the results it was concluded that a substantial decrease in heat transfer rate to the walls of a combustion-driven supersonic MHD power generator was ob served which appears to occur because of chemical nonequilibrium inmore » the developing wall boundary layers. (LCL)« less

  7. Topological transitions in unidirectional flow of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  8. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  9. Collapse of Non-Rectangular Channels in a Soft Elastomer

    NASA Astrophysics Data System (ADS)

    Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel

    2013-03-01

    We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.

  10. Study of the Effects of Centrifugal Instabilities on Flow in a 40 to 1 Aspect Ratio Rectangular Curved Channel, for Dean Numbers from 35 to Fully Turbulent Conditions

    DTIC Science & Technology

    1990-12-01

    is constructed from stainless steel hypodermic tubing with inner and outer diameters of 0.203 mm and 0.406 mm. The five tubes were first joined by...for all channels is 256 kHz. A schematic diagram of the measurement process [Ref. 25] is given in Figure 78, and is also described below. The analog...and smoke rake. Combustion takes place inside a 40.64 cm long, 6.27 cm inside diameter (2.5 inch schedule 40) steel pipe. Inside this chamber, smoke is

  11. A fast Laplace solver approach to pore scale permeability

    NASA Astrophysics Data System (ADS)

    Arns, Christoph; Adler, Pierre

    2017-04-01

    The permeability of a porous medium can be derived by solving the Stokes equations in the pore space with no slip at the walls. The resulting velocity averaged over the pore volume yields the permeability KS by application of the Darcy law. The Stokes equations can be solved by a number of different techniques such as finite differences, finite volume, Lattice Boltzmann, but whatever the technique it remains a heavy task since there are four unknowns at each node (the three velocity components and the pressure) which necessitate the solution of four equations (the projection of Newton's law on each axis and mass conservation). By comparison, the Laplace equation is scalar with a single unknown at each node. The objective of this work is to replace the Stokes equations by an elliptical equation with a space dependent permeability. More precisely, the local permeability k is supposed to be proportional to (r-alpha)**2 where r is the distance of the voxel to the closest wall, and alpha a constant; k is zero in the solid phase. The elliptical equation is div(k gradp)=0. A macroscopic pressure gradient is assumed to be exerted on the medium and again the resulting velocity averaged over space yields a permeability K_L. In order to validate this method, systematic calculations have been performed. First, elementary shapes (plane channel, circular pipe, rectangular channels) were studied for which flow occurs along parallel lines in which case KL is the arithmetic average of the k's. KL was calculated for various discretizations of the pore space and various values of alpha. For alpha=0.5, the agreement with the exact analytical value of KS is excellent for the plane and rectangular channels while it is only approximate for circular pipes. Second, the permeability KL of channels with sinusoidal walls was calculated and compared with analytical results and numerical ones provided by a Lattice Boltzmann algorithm. Generally speaking, the discrepancy does not exceed 25% when alpha=0.5. Third, the most important test was performed on two types of real media that were used for previous studies. A fracture network measured by FIB/SEM in a low permeability sandstone was used for that purpose; the two dimensionless permeabilities KS and KL are equal to 9.3d-3 and 8.5d-3. Similar calculations were performed on 256 samples of Fontainebleau sandstones and the agreement was in general excellent, except may be for very low permeabilities. To conclude, the Laplace solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  12. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  13. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    NASA Astrophysics Data System (ADS)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  14. Characterization of pulsed flow attenuation on a regulated montane river

    NASA Astrophysics Data System (ADS)

    Fong, C. S.; Yarnell, S. M.; Fleenor, W. E.; Viers, J. H.

    2013-12-01

    A major benefit of hydropower is its ability to respond quickly to fluctuating electrical loads. However, the sharp changes in discharge caused by this practice have detrimental environmental effects downstream. This study investigated the effects of hydrograph shape on attenuation of regulated pulsed flow events by first categorizing, then modeling the downstream movement of representative pulses on the upper Tuolumne River below Holm Powerhouse in the Sierra Nevada mountains of California. This system was managed by a public utility and produced flow pulses primarily for hydroelectricity generation and/or whitewater recreation. Operations were highly influenced by a system-wide "Water First" policy, which prioritized drinking water supply and quality over other beneficial uses. Pulses were therefore associated with a spectrum of time scales, from predetermined schedules decided far in advance to hydropeaking operations responding to real-time demands. We extracted underlying hydrograph shape patterns using principal component analysis on individual pulsed flow events released from 1988-2012 (n=4439). From principal component loadings, six shape categories were determined: rectangular, front-step, back-step, goalpost, centered tower, and other. The rectangular and stepped shapes were the most frequent, composing 62% and 24% of total events, respectively. The rectangular shape was often produced by 'standard' hydropeaking or recreational releases, while the stepped shapes were often used for water conservation or were recreational flows bordered by periods of electricity generation. The stepped shape increased in occurrence after the "Water First" policy took effect in 1993 and dominated two drier years (2007 and 2009). After categorization by shape, magnitude and durational indices were used to fabricate representative pulsed flow events. Attenuation of these representative pulses was then modeled using a 1D hydraulic model of 42 river km prepared in HEC-RAS. As no operational measures or physical structures existed within the system to counter the adverse effects of pulsed flow events, natural attenuation was the only potential major mitigation agent. However, model results demonstrated a clear durational threshold for representative pulses (~ 3-5 hrs) over which the degree of attenuation of ramping rates and peak discharge approached a limit. These thresholds were unique to the study reach and were dependent upon river morphology, bed characteristics, and flow rates. Increasing baseflows did not necessarily increase attenuation of pulses, most likely due to minimal increases in bed friction forces in this fairly steep and confined channel. Simulations of front and back-step representative pulses showed trade-offs between attenuation of peak magnitudes and steepness of ramping rates. Finally, a range of rising ramping rates were shown to steepen downstream above initial rates due to the study reach's channel morphology. Reshaping pulses to be more ecologically benign at all points downstream was infeasible if the system was required to maintain current electricity production and recreational service levels.

  15. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  16. Steady boiling of vapor bubbles in rectangular channels

    NASA Astrophysics Data System (ADS)

    Ajaev, Vladimir S.; Homsy, George M.

    2000-11-01

    We consider vapor bubbles in microchannels in which the vapor is produced by a heater element and condenses in cooler parts of the interface. The free boundary problem is formulated for a long steady-state bubble in a rectangular channel with a heated bottom. The shape of the liquid-vapor interface is described using lubrication-type equations in the regime in which the vapor phase fills most of the cross-section. Contact lines may be present, marking the transitions between molecularly thin films and macroscopic ones. The main parameters are the differences between heater, saturation, and top wall temperatures. The equations are solved numerically over a range of parameter values with an integral condition requiring the evaporation near the heater to balance condensation in colder areas of the interface. Depending on the temperature, the side walls can be either dry or covered with a liquid film; we identify criteria for these two different regimes. The asymptotic method breaks down in the limit when capillary condensation becomes important near the bubble top and a different approach is used to determine the shape of the bubble in this limit. Solutions here involve localized regions of large mass fluxes, which are asymptotically matched to capillary-statics regions where the heat transfer is negligible.

  17. Effects of Blowing Spanwise from the Tips of Low-Aspect Ratio Wings of Varying Taper Ratio, with Application to Improving STOL Capability of Fighter Aircraft.

    DTIC Science & Technology

    1983-02-01

    aspect ratio is relatively small. Brooks (ref. 1) worked with rectangular fins of 0.62 and 1.24 aspect ratio in a water medium and showed very large ...airflow rates. Lloyd (ref. 3) worked with an aspect ratio 2.0 rectangular wing using a very wide range of jet momentum coefficient; his results were in...D-A1i35 688 EFFECTS OF BLOWING SPANWISE FROM THE TIPS OF LOW ASPECT in, RATIO WINGS OF VA .(U) NIELSEN ENGINEERING AND RESEARCH INC MOUNTAIN VIEW CA

  18. Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels.

    PubMed

    Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie

    2002-10-01

    A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.

  19. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    PubMed

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  20. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  1. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  2. PLASTIC-SASS--A COMPUTER PROGRAM FOR STRESSES AND DEFLECTIONS IN A REACTOR SUBASSEMBLY UNDER THERMAL, HYDRAULIC, AND FUEL EXPANSION LOADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, C.M.

    1963-05-01

    PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)

  3. Near-wall turbulence alteration through thin streamwise riblets

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lazos, Barry S.

    1987-01-01

    The possibility of improving the level of drag reduction associated with near-wall riblets is considered. The methodology involves the use of a hot-wire anemometer to study various surface geometries on small, easily constructed models. These models consist of small, adjacent rectangular channels on the wall aligned in the streamwise direction. The VITA technique is modified and applied to thin-element-array and smooth flat-plate data and the results are indicated schematically.

  4. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  5. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    NASA Astrophysics Data System (ADS)

    Shaha, Poly Rani; Rudro, Sajal Kanti; Poddar, Nayan Kumar; Mondal, Rabindra Nath

    2016-07-01

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn, for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn's and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn's but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.

  6. On the onset of secondary flow and unsteady solutions through a loosely coiled rectangular duct for large aspect ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaha, Poly Rani; Poddar, Nayan Kumar; Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com

    The study of flows through coiled ducts and channels has attracted considerable attention not only because of their ample applications in Chemical, Mechanical, Civil, Nuclear and Biomechanical engineering but also because of their ample applications in other areas, such as blood flow in the veins and arteries of human and other animals. In this paper, a numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid through a loosely coiled rectangular duct of large aspect ratio. Numerical calculations are carried out by using a spectral method, and covering a wide range of the Dean number, Dn,more » for two types of curvatures of the duct. The main concern of the present study is to find out effects of curvature as well as formation of secondary vortices on unsteady solutions whether the unsteady flow is steady-state, periodic, multi-periodic or chaotic, if Dn is increased. Time evolution calculations as well as their phase spaces are performed with a view to study the non-linear behavior of the unsteady solutions, and it is found that the steady-state flow turns into chaotic flow through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is a steady-state solution for small Dn’s and oscillates periodically or non-periodically (chaotic) between two- and twelve-vortex solutions, if Dn is increased. It is also found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. Axial flow distribution is also investigated and shown in contour plots.« less

  7. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, I.R.; Barleon, L.; Reed, C.B.

    1994-07-01

    A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transversemore » or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.« less

  8. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  9. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  10. Fluid Flow and Mass Transfer in Micro/Nano-Channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi

    2001-11-01

    In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA

  11. Improving flow distribution in influent channels using computational fluid dynamics.

    PubMed

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  12. Investigation of flood routing by a dynamic wave model in trapezoidal channels

    NASA Astrophysics Data System (ADS)

    Sulistyono, B. A.; Wiryanto, L. H.

    2017-08-01

    The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.

  13. Micro-channel filling flow considering surface tension effect

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sung; Lee, Kwang-Cheol; Kwon, Tai Hun; Lee, Seung S.

    2002-05-01

    Understanding filling flow into micro-channels is important in designing micro-injection molding, micro-fluidic devices and an MIMIC (micromolding in capillaries) process. In this paper, we investigated, both experimentally and numerically, 'transient filling' flow into micro-channels, which differs from steady-state completely 'filled' flow in micro-channels. An experimental flow visualization system was devised to facilitate observation of flow characteristics in filling into micro-channels. Three sets of micro-channels of various widths of different thicknesses (20, 30, and 40 μm) were fabricated using SU-8 on the silicon substrate to find a geometric effect with regard to pressure gradient, viscous force and, in particular, surface tension. A numerical analysis system has also been developed taking into account the surface tension effect with a contact angle concept. Experimental observations indicate that surface tension significantly affects the filling flow to such an extent that even a flow blockage phenomenon was observed at channels of small width and thickness. A numerical analysis system also confirms that the flow blockage phenomenon could take place due to the flow hindrance effect of surface tension, which is consistent with experimental observation. For proper numerical simulations, two correction factors have also been proposed to correct the conventional hydraulic radius for the filling flow in rectangular cross-sectioned channels.

  14. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  15. Numerical investigation on forced convection in rectangular cross section micro-channels with nanofluids

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Nardini, S.; Tamburrino, S.

    2017-01-01

    In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar flow and different nanoparticle volume fractions have been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). The length the edge and height of the duct are 0.030 m, 1.7 x10-7 and 1.1 x10-7 m, respectively. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.

  16. Theoretical modeling of electroosmotic flow in soft microchannels: A variational approach applied to the rectangular geometry

    NASA Astrophysics Data System (ADS)

    Sadeghi, Arman

    2018-03-01

    Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.

  17. Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siw, Sin Chien; Chyu, Minking K.; Shih, Tom I. -P.

    2012-01-01

    Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W=76.2 mm, E=25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D=6.35 mm=¼E, three different pin-fin height-to-diameter ratios, H/D=4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D=0, 1, 2, respectively. The Reynolds number, based onmore » the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D=1, i.e., H/D=3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D=0 and C/D=2, i.e., H/D=4 or 2, respectively.« less

  18. Fine sediment trapping in river lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.

    2016-12-01

    River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.

  19. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  20. Frequency bandwidth limitation of external pulse electric fields in cylindrical micro-channel electrophoresis with analyte velocity modulation.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lee, Chia-Yu; Yeo, Leslie Y

    2005-04-15

    In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.

  1. Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi; Conlisk, A. Terrence

    2002-11-01

    In this work, the effect of multivalent ions on electroosmotic flow is investigated. Applications in biomedical engineering are numerous, including design of drug delivery systems, rapid molecular analysis and lab-on-a-chip. We specifically consider incorporating Ca^2+ and HPO4^2- and other monovalent ions, such as K^+ and H2PO4^-, into an aqueous NaCl solution. All previous work has been for the case where the mixture contains a pair of ionic species of equal valence. Electrochemical equilibrium considerations are used in determining the boundary conditions. The results can be applied to rectangular channels for which the height is on the nanometer scale up to the micrometer scale. The classical electroosmotic velocity profile is obtained at larger channel heights for fixed electrolyte concentration where an analytic solution for the velocity, potential and mole fractions may be obtained. The theory is valid for an arbitrary number of ionic species.

  2. Viscous near-wall flow in a wake of circular cylinder at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Okhotnikov, D. I.; Molochnikov, V. M.; Mazo, A. B.; Malyukov, A. V.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.

  3. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  4. Numerical modelling of channel processes and analysis of possible channel improvement measures on the Lena River near city Yakutsk

    NASA Astrophysics Data System (ADS)

    Krylenko, Inna; Belikov, Vitaly; Zavadskii, Aleksander; Borisova, Natalya; Golovlyov, Pavel; Rumyantsev, Alexey

    2017-04-01

    City Yakutsk (administrative, culture and industrial center of the North East of Russia) situated on the left bank of large Russian river Lena last decades has faced with many problems, concerning intensive channel processes. Most dramatic among them are sediment accumulation near main water intake structure, supplying city Yakutsk by the drinking water, and deterioration in conditions of the navigation roots to the main city ports. Hydrodynamic modelling has been chosen as the main tool for analyses of the modern tendencies in channel processes and for the evaluation of possible channel improvement measures efficiency. STREAM_2D program complex (authors V. Belikov et al.), which is based on the numerical solution of two-dimensional Saint-Venant equations on a hybrid curvilinear quadrangular and rectangular mesh and take into account sediment transport, was used for the simulations. Detailed field data about water regime of the Lena river, bathymetry of the channels and topography of the floodplains was collected for model developing. Model area has covered 75 km of the Lena river valley including branched channels and wide floodplain from Tabaga to Kangalassy gauge cites. Data of these stations were used for model boundary conditions assigning. Data of gauge station city Yakutsk as well as measured during field campaign water levels and flow velocities was taken into account for model calibration and validation. Results of modelling has demonstrated close correspondence with observed water levels and discharges distribution between channel branches for different hydrological situations. Different combinations of hydrographs of 1, 10, 50% exceedance probability was used as input for modelling of channel deformations. Simulation results has shown that in future 10 years aligning of water discharges distribution between main Lena river branches near Yakutsk is possible, that is a positive tendency from the point of view of water supply of the city. More than 15 variants of channel improvement measures, including different dam constructions, river bed dredging, closing of some river branches were considered and included into modelling scenarios. Analyses of results of modelling has allowed to reveal, that more expensive big dams which are partitioning off a part the main channel are not so effective, because their construction lead to significant increasing of flow velocities and corresponding increasing in sediment transport. Local channel regulations measures (small dam at Ponomarev island near Yakutsk and bed dredging) can give some effect in a few years due to formation of the new line of the depths maximum near water intake structure and Yakutsk port. For improving of the navigation conditions near Ghatay port closing of the small channel branch Ghataiskaya can be effective.

  5. Physically Modeling Stream Channel Adjustment to Woody Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Bennett, S. J.; Alonso, C. V.

    2003-12-01

    Stream restoration designs often use vegetation to promote bank and channel stability, to facilitate point-bar development, and to encourage natural colonization of riparian species. Here we examine the adjustment of an alluvial channel to in-stream and riparian vegetation using a distorted Froude-scale flume model with a movable boundary. A decimeter-scale trapezoidal channel comprised of 0.8-mm diameter sand was systematically vegetated with emergent, rigid dowels (3-mm in diameter) in rectangular and hemispherical patterns with varying vegetation densities while conserving the shape of the zone and the geometry of the vegetal patterns. Alternate sides of the channel were vegetated at the prescribed spacing of equilibrium alternate bars, ca. 5 to 7 times the channel width. Using flow conditions just below the threshold of sediment motion, flow obstruction, deflection, and acceleration caused bed erosion, bank failure, and morphologic channel adjustments that were wholly attributable to the managed plantings. As vegetation density increased, the magnitude and rate of scaled channel adjustment increased, which included increased channel widths, bankline steepening and meandering, and thalweg meandering. As the modeled channel began to meander, the stream bed aggraded and flow depth decreased markedly, creating a continuously connected, inter-reach complex of mid-channel bars. This study demonstrates the utility of using managed vegetations in stream corridor design and meander development, and it provides the practitioner with guidance on the magnitude of channel adjustment as it relates to vegetation density, shape, and spacing.

  6. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nimmagadda, Rajesh; Venkatasubbaiah, K.

    2017-06-01

    The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with d_p = 50 nm), (2 vol% SWCNT and 3 vol% Au with d_p = 70 nm), (3 vol% Al2O3 and 2 vol% Au with d_p = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with d_p = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.

  7. Phase 2 SBIR Final Report: An Ultra-Sensitive Optical Biosensor for Flood Safety

    DTIC Science & Technology

    2002-08-23

    can be completed in 2 to 4 hours. Currently accepted tests using commercial test kits based on immunochemical techniques offer results in 22 to 24...tagging is imperfect, leading to a background of non-specific surface and molecular binding limiting the signal. The use of a reporter fluorochrome can ...Waveguide Patterning: Surface flow channels: The rectangular cuvettes (as shown in Section II, Figure 4-3) can be etched using standard techniques. The

  8. Transient Magnetohydrodynamic Liquid-Metal Flows in a Rectangular Channel with a Moving Conducting Wall

    DTIC Science & Technology

    1988-05-01

    use of liquid metals for current collectors in homopolar motors and generators has led to the design of machines of superior performance. The steady...In some applications of homopolar generators it becomes necessary not only to start and stop the machines but also to operate them under oscillating...conditions. This could be the case in an application where a homopolar generator behaves as an extremely high energy capacitor. Therefore, one is

  9. Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature

    DTIC Science & Technology

    1991-03-01

    boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling

  10. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  11. On the Induced Flow of an Electrically Conducting Liquid in a Rectangular Duct by Electric and Magnetic Fields of Finite Extent

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Jones, William Prichard; Huerta, Robert H.

    1961-01-01

    Reported here are the results of a systematic study of a model of the direct-current electromagnetic pump. Of particular interest is the motion imparted to the electrically conducting fluid in the rectangular duct by the body forces that result from applied electric and magnetic fields. The purpose of the investigation is to associate the observed fluid motion with the characteristics of the electric and magnetic fields which cause them. The experiments were carried out with electromagnetic fields that moved a stream of copper sulphate solution through a clear plastic channel. Ink filaments injected into the stream ahead of the region where the fields were applied identify the motion of the fluid elements as they passed through the test channel. Several magnetic field configurations were employed with a two-dimensional electric current distribution in order to study and identify the magnitude of some of the effects on the fluid motion brought about by nonuniformities in the electromagnetic fields. A theoretical analysis was used to guide and evaluate the identification of the several fluid motions observed. The agreement of the experimental data with the theoretical predictions is satisfactory. It is found that sizable variations in the velocity profile and pressure head of the output stream are produced by the shape of the electric and magnetic fields.

  12. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    PubMed Central

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  13. A numerical model for the solution of the Shallow Water equations in composite channels with movable bed

    NASA Astrophysics Data System (ADS)

    minatti, L.

    2013-12-01

    A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during the last fifteen years, most of them related to the occurrence of high flow rates. The employment of the model allowed to perform a detailed flood hazard assessment where potential risks associated to bedload transport,such as sediments filling of manufacts, excessive erosion or aggradation rates have been evaluated, together with the more 'classical' evaluation of water levels. The whole process also led to the identification of sensitive reaches of the river that require monitoring thus allowing better management practices of the public money allocated for river maintenance. Solution of the Riemann problem for a 10 m wide rectangular XS. The dotted lines represent the numerical solution, while the continuous ones represent the analytical solution

  14. A standalone perfusion platform for drug testing and target validation in micro-vessel networks

    PubMed Central

    Zhang, Boyang; Peticone, Carlotta; Murthy, Shashi K.; Radisic, Milica

    2013-01-01

    Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α. PMID:24404058

  15. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.

    PubMed

    Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei

    2014-05-07

    Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.

  16. The output power improvement and durability with different shape of MEMS piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Chen, C. T.; Fu, Y. H.; Tang, W. H.; Lin, S. C.; Wu, W. J.

    2018-03-01

    MEMS piezoelectric energy harvester (PEH) has been widely designed in cantilever beam style because of ease of fabrication and effective to generate large strain and output power. There are already several studies on tapered beam shapes to improve the overall performance of energy harvested. In this paper, we investigate cantilever beam type PEH in rectangular, trapezoidal and triangle shapes, and the devices are limited to the area smaller than 1cm × 1 cm for better flexibility in applications. The power output and the life time of each shape of devices are fabricated and characterized. The output power are tested with optimal resistance loads, and the output power are 145.3 μW, 125.3 μW and 107.8 μW for triangle, trapezoidal and rectangular shapes of devices respectively under excitation of 0.5g acceleration vibration level in the resonant frequency of the transducer. The tip displacements of the 3 devices are 3.05 mm, 2.66 mm, and 2.44 mm for triangular, trapezoidal and rectangular shape devices, respectively. To study the lifetime and durability issue, triangular and rectangular devices are excited under 0.2g to 1g for 24 hours. The resonant frequency shifting, tip displacement and open circuit voltage changing are monitored will be detailed in the paper.

  17. A three-dimensional dynamical model for channeled lava flow with nonlinear rheology

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2010-05-01

    Recent laboratory studies on the rheology of lava samples from different volcanic areas have highlighted that the apparent viscosity depends on a power of the strain rate. Several authors agree in attributing this dependence to the crystal content of the sample and to temperature. Starting from these results, in this paper we studied the effect of a power law rheology on a gravity-driven lava flow. The equation of motion is nonlinear in the diffusion term, and an analytical solution does not seem to be possible. The finite-volume method has been applied to solve numerically the equation governing the fully developed laminar flow of a power law non-Newtonian fluid in an inclined rectangular channel. The convergence, the stability, and the order of approximation were tested for the Newtonian rheology case, comparing the numerical solution with the available analytical solution. Results indicate that the assumption on the rheology, whether linear or nonlinear, strongly affects the velocity and/or the thickness of the lava channel both for channels with fixed geometry and for channels with constant flow rate. Results on channels with fixed geometry are confirmed by some simulations for real lava channels. Finally, the study of the Reynolds number indicates that gravity-driven lava channel flows are always in laminar regime, except for strongly nonlinear pseudoplastic fluids with low fluid consistency and at high slopes.

  18. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  19. A Review of Boiling Heat Transfer Processes at High Heat Flux

    DTIC Science & Technology

    1991-04-01

    Hydrogen on Burnout for Water Flowing Vertically Upward in Round Tubes at 2000 psia," WAPD - TH-318, April 1957. 100. Doroschuck, V. E. and Lantsman, F. P...34Forced-Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressures above 500 psia," USAEC Rept. WAPD ...Volumes in Subcooled Boiling Systems, ASME Paper 58-HT-19, 1958. 264 . Core, T. C. and Sato, K., "Determination of Burnout Limits of Polyphenyl Coolants

  20. DISCHARGE AND DEPTH BEHIND A PARTIALLY BREACHED DAM.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1987-01-01

    The role that the velocity-distribution correction factor plays in the determination of the flood discharge and corresponding flow depth behind a partially breached dam is investigated. Assumption of a uniformly progressive flow for an established dam-break flood in a rectangular channel of infinite extent leads to the formulation of a theoretical relation between the depth and velocity of flow expressed in differential form. Integrating this ordinary differential equation, one can express the velocity in terms of the depth.

  1. Hierarchical image coding with diamond-shaped sub-bands

    NASA Technical Reports Server (NTRS)

    Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken

    1992-01-01

    We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.

  2. Intelligent traffic signals : extending the range of self-organization in the BML model.

    DOT National Transportation Integrated Search

    2013-04-01

    The two-dimensional traffic model of Biham, Middleton and Levine (Phys. Rev. A, 1992) is : a simple cellular automaton that exhibits a wide range of complex behavior. It consists of both : northbound and eastbound cars traveling on a rectangular arra...

  3. Modal density of rectangular structures in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  4. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    NASA Astrophysics Data System (ADS)

    Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose

    2017-12-01

    AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  5. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    PubMed

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  6. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  7. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.

    PubMed

    Amatore, Christian; Oleinick, Alexander; Klymenko, Oleksiy V; Svir, Irina

    2005-08-12

    Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.

  8. An Experimental Design of Bypass Magneto-Rheological (MR) damper

    NASA Astrophysics Data System (ADS)

    Rashid, MM; Aziz, Mohammad Abdul; Raisuddin Khan, Md.

    2017-11-01

    The magnetorheological (MR) fluid bypass damper fluid flow through a bypass by utilizing an external channel which allows the controllability of MR fluid in the channel. The Bypass MR damper (BMRD) contains a rectangular bypass flow channel, current controlled movable piston shaft arrangement and MR fluid. The static piston coil case is winding by a coil which is used inside the piston head arrangement. The current controlled coil case provides a magnetic flux through the BMRD cylinder for controllability. The high strength of alloy steel materials are used for making piston shaft which allows magnetic flux propagation throughout the BMRD cylinder. Using the above design materials, a Bypass MR damper is designed and tested. An excitation of current is applied during the experiment which characterizes the BMRD controllability. It is shown that the BMRD with external flow channel allows a high controllable damping force using an excitation current. The experimental result of damping force-displacement characteristics with current excitation and without current excitation are compared in this research. The BMRD model is validated by the experimental result at various frequencies and applied excitation current.

  9. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  10. Predominance of sperm motion in corners.

    PubMed

    Nosrati, Reza; Graham, Percival J; Liu, Qiaozhi; Sinton, David

    2016-05-23

    Sperm migration through the female tract is crucial to fertilization, but the role of the complex and confined structure of the fallopian tube in sperm guidance remains unknown. Here, by confocal imaging microchannels head-on, we distinguish corner- vs. wall- vs. bulk-swimming bull sperm in confined geometries. Corner-swimming dominates with local areal concentrations as high as 200-fold that of the bulk. The relative degree of corner-swimming is strongest in small channels, decreases with increasing channel size, and plateaus for channels above 200 μm. Corner-swimming remains predominant across the physiologically-relevant range of viscosity and pH. Together, boundary-following sperm account for over 95% of the sperm distribution in small rectangular channels, which is similar to the percentage of wall swimmers in circular channels of similar size. We also demonstrate that wall-swimming sperm travel closer to walls in smaller channels (~100 μm), where the opposite wall is within the hydrodynamic interaction length-scale. The corner accumulation effect is more than the superposition of the influence of two walls, and over 5-fold stronger than that of a single wall. These findings suggest that folds and corners are dominant in sperm migration in the narrow (sub-mm) lumen of the fallopian tube and microchannel-based sperm selection devices.

  11. Predominance of sperm motion in corners

    PubMed Central

    Nosrati, Reza; Graham, Percival J.; Liu, Qiaozhi; Sinton, David

    2016-01-01

    Sperm migration through the female tract is crucial to fertilization, but the role of the complex and confined structure of the fallopian tube in sperm guidance remains unknown. Here, by confocal imaging microchannels head-on, we distinguish corner- vs. wall- vs. bulk-swimming bull sperm in confined geometries. Corner-swimming dominates with local areal concentrations as high as 200-fold that of the bulk. The relative degree of corner-swimming is strongest in small channels, decreases with increasing channel size, and plateaus for channels above 200 μm. Corner-swimming remains predominant across the physiologically-relevant range of viscosity and pH. Together, boundary-following sperm account for over 95% of the sperm distribution in small rectangular channels, which is similar to the percentage of wall swimmers in circular channels of similar size. We also demonstrate that wall-swimming sperm travel closer to walls in smaller channels (~100 μm), where the opposite wall is within the hydrodynamic interaction length-scale. The corner accumulation effect is more than the superposition of the influence of two walls, and over 5-fold stronger than that of a single wall. These findings suggest that folds and corners are dominant in sperm migration in the narrow (sub-mm) lumen of the fallopian tube and microchannel-based sperm selection devices. PMID:27211846

  12. The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. Terrence

    2002-11-01

    In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.

  13. A dimensional comparison between embedded 3D-printed and silicon microchannels

    NASA Astrophysics Data System (ADS)

    O'Connor, J.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.

  14. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.

    PubMed

    Islam, Md Zahurul; Tsui, Ying Yin

    2016-10-03

    A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found.

  15. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices

    PubMed Central

    Islam, Md. Zahurul; Tsui, Ying Yin

    2016-01-01

    A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found. PMID:27706104

  16. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  17. Effects of turn region treatments on pressure loss through sharp 180-degree bends

    NASA Astrophysics Data System (ADS)

    Plevich, C. W.; Metzger, D. E.

    An experimental study was conducted to evaluate the effect of geometric turn region inserts on pressure losses for flow through sharp 180-degree channel turns typical of internal cooling passages in gas turbine engine airfoils. The experiments were conducted in a rectangular cross-sectioned channel with 90-degree transverse rib roughening in both inlet and outlet legs, starting with completely smooth turn regions and progressing through various modifications including corner fillets, radial ribs, and turning vanes. The results show that modifications to the turn region geometry, particularly the inclusion of a single semi-circular turning vane, significantly reduce the pressure losses associated with coolant flows through sharp 180-degree turns and therefore can result in increased coolant flow for a given coolant supply pressure.

  18. A numerical study of blood flow using mixture theory.

    PubMed

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

  19. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  20. Ejection mechanisms in the sublayer of a turbulent channel

    NASA Technical Reports Server (NTRS)

    Jimenez, J.; Moin, P.; Moser, R. D.; Keefe, L. R.

    1987-01-01

    A possible model for the inception of vorticity ejections in the viscous sublayer of a turbulent rectangular channel is presented. It was shown that this part of the flow is dominated by protruding strong shear layers of z-vorticity, and it was proposed as a mechanism for their maintenance and reproduction which is essentially equivalent to that responsible for the instability of 2-D Tollmien-Schlichting waves. The efforts to isolate computationally a single structure for its study have failed up to now, since it appears that single structures decay in the absence of external forcing, but a convenient computation model was identified in the form of a long and narrow periodic computational box containing at each moment only a few structures. Further work in the identification of better reduced systems is in progress.

  1. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  2. Probing the structure of the conduction pathway of the sheep cardiac sarcoplasmic reticulum calcium-release channel with permeant and impermeant organic cations

    PubMed Central

    1993-01-01

    The sarcoplasmic reticulum Ca(2+)-release channel plays a central role in cardiac muscle function by providing a ligand-regulated pathway for the release of sequestered Ca2+ to initiate contraction following cell excitation. The efficiency of the channel as a Ca(2+)-release pathway will be influenced by both gating and conductance properties of the system. In the past we have investigated conduction and discrimination of inorganic mono- and divalent cations with the aim of describing the mechanisms governing ion handling in the channel (Tinker, A., A.R. G. Lindsay, and A.J. Williams. 1992. Journal of General Physiology. 100:495-517.). In the present study, we have used permeant and impermeant organic cations to provide additional information on structural features of the conduction pathway. The use of permeant organic cations in biological channels to explore structural motifs underlying selectivity has been an important tool for the electrophysiologist. We have examined the conduction properties of a series of monovalent organic cations of varying size in the purified sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel. Relative permeability, determined from the reversal potential measured under bi- ionic conditions with 210-mM test cation at the cytoplasmic face of the channel and 210 mM K+ at the luminal, was related inversely to the minimum circular cation radius. The reversal potential was concentration-independent. The excluded area hypothesis, with and without a term for solute-wall friction, described the data well and gave a lower estimate for minimum pore radius of 3.3-3.5 A. Blocking studies with the impermeant charged derivative of triethylamine reveal that this narrowing occurs over the first 10-20% of the voltage drop when crossing from the lumen of the SR to the cytoplasm. Single-channel conductances were measured in symmetrical 210 mM salt. Factors other than relative permeability determine conductance as ions with similar relative permeability can have widely varying single-channel conductance. Permeant ions, such as the charged derivatives of trimethylamine and diethylmethylamine, can also inhibit K+ current. The reduction in relative conductance with increasing concentrations of these two ions at a holding potential of 60 mV was described by a rectangular hyperbola and revealed higher affinity binding for diethylmethylamine as compared to trimethylamine. It was possible to describe the complex permeation properties of these two ions using a single-ion four barrier, three binding site Eyring rate theory model. In conclusion, these studies reveal that the cardiac Ca(2+)-release channel has a selectivity filter of approximately 3.5-A radius located at the luminal face of the protein.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8133241

  3. A 5 x 40 cm rectangular-beam multipole ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.

    1981-01-01

    A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.

  4. Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.

    2006-01-01

    The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.

  5. Application of boundary element method to Stokes flows over a striped superhydrophobic surface with trapped gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2018-01-01

    A slow steady flow of a viscous fluid over a superhydrophobic surface with a periodic striped system of 2D rectangular microcavities is considered. The microcavities contain small gas bubbles on the curved surface of which the shear stress vanishes. The general case is analyzed when the bubble occupies only a part of the cavity, and the flow velocity far from the surface is directed at an arbitrary angle to the cavity edge. Due to the linearity of the Stokes flow problem, the solution is split into two parts, corresponding to the flows perpendicular and along the cavities. Two variants of a boundary element method are developed and used to construct numerical solutions on the scale of a single cavity with periodic boundary conditions. By averaging these solutions, the average slip velocity and the slip length tensor components are calculated over a wide range of variation of governing parameters for the cases of a shear-driven flow and a pressure-driven channel flow. For a sufficiently high pressure drop in a microchannel of finite length, the variation of the bubble surface shift into the cavities induced by the streamwise pressure variation is estimated from numerical calculations.

  6. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2012-02-05

    ISS030-E-090012 (5 Feb. 2012) --- The Parana River floodplain along the Mato Grosso–Sao Paulo border, Brazil is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Parana River appears as a wide, blue strip across this photograph, with muddy brown water of the smaller Verde River entering from the northwest (top left). An extensive wetland (dark green) occupies most of the left half of the image, where the floodplain of the river reaches a width of 11 kilometers. The thin line of a road crossing the floodplain also gives a sense of scale. Above the Parana–Verde confluence (center) the floodplain is much narrower. The floodplain is generated by sediments delivered by both rivers. Evidence for this is that the entire surface of the floodplain is crisscrossed by the wider traces of former Parana R. channels as well as numerous narrower traces of the Verde R. The floodplains along both rivers are bordered by numerous rectangular agricultural fields. Dominant crops along this part of the Parana River are coffee, corn and cotton. Turbid water, such as that in the Verde River, is common in most rivers that drain plowed agricultural land as some topsoil is washed into local rivers after rains. A long tendril of brown water extends from the Verde R. into the main channel of the Parana River where it hugs the west bank, remaining unmixed for many kilometers. This effectively shows the direction of river flow from orbit (right to left for the Parana, upper left to center for the Verde).

  7. Numerical Modeling of Three-Dimensional Confined Flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1981-01-01

    A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.

  8. Peculiarities of heat transfer at the liquid metal flow in a vertical channel in a coplanar magnetic field

    NASA Astrophysics Data System (ADS)

    Razuvanov, N. G.; Poddubnyi, I. I.; Kostychev, P. V.

    2017-11-01

    The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ˜1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the LM flow in the heat exchange channels for cooling the liquid metal module of the blanket of the thermonuclear reactor (TNR) of the TOKAMAK type. The experiments were carried out on the basis of the mercury magnetohydrodynamic test-bed (MHD) Moscow Power Engineering Institute (MPEI) - Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). The probe measurement technique was used in the flow. Profiles of averaged velocity and averaged temperature, as well as profiles of temperature pulsations in the axial planes of the channel cross-section, are obtained; the distribution of the dimensionless wall temperature along the perimeter unfolding of the channel in the section and along the length of the channel. A significant effect of thermogravitational convection (TGC), which leads to unexpected effects, is found. At the downflow in a magnetic field, in some modes, low-frequency pulsations of anomalously high intensity occur.

  9. The motion of a train of vesicles in channel flow

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Shaqfeh, Eric

    2017-11-01

    The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.

  10. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  11. User's Manual for LINER: FORTRAN Code for the Numerical Simulation of Plane Wave Propagation in a Lined Two-Dimensional Channel

    NASA Technical Reports Server (NTRS)

    Reichert, R, S.; Biringen, S.; Howard, J. E.

    1999-01-01

    LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.

  12. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  13. Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet

    NASA Astrophysics Data System (ADS)

    Sahu, M. K.; Pandey, K. M.; Chatterjee, S.

    2018-05-01

    In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.

  14. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  15. Nonlinear stability analysis of Darcy’s flow with viscous heating

    PubMed Central

    Alves, Leonardo S. de B.; Barletta, Antonio

    2016-01-01

    The nonlinear stability of a rectangular porous channel saturated by a fluid is here investigated. The aspect ratio of the channel is assumed to be variable. The channel walls are considered impermeable and adiabatic except for the horizontal top which is assumed to be isothermal. The viscous dissipation is acting inside the channel as internal heat generator. A basic throughflow is imposed, and the nonlinear convective stability is investigated by means of the generalized integral transform technique. The neutral stability curve is compared with the one obtained by the linear stability analysis already present in the literature. The growth rate analysis of different unstable modes is performed. The Nusselt number is investigated for several supercritical configurations in order to better understand how the system behaves when conditions far away from neutral stability are considered. The patterns of the neutrally stable convective cells are also reported. Nonlinear simulations support the results obtained by means of the linear stability analysis, confirming that viscous dissipation alone is indeed capable of inducing mixed convection. Low Gebhart or high Péclet numbers lead to a transient overheating of the originally motionless fluid before it settles in its convective steady state. PMID:27279772

  16. Optimizing the longitudinal and transverse electroosmotic pumping in a rectangular channel with horizontal baffle plates

    NASA Astrophysics Data System (ADS)

    Lai, Anison K. R.; Chang, Chien-Cheng; Wang, Chang-Yi

    2018-04-01

    This paper presents a continued study to our previous work on electroosmotic (EO) flow in a channel with vertical baffle plates by further investigating EO flow through an array of baffle plates arranged in parallel to the channel walls. The flow may be driven either in the direction along or in the direction transverse to the plates, thus distinguishing the longitudinal EO pumping (LEOP) and the transverse EO pumping (TEOP). In both types of EO pumping, it is more interesting to examine the cases when the baffle plates develop a higher zeta potential (denoted by α) than that on the channel walls (β). This semi-analytical study enables us to compare between LEOP and TEOP in the pumping efficiency under similar conditions. The TEOP case is more difficult to solve due to the higher order governing partial differential equations caused by the induced non-uniform pressure gradient distribution. In particular, we examine how the EO pumping rates deviate from those predicted by the Helmholtz-Smoluchowski velocity and illustrate the general trend of optimizing the EO pumping rates with respect to the physical and geometric parameters involved.

  17. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review.

    PubMed

    Lei, Wenwen; Rigozzi, Michelle K; McKenzie, David R

    2016-02-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of 'confined' water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined water, when moisture specific measurements are essential.

  18. Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1992-01-01

    Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.

  19. Boiling heat transfer during flow of distilled water in an asymmetrically heated rectangular minichannel

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.

  20. Quasi-D-shaped optical fiber plasmonic refractive index sensor

    NASA Astrophysics Data System (ADS)

    An, Guowen; Li, Shuguang; Wang, Haiyang; Zhang, Xuenan; Yan, Xin

    2018-03-01

    A quasi-D-shaped photonic crystal fiber plasmonic sensor with a rectangular lattice is proposed by using Au as a plasmonic layer and graphene to enhance the sensing performance. By moving the core to the edge of the fiber, a shorter polishing depth is achieved, which makes the fiber proposed have a greater mechanical strength than other common D-shaped fibers. Benefiting from the natural advantage of the rectangular lattice, the dual sensing channels make the proposed sensor show a maximum wavelength interrogation sensitivity of 3877 nm/RIU with the dynamic refractive index range from 1.33 to 1.42 and a maximum amplitude sensitivity of 1236 RIU-1 with the analyte RI = 1.41 in the visible region. The corresponding resolutions are 2.58 × 10-5 and 8.1 × 10-6 with the methods of the wavelength interrogation method and amplitude- or phase-based method. These advantages make the proposed sensor a competitive candidate for biosensing in the field of refractive index detection, such as water quality analysis, clinical medicine detection, and pharmaceutical testing.

  1. Evaluation of punching shear strength of flat slabs supported on rectangular columns

    NASA Astrophysics Data System (ADS)

    Filatov, Valery

    2018-03-01

    The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.

  2. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid.

    PubMed

    Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku

    2015-01-14

    In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.

  3. Combline designs improve mm-wave filter performance

    NASA Astrophysics Data System (ADS)

    Hey-Shipton, Gregory L.

    1990-10-01

    Combline filters with 2- to 75-percent bandwidths and orders up to 19 are discussed. They are realized as coupled rectangular coaxial transmission lines, since this type of transmission line is characterized by machinability and the wide variation in coupling coefficients that can be realized with rectangular bars. A broadband combline filter designed as a 19th-order, 0.01-dB equal-ripple Chebyshev type is presented, along with a third-order 0.001-dB equal-ripple Chebyshev filter with a 200-MHz bandwidth centered at 8.0 GHz. Interfaces to standard 50-ohm coaxial lines, as well as structures for waveguide interfaces are described, and focus is placed on a two-step impedance transformer matching a 538-ohm waveguide characteristic impedance to a 95-ohm filter terminal impedance.

  4. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.

  5. Broadband attenuation of Lamb waves through a periodic array of thin rectangular junctions

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Pennec, Yan; Marchal, Rémi; Bonello, Bernard; Djafari-Rouhani, Bahram

    2014-10-01

    We study theoretically subwavelength physical phenomena, such as resonant transmission and broadband sound shielding for Lamb waves propagating in an acoustic metamaterial made of a thin plate drilled with one or two row(s) of rectangular holes. The resonances and antiresonances of periodically arranged rectangular junctions separated by holes are investigated as a function of the geometrical parameters of the junctions. With one and two row(s) of holes, high frequency specific features in the transmission coefficient are explained in terms of a coupling of incident waves with both Fabry-Perot oscillations inside the junctions and induced surface acoustic waves between the homogeneous part of the plate and the row of holes. With two rows of holes, low frequency peaks and dips appear in the transmission spectrum. The choice of the distance between the two rows of holes allows the realization of a broadband low frequency acoustic shielding with attenuation over 99% for symmetric waves in a wide low frequency range and over 90% for antisymmetric ones. The origin of the transmission gap is discussed in terms of localized modes of the "H" element made by the junctions, connecting the two homogeneous parts of the plate.

  6. Rectangular Spacing: An Economic Benefit?

    Treesearch

    Curtis L. VanderSchaaf; David B. South

    2004-01-01

    Many loblolly pine (Pinus taeda L.) plantations are established at row spacings of 8 to 12 feet, but some compa-nies are now using rows spaced 14 to 18 feet apart. Wide rows reduce establishment costs when sites are bedded, ripped, or machine planted. The cost of chemicals is also reduced when treatments are applied in bands along the row. A growth...

  7. Recombination of the steering vector of the triangle grid array in quaternions and the reduction of the MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Bai, Chen; Han, Dongjuan

    2018-04-01

    MUSIC is widely used on DOA estimation. Triangle grid is a common kind of the arrangement of array, but it is more complicated than rectangular array in calculation of steering vector. In this paper, the quaternions algorithm can reduce dimension of vector and make the calculation easier.

  8. Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing

    NASA Technical Reports Server (NTRS)

    DeBrabander, Gregory N.; Boyd, Joseph T.

    1996-01-01

    Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.

  9. Active phase locking of thirty fiber channels using multilevel phase dithering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli

    2016-03-15

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less

  10. Fatigue properties of an 1421 aluminum alloy processed by ECAE

    NASA Astrophysics Data System (ADS)

    Mogucheva, A.; Kaibyshev, R.

    2010-07-01

    Fatigue properties and fatigue crack growth rate were examined in an Al-Mg-Li-Sc-Zr allow subjected to equal channel angular extrusion (ECAE) with rectangular shape of channels up to a total strain of ~4 at a temperature of 325°C followed by solution treatment with subsequent oil quenching with aging. After this processing the fraction recrystallized was ~80pct; the deformed microstructure remains essentially unchanged under solution treatment due to high density of Al3Sc coherent dispersoids playing a role of effective pinning agents. It was shown that the fatigue limit of this material attained a value of ~185 MPa. Thermomechanical processing provided a decrease in fatigue crack propagation growth rate and an increase in the stress intensity factor, K1c, in comparison with extruded bar. However, characteristics of crack propagation resistance did not attain values suitable for application of this alloy for critical aircraft components.

  11. Swimming of Paramecium in confined channels

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  12. ESS Smelting Technology

    NASA Astrophysics Data System (ADS)

    Erasmus, L. J.; Fourie, L. J.

    2017-02-01

    The envirosteel smelter is a rectangular furnace with a large free board volume and multiple channel inductors mounted below the hearth. The raw materials are charged against the back wall forming an inclined heap sloping toward the front long wall. The feed blend is spread in thin layers over the surface of the heap and is heated by exposure to radiation from the free board. Reducing conditions in the top layer of the heap permit gas-solid reduction. Metal, in the hearth of the furnace, flows into the channel inductor where it is heated. The heated metal flows back against the front long wall to under the heap. The bottom of the heap is continuously melted by energy transferred from the metal layer. The two off-gas ducts are located in the short end walls. The combustion air is heated to around 800°C by a furnace gas in an external heat exchanger.

  13. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less

  15. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side

    NASA Astrophysics Data System (ADS)

    Huang, Lihao; Li, Gang; Tao, Leren

    2016-07-01

    Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.

  16. Droplet flow along the wall of rectangular channel with gradient of wettability

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.

    2018-03-01

    The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.

  17. Ion channel recordings on an injection-molded polymer chip.

    PubMed

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  18. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  19. Joint digital signal processing for superchannel coherent optical communication systems.

    PubMed

    Liu, Cheng; Pan, Jie; Detwiler, Thomas; Stark, Andrew; Hsueh, Yu-Ting; Chang, Gee-Kung; Ralph, Stephen E

    2013-04-08

    Ultra-high-speed optical communication systems which can support ≥ 1Tb/s per channel transmission will soon be required to meet the increasing capacity demand. However, 1Tb/s over a single carrier requires either or both a high-level modulation format (i.e. 1024QAM) and a high baud rate. Alternatively, grouping a number of tightly spaced "sub-carriers" to form a terabit superchannel increases channel capacity while minimizing the need for high-level modulation formats and high baud rate, which may allow existing formats, baud rate and components to be exploited. In ideal Nyquist-WDM superchannel systems, optical subcarriers with rectangular spectra are tightly packed at a channel spacing equal to the baud rate, thus achieving the Nyquist bandwidth limit. However, in practical Nyquist-WDM systems, precise electrical or optical control of channel spectra is required to avoid strong inter-channel interference (ICI). Here, we propose and demonstrate a new "super receiver" architecture for practical Nyquist-WDM systems, which jointly detects and demodulates multiple channels simultaneously and mitigates the penalties associated with the limitations of generating ideal Nyquist-WDM spectra. Our receiver-side solution relaxes the filter requirements imposed on the transmitter. Two joint DSP algorithms are developed for linear ICI cancellation and joint carrier-phase recovery. Improved system performance is observed with both experimental and simulation data. Performance analysis under different system configurations is conducted to demonstrate the feasibility and robustness of the proposed joint DSP algorithms.

  20. Computational study of a magnetic design to improve the diagnosis of malaria: 2D model

    NASA Astrophysics Data System (ADS)

    Vyas, Siddharth; Genis, Vladimir; Friedman, Gary

    2017-02-01

    This paper investigates the feasibility of a cost effective high gradient magnetic separation based device for the detection and identification of malaria parasites in a blood sample. The design utilizes magnetic properties of hemozoin present in malaria-infected red blood cells (mRBCs) in order to separate and concentrate them inside a microfluidic channel slide for easier examination under the microscope. The design consists of a rectangular microfluidic channel with multiple magnetic wires positioned on top of and underneath it along the length of the channel at a small angle with respect to the channel axis. Strong magnetic field gradients, produced by the wires, exert sufficient magnetic forces on the mRBCs in order to separate and concentrate them in a specific region small enough to fit within the microscope field of view at magnifications typically required to identify the malaria parasite type. The feasibility of the device is studied using a model where the trajectories of the mRBCs inside the channel are determined using first-order ordinary differential equations (ODEs) solved numerically using a multistep ODE solver available within MATLAB. The mRBCs trajectories reveal that it is possible to separate and concentrate the mRBCs in less than 5 min, even in cases of very low parasitemia (1-10 parasites/μL of blood) using blood sample volumes of around 3 μL employed today.

  1. Two-Phase Flow in Microchannels with Non-Circular Cross Section

    NASA Astrophysics Data System (ADS)

    Eckett, Chris A.; Strumpf, Hal J.

    2002-11-01

    Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.

  2. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment available only on orbital platforms.

  3. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    NASA Astrophysics Data System (ADS)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  4. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    NASA Astrophysics Data System (ADS)

    Poddubnyi, I. I.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V.; Leshukov, A. Yu.; Aleskovskiy, K. V.; Obukhov, D. M.

    2016-12-01

    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.

  5. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru; Pyatnitskaya, N. Yu.; Razuvanov, N. G.

    2016-12-15

    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in themore » majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.« less

  6. Potentiation and Overshadowing of Shape by Wall Color in a Kite-Shaped Maze Using Rats in a Foraging Task

    ERIC Educational Resources Information Center

    Cole, Mark R.; Gibson, Laura; Pollack, Adam; Yates, Lynsey

    2011-01-01

    The interaction between redundant geometric and featural cues in open field search tasks has been examined widely with results that are not always consistent. Cheng (1986) found evidence that when searching for food in rectangular environments, rats used the geometrical characteristics of the environment rather than local featural cues, suggesting…

  7. Enhancement of Dual-Band Reflection-Mode Circular Polarizers Using Dual-Layer Rectangular Frequency Selective Surfaces

    NASA Astrophysics Data System (ADS)

    Fartookzadeh, M.; Mohseni Armaki, S. H.

    2016-10-01

    A new kind of dual-band reflection-mode circular polarizers (RMCPs) is introduced with wide bandwidth and wide-view at the operating frequencies. The proposed RMCPs are based on dual-layer rectangular patches on both sides of a substrate, separated by a foam or air layer from the ground plane. Required TE susceptance of the first layer patches to produce circular polarization is calculated using the equivalent transmission line model. Dimensions of the RMCP are obtained using parametrical study for the two frequency bands, 1.9-2.3 GHz and 7.9-8.3 GHz. In addition, it is indicated that the accepted view angle and bandwidth of the proposed dual-layer RMCP are improved compared with the single layer RMCP, significantly. Moreover, a tradeoff is observed for the dual-layer RMCP on the bandwidths of X band and S band that can be controlled by propagation angle of the incident wave. The proposed RMCP has 30.5 % and 33.7 % bandwidths for less than 3 dB axial ratio with incident angles {\\theta}max=50{\\deg} and {\\theta}min=35{\\deg}. Finally, simulation results are met by the measurement for three angles of the incident wave.

  8. Flow control for a paper-based microfluidic device by adjusting permeability of paper

    NASA Astrophysics Data System (ADS)

    Jang, Ilhoon; Kim, Gangjune; Song, Simon

    2014-11-01

    The paper-based microfluidics has attracted intensive attention as a prospective substitute for conventional microfluidic substrates used for a point-of-care diagnostics due to its superior advantages such as the cost effectiveness and production simplicity. Generally, a paper-based microfluidic device utilizes capillary force to drive a flow. Recent studies on flow control in such a device aimed at obtaining accurate and quantitative results by varying a channel geometry like width and length. According to the Darcy's law describing a flow in a porous media like paper, a flow rate can be adjusted the permeability of paper. In this study, we investigate a flow control method by adjusting the permeability of paper. We utilize the wax printing for the adjustment and the fabrication of paper channels. A rectangular wax pattern was printed on one inlet channel of a Y-channel geometry. By varying the brightness of the wax pattern, a relationship between the flow rate and permeability changes due to the wax was investigated. As a result, we obtained an effective permeability contour with respect to the wax pattern length and brightness. In addition, we developed a paper-based micromixer of which the mixing ratio was controlled precisely by adjusting the permeability.

  9. Development of a modified Hess-Murray law for non-Newtonian fluids in bifurcating micro-channels

    NASA Astrophysics Data System (ADS)

    Emerson, David; Barber, Robert

    2012-11-01

    Microfluidic manifolds frequently require the use of bifurcating channels and these can be used to create precise concentration gradients for chemical applications. More recently, novel devices have been attempting to replicate vasculatures or bronchial structures occurring in nature with the goal of creating artificial bifurcations that mimic the basic principles of designs found in nature. In previous work, we have used the biological principles behind the Hess-Murray Law, where bifurcating structures exhibit a constant stress profile and follow a third-power rule, to enable rectangular or trapezoidal micro-channels to be fabricated using conventional lithographic or wet-etching techniques. Using biological principles to design man made devices is generally referred to as biomimetics and this approach has found success in a range of new and emerging topics. However, our previous work was limited to Newtonian flows. More recently, we have used the Rabinovitsch-Mooney equation to be able to extend our analysis to non-Newtonian fluids. This has allowed us to develop a new rule that can provide a design criterion to predict channel dimensions for non-Newtonian flows obeying a constant stress biological principle. The Engineering and Physical Sciences Research Council for support of CCP12 and Programme Grant award (grant number EP/I011927/1).

  10. Formation of vortex pairs with hinged rigid flaps at the nozzle exit

    NASA Astrophysics Data System (ADS)

    Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant

    2013-11-01

    Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.

  11. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    NASA Astrophysics Data System (ADS)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  12. On the examination of Darcy permeability of soft fibrous porous media; New correlations

    NASA Astrophysics Data System (ADS)

    Zhu, Zenghao; Wang, Qiuyun; Wu, Qianhong

    2017-11-01

    In this presentation, we report a novel experimental approach to investigate the compression-dependent Darcy permeability of soft porous media. Especially, we are proposing new correlations that describe the change of the permeability of random fibrous porous media as a function of its compression. A special device was developed that consisted of a rectangular flow channel with adjustable gap thickness ranging from 3 mm to 20 mm. Air was forced through the thin gap filled with testing fibrous materials. By measuring the flow rate and the pressure gradient, we have successfully obtained the Darcy permeability of different fibrous porous materials at different compression ratios. Theoretical or semi-empirical models have been compared with the experimental results, indicating various degrees of disagreement. The new correlations were then proposed which fit with experimental data very well. The study presented herein provides a useful approach to evaluate the change of the permeability of fibrous porous media as a function of its compression. It will be valuable for examining fluid flow in fibrous porous media where the permeability is difficult to be measured directly. This kind of porous media widely exists in biological systems. This research was supported by the National Science Foundation under Award No. 1511096.

  13. Experimental analysis on viscoelasticity-induced migration of RBCs using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2016-11-01

    Migration of particles in viscoelastic fluids has recently received large attention, because the generated elastic forces in viscoelastic fluids give rise to a simple focusing pattern over a wide range of flow rates. In this study, the vertical focusing and alignment of rigid spherical particles, normal and hardened RBCs in a viscoelastic fluid were experimentally investigated by employing a digital in-line holographic microscopy (DIHM). By the elastic forces, the three different particles are pushed away from the walls and concentrated in the midplane of the rectangular microchannel. Furthermore, most of both RBCs maintain face-on orientation in the microchannel. The effects of deformability of RBC on the viscoelasticity-induced migration and orientation in the channel were also examined. In contrary to non-deformable particles, normal RBCs are dispersed as flow rate increases. In the region near side wall of the microchannel, normal RBCs have edge-on orientation with a large angle of inclination, compared to hardened RBCs. These findings have a strong potential in the design of microfluidic devices for deformability-based separation of cells in viscoelastic fluid flows and label-free diagnoses of certain hematological diseases. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061991).

  14. Physical Hydraulic Model of Side-Channel Spillway of Lambuk DAM, Bali

    NASA Astrophysics Data System (ADS)

    Harifa, A. C.; Sholichin, M.; Othman, F. B.

    2013-12-01

    The spillway is among the most important structures of a dam project. A spillway is designed to prevent overtopping of a dam at a place that is not designed for overtopping. Side-channel spillways are commonly used to release water flow from a reservoir in places where the sides are steep and have a considerable height above the dam. Experimental results were collected with a hydraulic model of the side-channel spillway for releasing the peak overflow of Lambuk Dam. This dam is, located on the Lambuk River, which is a tributary of the Yeh Hoo River ~ 34.6 km north of Denpasar on the island of Bali. The bituminous geomembrane faced dam is 24 m in height, with a 35-m wide spillway. The length of the side channel is 35 m long, with 58 m of transition channel, 67.37 m of chuteway channel and 22.71 m of stilling basin. The capacity of the spillway is 231.91 m3/s and the outlet works capacity is 165.28 m3/s. The reservoir is designed for irrigation and water supply. The purpose of this study was to optimize the designed of the structure and to ensure its safe operation. In hydraulic model may help the decision-makers to visualize the flow field before selecting a ';suitable' design. The hydraulic model study was performed to ensure passage of the maximum discharge at maximum reservoir capacity; to study the spillway approach conditions, water surface profiles, and flow patterns in the chuteway; and to reveal potential demerits of the proposed hydraulic design of various structures and explore solutions. The model was constructed at 1 : 40 scale, Reservoir topography was modeled using concrete, the river bed using sand and some gravel, the river berm using concrete, and the spillway and channel using Plexiglas. Water was measured using Rectangular contracted weir. Design floods (with return period in year) were Q2 = 111.40 m3/s, Q5 = 136.84 m3/s, Q10 = 159.32 m3/s, Q25 = 174.61 m3/s, Q50 = 185.13 m3/s, Q100 = 198.08 m3/s, Q200 = 210.55 m3/s, Q1000 = 231.91 m3/s and the probable maximum flood was 476.88 m3/s. Hydraulic analysis of spillway used USBR method for spillway, Hind's equation for the side channel, energy equation with standard step method for the transition and chuteway channel. Local scouring depth was calculated using the Schotlisch and Veronise equation. Total head on crest spillway for Q2 = 0.92 m, Q1000 = 1.68 m and for QPMF = 1.92 m. The highest measurement error is 3.16% according to the total head on crest spillway. Cavitation was observed in chuteway. Flow is subcritical (Froude < 1) in the side channel and supercritical in the transition channel. The final design for the spillway and chuteway were safe from impact of cavitation, pulsating flow, and local scouring.

  15. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords: u channel , P-Wave, Gamma Ray Density, High resolution measurements, Data accuracy

  16. 76 FR 9547 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... light-walled rectangular pipe and tube from Mexico. See Light-Walled Rectangular Pipe and Tube From...

  17. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    NASA Astrophysics Data System (ADS)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  18. Flow and Heat Transfer in 180-Degree Turn Square Ducts: Effects of Turning Configuration and System Rotation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chyu, Ming-King

    1993-01-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

  19. Silicon micromachined waveguides for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Yap, Markus; Tai, Yu-Chong; Mcgrath, William R.; Walker, Christopher

    1992-01-01

    The majority of radio receivers, transmitters, and components operating at millimeter and submillimeter wavelengths utilize rectangular waveguides in some form. However, conventional machining techniques for waveguides operating above a few hundred GHz are complicated and costly. This paper reports on the development of silicon micromachining techniques to create silicon-based waveguide circuits which can operate at millimeter and submillimeter wavelengths. As a first step, rectangular WR-10 waveguide structures have been fabricated from (110) silicon wafers using micromachining techniques. The waveguide is split along the broad wall. Each half is formed by first etching a channel completely through a wafer. Potassium hydroxide is used to etch smooth mirror-like vertical walls and LPCVD silicon nitride is used as a masking layer. This wafer is then bonded to another flat wafer using a polyimide bonding technique and diced into the U-shaped half wavelengths. Finally, a gold layer is applied to the waveguide walls. Insertion loss measurements show losses comparable to those of standard metal waveguides. It is suggested that active devices and planar circuits can be integrated with the waveguides, solving the traditional mounting problems. Potential applications in terahertz instrumentation technology are further discussed.

  20. Optimal Pulse Configuration Design for Heart Stimulation. A Theoretical, Numerical and Experimental Study.

    NASA Astrophysics Data System (ADS)

    Hardy, Neil; Dvir, Hila; Fenton, Flavio

    Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.

  1. Experimental Investigation of SBLI to Unravel Inlet Unstart Physics

    NASA Astrophysics Data System (ADS)

    Funderburk, Morgan; Narayanaswamy, Venkateswaran

    2016-11-01

    The phenomenon of shock boundary layer interaction (SBLI) driven inlet unstart persists as one of the most significant problems facing supersonic ramjet/scramjet engines. In order to determine how the characteristics of the SBLI units specific to rectangular inlets evolve during an unstart event, an experimental investigation is made using surface streakline methods and pitot/wall pressure measurements in the vicinity of the floor and corner SBLI induced by a compression ramp in a rectangular channel. Mean and unsteady measurements were taken at a variety of shock strengths to simulate the evolution of the combustion-induced back pressure ratio during unstart. The freestream Mach number was also varied. Statistical correlation methods were used to determine the degree of interaction between the floor and corner SBLI with different flowfield locations for the various test conditions. Finally, comparison to a two-dimensional compression ramp SBLI was made to determine any modification caused by the introduction of the corner SBLI. Results indicate that the floor and corner SBLI transition from distinct units to members of a global separated flow with increasing back pressure, and that considerable modification of the floor SBLI by the corner flow occurs. AFOSR Grant FA9550-15-1-0296.

  2. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  3. Rectangular Drop Vehicle in the Zero Gravity Research Facility

    NASA Image and Video Library

    1969-03-21

    A rectangular drop test vehicle perched above 450-foot shaft at the Zero Gravity Research Facility at NASA Lewis Research Center. The drop tower was designed to provide five seconds of microgravity during a normal drop, but had a pneumatic gun that could quickly propel the vehicle to the top of the shaft prior to its drop, thus providing ten seconds of microgravity. The shaft contained a steel-lined vacuum chamber 20 feet in diameter and 469 feet deep. The package was stopped at the bottom of the pit by a 15-foot deep deceleration cart filled with polystyrene pellets. During normal operations, a cylindrical 3-foot diameter and 11-foot long vehicle was used to house the experiments, instrumentation, and high speed cameras. The 4.5-foot long and 1.5-foot wide rectangular vehicle, seen in this photograph, was used less frequently. A 3-foot diameter orb was used for the ten second drops. After the test vehicle was prepared it was suspended above the shaft from the top of the chamber. A lid was used to seal the top of the chamber. The vacuum system reduced the pressure levels inside the chamber. The bolt holding the vehicle was then sheared and the vehicle plummeted into the deceleration cart.

  4. [Nonuniform distribution and contribution of the P- and P/Q-type calcium channels to short-term inhibitory synaptic transmission in cultured hippocampal neurons].

    PubMed

    Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S

    2010-01-01

    In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.

  5. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino; Quinonez, Marbella

    2012-01-01

    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV arises from the TTS. PMID:22851675

  6. Rectangularization of the survival curve in The Netherlands, 1950-1992.

    PubMed

    Nusselder, W J; Mackenbach, J P

    1996-12-01

    In this article we determine whether rectangularization of the survival curve occurred in the Netherlands in the period 1950-1992. Rectangularization is defined as a trend toward a more rectangular shape of the survival curve due to increased survival and concentration of deaths around the mean age at death. We distinguish between absolute and relative rectangularization, depending on whether an increase in life expectancy is accompanied by concentration of deaths into a smaller age interval or into a smaller proportion of total life expectancy. We used measures of variability based on Keyfitz' H and the standard deviation, both life table-based. Our results show that absolute and relative rectangularization of the entire survival curve occurred in both sexes and over the complete period (except for the years 1955-1959 and 1965-1969 in men). At older ages, results differ between sexes, periods, and an absolute versus a relative definition of rectangularization. Above age 60 1/2, relative rectangularization occurred in women over the complete period and in men since 1975-1979 only, whereas absolute rectangularization occurred in both sexes since the period of 1980-1984. The implications of the recent rectangularization at older ages for achieving compression of morbidity are discussed.

  7. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOEpatents

    Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  8. Conduction quantization in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Li, T. S.

    2016-10-01

    We study the ballistic conduction of a monolayer MoS2 subject to a spatially modulated magnetic field by using the Landauer-Buttiker formalism. The band structure depends sensitively on the field strength, and its change has profound influence on the electron conduction. The conductance is found to demonstrate multi-step behavior due to the discrete number of conduction channels. The sharp peak and rectangular structures of the conductance are stretched out as temperature increases, due to the thermal broadening of the derivative of the Fermi-Dirac distribution function. Finally, quantum behavior in the conductance of MoS2 can be observed at temperatures below 10 K.

  9. The Interactions of a Flame and Its Self-Induced Boundary Layer

    NASA Technical Reports Server (NTRS)

    Ott, James D.; Oran, Elaine S.; Anderson, John D.

    1999-01-01

    The interaction of a laminar flame with its self-generated boundary layer in a rectangular channel was numerically simulated using the two-dimensional, reacting, Navier-Stokes equations. A two species chemistry model was implemented which simulates the stoichiometric reaction of acetylene and air. Calculations were performed to investigate the effects of altering the boundary condition of the wall temperature, the Lewis number, the dynamic viscosity, and the ignition method. The purpose of this study was to examine the fundamental physics of the formation of the boundary layer and the interaction of the flame as it propagates into the boundary layer that its own motion has created.

  10. Methods And Apparatus For Acoustic Fiber Fractionation

    DOEpatents

    Brodeur, Pierre

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  11. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices

    NASA Astrophysics Data System (ADS)

    Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar

    2018-07-01

    Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.

  12. Samus Counter Lifting Fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comersmore » for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.« less

  13. Heat Transfer Enhancement in High Performance Heat Sink Channels by Autonomous, Aero-Elastic Reed Fluttering

    NASA Astrophysics Data System (ADS)

    Jha, Sourabh; Crittenden, Thomas; Glezer, Ari

    2016-11-01

    Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.

  14. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  15. Optimal designs of staggered dean vortex micromixers.

    PubMed

    Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei

    2011-01-01

    A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°.

  16. Optimal Designs of Staggered Dean Vortex Micromixers

    PubMed Central

    Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei

    2011-01-01

    A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°. PMID:21747691

  17. Rotating gravity currents. Part 1. Energy loss theory

    NASA Astrophysics Data System (ADS)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  18. Somersault of Paramecium in extremely confined environments.

    PubMed

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-08-19

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young's modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces.

  19. Somersault of Paramecium in extremely confined environments

    PubMed Central

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-01-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces. PMID:26286234

  20. Somersault of Paramecium in extremely confined environments

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-08-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces.

  1. Experimental and numerical investigation of the sound generation mechanisms of sibilant fricatives using a simplified vocal tract model

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2018-03-01

    The sound generation mechanisms of sibilant fricatives were investigated with experimental measurements and large-eddy simulations using a simplified vocal tract model. The vocal tract geometry was simplified to a three-dimensional rectangular channel, and differences in the geometries while pronouncing fricatives /s/ and /∫/ were expressed by shifting the position of the tongue and its constricted flow channel. Experimental results showed that the characteristic peak frequency of the fricatives decreased when the distance between the tongue and teeth increased. Numerical simulations revealed that the jet flow generated from the constriction impinged on the upper teeth wall and caused the main sound source upstream and downstream from the gap between the teeth. While magnitudes of the sound source decreased with increments of the frequency, amplitudes of the pressure downstream from the constriction increased at the peak frequencies of the corresponding tongue position. These results indicate that the sound pressures at the peak frequencies increased by acoustic resonance in the channel downstream from the constriction, and the different frequency characteristics between /s/ and /∫/ were produced by changing the constriction and the acoustic node positions inside the vocal tract.

  2. The effect of heating direction on flow boiling heat transfer of R134a in micro-channels

    NASA Astrophysics Data System (ADS)

    Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi

    2017-04-01

    This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.

  3. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.

    PubMed

    Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua

    2016-08-01

    In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Zhang, Lei

    2006-07-01

    A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.

  5. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  6. Free and forced Rossby normal modes in a rectangular gulf of arbitrary orientation

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2016-09-01

    A free Rossby normal mode in a rectangular gulf of arbitrary orientation is constructed by considering the reflection of a Rossby mode in a channel at the head of the gulf. Therefore, it is the superposition of four Rossby waves in an otherwise unbounded ocean with the same frequency and wavenumbers perpendicular to the gulf axis whose difference is equal to 2mπ/W, where m is a positive integer and W the gulf's width. The lower (or higher) modes with small m (or large m) are oscillatory (evanescent) in the coordinate along the gulf; these are elucidated geometrically. However for oceanographically realistic parameter values, most of the modes are evanescent. When the gulf is forced at the mouth with a single Fourier component, the response is in general an infinite sum of modes that are needed to match the value of the streamfunction at the gulf's entrance. The dominant mode of the response is the resonant one, which corresponds to forcing with a frequency ω and wavenumber normal to the gulf axis η appropriate to a gulf mode: η =- β sin α/(2ω) ± Mπ/W, where α is the angle between the gulf's axis and the eastern direction (+ve clockwise) and M the resonant's mode number. For zonal gulfs ω drops out of the resonance condition. For the special cases η = 0 in which the free surface goes up and down at the mouth with no flow through it, or a flow with a sinusoidal profile, resonant modes can get excited for very specific frequencies (only for non-zonal gulfs in the η = 0 case). The resonant mode is around the annual frequency for a wide range of gulf orientations α ∈ [40°, 130°] or α ∈ [220°, 310°] and gulf widths between 150 and 200 km; these include the Gulf of California and the Adriatic Sea. If η is imaginary, i.e. a flow with an exponential profile, there is no resonance. In general less modes get excited if the gulf is zonally oriented.

  7. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  8. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-01-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  9. Pressure drop and He II flow through fine mesh screens

    NASA Astrophysics Data System (ADS)

    Maddocks, J. R.; van Sciver, S. W.

    1989-05-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  10. Modeling of surface roughness effects on Stokes flow in circular pipes

    NASA Astrophysics Data System (ADS)

    Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian

    2018-02-01

    Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.

  11. Experimental study on the formation of subaqueous barchan dunes in closed conduits

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos A.; Franklin, Erick

    2018-06-01

    The present paper reports the formation of subaqueous barchan dunes by analyzing the temporal evolution of their main geometrical characteristics (width W, length L and horn lengths Lh). After certain time, the dunes reach an equilibrium state and it is possible to study the relation between W versus L, and the dependence of the dune velocity on L. The barchan dunes were formed from spherical glass and zirconium beads. An initial conical heap of beads was placed on the bottom wall of a rectangular channel and it was entrained by a water turbulent flow. The evolution of the dunes was filmed with a CCD camera placed above the channel and mounted on a traveling system. Our results show that after a characteristic time the dune shape does not change and it travels with a roughly constant velocity. Once the equilibrium state is reach, W and L are measured, showing linear dependence. Furthermore, we show that the dune velocity Vd scales with the inverse of the dune length.

  12. Features of Relaxation of a Stress Tensor in the Microscopic Volume of Nematic Phase under the Action of a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.

    2018-02-01

    A numerical study of new regimes of reorientation of director field n̂, velocity v, and components of stress tensor σ ij ( ij = x, y, z) of nematic liquid crystal (LC) encapsulated in a rectangular channel under the action of a strong electric field E directed at angle α ( {˜{π }/{2}} ) to the horizontal surfaces bounding the LC channel is proposed. The numerical calculations performed in the framework of nonlinear generalization of the classical Eriksen-Leslie theory have shown that at certain relations between the torques and momenta affecting the unit LC volume and E ≫ E th, transition periodic structures can emerge during reorientation of n̂, if the corresponding distortion mode has the fastest response, and, thus, suppress all other modes. Rotating domains originating within this process decrease the energy dissipation rate and create more favorable regimes of the director field reorientation, as compared with the uniform rotational displacement.

  13. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  14. Behavior of a particle-laden flow in a spiral channel

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon; Stokes, Yvonne; Bertozzi, Andrea L.

    2014-04-01

    Spiral gravity separators are devices used in mineral processing to separate particles based on their specific gravity or size. The spiral geometry allows for the simultaneous application of gravitational and centripetal forces on the particles, which leads to segregation of particles. However, this segregation mechanism is not fundamentally understood, and the spiral separator literature does not tell a cohesive story either experimentally or theoretically. While experimental results vary depending on the specific spiral separator used, present theoretical works neglect the significant coupling between the particle dynamics and the flow field. Using work on gravity-driven monodisperse slurries on an incline that empirically accounts for this coupling, we consider a monodisperse particle slurry of small depth flowing down a rectangular channel that is helically wound around a vertical axis. We use a thin-film approximation to derive an equilibrium profile for the particle concentration and fluid depth and find that, in the steady state limit, the particles concentrate towards the vertical axis of the helix, leaving a region of clear fluid.

  15. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels

    NASA Astrophysics Data System (ADS)

    Kandlikar, Satish G.; Schmitt, Derek; Carrano, Andres L.; Taylor, James B.

    2005-10-01

    Roughness features on the walls of a channel wall affect the pressure drop of a fluid flowing through that channel. This roughness effect can be described by (i) flow area constriction and (ii) increase in the wall shear stress. Replotting the Moody's friction factor chart with the constricted flow diameter results in a simplified plot and yields a single asymptotic value of friction factor for relative roughness values of ɛ /D>0.03 in the fully developed turbulent region. After reviewing the literature, three new roughness parameters are proposed (maximum profile peak height Rp, mean spacing of profile irregularities RSm, and floor distance to mean line Fp). Three additional parameters are presented to consider the localized hydraulic diameter variation (maximum, minimum, and average) in future work. The roughness ɛ is then defined as Rp+Fp. This definition yields the same value of roughness as obtained from the sand-grain roughness [H. Darcy, Recherches Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux (Mallet-Bachelier, Paris, France, 1857); J. T. Fanning, A Practical Treatise on Hydraulic and Water Supply Engineering (Van Nostrand, New York, 1877, revised ed. 1886); J. Nikuradse, "Laws of flow in rough pipes" ["Stromungsgesetze in Rauen Rohren," VDI-Forschungsheft 361 (1933)]; Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens," Ausgabe B Band 4, English translation NACA Tech. Mem. 1292 (1937)]. Specific experiments are conducted using parallel sawtooth ridge elements, placed normal to the flow direction, in aligned and offset configurations in a 10.03mm wide rectangular channel with variable gap (resulting hydraulic diameters of 325μm-1819μm with Reynolds numbers ranging from 200 to 7200 for air and 200 to 5700 for water). The use of constricted flow diameter extends the applicability of the laminar friction factor equations to relative roughness values (sawtooth height) up to 14%. In the turbulent region, the aligned and offset roughness arrangements yield different results indicating a need to further characterize the surface features. The laminar to turbulent transition is also seen to occur at lower Reynolds numbers with an increase in the relative roughness.

  16. Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.

    2014-01-01

    NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMDs), such as screen channel capillary liquid acquisition devices (LADs), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity these results to flow rate and tank internal pressure.

  17. Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.

    2014-01-01

    NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMD's), such as screen channel capillary liquid acquisition devices (LAD's), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity of these results to flow rate and tank internal pressure.

  18. Near-limit propagation of gaseous detonations in narrow annular channels

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2017-03-01

    New results on the near-limit behaviors of gaseous detonations in narrow annular channels are reported in this paper. Annular channels of widths 3.2 and 5.9 mm were made using circular inserts in a 50.8 mm-diameter external tube. The length of each annular channel was 1.8 m. Detonations were initiated in a steel driver tube where a small volume of a sensitive C2H2+ 2.5O2 mixture was injected to facilitate detonation initiation. A 2 m length of circular tube with a 50.8 mm diameter preceded the annular channel so that a steady Chapman-Jouguet (CJ) detonation was established prior to entering the annular channel. Four detonable mixtures of C2H2 {+} 2.5O2 {+} 85 % Ar, C2H2 {+} 2.5O2 {+} 70 % Ar, C3H8 {+} 5O2, and CH4 {+} 2O2 were used in the present study. Photodiodes spaced 10 cm throughout the length of both the annular channel and circular tube were used to measure the detonation velocity. In addition, smoked foils were inserted into the annular channel to monitor the cellular structure of the detonation wave. The results show that, well within the detonability limits, the detonation wave propagates along the channel with a small local velocity fluctuation and an average global velocity can be deduced. The average detonation velocity has a small deficit of 5-15 % far from the limits and the velocity rapidly decreases to 0.7V_{CJ}-0.8V_{CJ} when the detonation propagates near the limit. Subsequently, the fluctuation of local velocity also increases as the decreasing initial pressure approaches the limit. In the two annular channels used in this work, no galloping detonations were observed for both the stable and unstable mixtures tested. The present study also confirms that single-headed spinning detonation occurs at the limit, as in a circular tube, rather than the up and down "zig zag" mode in a two-dimensional, rectangular channel.

  19. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channelsmore » of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits of inertial focusing for technological applications.« less

  20. 77 FR 1915 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... period of review (POR) from August 1, 2009, through July 31, 2010. \\1\\ See Light-Walled Rectangular Pipe...

  1. 75 FR 55559 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... administrative review of the antidumping duty order on light-walled rectangular pipe and tube (LWRPT) from Mexico... Light-Walled Rectangular Pipe and Tube from Mexico, the People's Republic of China, and the Republic of...

  2. Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Hall, John M.

    2002-01-01

    A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.

  3. Neutronic reactor thermal shield

    DOEpatents

    Lowe, Paul E.

    1976-06-15

    1. The combination with a plurality of parallel horizontal members arranged in horizontal and vertical rows, the spacing of the members in all horizontal rows being equal throughout, the spacing of the members in all vertical rows being equal throughout; of a shield for a nuclear reactor comprising two layers of rectangular blocks through which the members pass generally perpendicularly to the layers, each block in each layer having for one of the members an opening equally spaced from vertical sides of the block and located closer to the top of the block than the bottom thereof, whereby gravity tends to make each block rotate about the associated member to a position in which the vertical sides of the block are truly vertical, the openings in all the blocks of one layer having one equal spacing from the tops of the blocks, the openings in all the blocks of the other layer having one equal spacing from the tops of the blocks, which spacing is different from the corresponding spacing in the said one layer, all the blocks of both layers having the same vertical dimension or length, the blocks of both layers consisting of relatively wide blocks and relatively narrow blocks, all the narrow blocks having the same horizontal dimension or width which is less than the horizontal dimension or width of the wide blocks, which is the same throughout, each layer consisting of vertical rows of narrow blocks and wide blocks alternating with one another, each vertical row of narrow blocks of each layer being covered by a vertical row of wide blocks of the other layer which wide blocks receive the same vertical row of members as the said each vertical row of narrow blocks, whereby the rectangular perimeters of each block of each layer is completely out of register with that of each block in the other layer.

  4. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    PubMed

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  5. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  6. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  7. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    NASA Astrophysics Data System (ADS)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  8. Conversion of energy in cross-sectional divergences under different conditions of inflow

    NASA Technical Reports Server (NTRS)

    Peters, H

    1934-01-01

    This investigation treats the conversion of energy in conically divergent channels with constant opening ratio and half included angle of from 2.6 to 90 degrees, the velocity distribution in the entrance section being varied from rectangular distribution to fully developed turbulence by changing the length of the approach. The energy conversion is not completed in the exit section of the diffuser; complete conversion requires a discharge length which depends upon the included angle and the velocity distribution in the entrance section. Lastly, a spiral fan was mounted in the extreme length and the effect of the spiral flow on the energy conversion in the cross-sectional divergence explored.

  9. Characterization and evaluation of channel and hillslope erosion on the Zuni Indian Reservation, New Mexico, 1992-95

    USGS Publications Warehouse

    Gellis, A.C.

    1998-01-01

    Like many areas of the southwestern United States, the Zuni Indian Reservation, New Mexico, has high rates of erosion, ranging from 95 to greater than 1,430 cubic meters per square kilometer per year. Erosion on the Zuni Indian Reservation includes channel erosion (arroyo incision and channel widening) and hillslope (sheetwash) erosion. The U.S. Geological Survey conducted a 3-year (1992-95) study on channel erosion and hillslope erosion in the portion of the Rio Nutria watershed that drains entirely within the Zuni Indian Reservation. Results of the study can be used by the Zuni Tribe to develop a plan for watershed rehabilitation. Channel changes, gully growth, headcuts, and changes in dirt roads over time were examined to characterize and evaluate channel erosion in the Rio Nutria watershed. Channel cross-sectional changes included width, depth, width-to-depth ratio, area, and geometry. Relative rates of gully growth, headcuts, and changes in dirt roads over time were examined using aerial photographs. Results of resurveys conducted between 1992 and 1994 of 85 channel cross sections indicated aggradation of 72 percent of cross sections in three subbasins of the Rio Nutria watershed. Forty-eight percent of resurveyed cross sections showed an increase in cross-sectional area and erosion; nine of these are in tributaries. Some channels (43 percent) aggraded and increased in cross-sectional area. This increase in cross- sectional area is due mostly to widening. Channel widening is a more pervasive form of erosion than channel scour on the Zuni Indian Reservation. The tops of channels widened in 67 percent and the bottoms of channels widened in 44 percent of resurveyed cross sections. Narrow, deep triangular channels are more erosive than rectangular cross sections. Five land-cover types--three sites on mixed-grass pasture, two sites on sites on unchained pi?on and juniper, one site on sagebrush, one site on ponderosa pine, and two sites on chained pi?on and juniper--were each instrumented with sediment traps between 1992 and 1994 to measure hillslope erosion. Highest sediment yields were measured at chained areas and mixed- grass pasture. Annual yields from sites that were operated for more than a year were 11.7, 6.0, and 6.5 metric tons per square kilometer per year at a pi?on and juniper site, mixed-grass pasture site, and sagebrush site, respectively.

  10. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    DOEpatents

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  11. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR.

    PubMed

    Rahman, MuhibUr; Park, Jung-Dong

    2018-03-19

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  12. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR

    PubMed Central

    2018-01-01

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands. PMID:29562714

  13. Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model

    NASA Astrophysics Data System (ADS)

    Naik, Udaykumar; Bapat, Vishram N.

    2017-08-01

    This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.

  14. Josephson current in ballistic graphene Corbino disk

    NASA Astrophysics Data System (ADS)

    Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina

    2018-06-01

    We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.

  15. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    NASA Astrophysics Data System (ADS)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  16. The structure of a turbulent flow in a channel of complex shape

    USGS Publications Warehouse

    Tracy, Hubert Jerome

    1976-01-01

    Measurements of the Reynolds stresses and the mean motion pattern were made in a uniform turbulent motion in a conduit consisting of a large, nearly square section joined by a smaller rectangular section. The results indicate that the boundary shearing stress is nearly constant over large segments of the boundaries. The magnitudes of the lateral and the vertical components of turbulence are not the same near a boundary and the component normal to the boundary is smaller than the component parallel to the boundary. The difference in the two components in the corner regions of the channel produces secondary mean motions in the plane of the channel section. The strength of the motion depends upon the angle subtended by the corner. A principal function of the secondary motions is to transfer momentum into the corner regions and, elsewhere, to compensate for the excess force due to the shear gradients. In the absence of the secondary motions, the fluid must stagnate and separate from the boundaries in certain regions and be greatly accelerated in others. The secondary motions are conventionally described in terms of symmetrical rotations in cells bounded by the corner bisectors. The measured motion pattern is at variance with this view, unless the symmetry is confined to a very local region. (Woodard-USGS)

  17. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.

    PubMed

    Xuan, Xiangchun; Li, Dongqing

    2005-09-01

    General solutions are developed for direct current (DC) and alternating current (AC) electroosmotic flows in microfluidic channels with arbitrary cross-sectional geometry and arbitrary distribution of wall charge (zeta potential). The applied AC electric field can also be of arbitrary waveform. By proposing a nondimensional time scale varpi defined as the ratio of the diffusion time of momentum across the electric double-layer thickness to the period of the applied electric field, we demonstrate analytically that the Helmholtz-Smoluchowski electroosmotic velocity is an appropriate slip condition for AC electroosmotic flows in typical microfluidic applications. With this slip condition approach, electroosmotic flows in rectangular and asymmetric trapezoidal microchannels with nonuniform wall charge, as examples, are investigated. The unknown constants in the proposed general solutions are numerically determined with a least-squares method through matching the boundary conditions. We find that the wall charge affects significantly the electroosmotic flow while the channel geometry does not. Moreover, the flow feature is characterized by another nondimensional time scale Omega defined as the ratio of the diffusion time of momentum across the channel hydraulic radius to the period of the applied electric field. The onset of phase shift between AC electroosmotic velocity and applied electric field is also examined analytically.

  18. Experimental studying of local characteristics of gas-liquid flow in microchannels by optical methods

    NASA Astrophysics Data System (ADS)

    Bartkus, German V.; Kuznetsov, Vladimir V.

    2018-03-01

    The local characteristics of the gas-liquid two-phase flow in rectangular microchannels 420 × 280 μm and 395 × 205 μm with T-shaped mixer inlet were experimentally investigated in this work. Visualization of flow regimes and measurement of local characteristics were carried out using a high-speed video camera Optronis CX600x2 and laser-induced fluorescence (LIF) method. Deionized water and ethanol were used as the liquid phase, and nitrogen - as the gas phase. The Rhodamine 6G dye was added to the liquid. The location of the microchannel in space (horizontal, vertical) was changed. The profiles of the liquid film along the long side of the microchannel were obtained, the local film thickness was measured in the channel`s central section for the elongated bubble flow and the transition flow of the deionized water-nitrogen mixture. The unevenness of liquid film thickness at the channel cross-section and along the bubble was experimentally shown. The temporal dynamics of two-phase flow for the ethanol-nitrogen mixture was shown. It was found that most of the liquid flows in the meniscus on the short side of the microchannel for the present gas and liquid flow rates.

  19. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1997-01-01

    The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.

  20. Influence of the narrow {111} planes on axial and planar ion channeling.

    PubMed

    Motapothula, M; Dang, Z Y; Venkatesan, T; Breese, M B H; Rana, M A; Osman, A

    2012-05-11

    We report channeling patterns where clearly resolved effects of the narrow {111} planes are observed in axial and planar alignments for 2 MeV protons passing through a 55 nm [001] silicon membrane. At certain axes, such as <213> and <314>, the offset in atomic rows forming the narrow {111} planes results in shielding from the large potential at the wide {111} planes, producing a region of shallow, asymmetric potential from which axial channeling patterns have no plane of symmetry. At small tilts from such axes, different behavior is observed from the wide and narrow {111} planes. At planar alignment, distinctive channeling effects due to the narrow planes are observed. As a consequence of the shallow potential well at the narrow planes, incident protons suffer dechanneled trajectories which are excluded from channeling within the wide planes, resulting in an anomalously large scattered beam at {111} alignment.

  1. An Assessment of the Usefulness of Water Tunnels for Aerodynamic Investigations

    DTIC Science & Technology

    2012-12-01

    a wide range of research projects, including the prediction of the performance of gas- turbine engines under conditions of pulsating flow, parametric...number-insensitive flows is water-tunnel testing of a thin rectangular flat plate having an aspect ratio of 2 – see Figure 4 from Kaplan , Altman & Ol... Kaplan , Altman & Ol, (2007). 7. Flow Over Circular-Type Bodies 7.1 Circular Cylinders The flow around a circular cylinder located at right angles

  2. Photorefractive-based adaptive optical windows

    NASA Astrophysics Data System (ADS)

    Liu, Yuexin; Yang, Yi; Wang, Bo; Fu, John Y.; Yin, Shizhuo; Guo, Ruyan; Yu, Francis T.

    2004-10-01

    Optical windows have been widely used in optical spectrographic processing system. In this paper, various window profiles, such as rectangular, triangular, Hamming, Hanning, and Blackman etc., have been investigated in detail, regarding their effect on the generated spectrograms, such as joint time-frequency resolution ΔtΔw, the sidelobe amplitude attenuation etc.. All of these windows can be synthesized in a photorefractive crystal by angular multiplexing holographic technique, which renders the system more adaptive. Experimental results are provided.

  3. Performance of four turbulence closure models implemented using a generic length scale method

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P.

    2005-01-01

    A two-equation turbulence model (one equation for turbulence kinetic energy and a second for a generic turbulence length-scale quantity) proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235] is implemented in a three-dimensional oceanographic model (Regional Oceanographic Modeling System; ROMS v2.0). These two equations, along with several stability functions, can represent many popular turbulence closures, including the k-kl (Mellor-Yamada Level 2.5), k-??, and k-?? schemes. The implementation adds flexibility to the model by providing an unprecedented range of turbulence closure selections in a single 3D oceanographic model and allows comparison and evaluation of turbulence models in an otherwise identical numerical environment. This also allows evaluation of the effect of turbulence models on other processes such as suspended-sediment distribution or ecological processes. Performance of the turbulence models and sediment-transport schemes is investigated with three test cases for (1) steady barotropic flow in a rectangular channel, (2) wind-induced surface mixed-layer deepening in a stratified fluid, and (3) oscillatory stratified pressure-gradient driven flow (estuarine circulation) in a rectangular channel. Results from k-??, k-??, and gen (a new closure proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235]) are very similar for these cases, but the k-kl closure results depend on a wall-proximity function that must be chosen to suit the flow. Greater variations appear in simulations of suspended-sediment concentrations than in salinity simulations because the transport of suspended-sediment amplifies minor variations in the methods. The amplification is caused by the added physics of a vertical settling rate, bottom stress dependent resuspension, and diffusive transport of sediment in regions of well mixed salt and temperature. Despite the amplified sensitivity of sediment to turbulence models in the estuary test case, the four closures investigated here all generated estuarine turbidity maxima that were similar in their shape, location, and concentrations. 

  4. On the theory of polarization radiation in media with sharp boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlovets, D. V., E-mail: d.karlovets@gmail.com

    2011-07-15

    Polarization radiation generated when a point charge moves uniformly along a straight line in vacuum in the vicinity of media with a finite permittivity {epsilon}({omega}) = {epsilon} Prime + i{epsilon} Double-Prime and sharp boundaries is considered. A method is developed in which polarization radiation is represented as the field of the current induced in the substance by the field of the moving charge. The solution to the problem of radiation induced when a charge moves along the axis of a cylindrical vacuum channel in a thin screen with a finite radius and a finite permittivity is obtained. Depending on themore » parameters of the problem, this solution describes various types of radiation (Cherenkov, transition, and diffraction radiation). In particular, when the channel radius tends to zero and the outer radius of the screen tends to infinity, the expression derived for the emitted energy coincides with the known solution for transition radiation in a plate. In another particular case of ideal conductivity ({epsilon} Double-Prime {yields} {infinity}), the relevant formula coincides with the known results for diffraction radiation from a circular aperture in an infinitely thin screen. The solution is obtained to the problem of radiation generated when the charge flies near a thin rectangular screen with a finite permittivity. This solution describes the diffraction and Cherenkov mechanisms of radiation and takes into account possible multiple re-reflections of radiation in the screen. The solution to the problem of radiation generated when a particles flies near a thin grating consisting of a finite number of strips having a rectangular cross section and a finite permittivity and separated by vacuum gaps (Smith-Purcell radiation) is also obtained. In the special case of ideal conductivity, the expression derived for the emitted energy coincides with the known result in the model of surface currents.« less

  5. SU-G-BRC-17: Using Generalized Mean for Equivalent Square Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S; Fan, Q; Lei, Y

    Purpose: Equivalent Square (ES) is a widely used concept in radiotherapy. It enables us to determine many important quantities for a rectangular treatment field, without measurement, based on the corresponding values from its ES field. In this study, we propose a Generalized Mean (GM) type ES formula and compare it with other established formulae using benchmark datasets. Methods: Our GM approach is expressed as ES=(w•fx^α+(1-w)•fy^α)^(1/α), where fx, fy, α, and w represent field sizes, power index, and a weighting factor, respectively. When α=−1 it reduces to well-known Sterling type ES formulae. In our study, α and w are determined throughmore » least-square-fitting. Akaike Information Criterion (AIC) was used to benchmark the performance of each formula. BJR (Supplement 17) ES field table for X-ray PDDs and open field output factor tables in Varian TrueBeam representative dataset were used for validation. Results: Switching from α=−1 to α=−1.25, a 20% reduction in standard deviation of residual error in ES estimation was achieved for the BJR dataset. The maximum relative residual error was reduced from ∼3% (in Sterling formula) or ∼2% (in Vadash/Bjarngard formula) down to ∼1% in GM formula for open fields of all energies and at rectangular field sizes from 3cm to 40cm in the Varian dataset. The improvement of the GM over the Sterling type ES formulae is particularly noticeable for very elongated rectangular fields with short width. AIC analysis confirmed the superior performance of the GM formula after taking into account the expanded parameter space. Conclusion: The GM significantly outperforms Sterling type formulae at slightly increased computational cost. The GM calculation may nullify the requirement of data measurement for many rectangular fields and hence shorten the Linac commissioning process. Improved dose calculation accuracy is also expected by adopting the GM formula into treatment planning and secondary MU check systems.« less

  6. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds.

    PubMed

    Ohba, Tomonori; Kaneko, Katsumi; Endo, Morinobu; Hata, Kenji; Kanoh, Hirofumi

    2013-01-29

    Water plays an important role in controlling chemical reactions and bioactivities. For example, water transportation through water channels in a biomembrane is a key factor in bioactivities. However, molecular-level mechanisms of water transportation are as yet unknown. Here, we investigate water transportation through narrow and wide one-dimensional (1D) channels on the basis of water-vapor adsorption rates and those determined by molecular dynamics simulations. We observed that water in narrow 1D channels was transported 3-5 times faster than that in wide 1D channels, although the narrow 1D channels provide fewer free nanospaces for water transportation. This rapid transportation is attributed to the formation of fewer hydrogen bonds between water molecules adsorbed in narrow 1D channels. The water-transportation mechanism provides the possibility of rapid communication through 1D channels and will be useful in controlling reactions and activities in water systems.

  7. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-04

    ISS022-E-019513 (4 Jan. 2010) --- The Rio Negro floodplain in Patagonia, Argentina is featured in this image photographed by an Expedition 22 crew member on the International Space Station. The Rio Negro is recognizable by astronaut crews from orbit as one of the most meandering rivers in South America. This is well illustrated in this view, where the entire river floodplain (approximately 10 kilometers wide) is covered with curved relics of channels known as meander scars. The main channel of the river, flowing south at this point?60 kilometers south of the city of Choele Choel (not shown)?appears in partial sun glint at right. Sun glint occurs when light is reflected off a water surface directly back towards the viewer, imparting a silvery sheen to those areas. When meander scars contain water they are known as oxbow lakes, some of which are also highlighted by sun glint in the image. Meander scars show the numerous past positions of river bends, produced as the river snaked across the plain in the very recent geological past. The Rio Negro is a dramatic example of how mobile a river can be. The orange tint to the water in one of the oxbow lakes (center) could result from orange salt-loving algae. Their appearance here would be unusual since floodplain lakes are usually too fresh for algae blooms. But an explanation may lie in the location of the Rio Negro on the margin of Argentina?s arid Patagonian region with annual rainfall less than 12 inches (300 mm). Evaporation in this cloudless region could be high enough for some lakes to become salty. The Rio Negro flows generally southeast from the Andes Mts. to the Atlantic Ocean. Its floodplain supports the biggest pear- and apple-growing region of Argentina. Rectangular farm boundaries can be seen at bottom center. The river also hosts the world?s longest kayak regatta (653 kilometers), which lasts six days.

  8. The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width.

    PubMed

    Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois

    2015-12-18

    Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.

    PubMed

    Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue

    2017-01-01

    Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.

  10. Propagation of THz pulses in rectangular subwavelength dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun

    2018-06-01

    Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.

  11. Pore size matters for potassium channel conductance

    PubMed Central

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  12. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.

  13. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field

    NASA Astrophysics Data System (ADS)

    Krishnaveni, T.; Renganathan, T.; Picardo, J. R.; Pushpavanam, S.

    2017-09-01

    We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.

  14. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field.

    PubMed

    Krishnaveni, T; Renganathan, T; Picardo, J R; Pushpavanam, S

    2017-09-01

    We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.

  15. Temporal and spatial intermittencies within Newtonian turbulence

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anubhav; Graham, Michael

    2015-11-01

    Direct numerical simulations of a pressure driven turbulent flow are performed in a large rectangular channel. Intermittent high- and low-drag regimes within turbulence that have earlier been found to exist temporally in minimal channels have been observed both spatially and temporally in full-size turbulent flows. These intermittent regimes, namely, ''active'' and ''hibernating'' turbulence, display very different structural and statistical features. We adopt a very simple sampling technique to identify these intermittent intervals, both temporally and spatially, and present differences between them in terms of simple quantities like mean-velocity, wall-shear stress and flow structures. By conditionally sampling of the low wall-shear stress events in particular, we show that the Maximum Drag Reduction (MDR) velocity profile, that occurs in viscoelastic flows, can also be approached in a Newtonian-fluid flow in the absence of any additives. This suggests that the properties of polymer drag reduction are inherent to all flows and their occurrence is just enhanced by the addition of polymers. We also show how the intermittencies within turbulence vary with Reynolds number. The work was supported by AFOSR grant FA9550-15-1-0062.

  16. Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A near vertical view of the Mobile Bay, Alabama area seen in this Skylab 4 Earth Resources Experiment Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay and into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the bay by the rivers. The westerly movement of the shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current the the blue of the Gulf. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect

  17. Microscopic Holography for flow over rough plate

    NASA Astrophysics Data System (ADS)

    Talapatra, Siddharth; Hong, Jiarong; Lu, Yuan; Katz, Joseph

    2008-11-01

    Our objective is to measure the near wall flow structures in a turbulent channel flow over a rough wall. In-line microscopic holographic PIV can resolve the 3-D flow field in a small sample volume, but recording holograms through a rough surface is a challenge. To solve this problem, we match the refractive indices of the fluid with that of the wall. Proof of concept tests involve an acrylic plate containing uniformly distributed, closely packed 0.45mm high pyramids with slope angle of 22^^o located within a concentrated sodium iodide solution. Holograms recorded by a 4864 x 3248 pixel digital camera at 10X magnification provide a field of view of 3.47mm x 2.32mm and pixel resolution of 0.714 μm. Due to index matching, reconstructed seed particles can be clearly seen over the entire volume, with only faint traces with the rough wall that can be removed. Planned experiments will be performed in a 20 x 5 cm rectangular channel with the top and bottom plates having the same roughness as the sample plate.

  18. Detonation suppression in hydrogen-air mixtures using porous coatings on the walls

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.

    2018-05-01

    We considered the problem of detonation suppression and weakening of blast wave effects occurring during the combustion of hydrogen-air mixtures in confined spaces. The gasdynamic processes during combustion of hydrogen, an alternative environmentally friendly fuel, were also considered. Detonation decay and flame propagation in hydrogen-air mixtures were experimentally investigated in rectangular cross-section channels with solid walls and two types of porous coatings: steel wool and polyurethane foam. Shock wave pressure dynamics inside the section with porous coating were studied using pressure sensors; flame front propagation was studied using photodiodes and high-speed camera visualization. For all mixtures, the detonation wave formed before entering the section with porous coating. For both porous materials, the steady detonation wave decoupled in the porous section of the channel into a shock wave and flame front propagating with a velocity around the Chapman-Jouguet acoustic velocity. By the end of the porous section, shock wave pressure reductions of 70 and 85% were achieved for the polyurethane foam and steel wool, respectively. The dependence of the flame velocity on the mixture composition (equivalence ratio) is presented.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Devesh

    Diffusion bonded heat exchangers are the leading candidates for the sCO 2 Brayton cycles in next generation nuclear power plants. Commercially available diffusion bonded heat exchangers utilize set of continuous semi-circular zigzag micro channels to increase the heat transfer area and enhance heat transfer through increased turbulence production. Such heat exchangers can lead to excessive pressure drop as well as flow maldistribution in the case of poorly designed flow distribution headers. The goal of the current project is to fabricate and test potential discontinuous fin patterns for diffusion bonded heat exchangers; which can achieve desired thermal performance at lower pressuremore » drops. Prototypic discontinuous offset rectangular and Airfoil fin surface geometries were chemically etched on to 316 stainless steel plate and sealed against an un-etched flat pate using O-ring seal emulating diffusion bonded heat exchangers. Thermal-hydraulic performance of these prototypic discontinuous fin geometries was experimentally evaluated and compared to the existing data for the continuous zigzag channels. The data generated from this project will serve as the database for future testing and validation of numerical models.« less

  20. Effect of back-pressure forcing on shock train structures in rectangular channels

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  1. Mechanisms of dynamic wetting failure in the presence of soluble surfactants

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.

    2017-11-01

    A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.

  2. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  3. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.

  4. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  5. Analysis of junior high school students' difficulty in resolving rectangular conceptual problems

    NASA Astrophysics Data System (ADS)

    Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar

    2017-08-01

    Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.

  6. Ultrasound therapy transducers with space-filling non-periodic arrays.

    PubMed

    Raju, Balasundar I; Hall, Christopher S; Seip, Ralf

    2011-05-01

    Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.

  7. A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth

    In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less

  8. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  9. NEUTRON-IRRADIATED STRUCTURES

    DOEpatents

    Ashley, E.L.; Ashley, J.W.; Bowker, H.W.; Hall, R.H.; Kendall, J.W.

    1959-02-01

    A moderator structure is described for a nuclear reactor of the heterogensous type wherein a large mass of moderator is provided with channels therethrough for the introduction of uranium serving as nuclear fuel and for the passage of a cooling fluid. The structure is comprised of blocks of moderator material in superposed horizontal layers, the blocks of each layer being tied together with spaces between them and oriented to have horizontal Wigner growth. The ties are strips of moderator material, the same as the blocks, with transverse Wigner growth, disposed horizontally along lines crossing at vertical axes of the blocks. The blocks are preferably rectangular with a larger or length dimension transverse to the directions of Wiguer growth and are stood on end to provide for horizontal growth.

  10. A Study of Dean Vortex Development and Structure in a Curved Rectangular Channel with Aspect Ratio of 40 at Dean Numbers up to 430

    NASA Technical Reports Server (NTRS)

    Ligrani, Phillip M.

    1994-01-01

    Flow in a curved channel with mild curvature, an aspect ratio of 40 to 1, and an inner to outer radius ratio of 0.979 is studied at Dean numbers De ranging from 35 to 430. For positions from the start of curvature ranging from 85 to 145 degrees, the sequence of transition events begins with curved channel Poiseuille flow at De less than 40-64. As the Dean number increases, observations show initial development of Dean vortex pairs, followed by symmetric vortex pairs which, when viewed in spanwise/radial planes, cover the entire channel height (De=90-100). At De from 40 to 125-130, the vortex pairs often develop intermittent waviness in the form of vortex undulations. Splitting and merging of vortex pairs is also observed over the same experimental conditions as well as at higher De. When Dean numbers range from 130 to 185-200, the undulating wavy mode is replaced by a twisting mode with higher amplitudes of oscillation and shorter wavelengths. The twisting wavy mode results in the development of regions where turbulence intensity is locally augmented at Dean numbers from 150 to 185-200, principally in the upwash regions between the two individual vortices which make up each vortex pair. These turbulent regions eventually increase in intensity and spatial extent as the Dean number increases further, until individual regions merge together so that the entire cross section of the channel contains chaotic turbulent motions. When Dean numbers then reach 400-435, spectra of velocity fluctuations then evidence fully turbulent flow.

  11. Electromagnetic Wave Excitation by a Longitudinal Slot in a Broad Wall of Rectangular Waveguide in the Presence of Passive Impedance Vibrators Outside the Waveguide

    NASA Astrophysics Data System (ADS)

    Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.

    2016-09-01

    Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.

  12. Conductor for a fluid-cooled winding

    DOEpatents

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  13. Topological lattice using multi-frequency radiation

    NASA Astrophysics Data System (ADS)

    Andrijauskas, Tomas; Spielman, I. B.; Juzeliūnas, Gediminas

    2018-05-01

    We describe a novel technique for creating an artificial magnetic field for ultracold atoms using a periodically pulsed pair of counter propagating Raman lasers that drive transitions between a pair of internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. For a wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau levels, as quantified by their Chern numbers.

  14. Body Composition in Military or Military Eligible Women.

    DTIC Science & Technology

    1998-02-01

    aqueous exchange of hydrogen, isotopic fractionation. All values will be converted to kilograms using the constant 0.009934. This method has a day to...into a microtube for storage. Samples will be coded to protect subject identity and shipped to the U.S. Department of Agriculture Western Human...weighing will be conducted in a rectangular (7 feet long x 4 feet wide x 5 feet deep), glass-fronted tank of heated water (35°C/96°F) . The swimsuit

  15. Journal of Rehabilitation Research and Development Progress Reports 1994, Volume 32, June 1995

    DTIC Science & Technology

    1995-06-01

    Stepping Over an Obstacle: Effect of Reduced Visual Field 50 Effect of Reduced Optic Flow on Gait 51 Effects of Robotic-Assisted Weight Support on Gait...Geometry in Hip Replacement 240 Wear Debris Generation in Hip Modular Head and Neck Components 241 Changes in Bone Blood Flow Associated with...rectangular cross-section to form a continuously flowing ribbon of melted plastic. Rib- bon dimensions are 0.75 mm thick and 5 mm wide, corresponding to

  16. Method and structure for cache aware transposition via rectangular subsections

    DOEpatents

    Gustavson, Fred Gehrung; Gunnels, John A

    2014-02-04

    A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.

  17. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  18. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  19. The case of the shrinking channels; the North Platte and Platte rivers in Nebraska

    USGS Publications Warehouse

    Williams, Garnett P.

    1978-01-01

    Since the latter part of the 19th century, channels of North Platte and Platte Rivers in western and central Nebraska have changed considerably. In the 365-km reach from Minatare to Overton, the channel by 2969 ws only about 0.1-0.2 as wide in 1865. The 1969 channel for this reach was less braided and slightly more sinuous than the 1938 channel. (No data are available for braiding and sinuosity prior to 1938.) From Overton to lGrand Island the 1969 channel was about o.6-0.7 as wide as in 1865, and various changes in braiding and sinuosity took place between 1938 and 1969. The decreases in channel width are related to decreases in water discharge. Such flow reductions have resulted primarily from regulating effects of major upstream dams and greater use of the river water. Much of the former river channel is now overgrown with vegetation. (Woodard-USGS)

  20. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications.

    PubMed

    Dong, Jian; Li, Qianqian; Deng, Lianwen

    2017-02-10

    Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 x 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5-6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36-4.16, 4.92-5.36, and 5.68-6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable IoT applications.

  1. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications

    PubMed Central

    Dong, Jian; Li, Qianqian; Deng, Lianwen

    2017-01-01

    Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 × 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5–6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36–4.16, 4.92–5.36, and 5.68–6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable IoT applications. PMID:28208633

  2. Secondary flow in turbulent ducts with increasing aspect ratio

    NASA Astrophysics Data System (ADS)

    Vinuesa, R.; Schlatter, P.; Nagib, H. M.

    2018-05-01

    Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at a center-plane friction Reynolds number Reτ,c≃180 , and aspect ratios 1 and 3 at Reτ,c≃360 , were carried out with the spectral-element code nek5000. The aim of these simulations is to gain insight into the kinematics and dynamics of Prandtl's secondary flow of the second kind and its impact on the flow physics of wall-bounded turbulence. The secondary flow is characterized in terms of the cross-plane component of the mean kinetic energy, and its variation in the spanwise direction of the flow. Our results show that averaging times of around 3000 convective time units (based on duct half-height h ) are required to reach a converged state of the secondary flow, which extends up to a spanwise distance of around ≃5 h measured from the side walls. We also show that if the duct is not wide enough to accommodate the whole extent of the secondary flow, then its structure is modified as reflected through a different spanwise distribution of energy. Another confirmation of the extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary motions for zc/h >5 (where zc is the spanwise distance from the corner) in aspect ratios 7, 10, and 14.4, which exhibits a decreasing level of energy with increasing averaging time ta, and in its rapid rate of decay given by ˜ta-1 . This is the same rate of decay observed in a spanwise-periodic channel simulation, which suggests that at the core, the kinetic energy of the secondary flow integrated over the cross-sectional area, , behaves as a random variable with zero mean, with rate of decay consistent with central limit theorem. Long-time averages of statistics in a region of rectangular ducts extending about the width of a well-designed channel simulation (i.e., extending about ≃3 h on each side of the center plane) indicate that ducts or experimental facilities with aspect ratios larger than 10 may, if properly designed, exhibit good agreement with results obtained from spanwise-periodic channel computations.

  3. Experimental Investigation and Analysis of HEC-6 River Morphological Model

    NASA Astrophysics Data System (ADS)

    Tingsanchali, Tawatchai; Supharatid, Seree

    1996-05-01

    Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer-Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval x and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.

  4. VOLTAGE-GATED POTASSIUM CHANNELS AT THE CROSSROADS OF NEURONAL FUNCTION, ISCHEMIC TOLERANCE, AND NEURODEGENERATION

    PubMed Central

    Shah, Niyathi Hegde; Aizenman, Elias

    2013-01-01

    Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system, and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer’s disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage-dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels, and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons, and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases. PMID:24323720

  5. Prediction of the Wall Factor of Arbitrary Particle Settling through Various Fluid Media in a Cylindrical Tube Using Artificial Intelligence

    PubMed Central

    Li, Mingzhong; Xue, Jianquan; Li, Yanchao; Tang, Shukai

    2014-01-01

    Considering the influence of particle shape and the rheological properties of fluid, two artificial intelligence methods (Artificial Neural Network and Support Vector Machine) were used to predict the wall factor which is widely introduced to deduce the net hydrodynamic drag force of confining boundaries on settling particles. 513 data points were culled from the experimental data of previous studies, which were divided into training set and test set. Particles with various shapes were divided into three kinds: sphere, cylinder, and rectangular prism; feature parameters of each kind of particle were extracted; prediction models of sphere and cylinder using artificial neural network were established. Due to the little number of rectangular prism sample, support vector machine was used to predict the wall factor, which is more suitable for addressing the problem of small samples. The characteristic dimension was presented to describe the shape and size of the diverse particles and a comprehensive prediction model of particles with arbitrary shapes was established to cover all types of conditions. Comparisons were conducted between the predicted values and the experimental results. PMID:24772024

  6. Rectangular Ion Funnel: A New Ion Funnel Interface for Structures for Lossless Ion Manipulations

    DOE PAGES

    Chen, Tsung-Chi; Webb, Ian K.; Prost, Spencer A.; ...

    2014-11-19

    A recent achievement in Structures for Lossless Ion Manipulations (SLIM) is the ability for near lossless ion focusing, transfer, and trapping in sub-atmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated bymore » ion simulations, fabricated utilizing printed circuit board technology and tested experimentally. The RIF was integrated to a SLIM-TOFMS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range along with greatly improved SLIM operational stability.« less

  7. Prediction of the wall factor of arbitrary particle settling through various fluid media in a cylindrical tube using artificial intelligence.

    PubMed

    Li, Mingzhong; Zhang, Guodong; Xue, Jianquan; Li, Yanchao; Tang, Shukai

    2014-01-01

    Considering the influence of particle shape and the rheological properties of fluid, two artificial intelligence methods (Artificial Neural Network and Support Vector Machine) were used to predict the wall factor which is widely introduced to deduce the net hydrodynamic drag force of confining boundaries on settling particles. 513 data points were culled from the experimental data of previous studies, which were divided into training set and test set. Particles with various shapes were divided into three kinds: sphere, cylinder, and rectangular prism; feature parameters of each kind of particle were extracted; prediction models of sphere and cylinder using artificial neural network were established. Due to the little number of rectangular prism sample, support vector machine was used to predict the wall factor, which is more suitable for addressing the problem of small samples. The characteristic dimension was presented to describe the shape and size of the diverse particles and a comprehensive prediction model of particles with arbitrary shapes was established to cover all types of conditions. Comparisons were conducted between the predicted values and the experimental results.

  8. A new arrangement with nonlinear sidewalls for tanker ship storage panels

    NASA Astrophysics Data System (ADS)

    Ketabdari, M. J.; Saghi, H.

    2013-03-01

    Sloshing phenomenon in a moving container is a complicated free surface flow problem. It has a wide range of engineering applications, especially in tanker ships and Liquefied Natural Gas (LNG) carriers. When the tank in these vehicles is partially filled, it is essential to be able to evaluate the fluid dynamic loads on tank perimeter. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have been suggested for ship storage tanks by previous researchers. In this paper a numerical model is developed based on incompressible and inviscid fluid motion for the liquid sloshing phenomenon. The coupled BEM-FEM is used to solve the governing equations and nonlinear free surface boundary conditions. The results are validated for rectangular container using data obtained for a horizontal periodic sway motion. Using the results of this model a new arrangement of trapezoidal shapes with quadratic sidewalls is suggested for tanker ship storage panels. The suggested geometric shape not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing effects more efficiently than the existing geometric shapes.

  9. Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au(788): A combined STM & DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Tang, Jian-Ming; Larson, Amanda M.; Miller, Glen P.; Pohl, Karsten

    2013-12-01

    Controlling the molecular structure of the donor-acceptor interface is essential to overcoming the efficiency bottleneck in organic photovoltaics. We present a study of self-assembled fullerene (C60) molecular chains on perfectly ordered 6,13-dichloropentacene (DCP) monolayers forming on a vicinal Au(788) surface using scanning tunneling microscopy in conjunction with density functional theory calculations. DCP is a novel pentacene derivative optimized for photovoltaic applications. The molecules form a brick-wall patterned centered rectangular lattice with the long axis parallel to the monatomic steps that separate the 3.9 nm wide Au(111) terraces. The strong interaction between the C60 molecules and the gold substrate is well screened by the DCP monolayer. At submonolayer C60 coverage, the fullerene molecules form long parallel chains, 1.1 nm apart, with a rectangular arrangement instead of the expected close-packed configuration along the upper step edges. The perfectly ordered DCP structure is unaffected by the C60 chain formation. The controlled sharp highly-ordered organic interface has the potential to improve the conversion efficiency in organic photovoltaics.

  10. Spectral bidirectional reflectance distribution function measurements on well-defined textured surfaces: direct observation of shadowing, masking, inter-reflection, and transparency effects.

    PubMed

    Wilen, Larry; Dasgupta, Bivash R

    2011-11-01

    We present results for the bidirectional reflectance distribution function (BRDF) for samples of uniform rectangular and triangular grooves constructed from polydimethylsilicone replicas. The measurements are performed with the detector in the plane of incidence, but with varying groove orientations with respect to that plane. The samples are opaque in some cases and semitransparent in others. By measuring the BRDF for colored samples over a wide spectral range, we explicitly probe the effect of sample albedo, which is important for inter-reflections. For the opaque samples, we compare the results with exact theoretical results either taken from the literature (for the triangular geometry) or worked out here (for the rectangular geometry). For both geometries, we also extend the theoretical results to finite length grooves. There is generally very good agreement between theory and the experiment. Shadowing, masking, and inter-reflection are clearly observed, as well as effects that may be due to polarization and asperity scattering. For semitransparent samples, we observe the effect of increasing transparency on the BRDF.

  11. Impacts of selected stimulation patterns on the perception threshold in electrocutaneous stimulation

    PubMed Central

    2011-01-01

    Background Consistency is one of the most important concerns to convey stable artificially induced sensory feedback. However, the constancy of perceived sensations cannot be guaranteed, as the artificially evoked sensation is a function of the interaction of stimulation parameters. The hypothesis of this study is that the selected stimulation parameters in multi-electrode cutaneous stimulation have significant impacts on the perception threshold. Methods The investigated parameters included the stimulated location, the number of active electrodes, the number of pulses, and the interleaved time between a pair of electrodes. Biphasic, rectangular pulses were applied via five surface electrodes placed on the forearm of 12 healthy subjects. Results Our main findings were: 1) the perception thresholds at the five stimulated locations were significantly different (p < 0.0001), 2) dual-channel simultaneous stimulation lowered the perception thresholds and led to smaller variance in perception thresholds compared to single-channel stimulation, 3) the perception threshold was inversely related to the number of pulses, and 4) the perception threshold increased with increasing interleaved time when the interleaved time between two electrodes was below 500 μs. Conclusions To maintain a consistent perception threshold, our findings indicate that dual-channel simultaneous stimulation with at least five pulses should be used, and that the interleaved time between two electrodes should be longer than 500 μs. We believe that these findings have implications for design of reliable sensory feedback codes. PMID:21306616

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felicelli, S.D.; Poirier, D.R.; Heinrich, J.C.

    The formation of macrosegregation defects known as freckles was simulated using a three-dimensional finite element model that calculates the thermosolutal convection and macrosegregation during the dendritic solidification of multicomponent alloys. A recently introduced algorithm was used to calculate the complicated solidification path of alloys of many components, which can accommodate liquidus temperatures that are general functions of liquid concentrations. The calculations are started from an all-liquid state, and the growth of the mushy zone is followed in time. Simulations are started from an all-liquid state, and the growth of the mushy zone is followed in time. Simulations of a Ni-Al-Ta-Wmore » alloy were performed on a rectangular cylinder until complete solidification. The results reveal details of the formation of freckles not previously observed in two-dimensional simulations. Liquid plumes in the form of chimney convection emanate from channels within the mushy zone, with similar qualitative features previously observed in transparent systems. Associated with the formation of channels, there is a complex three-dimensional flow produced by the interaction of the different solutal buoyancies of the alloy solutes. Regions of enhanced solid growth develop around the channel mouths, which are visualized as volcanoes on top of the mushy zone. The prediction of volcanoes differs from previous calculations with multicomponent alloys in two dimensions, in which the volcanoes were not nearly as apparent. These and other features of freckle formation phenomena are illustrated.« less

  13. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  14. Supersonic/Hypersonic Laminar Heating Correlations for Rectangular and Impact-Induced Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2008-01-01

    Impact and debris damage to the Space Shuttle Orbiter Thermal Protection System tiles is a random phenomenon, occurring at random locations on the vehicle surface, resulting in random geometrical shapes that are exposed to a definable range of surface flow conditions. In response to the 2003 Final Report of the Columbia Accident Investigation Board, wind tunnel aeroheating experiments approximating a wide range of possible damage scenarios covering both open and closed cavity flow conditions were systematically tested in hypersonic ground based facilities. These data were analyzed and engineering assessment tools for damage-induced fully-laminar heating were developed and exercised on orbit. These tools provide bounding approximations for the damaged-surface heating environment. This paper presents a further analysis of the baseline, zero-pressure-gradient, idealized, rectangular-geometry cavity heating data, yielding new laminar correlations for the floor-averaged heating, peak cavity endwall heating, and the downstream decay rate. Correlation parameters are derived in terms of cavity geometry and local flow conditions. Prediction Limit Uncertainty values are provided at the 95%, 99% and 99.9% levels of significance. Non-baseline conditions, including non-rectangular geometries and flows with known pressure gradients, are used to assess the range of applicability of the new correlations. All data variations fall within the 99% Prediction Limit Uncertainty bounds. Importantly, both open-flow and closed-flow cavity heating are combined into a single-curve parameterization of the heating predictions, and provide a concise mathematical model of the laminar cavity heating flow field with known uncertainty.

  15. Measurements of fluctuating pressure in a rectangular cavity in transonic flow at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Tracy, M. B.; Plentovich, E. B.; Chu, Julio

    1992-01-01

    An experiment was performed in the Langley 0.3 meter Transonic Cryogenic Tunnel to study the internal acoustic field generated by rectangular cavities in transonic and subsonic flows and to determine the effect of Reynolds number and angle of yaw on the field. The cavity was 11.25 in. long and 2.50 in. wide. The cavity depth was varied to obtain length-to-height (l/h) ratios of 4.40, 6.70, 12.67, and 20.00. Data were obtained for a free stream Mach number range from 0.20 to 0.90, a Reynolds number range from 2 x 10(exp 6) to 100 x 10(exp 6) per foot with a nearly constant boundary layer thickness, and for two angles of yaw of 0 and 15 degs. Results show that Reynolds number has little effect on the acoustic field in rectangular cavities at angle of yaw of 0 deg. Cavities with l/h = 4.40 and 6.70 generated tones at transonic speeds, whereas those with l/h = 20.00 did not. This trend agrees with data obtained previously at supersonic speeds. As Mach number decreased, the amplitude, and bandwidth of the tones changed. No tones appeared for Mach number = 0.20. For a cavity with l/h = 12.67, tones appeared at Mach number = 0.60, indicating a possible change in flow field type. Changes in acoustic spectra with angle of yaw varied with Reynolds number, Mach number, l/h ratios, and acoustic mode number.

  16. 76 FR 64105 - Light-Walled Rectangular Pipe From Taiwan; Scheduling of an Expedited Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-410 (Third Review)] Light-Walled... Order on Light-Walled Rectangular Pipe From Taiwan AGENCY: United States International Trade Commission... determine whether revocation of the antidumping duty order on light-walled rectangular pipe from Taiwan...

  17. 77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-410 (Third Review)] Light-Walled... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or... views of the Commission are contained in USITC Publication 4301 (January 2012), Light-Walled Rectangular...

  18. Effective way of reducing coupling loss between rectangular microwaveguide and fiber.

    PubMed

    Zhou, Hang; Chen, Zilun; Xi, Xiaoming; Hou, Jing; Chen, Jinbao

    2012-01-20

    We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved. © 2012 Optical Society of America

  19. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  20. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.

  1. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    PubMed

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  2. HF band filter bank multi-carrier spread spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laraway, Stephen Andrew; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    Abstract—This paper describes modifications to the filter bank multicarrier spread spectrum (FB-MC-SS) system, that was presented in [1] and [2], to enable transmission of this waveform in the HF skywave channel. FB-MC-SS is well suited for the HF channel because it performs well in channels with frequency selective fading and interference. This paper describes new algorithms for packet detection, timing recovery and equalization that are suitable for the HF channel. Also, an algorithm for optimizing the peak to average power ratio (PAPR) of the FBMC- SS waveform is presented. Application of this algorithm results in a waveform with low PAPR.more » Simulation results using a wide band HF channel model demonstrate the robustness of this system over a wide range of delay and Doppler spreads.« less

  3. Molecular dynamics study of ion transport through an open model of voltage-gated sodium channel.

    PubMed

    Li, Yang; Sun, Ruining; Liu, Huihui; Gong, Haipeng

    2017-05-01

    Voltage-gated sodium (Na V ) channels are critical in the signal transduction of excitable cells. In this work, we modeled the open conformation for the pore domain of a prokaryotic Na V channel (Na V Rh), and used molecular dynamics simulations to track the translocation of dozens of Na + ions through the channel in the presence of a physiological transmembrane ion concentration gradient and a transmembrane electrical field that was closer to the physiological one than previous studies. Channel conductance was then estimated from simulations on the wide-type and DEKA mutant of Na V Rh. Interestingly, the conductivity predicted from the DEKA mutant agrees well with experimental measurement on eukaryotic Na V 1.4 channel. Moreover, the wide-type and DEKA mutant of Na V Rh exhibited markedly distinct ion permeation patterns, which thus implies the mechanistic difference between prokaryotic and eukaryotic Na V channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermalmore » vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.« less

  5. Electroosmotic Mixing in Nanochannels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Chen, Lei

    2004-11-01

    Electroosmotic flow in nanochannels is characterized by low Reynolds number in which flow mixing is difficult because of the dominance of molecular diffusion. Previous work shows that heterogenerous surface potential could generate a circulation region within the bulk flow near the surface. But all of this work requires that the ionic species be pairs of ions of equal and opposite valence and the distribution of ions is not considered. In the present work the electroosmotic flow in a rectangular channel with non-uniform zeta potential is examined. A model for the two dimensional electroosmotic flow problem is established. The distributions of potential, velocity and mole fractions are calculated numerically. Vortex formation is observed within the bulk flow near the the region of non-uniform zeta potential which suggests mixing can be induced.

  6. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling.

    PubMed

    Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu

    2015-04-22

    This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.

  7. 78 FR 54864 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results and Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... the antidumping duty order on light-walled rectangular pipe and tube (LWR pipe and tube) from Mexico... The merchandise subject to the order is certain welded carbon- quality light-walled steel pipe and...

  8. Experimental Modal Analysis of Rectangular and Circular Beams

    ERIC Educational Resources Information Center

    Emory, Benjamin H.; Zhu, Wei Dong

    2006-01-01

    Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…

  9. 77 FR 4278 - Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limits for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limits for Preliminary Results of Antidumping Duty..., light- walled rectangular pipe and tube from Turkey for the May 1, 2010, through April 30, 2011, period...

  10. 76 FR 57953 - Light-Walled Rectangular Pipe and Tube From Turkey; Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Pipe and Tube From Turkey; Notice of Final Results of Antidumping Duty Administrative Review AGENCY... pipe and tube from Turkey. See Light-Walled Rectangular Pipe and Tube From Turkey; Notice of... order covering light- walled rectangular pipe and tube from Turkey. See Preliminary Results. The...

  11. 78 FR 74161 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... Turkey AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The Commission... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...

  12. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users.

    PubMed

    Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie

    2015-01-01

    Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels.

  13. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users

    PubMed Central

    2015-01-01

    Rationale Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. Methods In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure (“which interval is different?”). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2–4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Conclusions Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels. PMID:26431043

  14. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  15. Comments on ionization cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  16. Comparison of various NMR methods for the indirect detection of nitrogen-14 nuclei via protons in solids

    NASA Astrophysics Data System (ADS)

    Shen, Ming; Trébosc, Julien; O'Dell, Luke A.; Lafon, Olivier; Pourpoint, Frédérique; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-09-01

    We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) 14N coherences via spy 1H nuclei. These 1H-{14N} D-HMQC sequences differ not only by the order of 14N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the 14N Larmor frequency, ν0(14N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0(14N) or at the 14N overtone frequency, 2ν0(14N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different 1H-{14N} D-HMQC sequences, including those with 14N rectangular pulses at ν0(14N) for the indirect detection of homo-nuclear (i) 14N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the 14N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and L-histidine.HCl monohydrate, which contain 14N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the 1H-{14N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of 14N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone 1H-{14N} D-HMQC experiment increases for larger quadrupole interactions.

  17. Factorization of differential expansion for non-rectangular representations

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2018-04-01

    Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.

  18. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  19. The Moment of Inertia of a Rectangular Rod

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takao

    2007-11-01

    Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.

  20. All-fiber optical filter with an ultranarrow and rectangular spectral response.

    PubMed

    Zou, Xihua; Li, Ming; Pan, Wei; Yan, Lianshan; Azaña, José; Yao, Jianping

    2013-08-15

    Optical filters with an ultranarrow and rectangular spectral response are highly desired for high-resolution optical/electrical signal processing. An all-fiber optical filter based on a fiber Bragg grating with a large number of phase shifts is designed and fabricated. The measured spectral response shows a 3 dB bandwidth of 650 MHz and a rectangular shape factor of 0.513 at the 25 dB bandwidth. This is the narrowest rectangular bandpass response ever reported for an all-fiber filter, to the best of our knowledge. The filter has also the intrinsic advantages of an all-fiber implementation.

  1. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    NASA Astrophysics Data System (ADS)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  2. Space-charge-limited solid-state triode

    NASA Technical Reports Server (NTRS)

    Shumka, A. (Inventor)

    1975-01-01

    A solid-state triode is provided from a wafer of nearinstrinsic semiconductor material sliced into filaments of rectangular cross section. Before slicing, emitter and collector regions are formed on the narrow sides of the filaments, and after slicing gate regions are formed in arrow strips extending longitudinally along the midsections of the wide sides of the filaments. Contacts are then formed on the emitter, collector and gate regions of each filament individually for a single filament device, or in parallel for an array of filament devices to increase load current.

  3. WMSA for wireless communication applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra

    2016-03-09

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  4. 78 FR 1199 - Light-Walled Rectangular Pipe and Tube From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... order on light-walled rectangular pipe and tube (LWR pipe and tube) from Mexico. This review covers two... but received no such comments. We also did not receive a request for a hearing. \\1\\ See Light-Walled...

  5. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... in coils) and without patterns in relief), of iron or non-alloy quality steel; and (2) flat-rolled... rectangular or non-rectangular cross section where such non-rectangular cross-section is achieved subsequent... characteristics that are painted, varnished, or coated with plastic or other non-metallic substances are included...

  6. Sampling Scattered Data Onto Rectangular Grids for Volume Visualization

    DTIC Science & Technology

    1989-12-01

    30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising

  7. 78 FR 42546 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to... institution from the Government of Turkey, the Commission found that the respondent interested party group...

  8. 75 FR 33779 - Light-Walled Rectangular Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping Duty Administrative Review... review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey. Atlas Tube... the antidumping duty order on light-walled rectangular ripe and tube from Turkey on May 30, 2008. See...

  9. 77 FR 55455 - Light-Walled Rectangular Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty Administrative Review AGENCY... administrative review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey.\\1\\ The... entitled ``Final Results of Review'' below. \\1\\ See Light-Walled Rectangular Pipe and Tube from Turkey...

  10. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  11. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  12. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift successionmore » is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.« less

  13. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  14. Reconfigurable microfluidic device with discretized sidewall

    PubMed Central

    Oono, Masahiro; Yamaguchi, Keisuke; Rasyid, Amirul; Takano, Atsushi; Tanaka, Masato

    2017-01-01

    Various microfluidic features, such as traps, have been used to manipulate flows, cells, and other particles within microfluidic systems. However, these features often become undesirable in subsequent steps requiring different fluidic configurations. To meet the changing needs of various microfluidic configurations, we developed a reconfigurable microfluidic channel with movable sidewalls using mechanically discretized sidewalls of laterally aligned rectangular pins. The user can deform the channel sidewall at any time after fabrication by sliding the pins. We confirmed that the flow resistance of the straight microchannel could be reversibly adjusted in the range of 101–105 Pa s/μl by manually displacing one of the pins comprising the microchannel sidewall. The reconfigurable microchannel also made it possible to manipulate flows and cells by creating a segmented patterned culture of COS-7 cells and a coculture of human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (hLFs) inside the microchannel. The reconfigurable microfluidic device successfully maintained a culture of COS-7 cells in a log phase throughout the entire period of 216 h. Furthermore, we performed a migration assay of cocultured HUVEC and hLF spheroids within one microchannel and observed their migration toward each other. PMID:28503247

  15. Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores.

    PubMed

    Morishige, Kunimitsu; Tateishi, Masayoshi; Hirose, Fumi; Aramaki, Kenji

    2006-10-24

    To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.

  16. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    PubMed

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  17. Laboratory data on coarse-sediment transport for bedload-sampler calibrations

    USGS Publications Warehouse

    Hubbell, David Wellington; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.

    1987-01-01

    A unique facility capable of recirculating and continuously measuring the transport rates of sediment particles ranging in size from about 1 to 75 millimeters in diameter was designed and used in an extensive program involving the calibration of bedload samplers. The facility consisted of a 9-footwide by 6-foot-deep by 272-foot-long rectangular channel that incorporated seven automated collection pans and a sedimentreturn system. The collection pans accumulated, weighed, and periodically dumped bedload falling through a slot in the channel floor. Variations of the Helley-Smith bedload sampler, an Arnhem sampler, and two VUV-type samplers were used to obtain transport rates for comparison with rates measured at the bedload slot (trap). Tests were conducted under 20 different hydraulic and sedimentologic conditions (runs) with 3 uniform-size bed materials and a bed-material mixture. Hydraulic and sedimentologic data collected concurrently with the calibration measurements are described and, in part, summarized in tabular and graphic form. Tables indicate the extent of the data, which are available on magnetic media. The information includes sediment-transport rates; particle-size distributions; water discharges, depths, and slopes; longitudinal profiles of streambed-surface elevations; and temporal records of streambed-surface elevations at fixed locations.

  18. Study of the convective fluid flows with evaporation on the basis of the exact solution in a three-dimensional infinite channel

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-09-01

    The solution of special type of the Boussinesq approximation of the Navier - Stokes equations is used to simulate the two-layer evaporative fluid flows. This solution is the 3D generalization of the Ostroumov - Birikh solution of the equations of free convection. Modeling of the 3D fluid flows is performed in an infinite channel of the rectangular cross section without assumption of the axis-symmetrical character of the flows. Influence of gravity and evaporation on the dynamic and thermal phenomena in the system is studied. The fluid flow patterns are determined by various thermal, mechanical and structural effects. Numerical investigations are performed for the liquid - gas system like ethanol - nitrogen and HFE-7100 - nitrogen under conditions of normal and low gravity. The solution allows one to describe a formation of the thermocapillary rolls and multi-vortex structures in the system. Alteration of topology and character of the flows takes place with change of the intensity of the applied thermal load, thermophysical properties of working media and gravity action. Flows with translational, translational-rotational or partially reverse motion can be formed in the system.

  19. Living on the edge: transfer and traffic of E. coli in a confined flow.

    PubMed

    Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke

    2015-08-21

    We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.

  20. Numerical simulation of biofilm growth in flow channels using a cellular automaton approach coupled with a macro flow computation.

    PubMed

    Yamamoto, Takehiro; Ueda, Shuya

    2013-01-01

    Biofilm is a slime-like complex aggregate of microorganisms and their products, extracellular polymer substances, that grows on a solid surface. The growth phenomenon of biofilm is relevant to the corrosion and clogging of water pipes, the chemical processes in a bioreactor, and bioremediation. In these phenomena, the behavior of the biofilm under flow has an important role. Therefore, controlling the biofilm behavior in each process is important. To provide a computational tool for analyzing biofilm growth, the present study proposes a computational model for the simulation of biofilm growth in flows. This model accounts for the growth, decay, detachment and adhesion of biofilms. The proposed model couples the computation of the surrounding fluid flow, using the finite volume method, with the simulation of biofilm growth, using the cellular automaton approach, a relatively low-computational-cost method. Furthermore, a stochastic approach for considering the adhesion process is proposed. Numerical simulations for the biofilm growth on a planar wall and that in an L-shaped rectangular channel were carried out. A variety of biofilm structures were observed depending on the strength of the flow. Moreover, the importance of the detachment and adhesion processes was confirmed.

  1. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    PubMed

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  2. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  3. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.

    PubMed

    Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2015-01-01

    A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μ m high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μ W of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear.

  4. Near Wall measurement in Turbulent Flow over Rough Wall using microscopic HPIV

    NASA Astrophysics Data System (ADS)

    Talapatra, Siddharth; Hong, Jiarong; Katz, Joseph

    2009-11-01

    Using holographic PIV, 3D velocity measurements are being performed in a turbulent rough wall channel flow. Our objective is to examine the contribution of coherent structures to the flow dynamics, momentum and energy fluxes in the roughness sublayer. The 0.45mm high, pyramid-shaped roughness is uniformly distributed on the top and bottom surfaces of a 5X20cm rectangular channel flow, where the Reτ is 3400. To facilitate recording of holograms through a rough plate, the working fluid is a concentrated solution of NaI in water, whose optical refractive index is matched with that of the acrylic rough plates. The test section is illuminated by a collimated laser beam from the top, and the sample volume extends from the bottom wall up to 7 roughness heights. After passing through the sample volume, the in-line hologram is magnified and recorded on a 4864X3248 pixels camera at a resolution of 0.74μm/pixel. The flow is locally seeded with 2μm particles. Reconstruction, spatial filtering and particle tracking provide the 3D velocity field. This approach has been successfully implemented recently, as preliminary data demonstrate.

  5. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    NASA Astrophysics Data System (ADS)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  6. Computer code for the prediction of nozzle admittance

    NASA Technical Reports Server (NTRS)

    Nguyen, Thong V.

    1988-01-01

    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.

  7. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, P.; Hu, H.; Huang, C. J.; Huang, Y.; Wang, R. Z.

    2009-08-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc.

  8. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  9. Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid

    PubMed Central

    1986-01-01

    Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel. PMID:2425043

  10. Theory and simulation of multi-channel interference (MCI) widely tunable lasers.

    PubMed

    Chen, Quanan; Lu, Qiaoyin; Guo, Weihua

    2015-07-13

    A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.

  11. Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Pour, A. B.; Hashim, M.

    2016-09-01

    In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated with topographic slope of metamorphic and Quaternary rock units. Some large landslides were associated with N-S, NNE-SSW and NE-SW trending fault zones. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydro-geological hazards.

  12. Studies on the injection molding of polyvinyl chloride: Analysis of viscous heating and degradation in simple geometries

    NASA Astrophysics Data System (ADS)

    Garcia, Jose Luis

    2000-10-01

    In injection molding processes, computer aided engineering (CAE) allows processors to evaluate different process parameters in order to achieve complete filling of a cavity and, in some cases, it predicts shrinkage and warpage. However, because commercial computational packages are used to design complex geometries, detail in the thickness direction is limited. Approximations in the thickness direction lead to the solution of a 2½-D problem instead of a 3-D problem. These simplifications drastically reduce computational times and memory requirements. However, these approximations hinder the ability to predict thermal and/or mechanical degradation. The goal of this study was to determine the degree of degradation during PVC injection molding and to compare the results with a computational model. Instead of analyzing degradation in complex geometries, the computational analysis and injection molding trials were performed on typical sections found in complex geometries, such as flow in a tube, flow in a rectangular channel, and radial flow. This simplification reduces the flow problem to a 1-D problem and allows one to develop a computational model with a higher level of detail in the thickness direction, essential for the determination of degradation. Two different geometries were examined in this study: a spiral mold, in order to approximate the rectangular channel, and a center gated plate for the radial flow. Injection speed, melt temperature, and shot size were varied. Parts varying in degree of degradation, from no to severe degradation, were produced to determine possible transition points. Furthermore, two different PVC materials were used, low and high viscosity, M3800 and M4200, respectively (The Geon Company, Avon Lake, OH), to correlate the degree of degradation with the viscous heating observed during injection. It was found that a good agreement between experimental and computational results was obtained only if the reaction was assumed to be more thermally sensitive than found in literature. The results from this study show that, during injection, the activation energy for degradation was 65 kcal/mol, compared to 17--30 kcal/mol found in literature for quiescent systems.

  13. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  14. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  15. Varifocal liquid lens based on microelectrofluidic technology.

    PubMed

    Chang, Jong-hyeon; Jung, Kyu-Dong; Lee, Eunsung; Choi, Minseog; Lee, Seungwan; Kim, Woonbae

    2012-11-01

    This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and -30 D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.

  16. Development of a general method for obtaining the geometry of microfluidic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razavi, Mohammad Sayed, E-mail: m.sayedrazavi@gmail.com; Salimpour, M. R.; Shirani, Ebrahim

    2014-01-15

    In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flowmore » in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (A{sub i+1}/A{sub i}) and lengths (L{sub i+1}/L{sub i}) are obtained as A{sub i+1}/A{sub i} = 2{sup −2/3} and L{sub i+1}/L{sub i} = 2{sup −1/3}, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results.« less

  17. From viscous fingers to wormholes - interactions between structures emerging in unstable growth

    NASA Astrophysics Data System (ADS)

    Budek, Agnieszka; Kwiatkowski, Kamil; Szymczak, Piotr

    2017-04-01

    Dissolution of porous and fractured rock can lead to instabilities, where long finger-like channels or „wormholes" are spontaneously formed, focusing the majority of the flow. Formation of those structures leads to a significant increase in permeability of the system, and is thus important in many engineering applications, e.g. in acidization during oil and gas recovery stimulation. In this communication, we analyse this process using two different numerical models (a network model and a Darcy scale one). We show that wormhole patterns depend strongly on the amount of soluble material in the system, as quantified by the permeability contrast κ between the dissolved and undissolved medium. For small and intermediate values of κ, a large number of relatively thin and strongly interacting channels are formed. The longer channels attract shorter ones, with loops being formed as a result. However, for large values of κ the pattern gets sparse with individual wormholes repelling each other. Interestingly, a similar succession of patterns can be observed in viscous fingering in a rectangular network of channels. In such a system, anisotropy of the network promotes the growth of long and thin fingers which behave similarly to wormholes. The attraction rate between growing fingers depends strongly on the viscosity ratio, I. The latter plays a role similar to that of permeability ratio for dissolution of porous material. To explain this behaviour, we have created a simple analytical model of interacting fingers, allowing us to quantify their mutual interaction as a function of finger lengths, distances between them and - most importantly - relative permeabilities. The theoretical predictions are in a good agreement with simulation data for both dissolution and viscous fingering processes.

  18. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    NASA Astrophysics Data System (ADS)

    Langston, Abigail L.; Tucker, Gregory E.

    2018-01-01

    Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  19. 47 CFR 73.21 - Classes of AM broadcast channels and stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stations. (a) Clear channel. A clear channel is one on which stations are assigned to serve wide areas... equivalent RMS antenna field of less than 141 mV/m at one km. Class D stations shall operate with daytime... regional channel is one on which Class B and Class D stations may operate and serve primarily a principal...

  20. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.

  1. A parallel architecture of interpolated timing recovery for high- speed data transfer rate and wide capture-range

    NASA Astrophysics Data System (ADS)

    Higashino, Satoru; Kobayashi, Shoei; Yamagami, Tamotsu

    2007-06-01

    High data transfer rate has been demanded for data storage devices along increasing the storage capacity. In order to increase the transfer rate, high-speed data processing techniques in read-channel devices are required. Generally, parallel architecture is utilized for the high-speed digital processing. We have developed a new architecture of Interpolated Timing Recovery (ITR) to achieve high-speed data transfer rate and wide capture-range in read-channel devices for the information storage channels. It facilitates the parallel implementation on large-scale-integration (LSI) devices.

  2. Large fraction of crystal directions leads to ion channeling

    NASA Astrophysics Data System (ADS)

    Nordlund, K.; Djurabekova, F.; Hobler, G.

    2016-12-01

    It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.

  3. Monolithic single mode interband cascade lasers with wide wavelength tunability

    NASA Astrophysics Data System (ADS)

    von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-11-01

    Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.

  4. Convective heat transfer in a high aspect ratio minichannel heated on one side

    DOE PAGES

    Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; ...

    2015-10-21

    Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusseltmore » numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.« less

  5. Investigation of Point Doppler Velocimetry (PDV) for Transition Detection in Boundary Layers

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.

    1999-01-01

    A two component Point Doppler Velocimetry (PDV) system has been developed and tested. Improvements were made to an earlier PDV system, in terms of experimental techniques, as well as the data acquisition and reduction software. Measurements of the streamwise and spanwise mean and fluctuating velocities for flows from a rectangular channel and over an NACA 0012 airfoil were made, and the data were compared against hot wire data. The closest to the airfoil surface that PDV measurements could be made was on the order of 0.005 m(0.2", z/c = 0.0169). When the PDV and hot wire data were compared, the time traces for each appeared similar. The mean velocities agreed to within plus or minus 2 m/sec, while the RMS velocities agreed to plus or minus 0.4 m/sec. While the PDV time autocorrelations agreed with those of the hot wire data, the PDV power spectral densities were noisier above 750 Hz. A major source of error in these experiments was determined to be the drifting of the iodine cell stem temperatures. While the stem temperatures were controlled to within plus or minus 0.1 C, this could lead to a frequency shift of as much as 6 MHz, which translates into an error of 1.6 m/sec for the back scatter channel, and up to 6.9 m/sec for the forward scatter channel. These error estimates are consistent with the observed error magnitudes.

  6. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  7. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    USDA-ARS?s Scientific Manuscript database

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  8. The effects of patch shape on indigo buntings. Evidence for an ecological trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Aimee J.; Haddad, Nick M.

    2005-01-01

    Weldon, Aimee, J., and Nick M. Haddad. 2005. The effect of patch shape on indigo buntings: Evidence for an ecological trap. Ecology 86(6):1422-1431. Abstract. Habitat loss and fragmentation have led to a widespread increase in the proportion of edge habitat in the landscape. Disturbance-dependent bird species are widely assumed to benefit from these edges. However, anthropogenic edges may concentrate nest predators while retaining habitat cues that birds use to select breeding habitat. This may lead birds to mistakenly select dangerous habitat a phenomenon known as an ecological trap. We experimentally demonstrated how habitat shape, and thus amount of edge, canmore » adversely affect nest site selection and reproductive success of a disturbance-dependent bird species, the Indigo Bunting (Passerina cyanea). We did so within a landscape-scale experiment composed of equal-area habitat patches that differed in their amount of edge. Indigo Buntings preferentially selected edgy patches, which contained 50% more edge than more compact rectangular patches. Further, buntings fledged significantly fewer young per pair in edgy patches than in rectangular patches. These results provide the first experimental evidence that edges can function as ecological traps.« less

  9. Dispersion characteristics of plasmonic waveguides for THz waves

    NASA Astrophysics Data System (ADS)

    Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur

    2013-05-01

    Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.

  10. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  11. Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea.

    PubMed

    Ibrahim, Ahmed A; Ahmad, Rafiq; Umar, Ahmad; Al-Assiri, M S; Al-Salami, A E; Kumar, Rajesh; Ansari, S G; Baskoutas, S

    2017-12-15

    Herein, we demonstrate synthesis and application of two-dimensional (2D) rectangular ytterbium oxide (Yb 2 O 3 ) nanodisks via a facile hydrothermal method. The structural, morphological, compositional, crystallinity, and phase properties of as-synthesized nanodisks were carried out using several analytical techniques that showed well defined 2D rectangular nanodisks/sheet like morphologies. The average thickness and edge length of the nanosheet structures were 20 ± 5nm and 600 ± 50nm, respectively. To develop urea biosensor, glassy carbon electrodes (GCE) were modified with Yb 2 O 3 nanodisks, followed by urease immobilization and Nafion membrane covering (GCE/Yb 2 O 3 /Urease/Nafion). The fabricated biosensor showed sensitivity of 124.84μAmM -1 cm -2 , wide linear range of 0.05-19mM, detection limit down to ~ 2μM, and fast response time of ~ 3s. The developed biosensor was also used for the urea detection in water samples through spike-recovery experiments, which illustrates satisfactory recoveries. In addition, the obtained desirable selectivity towards specific interfering species, long-term stability, reproducibility, and repeatability further confirm the potency of as-fabricated urea biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method.

    PubMed

    Chen, I L; Chen, J T; Kuo, S R; Liang, M T

    2001-03-01

    Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.

  13. Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1973-01-01

    A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.

  14. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    DOE PAGES

    Modestov, M.; Kolemen, E.; Fisher, A. E.; ...

    2017-11-06

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces onmore » flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.« less

  15. Application of Variational Methods to the Thermal Entrance Region of Ducts

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Siegel. R.

    1960-01-01

    A variational method is presented for solving eigenvalue problems which arise in connection with the analysis of convective heat transfer in the thermal entrance region of ducts. Consideration is given, to both situations where the temperature profile depends upon one cross-sectional coordinate (e.g. circular tube) or upon two cross-sectional coordinates (e.g. rectangular duct). The variational method is illustrated and verified by application to laminar heat transfer in a circular tube and a parallel-plate channel, and good agreement with existing numerical solutions is attained. Then, application is made to laminar heat transfer in a square duct as a check, an alternate computation for the square duct is made using a method indicated by Misaps and Pohihausen. The variational method can, in principle, also be applied to problems in turbulent heat transfer.

  16. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    NASA Astrophysics Data System (ADS)

    Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.

    2018-01-01

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J  ×  B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.

  17. Effects of volute geometry and impeller orbit on the hydraulic performance of a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Flack, R. D.; Lanes, R. F.

    1983-01-01

    Overall performance data was taken for a Plexiglas water pump with a logarithmic spiral volute and rectangular cross sectioned flow channels. Parametric studies were made in which the center of the impeller was offset from the design center of the volute. The rig was also designed such that the impeller was allowed to synchronously orbit by a fixed amount about any center. The studies indicate that decreasing the tongue clearance decreases the head at low flowrates and increases the head at high flowrates. Also, decreasing the volute area in the first half of the volute and holding the tongue clearance the same, resulted in a decreased head for low flowrates but performance at high flowrates was not affected. Finally, the overall hydraulic performance was not affected by the impeller orbitting about the volute center.

  18. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.

    PubMed

    Parthasarathy, Aravindakshan; Bartlett, Edward

    2012-07-01

    Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 1: Results and discussion

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. The conclusions derived were: (1) intrusive probes can produce significant errors in the measurements of the velocity of jets if they are large in diameter and penetrate beyond the jet center; (2) rectangular jets without tabs, compared to circular jets of the same exit area, provide faster jet mixing; and (3) further mixing enhancement is possible by using mechanical tabs.

  20. Scattered acoustic field above a grating of parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.

    2013-02-01

    The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.

  1. Rectangular optical filter based on high-order silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  2. Effects of DO cencentration on growth of juvenile channel catfish

    USDA-ARS?s Scientific Manuscript database

    Dissolved oxygen (DO) concentration has a major impact on feed consumption of channel catfish when raised in ponds; as DO concentration falls below 3.0 mg/L at night, feed consumption is negatively impacted. Channel catfish fry may experience a wide range of oxygen conditions in the hatchery depend...

  3. A review of channel selection algorithms for EEG signal processing

    NASA Astrophysics Data System (ADS)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  4. A modal approach to piano soundboard vibroacoustic behavior.

    PubMed

    Trévisan, Benjamin; Ege, Kerem; Laulagnet, Bernard

    2017-02-01

    This paper presents an analytical method for modeling the vibro-acoustic behavior of ribbed non-rectangular orthotropic clamped plates. To do this, the non-rectangular plate is embedded in an extended rectangular simply supported plate on which a spring distribution is added, blocking the extended part of the surface, and allowing the description of any inner surface shapes. The acoustical radiation of the embedded plate is ensured using the radiation impedances of the extended rectangular simply supported plate. This method is applied to an upright piano soundboard: a non-rectangular orthotropic plate ribbed in both directions by several straight stiffeners. A modal decomposition is adopted on the basis of the rectangular extended simply supported plate modes, making it possible to calculate the modes of a piano soundboard in the frequency range [0;3000] Hz, showing the different associated mode families. Likewise, the acoustical radiation is calculated using the radiation impedances of a simply supported baffled plate, demonstrating the influence of the string coupling point positions on the acoustic radiated power. The paper ends with the introduction of indicators taking into account spatial and spectral variations of the excitation depending on the notes, which add to the accuracy of the study from the musical standpoint. A parametrical study, which includes several variations of soundboard design, highlights the complexity of rendering high-pitched notes homogeneous.

  5. Analysis of the rectangular resonator with butterfly MMI coupler using SOI

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan

    2018-02-01

    We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.

  6. A Theoretical Investigation of the Input Characteristics of a Rectangular Cavity-Backed Slot Antenna

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1975-01-01

    Equations which represent the magnetic and electric stored energies are derived for an infinite section of rectangular waveguide and a rectangular cavity. These representations which are referred to as being physically observable are obtained by considering the difference in the volume integrals appearing in the complex Poynting theorem. It is shown that the physically observable stored energies are determined by the field components that vanish in a reference plane outside the aperture. These physically observable representations are used to compute the input admittance of a rectangular cavity-backed slot antenna in which a single propagating wave is assumed to exist in the cavity. The slot is excited by a voltage source connected across its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations are compared with measured data. In addition, input-admittance curves as a function of electrical slot length are presented for several size cavities. For the rectangular cavity backed slot antenna, the quality factor and relative bandwidth were computed independently by using these energy relationships. It is shown that the asymptotic relationship which is usually assumed to exist between the quality bandwidth and the reciprocal of relative bandwidth is equally valid for the rectangular cavity backed slot antenna.

  7. Two-step fabrication of single-layer rectangular SnSe flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-06-01

    Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm  ×  50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.

  8. Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions.

    PubMed

    Takhistov, Paul; Duginova, Ksenia; Chang, Hsueh-Chia

    2003-07-01

    Due to electric field leakage across sharp corners, the irrotational character of Ohmic electroosmotic flow is violated. Instead, we demonstrate experimentally and theoretically evidence of electrolyte depletion and vortex separation in electroosmotic flow around a junction between wide and narrow channels. When the penetration length of the electric field exceeds the width of the narrow channel and if the electric field is directed from the narrow to the wide channel, the electromigration of ions diminishes significantly at the junction end of the narrow channel due to this leakage. Concentration depletion then develops at that location to maintain current balance but it also increases the corner zeta potential and the local electroosmotic slip velocity. A back pressure gradient hence appears to maintain flow balance and, at a sufficient magnitude, generates a pair of vortices.

  9. Variability and reliability analysis in self-assembled multichannel carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Hu, Zhaoying; Tulevski, George S.; Hannon, James B.; Afzali, Ali; Liehr, Michael; Park, Hongsik

    2015-06-01

    Carbon nanotubes (CNTs) have been widely studied as a channel material of scaled transistors for high-speed and low-power logic applications. In order to have sufficient drive current, it is widely assumed that CNT-based logic devices will have multiple CNTs in each channel. Understanding the effects of the number of CNTs on device performance can aid in the design of CNT field-effect transistors (CNTFETs). We have fabricated multi-CNT-channel CNTFETs with an 80-nm channel length using precise self-assembly methods. We describe compact statistical models and Monte Carlo simulations to analyze failure probability and the variability of the on-state current and threshold voltage. The results show that multichannel CNTFETs are more resilient to process variation and random environmental fluctuations than single-CNT devices.

  10. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  11. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  13. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance

    NASA Astrophysics Data System (ADS)

    Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena

    2017-11-01

    A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.

  14. 3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.

    PubMed

    Toth, Arpád; Banky, Dániel; Grolmusz, Vince

    2011-12-01

    A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.

  15. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  16. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE PAGES

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; ...

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  17. Fluid-acoustic interactions in a low area ratio supersonic jet ejector

    NASA Technical Reports Server (NTRS)

    Krothapalli, Anjaneyulu; Ross, Christopher; Yamomoto, K.; Joshi, M. C.

    1994-01-01

    An experimental investigation carried out to determine aerodynamic and acoustic characteristics of a low area ratio rectangular jet ejector is reported. A supersonic primary jet issuing from a rectangular convergent-divergent nozzle of aspect ratio 4, into a rectangular duct of area ratio 3, was used. Improved performance was found when the ejector screech tone is most intense and appears to match the most unstable Strouhal number of the free rectangular jet. When the primary jet was operating at over and ideally expanded conditions, significant noise reduction was obtained with the ejector as compared to a corresponding free jet. Application of particle image velocimetry to high speed ejector flows was demonstrated through the measurement of instantaneous two dimensional velocity fields.

  18. Static and Dynamic Properties of DNA Confined in Nanochannels

    NASA Astrophysics Data System (ADS)

    Gupta, Damini

    Next-generation sequencing (NGS) techniques have considerably reduced the cost of high-throughput DNA sequencing. However, it is challenging to detect large-scale genomic variations by NGS due to short read lengths. Genome mapping can easily detect large-scale structural variations because it operates on extremely large intact molecules of DNA with adequate resolution. One of the promising methods of genome mapping is based on confining large DNA molecules inside a nanochannel whose cross-sectional dimensions are approximately 50 nm. Even though this genome mapping technology has been commercialized, the current understanding of the polymer physics of DNA in nanochannel confinement is based on theories and lacks much needed experimental support. The results of this dissertation are aimed at providing a detailed experimental understanding of equilibrium properties of nanochannel-confined DNA molecules. The results are divided into three parts. In first part, we evaluate the role of channel shape on thermodynamic properties of channel confined DNA molecules using a combination of fluorescence microscopy and simulations. Specifically, we show that high aspect ratio of rectangular channels significantly alters the chain statistics as compared to an equivalent square channel with same cross-sectional area. In the second part, we present experimental evidence that weak excluded volume effects arise in DNA nanochannel confinement, which form the physical basis for the extended de Gennes regime. We also show how confinement spectroscopy and simulations can be combined to reduce molecular weight dispersity effects arising from shearing, photo-cleavage, and nonuniform staining of DNA. Finally, the third part of the thesis concerns the dynamic properties of nanochannel confined DNA. We directly measure the center-of-mass diffusivity of single DNA molecules in confinement and show that that it is necessary to modify the classical results of de Gennes to account for local chain stiffness of DNA in order to explain the experimental results. In the end, we believe that our findings from the experimental test of the phase diagram for channel-confined DNA, with careful control over molecular weight dispersity, channel geometry, and electrostatic interactions, will provide a firm foundation for the emerging genome mapping technology.

  19. Pits and Channels of Hebrus Valles

    NASA Image and Video Library

    2017-01-26

    The drainages in this image are part of Hebrus Valles, an outflow channel system likely formed by catastrophic floods. Hebrus Valles is located in the plains of the Northern lowlands, just west of the Elysium volcanic region. Individual channels range from several hundred meters to several kilometers wide and form multi-threaded (anastamosing) patterns. Separating the channels are streamlined forms, whose tails point downstream and indicate that channel flow is to the north. The channels seemingly terminate in an elongated pit that is approximately 1875 meters long and 1125 meters wide. Using the shadow that the wall has cast on the floor of the pit, we can estimate that the pit is nearly 500 meters deep. The pit, which formed after the channels, exposes a bouldery layer below the dusty surface mantle and is underlain by sediments. Boulders several meters in diameter litter the slopes down into the pit. Pits such as these are of interest as possible candidate landing sites for human exploration because they might retain subsurface water ice (Schulze-Makuch et al. 2016, 6th Mars Polar Conf.) that could be utilized by future long-term human settlements. http://photojournal.jpl.nasa.gov/catalog/PIA11704

  20. Response of bed mobility to sediment supply in natural gravel bed channels: A detailed examination and evaluation of mobility parameters

    Treesearch

    T. E. Lisle; J. M. Nelson; B. L. Barkett; J. Pitlick; M. A. Madej

    1998-01-01

    Recent laboratory experiments have shown that bed mobility in gravel bed channels responds to changes in sediment supply, but detailed examinations of this adjustment in natural channels have been lacking, and practical methodologies to measure bed mobility have not been tested. We examined six gravel-bed, alternate-bar channels which have a wide range in annual...

Top