Redshifts for fainter galaxies in the first CfA survey slice. II
NASA Technical Reports Server (NTRS)
Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.
1990-01-01
Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.
HectoMAPping the Universe. Karl Schwarzschild Award Lecture 2014
NASA Astrophysics Data System (ADS)
Geller, Margaret J.; Hwang, Ho Seong
2015-06-01
During the last three decades progress in mapping the Universe from an age of 400 000 years to the present has been stunning. Instrument/telescope combinations have naturally determined the sampling of various redshift ranges. Here we outline the impact of the Hectospec on the MMT on exploration of the Universe in the redshift range 0.2 ⪉ z ⪉ 0.8. We focus on dense redshift surveys, SHELS and HectoMAP. SHELS is a complete magnitude limited survey covering 8 square degrees. The HectoMAP survey combines a red-selected dense redshift survey and a weak lensing map covering 50 square degrees. Combining the dense redshift survey with a Subaru HyperSuprimeCam (HSC) weak lensing map will provide a powerful probe of the way galaxies trace the distribution of dark matter on a wide range of physical scales.
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2016-09-01
We propose to observe a complete sample of 10 galaxy clusters at 1e14 < M500 < 5e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.
2012-01-10
Using deep Keck spectroscopy of Lyman break galaxies selected from infrared imaging data taken with the Wide Field Camera 3 on board the Hubble Space Telescope, we present new evidence for a reversal in the redshift-dependent fraction of star-forming galaxies with detectable Lyman alpha (Ly{alpha}) emission in the redshift range 6.3 < z < 8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a significant increase with redshift in the fraction of line emitting galaxies over the interval 4 < z < 6, particularly for intrinsically faint systems which dominate the luminosity density. Using the longer wavelength sensitivities of Lowmore » Resolution Imaging Spectrometer and NIRSPEC, we have targeted 19 Lyman break galaxies selected using recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8 and which span a wide range of intrinsic luminosities. Our spectroscopic exposures typically reach a 5{sigma} sensitivity of <50 A for the rest-frame equivalent width (EW) of Ly{alpha} emission. Despite the high fraction of emitters seen only a few hundred million years later, we find only two convincing and one possible line emitter in our more distant sample. Combining with published data on a further seven sources obtained using FORS2 on the ESO Very Large Telescope, and assuming continuity in the trends found at lower redshift, we discuss the significance of this apparent reversal in the redshift-dependent Ly{alpha} fraction in the context of our range in continuum luminosity. Assuming all the targeted sources are at their photometric redshift and our assumptions about the Ly{alpha} EW distribution are correct, we would expect to find so few emitters in less than 1% of the realizations drawn from our lower redshift samples. Our new results provide further support for the suggestion that, at the redshifts now being probed spectroscopically, we are entering the era where the intergalactic medium is partially neutral. With the arrival of more sensitive multi-slit infrared spectrographs, the prospects for improving the statistical validity of this result are promising.« less
The MUSE-Wide survey: detection of a clustering signal from Lyman α emitters in the range 3 < z < 6
NASA Astrophysics Data System (ADS)
Diener, C.; Wisotzki, L.; Schmidt, K. B.; Herenz, E. C.; Urrutia, T.; Garel, T.; Kerutt, J.; Saust, R. L.; Bacon, R.; Cantalupo, S.; Contini, T.; Guiderdoni, B.; Marino, R. A.; Richard, J.; Schaye, J.; Soucail, G.; Weilbacher, P. M.
2017-11-01
We present a clustering analysis of a sample of 238 Ly α emitters at redshift 3 ≲ z ≲ 6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line galaxies. We analysed the first year observations from MUSE-Wide making use of the clustering signal in the line-of-sight direction. This method relies on comparing pair-counts at close redshifts for a fixed transverse distance and thus exploits the full potential of the redshift range covered by our sample. A clear clustering signal with a correlation length of r0=2.9^{+1.0}_{-1.1} Mpc (comoving) is detected. Whilst this result is based on only about a quarter of the full survey size, it already shows the immense potential of MUSE for efficiently observing and studying the clustering of Ly α emitters.
NASA Astrophysics Data System (ADS)
Quadri, Ryan; Marchesini, Danilo; van Dokkum, Pieter; Gawiser, Eric; Franx, Marijn; Lira, Paulina; Rudnick, Gregory; Urry, C. Megan; Maza, José; Kriek, Mariska; Barrientos, L. Felipe; Blanc, Guillermo A.; Castander, Francisco J.; Christlein, Daniel; Coppi, Paolo S.; Hall, Patrick B.; Herrera, David; Infante, Leopoldo; Taylor, Edward N.; Treister, Ezequiel; Willis, Jon P.
2007-09-01
We present deep near-infrared JHK imaging of four 10' × 10' fields. The observations were carried out as part of the Multiwavelength Survey by Yale-Chile (MUSYC) with ISPI on the CTIO 4 m telescope. The typical point-source limiting depths are J ~ 22.5, H ~ 21.5, and K ~ 21 (5 σ Vega). The effective seeing in the final images is ~1.0″. We combine these data with MUSYC UBVRIz imaging to create K-selected catalogs that are unique for their uniform size, depth, filter coverage, and image quality. We investigate the rest-frame optical colors and photometric redshifts of galaxies that are selected using common color selection techniques, including distant red galaxies (DRGs), star-forming and passive BzKs, and the rest-frame UV-selected BM, BX, and Lyman break galaxies (LBGs). These techniques are effective at isolating large samples of high-redshift galaxies, but none provide complete or uniform samples across the targeted redshift ranges. The DRG and BM/BX/LBG criteria identify populations of red and blue galaxies, respectively, as they were designed to do. The star-forming BzKs have a very wide redshift distribution, extending down to z ~ 1, a wide range of colors, and may include galaxies with very low specific star formation rates. In comparison, the passive BzKs are fewer in number, have a different distribution of K magnitudes, and have a somewhat different redshift distribution. By combining either the DRG and BM/BX/LBG criteria, or the star-forming and passive BzK criteria, it appears possible to define a reasonably complete sample of galaxies to our flux limit over specific redshift ranges. However, the redshift dependence of both the completeness and sampled range of rest-frame colors poses an ultimate limit to the usefulness of these techniques.
NASA Astrophysics Data System (ADS)
Roche, Nathan; Franzetti, Paolo; Garilli, Bianca; Zamorani, Giovanni; Cimatti, Andrea; Rossetti, Emanuel
2012-02-01
We investigate the prospects of extending observations of high-redshift quasi-stellar objects (QSOs) from the current z˜ 7 to z > 8 by means of a very wide-area near-infrared slitless spectroscopic survey, considering as an example the planned survey with the European Space Agency's Euclid telescope (scheduled for a 2019 launch). For any QSOs at z > 8.06, the strong Lyman α line will enter the wavelength range of the Euclid Near-Infrared Spectometer and Imaging Photometer (NISP). We perform a detailed simulation of near infrared spectrometer and imaging photometer (Euclid) NISP slitless spectroscopy (with the parameters of the wide survey) in an artificial field containing QSO spectra at all redshifts up to z= 12 and to a faint limit H= 22.5. QSO spectra are represented with a template based on a Sloan Digital Sky Survey composite spectrum, with the added effects of absorption from neutral hydrogen in the intergalactic medium. The spectra extracted from the simulation are analysed with an automated redshift finder, and a detection rate estimated as a function of H magnitude and redshift (defined as the proportion of spectra with both correct redshift measurements and classifications). We show that, as expected, spectroscopic identification of QSOs would reach deeper limits for the redshift ranges where either ? (0.67 < z < 2.05) or Lyman α (z > 8.06) is visible. Furthermore, if photometrically selected z > 8 spectra can be re-examined and refitted to minimize the effects of spectral contamination, the QSO detection rate in the Lyman α window will be increased by an estimated ˜60 per cent and will then be better here than at any other redshift, with an effective limit H≃ 21.5. With an extrapolated rate of QSO evolution, we predict that the Euclid wide (15 000 ?) spectroscopic survey will identify and measure spectroscopic redshifts for a total of 20-35 QSOs at z > 8.06 (reduced slightly to 19-33 if we apply a small correction for missed weak-lined QSOs). However, for a model with a faster rate of evolution, this prediction goes down to four or five. In any event, the survey will give important constraints on the evolution of QSO at z > 8 and therefore the formation of the first supermassive black holes. The z > 8.06 detections would be very luminous objects (with MB=-26 to -28) and many would also be detectable by the proposed Wide Field X-ray Telescope.
The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey
NASA Astrophysics Data System (ADS)
Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro
2018-01-01
We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.
A Chandra Survey of low-mass clusters at 0.8 < z < 0.9 selected in the 100 deg^2 SPT-Pol Deep Field
NASA Astrophysics Data System (ADS)
Kraft, Ralph
2016-09-01
We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.8 < z < 0.9. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.
A Chandra Survey of low-mass clusters at 0.7 < z < 0.8 selected in the 100 deg^2 SPT-Pol Deep Field
NASA Astrophysics Data System (ADS)
Kraft, Ralph
2016-09-01
We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.
The MUSE-Wide survey: a measurement of the Ly α emitting fraction among z > 3 galaxies
NASA Astrophysics Data System (ADS)
Caruana, Joseph; Wisotzki, Lutz; Herenz, Edmund Christian; Kerutt, Josephine; Urrutia, Tanya; Schmidt, Kasper Borello; Bouwens, Rychard; Brinchmann, Jarle; Cantalupo, Sebastiano; Carollo, Marcella; Diener, Catrina; Drake, Alyssa; Garel, Thibault; Marino, Raffaella Anna; Richard, Johan; Saust, Rikke; Schaye, Joop; Verhamme, Anne
2018-01-01
We present a measurement of the fraction of Lyman α (Ly α) emitters (XLy α) amongst HST continuum-selected galaxies at 3 < z < 6 with the Multi-Unit Spectroscopic Explorer (MUSE) on the VLT. Making use of the first 24 MUSE-Wide pointings in GOODS-South, each having an integration time of 1 h, we detect 100 Ly α emitters and find XLy α ≳ 0.5 for most of the redshift range covered, with 29 per cent of the Ly α sample exhibiting rest equivalent widths (rest-EWs) ≤ 15 Å. Adopting a range of rest-EW cuts (0-75 Å), we find no evidence of a dependence of XLy α on either redshift or ultraviolet luminosity.
Radio polarization properties of quasars and active galaxies at high redshifts
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.
2018-04-01
We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z < 3) sources to investigate if the polarization properties of radio sources at high redshifts are intrinsically different than those at low redshift. We find a mean of the rotation measure absolute values, corrected for Galactic rotation, of 50 ± 22 rad m-2 for z > 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.
The 2-degree Field Lensing Survey: design and clustering measurements
NASA Astrophysics Data System (ADS)
Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian
2016-11-01
We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.
SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willott, Chris J.; Crampton, David; Hutchings, John B.
2009-03-15
We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deepmore » XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.« less
The Dark Energy Spectroscopic Instrument (DESI)
NASA Astrophysics Data System (ADS)
Flaugher, Brenna; Bebek, Chris
2014-07-01
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).
NASA Astrophysics Data System (ADS)
Yang, Qian; Wu, Xue-Bing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Green, Richard; Yang, Jinyi; Schindler, Jan-Torge; Wang, Feige; Zuo, Wenwen; Fu, Yuming
2017-12-01
We present a new algorithm to estimate quasar photometric redshifts (photo-zs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multidimensional space of relative fluxes as a function of redshift and magnitude. For 151,392 quasars in the SDSS, we achieve a photo-z accuracy, defined as the fraction of quasars with the difference between the photo-z z p and the spectroscopic redshift z s , | {{Δ }}z| =| {z}s-{z}p| /(1+{z}s) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-z accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-z accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars, and galaxies are calculated, respectively, based on (1) the quasar luminosity function, (2) the Milky Way synthetic simulation with the Besançon model, and (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS g, r, z, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5< z< 4.5, and a wide magnitude range 18< r< 21.5 mag. Our photo-z regression and classification method has the potential to extend to future surveys. The photo-z code will be publicly available.
AEGIS: The Diversity of Bright Near-IR-selected Distant Red Galaxies
NASA Astrophysics Data System (ADS)
Conselice, C. J.; Newman, J. A.; Georgakakis, A.; Almaini, O.; Coil, A. L.; Cooper, M. C.; Eisenhardt, P.; Foucaud, S.; Koekemoer, A.; Lotz, J.; Noeske, K.; Weiner, B.; Willmer, C. N. A.
2007-05-01
We use deep and wide near-infrared (NIR) imaging from the Palomar telescope combined with DEEP2 spectroscopy and HST and Chandra imaging to investigate the nature of galaxies that are red in NIR colors. We locate these ``distant red galaxies'' (DRGs) through the color cut (J-K)Vega>2.3 over 0.7 deg2, where we find 1010 DRG candidates down to Ks=20.5. We combine 95 high-quality spectroscopic redshifts with photometric redshifts from BRIJK photometry to determine the redshift and stellar mass distributions for these systems, and the morphological/structural and X-ray properties for 107 DRGs in the Extended Groth Strip. We find that many bright (J-K)Vega>2.3 galaxies with Ks<20.5 are at redshifts z<2, with 64% in the range 1
A unified model for galactic discs: star formation, turbulence driving, and mass transport
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Burkhart, Blakesley; Forbes, John C.; Crocker, Roland M.
2018-06-01
We introduce a new model for the structure and evolution of the gas in galactic discs. In the model the gas is in vertical pressure and energy balance. Star formation feedback injects energy and momentum, and non-axisymmetric torques prevent the gas from becoming more than marginally gravitationally unstable. From these assumptions we derive the relationship between galaxies' bulk properties (gas surface density, stellar content, and rotation curve) and their star formation rates, gas velocity dispersions, and rates of radial inflow. We show that the turbulence in discs can be powered primarily by star formation feedback, radial transport, or a combination of the two. In contrast to models that omit either radial transport or star formation feedback, the predictions of this model yield excellent agreement with a wide range of observations, including the star formation law measured in both spatially resolved and unresolved data, the correlation between galaxies' star formation rates and velocity dispersions, and observed rates of radial inflow. The agreement holds across a wide range of galaxy mass and type, from local dwarfs to extreme starbursts to high-redshift discs. We apply the model to galaxies on the star-forming main sequence, and show that it predicts a transition from mostly gravity-driven turbulence at high redshift to star-formation-driven turbulence at low redshift. This transition and the changes in mass transport rates that it produces naturally explain why galaxy bulges tend to form at high redshift and discs at lower redshift, and why galaxies tend to quench inside-out.
The many flavours of photometric redshifts
NASA Astrophysics Data System (ADS)
Salvato, Mara; Ilbert, Olivier; Hoyle, Ben
2018-06-01
Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.
Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph
NASA Astrophysics Data System (ADS)
Takada, Masahiro; Ellis, Richard S.; Chiba, Masashi; Greene, Jenny E.; Aihara, Hiroaki; Arimoto, Nobuo; Bundy, Kevin; Cohen, Judith; Doré, Olivier; Graves, Genevieve; Gunn, James E.; Heckman, Timothy; Hirata, Christopher M.; Ho, Paul; Kneib, Jean-Paul; Le Fèvre, Olivier; Lin, Lihwai; More, Surhud; Murayama, Hitoshi; Nagao, Tohru; Ouchi, Masami; Seiffert, Michael; Silverman, John D.; Sodré, Laerte; Spergel, David N.; Strauss, Michael A.; Sugai, Hajime; Suto, Yasushi; Takami, Hideki; Wyse, Rosemary
2014-02-01
The Subaru Prime Focus Spectrograph (PFS) is a massively multiplexed fiber-fed optical and near-infrared three-arm spectrograph (Nfiber = 2400, 380 ≤ λ ≤ 1260 nm, 1 .^{circ}3 diameter field of view). Here, we summarize the science cases in terms of provisional plans for a 300-night Subaru survey. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 h-3 Gpc3 in the redshift range 0.8 < z < 2.4. In each of six redshift bins, the cosmological distances will be measured to 3% precision via the baryonic acoustic oscillation scale, and redshift-space distortion measures will constrain structure growth to 6% precision. In the near-field cosmology program, radial velocities and chemical abundances of stars in the Milky Way and M 31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 106 stars in the Galactic thick-disk, halo, and tidal streams as faint as V ˜ 22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple α-element abundances and more precise velocities for Galactic stars. For the galaxy evolution program, our simulations suggest the wide wavelength range of PFS will be powerful in probing the galaxy population and its clustering over a wide redshift range. We plan to conduct a color-selected survey of 1 < z < 2 galaxies and AGN over 16 deg2 to J ≃ 23.4, yielding a fair sample of galaxies with stellar masses above ˜1010 M⊙ at z ≃ 2. A two-tiered survey of higher redshift Lyman break galaxies and Lyman alpha emitters will quantify the properties of early systems close to the reionization epoch.
NASA Astrophysics Data System (ADS)
Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max
2006-12-01
We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Portnov, Yuriy A.
2018-06-01
A hypothesis put forward in late 20th century and subsequently substantiated experimentally posited the existence of optical vortices (twisted light). An optical vortex is an electromagnetic wave that in addition to energy and momentum characteristic of flat waves also possesses angular momentum. In recent years optical vortices have found wide-ranging applications in a number of branches including cosmology. The main hypothesis behind this paper implies that the magnitude of gravitational redshift for an optical vortex will differ from the magnitude of gravitational redshift for flat light waves. To facilitate description of optical vortices, we have developed the mathematical device of gravitational interaction in seven-dimensional time-space that we apply to the theory of electromagnetism. The resulting equations are then used for a comparison of gravitational redshift in optical vortices with that of normal electromagnetic waves. We show that rotating bodies creating weak gravitational fields result in a magnitude of gravitational redshift in optical vortices that differs from the magnitude of gravitational redshift in flat light waves. We conclude our paper with a numerical analysis of the feasibility of detecting the discrepancy in gravitational redshift between optical vortices and flat waves in the gravitational fields of the Earth and the Sun.
Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field
NASA Astrophysics Data System (ADS)
Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton
At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.
AGES: THE AGN AND GALAXY EVOLUTION SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.
2012-05-01
The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less
Charting the parameter space of the global 21-cm signal
NASA Astrophysics Data System (ADS)
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan; Lotem, Matan
2017-12-01
The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work, we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming haloes; the efficiency, spectral energy distribution and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range z = 6-40 for each of 193 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide selection of models, we still find clear correlations between the key features of the global 21-cm signal and underlying astrophysical properties of the high-redshift Universe, namely the Ly α intensity, the X-ray heating rate and the production rate of ionizing photons. These correlations can be used to directly link future measurements of the global 21-cm signal to astrophysical quantities in a mostly model-independent way. We identify additional correlations that can be used as consistency checks.
A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.
2015-12-01
Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies ofmore » these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.« less
Recovering the systemic redshift of galaxies from their Lyman alpha line profile
NASA Astrophysics Data System (ADS)
Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, EC; Richard, J.; Bacon, R.; Schmidt, KB; Maseda, M.; Marino, RA; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, AB; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.
2018-07-01
The Lyman alpha (Ly α) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics, and correlations with quasar absorption lines when only Ly α is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Ly α line profile. We use spectroscopic observations of Ly α emitters for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various multi-unit spectroscopic explorer guaranteed time observations. We also include a compilation of spectroscopic Ly α data from the literature spanning a wide redshift range (z ≈ 0-8). First, restricting our analysis to double-peaked Ly α spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half-maximum of the Ly α line. Fitting formulas to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1, when only the Ly α emission line is available, are given for the two methods.
First results from the IllustrisTNG simulations: matter and galaxy clustering
NASA Astrophysics Data System (ADS)
Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill
2018-03-01
Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.
NASA Astrophysics Data System (ADS)
Graur, O.; Poznanski, D.; Maoz, D.; Yasuda, N.; Totani, T.; Fukugita, M.; Filippenko, A. V.; Foley, R. J.; Silverman, J. M.; Gal-Yam, A.; Horesh, A.; Jannuzi, B. T.
2011-10-01
The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z' bands. We have discovered 150 SNe out to redshift z≈ 2. Using 11 photometric bands from the observer-frame far-ultraviolet to the near-infrared, we derive photometric redshifts for the SN host galaxies (for 24 we also have spectroscopic redshifts). This information is combined with the SN photometry to determine the type and redshift distribution of the SN sample. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Our SN Ia rate measurements are consistent with those derived from the Hubble Space Telescope (HST) Great Observatories Origins Deep Survey (GOODS) sample, but the overall uncertainty of our 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50 per cent. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form Ψ(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). This result is consistent with other recent DTD measurements at various redshifts and environments, and is in agreement with a generic prediction of the double-degenerate progenitor scenario for SNe Ia. Most single-degenerate models predict different DTDs. By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙. We further predict that the high-z SN searches now beginning with HST will discover 2-11 SNe Ia at z > 2.
NASA Astrophysics Data System (ADS)
Yung, L. Y. Aaron; Somerville, Rachel S.
2017-06-01
The well-established Santa Cruz semi-analytic galaxy formation framework has been shown to be quite successful at explaining observations in the local Universe, as well as making predictions for low-redshift observations. Recently, metallicity-based gas partitioning and H2-based star formation recipes have been implemented in our model, replacing the legacy cold-gas based recipe. We then use our revised model to explore the high-redshift Universe and make predictions up to z = 15. Although our model is only calibrated to observations from the local universe, our predictions seem to match incredibly well with mid- to high-redshift observational constraints available-to-date, including rest-frame UV luminosity functions and the reionization history as constrained by CMB and IGM observations. We provide predictions for individual and statistical galaxy properties at a wide range of redshifts (z = 4 - 15), including objects that are too far or too faint to be detected with current facilities. And using our model predictions, we also provide forecasted luminosity functions and other observables for upcoming studies with JWST.
Morphology and Structure of Ultraluminous Infrared Galaxies at z ∼ 2 in the EGS Field
NASA Astrophysics Data System (ADS)
Fang, Guan-Wen; Ma, Zhong-Yang; Chen, Yang; Kong, Xu
2015-04-01
Using the high-resolution F160W images observed by the HST WFC3 (Hubble Space Telescope Wide Field Camera 3) in the CANDELS-EGS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Extended Groth Strip) field, we have studied the morphological and structural features of 9 ultraluminous infrared galaxies (ULIRGs) at z ∼ 2. We find a wide range of morphological diversity for these ULIRGs, from ellipsoids to multiple bright nuclei or diffuse structures, e.g., the double nuclei, gaseous bridges, dual asym- metries, irregular or elliptical structures. In order to study the morphology of these ULIRGs quantitatively, their morphological parameters (the Gini coeffcient G and moment index M20) are measured in the rest-frame optical wave- band. Compared with the low-redshift counterparts, the high-redshift ULIRGs show a smaller value of G and a larger value of M20, indicating a less concen- tricity and a larger asymmetry of the stellar population distribution in these ULIRGs. Based on a 2-D fitting of the brightness profiles of these ULIRGs, we have derived their effective radii, which are distributed in a range from 2.4 to kpc, with a mean value of (3.9 ± 1.1) kpc. Moreover, we find that in average the sizes of the high-redshift ULIRGs are one to two times smaller than those of the nearby star-forming galaxies of analogous stellar mass. Our results are consistent with those of other studies under the similar conditions of redshift and infrared luminosity.
Tomographic Imaging of the Fermi-LAT γ-Ray Sky through Cross-correlations: A Wider and Deeper Look
NASA Astrophysics Data System (ADS)
Cuoco, Alessandro; Bilicki, Maciej; Xia, Jun-Qing; Branchini, Enzo
2017-09-01
We investigate the nature of the extragalactic unresolved γ-ray background (UGRB) by cross-correlating several galaxy catalogs with sky maps of the UGRB built from 78 months of Pass 8 Fermi-Large Area Telescope data. This study updates and improves similar previous analyses in several aspects. First, the use of a larger γ-ray data set allows us to investigate the energy dependence of the cross-correlation in more detail, using up to eight energy bins over a wide energy range of [0.25,500] GeV. Second, we consider larger and deeper catalogs (2MASS Photometric Redshift catalog, 2MPZ; WISE × SuperCOSMOS, WI×SC and SDSS DR12 photometric redshift data set) in addition to the ones employed in the previous studies (NVSS and SDSS QSOs). Third, we exploit the redshift information available for the above catalogs to divide them into redshift bins and perform the cross-correlation separately in each of them. Our results confirm, with higher statistical significance, the detection of cross-correlation signals between the UGRB maps and all the catalogs considered, on angular scales smaller than 1°. Significances range from 16.3σ for NVSS, 7σ for SDSS DR12 and WI×SC, to 5σ for 2MPZ and 4σ for SDSS QSOs. Furthermore, including redshift tomography, the significance of the SDSS DR12 signal strikingly rises up to ˜ 12σ and that of WI×SC to ˜ 10.6σ . We offer a simple interpretation of the signal in the framework of the halo model. The precise redshift and energy information allows us to clearly detect a change over redshift in the spectral and clustering behavior of the γ-ray sources contributing to the UGRB.
The XMM Large Scale Structure Survey
NASA Astrophysics Data System (ADS)
Pierre, Marguerite
2005-10-01
We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.
A new method to search for high-redshift clusters using photometric redshifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castignani, G.; Celotti, A.; Chiaberge, M.
2014-09-10
We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) Wemore » use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.« less
Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan
2016-01-01
Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less
NASA Astrophysics Data System (ADS)
Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian
2018-01-01
Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.
Active galactic nucleus X-ray variability in the XMM-COSMOS survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanzuisi, G.; Ponti, G.; Salvato, M.
2014-02-01
We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measuremore » it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.« less
Recovering the systemic redshift of galaxies from their Lyman-alpha line profile
NASA Astrophysics Data System (ADS)
Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.
2018-04-01
The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.
A perturbative approach to the redshift space correlation function: beyond the Standard Model
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Koyama, Kazuya
2017-08-01
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.
Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function
NASA Astrophysics Data System (ADS)
Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan
2018-03-01
We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5< z< 4.5 and i< 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z∼ 2{--}3. It confirms that our color selections are highly complete in a wide redshift range (z< 4.5), especially over the quasar number density peak at z∼ 2{--}3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z> 2.5.
Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys
NASA Astrophysics Data System (ADS)
Ding, Zhejie; Seo, Hee-Jong; Vlah, Zvonimir; Feng, Yu; Schmittfull, Marcel; Beutler, Florian
2018-05-01
Future Baryon Acoustic Oscillation surveys aim at observing galaxy clustering over a wide range of redshift and galaxy populations at great precision, reaching tenths of a percent, in order to detect any deviation of dark energy from the ΛCDM model. We utilize a set of paired quasi-N-body FastPM simulations that were designed to mitigate the sample variance effect on the BAO feature and evaluated the BAO systematics as precisely as ˜0.01%. We report anisotropic BAO scale shifts before and after density field reconstruction in the presence of redshift-space distortions over a wide range of redshift, galaxy/halo biases, and shot noise levels. We test different reconstruction schemes and different smoothing filter scales, and introduce physically-motivated BAO fitting models. For the first time, we derive a Galilean-invariant infrared resummed model for halos in real and redshift space. We test these models from the perspective of robust BAO measurements and non-BAO information such as growth rate and nonlinear bias. We find that pre-reconstruction BAO scale has moderate fitting-model dependence at the level of 0.1% - 0.2% for matter while the dependence is substantially reduced to less than 0.07% for halos. We find that post-reconstruction BAO shifts are generally reduced to below 0.1% in the presence of galaxy/halo bias and show much smaller fitting model dependence. Different reconstruction conventions can potentially make a much larger difference on the line-of-sight BAO scale, upto 0.3%. Meanwhile, the precision (error) of the BAO measurements is quite consistent regardless of the choice of the fitting model or reconstruction convention.
Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field
NASA Astrophysics Data System (ADS)
Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.
2015-08-01
How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.
NASA Astrophysics Data System (ADS)
He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji
2018-01-01
We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 < M1450 < -22.23 photometrically selected from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 < zspec < 4.6 with -28.0 < M1450 < -23.95 from the Sloan Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.
Characterizing the 21-cm Signal from Neutral Hydrogen in the IGM at Redshifts 27>z>6 with EDGES
NASA Astrophysics Data System (ADS)
Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.; Mahesh, Nivedita
2018-01-01
Understanding the period when the first stars formed and ionized the InterGalactic Medium (IGM) during the Epoch of Reionization (EoR) represents one of the main objectives of modern cosmology. The Experiment to Detect the Global EoR Signature (EDGES) strives to characterize this period by measuring, for the first time, the all-sky spectrum of the 21-cm signal produced by neutral hydrogen in the IGM at redshifts 27>z>6. In this talk I will describe recent EDGES constraints for the 21-cm signal. Specifically, with measurements from the EDGES High-Band instrument in the range 90-190 MHz, we rule out traditional Tanh models for the epoch of reionization with durations of up to dz=1 over the redshift range 14>z>7. We also rule out a wide range of phenomenological and physically-motivated 21-cm models that contain a large absorption feature in this redshift range, produced by the complex interaction between UV and X-ray radiation from the first sources and the neutral hydrogen in the IGM. Finally, I will describe our efforts to detect the 21-cm signal in the range 27>z>13 with two Low-Band instruments that have observed over 50-100 MHz since 2015. These instruments implement refined calibration techniques and lessons learned from previous generations of EDGES, and have achieved a level of systematic uncertainty low enough to enable detection. I will present Low-Band analysis results, including a variety of cross-checks performed to discriminate between residual instrumental effects and spectral structure that is intrinsic to the sky. I will conclude by describing the preparation of the next observational campaign with upgraded instrumentation.
UNCOVERING DRIVERS OF DISK ASSEMBLY: BULGELESS GALAXIES AND THE STELLAR MASS TULLY-FISHER RELATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Sarah H.; Sullivan, Mark; Ellis, Richard S., E-mail: smiller@astro.caltech.edu
2013-01-01
In order to determine what processes govern the assembly history of galaxies with rotating disks, we examine the stellar mass Tully-Fisher (TF) relation over a wide range in redshift partitioned according to whether or not galaxies contain a prominent bulge. Using our earlier Keck spectroscopic sample, for which bulge/total parameters are available from analyses of Hubble Space Telescope images, we find that bulgeless disk galaxies with z > 0.8 present a significant offset from the local (TF) relation whereas, at all redshifts probed, those with significant bulges fall along the local relation. Our results support the suggestion that bulge growthmore » may somehow expedite the maturing of disk galaxies onto the (TF) relation. We discuss a variety of physical hypotheses that may explain this result in the context of kinematic observations of star-forming galaxies at redshifts z = 0 and z > 2.« less
Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1
NASA Astrophysics Data System (ADS)
Zhang, Keming; Schiminovich, David
2018-01-01
We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 < z < 1 based on GALEX photometry, with redshift measurements from four spectroscopic and photometric-redshift catalogs: NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.
Hierarchical Matching and Regression with Application to Photometric Redshift Estimation
NASA Astrophysics Data System (ADS)
Murtagh, Fionn
2017-06-01
This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.
Derivation of photometric redshifts for the 3XMM catalogue
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Corral, A.; Mountrichas, G.; Ruiz, A.; Masoura, V.; Fotopoulou, S.; Watson, M.
2017-10-01
We present the results from our ESA Prodex project that aims to derive photometric redshifts for the 3XMM catalogue. The 3XMM DR-6 offers the largest X-ray survey, containing 470,000 unique sources over 1000 sq. degrees. We cross-correlate the X-ray positions with optical and near-IR catalogues using Bayesian statistics. The optical catalogue used so far is the SDSS while currently we are employing the recently released PANSTARRS catalogue. In the near IR we use the Viking, VHS, UKIDS surveys and also the WISE W1 and W2 filters. The estimation of photometric redshifts is based on the TPZ software. The training sample is based on X-ray selected samples with available SDSS spectroscopy. We present here the results for the 40,000 3XMM sources with available SDSS counterparts. Our analysis provides very reliable photometric redshifts with sigma(mad)=0.05 and a fraction of outliers of 8% for the optically extended sources. We discuss the wide range of applications that are feasible using this unprecedented resource.
The SDSS-IV extended baryon oscillation spectroscopic survey: Luminous red galaxy target selection
Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; ...
2016-06-08
Here, we describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer. LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71).more » We also demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ~89% of the target sample yields secure redshift measurements. Finally, we present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less
THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.
2016-06-01
We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (medianmore » redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.« less
A perturbative approach to the redshift space correlation function: beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model whichmore » is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with ≤ 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpc h ≤ s ≤ 180Mpc/ h . Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.« less
Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array
NASA Astrophysics Data System (ADS)
Eastwood, Michael W.; Hallinan, Gregg
2018-05-01
21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.
WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey
NASA Astrophysics Data System (ADS)
Cava, A.; Bettoni, D.; Poggianti, B. M.; Couch, W. J.; Moles, M.; Varela, J.; Biviano, A.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Fritz, J.; Kjærgaard, P.; Ramella, M.; Valentinuzzi, T.
2009-03-01
Aims: We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods: Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ~45 km s-1. Results: We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ~30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions: Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx ∝ σ_v^4. Table 4, containing the complete redshift catalog, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/707
Photometric redshifts for the CFHTLS T0004 deep and wide fields
NASA Astrophysics Data System (ADS)
Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.
2009-06-01
Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.
The Wide-Field Infrared Explorer
NASA Technical Reports Server (NTRS)
Schember, Helene; Hacking, Perry
1993-01-01
More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.
Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data
NASA Astrophysics Data System (ADS)
Clampitt, J.; Sánchez, C.; Kwan, J.; Krause, E.; MacCrann, N.; Park, Y.; Troxel, M. A.; Jain, B.; Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Blazek, J.; Bonnett, C.; Crocce, M.; Fang, Y.; Gaztanaga, E.; Gruen, D.; Jarvis, M.; Miquel, R.; Prat, J.; Ross, A. J.; Sheldon, E.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.
2017-03-01
We present galaxy-galaxy lensing results from 139 deg2 of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise ratio of 29 over scales 0.09 < R < 15 Mpc h-1, including all lenses over a wide redshift range 0.2 < z < 0.8. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, NGMIX and IM3SHAPE. We perform a number of null tests on the shear and photometric redshift catalogues and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The result and systematic checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a halo occupation distribution (HOD) model, and demonstrate that our data constrain the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.
NASA Astrophysics Data System (ADS)
Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.
2018-02-01
We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.
NASA Astrophysics Data System (ADS)
Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.
2018-05-01
We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; et al.
We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the sourcemore » redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise
We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.
Galaxy growth from redshift 5 to 0 at fixed comoving number density
NASA Astrophysics Data System (ADS)
van de Voort, Freeke
2016-10-01
Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.
Morphology and Structure of Ultraluminous Infrared Galaxies at z ≈ 2 in the EGS Field
NASA Astrophysics Data System (ADS)
Fang, G. W.; Ma, Z. Y.; Chen, Y.; Kong, X.
2014-11-01
Using high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) F160W imaging from the CANDELS-EGS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Extended Groth Strip) field, we present the morphology analysis of 9 ultraluminous infrared galaxies (ULIRGs) at z≈2. We find a wide range of morphological diversities for these ULIRGs, from spheroid to multiple bright nuclei or diffuse structures, e.g., double nuclei, bridges, dual asymmetries, irregular, or elliptical structures. In quantitative, these sources show a lower Gini coefficient (G) and a higher moment (M_{20}) in the rest-frame optical morphology, compared to the lower redshift counterparts, indicating less concentrated and symmetric spatial distribution of the stellar mass of ULIRGs at z≈2. Moreover, we derive accurate effective radii of these ULIRGs through 2-D profile fitting, which range from 2.4 to 5.8 kpc, with a mean value of (3.9±1.1) kpc. We find that the sizes of these ULIRGs at z≈2 are on average one to two times smaller than those of the local star-forming galaxies with analogous stellar mass. Our results are consistent with those studies at similar redshift and infrared luminosity.
NASA Astrophysics Data System (ADS)
Guo, Hong; Yang, Xiaohu; Lu, Yi
2018-05-01
We propose a novel method to constrain the missing fraction of galaxies using galaxy clustering measurements in the galaxy conditional stellar mass function (CSMF) framework, which is applicable to surveys that suffer significantly from sample selection effects. The clustering measurements, which are not sensitive to the random sampling (missing fraction) of galaxies, are widely used to constrain the stellar–halo mass relation (SHMR). By incorporating a missing fraction (incompleteness) component into the CSMF model (ICSMF), we use the incomplete stellar mass function and galaxy clustering to simultaneously constrain the missing fractions and the SHMRs. Tests based on mock galaxy catalogs with a few typical missing fraction models show that this method can accurately recover the missing fraction and the galaxy SHMR, hence providing us with reliable measurements of the galaxy stellar mass functions. We then apply it to the Baryon Oscillation Spectroscopic Survey (BOSS) over the redshift range of 0.1 < z < 0.8 for galaxies of M * > 1011 M ⊙. We find that the sample completeness for BOSS is over 80% at z < 0.6 but decreases at higher redshifts to about 30%. After taking these completeness factors into account, we provide accurate measurements of the stellar mass functions for galaxies with {10}11 {M}ȯ < {M}* < {10}12 {M}ȯ , as well as the SHMRs, over the redshift range 0.1 < z < 0.8 in this largest galaxy redshift survey.
NASA Astrophysics Data System (ADS)
Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.
2018-03-01
We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.
Clustering redshift distributions for the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Helsby, Jennifer
Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.
Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data
Clampitt, J.; S?nchez, C.; Kwan, J.; ...
2016-11-22
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less
Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clampitt, J.; S?nchez, C.; Kwan, J.
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtainmore » consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.« less
On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars
NASA Astrophysics Data System (ADS)
Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada
2017-02-01
We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}⊙ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}⊙ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (˜85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ˜ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (I.e., z≳ 10).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; Applegate, D.; Dietrich, J. P.
Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrabback, T.; Applegate, D.; Dietrich, J. P.
We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in Vmore » - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).« less
Schrabback, T.; Applegate, D.; Dietrich, J. P.; ...
2017-10-14
Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less
NASA Astrophysics Data System (ADS)
Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.
2014-03-01
We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder
NASA Astrophysics Data System (ADS)
Bandura, Kevin; Addison, Graeme E.; Amiri, Mandana; Bond, J. Richard; Campbell-Wilson, Duncan; Connor, Liam; Cliche, Jean-François; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gibbs, Kenneth; Gilbert, Adam; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Klages, Peter; Landecker, Tom L.; Masui, Kiyoshi; Mena Parra, Juan; Newburgh, Laura B.; Pen, Ue-li; Peterson, Jeffrey B.; Recnik, Andre; Shaw, J. Richard; Sigurdson, Kris; Sitwell, Mike; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don
2014-07-01
A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beam forming that characterized previous designs. The Pathfinder consists of two cylinders 37m long by 20m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of ~100 degrees by 1-2 degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every ~30 cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800 MHz, and directly sampled at 800 MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation. The lessons learned from its implementation will be used to inform and improve the final CHIME design.
High-Z Protocluster Survey by Subaru/HSC
NASA Astrophysics Data System (ADS)
Kashikawa, Nobunari
2017-07-01
We are now conducting a systematic survey for high-redshift (z > 3) protoclusters using the extremely wide imaging data produced by the Subaru/Hyper Suprime Cam. The goal of the HSC protocluster survey is to trace redshift evolution of cluster galaxies up to z 6 with very high number statistics (10 20 protoclusters per redshift bins at z> 2) as well as to see a possible variety of protoclusters ( 1000 protoclusters at z 4) at the same redshift. We applied an effective method to find significant overdense regions of g-dropout galaxies at z 4 based on a high surface number density. We have found 179 protocluster candidates with more than 4 overdensity significance over 121 deg2 of the initial HSC data release for the wide layer. I will report the current status of the survey and initial results.
NASA Astrophysics Data System (ADS)
Fudamoto, Y.; Oesch, P. A.; Schinnerer, E.; Groves, B.; Karim, A.; Magnelli, B.; Sargent, M. T.; Cassata, P.; Lang, P.; Liu, D.; Le Fèvre, O.; Leslie, S.; Smolčić, V.; Tasca, L.
2017-11-01
We present results on the dust attenuation of galaxies at redshift ∼3-6 by studying the relationship between the UV spectral slope (βUV) and the infrared excess (IRX; LIR/LUV) using Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared continuum observations. Our study is based on a sample of 67 massive, star-forming galaxies with a median mass of M* ∼ 1010.7 M⊙ spanning a redshift range z = 2.6-3.7 (median z = 3.2) that were observed with ALMA at λ _{rest}=300 {μ m}. Both the individual ALMA detections (41 sources) and stacks including all galaxies show the IRX-βUV relationship at z ∼ 3 is mostly consistent with that of local starburst galaxies on average. However, we find evidence for a large dispersion around the mean relationship by up to ±0.5 dex. Nevertheless, the locally calibrated dust correction factors based on the IRX-βUV relation are on average applicable to main-sequence z ∼ 3 galaxies. This does not appear to be the case at even higher redshifts, however. Using public ALMA observations of z ∼ 4-6 galaxies we find evidence for a significant evolution in the IRX-βUV and the IRX-M* relations beyond z ∼ 3 towards lower IRX values. We discuss several caveats that could affect these results, including the assumed dust temperature. ALMA observations of larger z > 3 galaxy sample spanning a wide range of physical parameters (e.g. lower stellar mass) will be important to investigate this intriguing redshift evolution further.
NASA Astrophysics Data System (ADS)
Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan
2017-09-01
Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.
High-redshift galaxy populations.
Hu, Esther M; Cowie, Lennox L
2006-04-27
We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.
X-ray constraints on the fraction of obscured active galactic nuclei at high accretion luminosities
NASA Astrophysics Data System (ADS)
Georgakakis, A.; Salvato, M.; Liu, Z.; Buchner, J.; Brandt, W. N.; Ananna, T. Tasnim; Schulze, A.; Shen, Yue; LaMassa, S.; Nandra, K.; Merloni, A.; McGreer, I. D.
2017-08-01
The wide-area XMM-XXL X-ray survey is used to explore the fraction of obscured active galactic nuclei (AGNs) at high accretion luminosities, LX(2-10 keV) ≳ 1044 erg s - 1, and out to redshift z ≈ 1.5. The sample covers an area of about 14 deg2 and provides constraints on the space density of powerful AGNs over a wide range of neutral hydrogen column densities extending beyond the Compton-thick limit, NH ≈ 1024 cm - 2. The fraction of obscured Compton-thin (NH = 1022-1024 cm - 2) AGNs is estimated to be ≈0.35 for luminosities LX(2-10 keV) > 1044 erg s - 1, independent of redshift. For less luminous sources, the fraction of obscured Compton-thin AGNs increases from 0.45 ± 0.10 at z = 0.25 to 0.75 ± 0.05 at z = 1.25. Studies that select AGNs in the infrared via template fits to the observed spectral energy distribution of extragalactic sources estimate space densities at high accretion luminosities consistent with the XMM-XXL constraints. There is no evidence for a large population of AGNs (e.g. heavily obscured) identified in the infrared and missed at X-ray wavelengths. We further explore the mid-infrared colours of XMM-XXL AGNs as a function of accretion luminosity, column density and redshift. The fraction of XMM-XXL sources that lie within the mid-infrared colour wedges defined in the literature to select AGNs is primarily a function of redshift. This fraction increases from about 20-30 per cent at z = 0.25 to about 50-70 per cent at z = 1.5.
Resolved Star Formation in Galaxies Using Slitless Spectroscopy
NASA Astrophysics Data System (ADS)
Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team
2018-06-01
The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.
The CfA redshift survey - Data for the NGP + 30 zone
NASA Technical Reports Server (NTRS)
Huchra, John P.; Geller, Margaret J.; De Lapparent, Valerie; Corwin, Harold G., Jr.
1990-01-01
Redshifts and morphological types are presented for a complete sample of 1093 galaxies with m(pg) less than or equal to 15.5 mag in a 6-deg-wide strip crossing the north Galactic pole. Also presented are redshifts for an additional 92 fainter galaxies in the same strip. Outside of the core of the Coma Cluster, both early- and late-type galaxies trace essentially the same structures in redshift space. Thinner slices illustrate the small velocity dispersion perpendicular to the surfaces in the survey.
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃0.4 h Mpc-1 within 1% if the halo power spectrum is measured using N -body simulations and within 3% if it is modeled using perturbation theory.
Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data
NASA Astrophysics Data System (ADS)
Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.
2005-11-01
The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.0
The Zeldovich approximation and wide-angle redshift-space distortions
NASA Astrophysics Data System (ADS)
Castorina, Emanuele; White, Martin
2018-06-01
The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.
NASA Astrophysics Data System (ADS)
Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2017-04-01
This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds
NASA Astrophysics Data System (ADS)
Ivison, R. J.; Lewis, A. J. R.; Weiss, A.; Arumugam, V.; Simpson, J. M.; Holland, W. S.; Maddox, S.; Dunne, L.; Valiante, E.; van der Werf, P.; Omont, A.; Dannerbauer, H.; Smail, Ian; Bertoldi, F.; Bremer, M.; Bussmann, R. S.; Cai, Z.-Y.; Clements, D. L.; Cooray, A.; De Zotti, G.; Eales, S. A.; Fuller, C.; Gonzalez-Nuevo, J.; Ibar, E.; Negrello, M.; Oteo, I.; Pérez-Fournon, I.; Riechers, D.; Stevens, J. A.; Swinbank, A. M.; Wardlow, J.
2016-11-01
Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at z > 4, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uniquely wide 250, 350, and 500 μm Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350 and 500 μm flux densities, based on which, they are expected to be largely unlensed, luminous, rare, and very distant. The addition of ground-based continuum photometry at longer wavelengths from the James Clerk Maxwell Telescope and the Atacama Pathfinder Experiment allows us to identify the dust peak in their spectral energy distributions (SEDs), with which we can better constrain their redshifts. We select the SED templates that are best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, σ = 0.14 (1 + z), using a sample of 25 galaxies with spectroscopic redshifts, each consistent with our color selection. For Herschel-selected ultrared galaxies with typical colors of S 500/S 250 ˜ 2.2 and S 500/S 350 ˜ 1.3 and flux densities, S 500 ˜ 50 mJy, we determine a median redshift, {\\hat{z}}{phot}=3.66, an interquartile redshift range, 3.30-4.27, with a median rest-frame 8-1000 μm luminosity, {\\hat{L}}{IR}, of 1.3 × 1013 L ⊙. A third of the galaxies lie at z > 4, suggesting a space density, ρ z > 4, of ≈6 × 10-7 Mpc-3. Our sample contains the most luminous known star-forming galaxies, and the most overdense cluster of starbursting proto-ellipticals found to date.
Clustering of galaxies around AGNs in the HSC Wide survey
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori
2018-01-01
We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.
NASA Astrophysics Data System (ADS)
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample tested (z = 2,Mhalo > 2 × 1014h-1M⊙). From our pilot sample limited to Mhalo > 5 × 1013h-1M⊙(0.4 < z < 0.7), we find that the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult. The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.
THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacifici, Camilla; Kassin, Susan A.; Gardner, Jonathan P.
2013-01-01
Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 < z < 1.4 from the All-Wavelength Extended Groth Strip International Survey. This consists in the Bayesian analysis of the observed galaxy spectral energy distributions with a comprehensive library of synthetic spectra assembled using realistic, hierarchical star formation, and chemical enrichment histories from cosmological simulations. We constrain the SFH of each galaxy in our samplemore » by comparing the observed fluxes in the B, R, I, and K{sub s} bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.« less
Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2
NASA Astrophysics Data System (ADS)
Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan
2015-01-01
Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.
The most massive galaxies and black holes allowed by ΛCDM
NASA Astrophysics Data System (ADS)
Behroozi, Peter; Silk, Joseph
2018-07-01
Given a galaxy's stellar mass, its host halo mass has a lower limit from the cosmic baryon fraction and known baryonic physics. At z> 4, galaxy stellar mass functions place lower limits on halo number densities that approach expected Lambda Cold Dark Matter halo mass functions. High-redshift galaxy stellar mass functions can thus place interesting limits on number densities of massive haloes, which are otherwise very difficult to measure. Although halo mass functions at z < 8 are consistent with observed galaxy stellar masses if galaxy baryonic conversion efficiencies increase with redshift, JWST(James Webb Space Telescope) and WFIRST(Wide-Field InfraRed Survey Telescope) will more than double the redshift range over which useful constraints are available. We calculate maximum galaxy stellar masses as a function of redshift given expected halo number densities from ΛCDM. We apply similar arguments to black holes. If their virial mass estimates are accurate, number density constraints alone suggest that the quasars SDSS J1044-0125 and SDSS J010013.02+280225.8 likely have black hole mass to stellar mass ratios higher than the median z = 0 relation, confirming the expectation from Lauer bias. Finally, we present a public code to evaluate the probability of an apparently ΛCDM-inconsistent high-mass halo being detected given the combined effects of multiple surveys and observational errors.
Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field
NASA Astrophysics Data System (ADS)
Lowenthal, James D.; Koo, David C.; Guzmán, Rafael; Gallego, Jesús; Phillips, Andrew C.; Faber, S. M.; Vogt, Nicole P.; Illingworth, Garth D.; Gronwall, Caryl
1997-05-01
We have obtained spectra with the 10 m Keck telescope of a sample of 24 galaxies having colors consistent with star-forming galaxies at redshifts 2 <~ z <~ 4.5 in the Hubble deep field (HDF). Eleven of these galaxies are confirmed to be at high redshift (zmed = 3.0), one is at z = 0.5, and the other 12 have uncertain redshifts but have spectra consistent with their being at z > 2. The spectra of the confirmed high-redshift galaxies show a diversity of features, including weak Lyα emission, strong Lyα breaks or damped Lyα absorption profiles, and the stellar and interstellar rest-UV absorption lines common to local starburst galaxies and high-redshift star-forming galaxies reported recently by others. The narrow profiles and low equivalent widths of C IV, Si IV, and N V absorption lines may imply low stellar metallicities. Combined with the five high-redshift galaxies in the HDF previously confirmed with Keck spectra by Steidel et al. (1996a), the 16 confirmed sources yield a comoving volume density of n >= 2.4 × 10-4 h350 Mpc-3 for q0 = 0.05, or n >= 1.1 × 10-3 h350 Mpc-3 for q0 = 0.5. These densities are 3-4 times higher than the recent estimates of Steidel et al. (1996b) based on ground-based photometry with slightly brighter limits and are comparable to estimates of the local volume density of galaxies brighter than L*. The high-redshift density measurement is only a lower limit and could be almost 3 times higher still if all 29 of the unconfirmed candidates in our original sample, including those not observed, are indeed also at high redshift. The galaxies are small but luminous, with half-light radii 1.8 < r1/2 < 6.5 h-150 kpc and absolute magnitudes -21.5 > MB > -23. The HST images show a wide range of morphologies, including several with very close, small knots of emission embedded in wispy extended structures. Using rest-frame UV continuum fluxes with no dust correction, we calculate star formation rates in the range 7-24 or 3-9 h-250 Msolar yr-1 for q0 = 0.05 and q0 = 0.5, respectively. These rates overlap those for local spiral and H II galaxies today, although they could be more than twice as high if dust extinction in the UV is significant. If the objects at z = 3 were simply to fade by 5 mag (assuming a 107 yr burst and passive evolution) without mergers in the 14 Gyr between then and now (for q0 = 0.05, h50 = 1.0), they would resemble average dwarf elliptical/spheroidal galaxies in both luminosity and size. However, the variety of morphologies and the high number density of z = 3 galaxies in the HDF suggest that they represent a range of physical processes and stages of galaxy formation and evolution, rather than any one class of object, such as massive ellipticals. A key issue remains the measurement of masses. These high-redshift objects are likely to be the low-mass, starbursting building blocks of more massive galaxies seen today. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology, and with the NASA/ESA Hubble Space Telescope, which is operated by AURA, Inc., under contract with NASA.
The 5-10 keV AGN luminosity function at 0.01 < z < 4.0
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Buchner, J.; Georgantopoulos, I.; Hasinger, G.; Salvato, M.; Georgakakis, A.; Cappelluti, N.; Ranalli, P.; Hsu, L. T.; Brusa, M.; Comastri, A.; Miyaji, T.; Nandra, K.; Aird, J.; Paltani, S.
2016-03-01
The active galactic nuclei (AGN) X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the AGN population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH ~ 1023 cm-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01 < z < 4.0, 41 < log Lx < 46) is 98% redshift complete with 68% spectroscopic redshifts. For sources lacking a spectroscopic redshift estimation we use the probability distribution function of photometric redshift estimation specifically tuned for AGN, and a flat probability distribution function for sources with no redshift information. We use Bayesian analysis to select the best parametric model from simple pure luminosity and pure density evolution to more complicated luminosity and density evolution and luminosity-dependent density evolution (LDDE). We estimate the model parameters that describe best our dataset separately for each survey and for the combined sample. We show that, according to Bayesian model selection, the preferred model for our dataset is the LDDE. Our estimation of the AGN luminosity function does not require any assumption on the AGN absorption and is in good agreement with previous works in the 2-10 keV energy band based on X-ray hardness ratios to model the absorption in AGN up to redshift three. Our sample does not show evidence of a rapid decline of the AGN luminosity function up to redshift four.
Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies
NASA Technical Reports Server (NTRS)
Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.;
2015-01-01
Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).
Supernova rates from the SUDARE VST-OmegaCAM search. I. Rates per unit volume
NASA Astrophysics Data System (ADS)
Cappellaro, E.; Botticella, M. T.; Pignata, G.; Grado, A.; Greggio, L.; Limatola, L.; Vaccari, M.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.; Covone, G.; De Cicco, D.; Falocco, S.; Della Valle, M.; Jarvis, M.; Marchetti, L.; Napolitano, N. R.; Paolillo, M.; Pastorello, A.; Radovich, M.; Schipani, P.; Spiro, S.; Tomasella, L.; Turatto, M.
2015-12-01
Aims: We describe the observing strategy, data reduction tools, and early results of a supernova (SN) search project, named SUDARE, conducted with the ESO VST telescope, which is aimed at measuring the rate of the different types of SNe in the redshift range 0.2 < z < 0.8. Methods: The search was performed in two of the best studied extragalactic fields, CDFS and COSMOS, for which a wealth of ancillary data are available in the literature or in public archives. We developed a pipeline for the data reduction and rapid identification of transients. As a result of the frequent monitoring of the two selected fields, we obtained light curve and colour information for the transients sources that were used to select and classify SNe by means of an especially developed tool. To accurately characterise the surveyed stellar population, we exploit public data and our own observations to measure the galaxy photometric redshifts and rest frame colours. Results: We obtained a final sample of 117 SNe, most of which are SN Ia (57%) with the remaining ones being core collapse events, of which 44% are type II, 22% type IIn and 34% type Ib/c. To link the transients, we built a catalogue of ~1.3 × 105 galaxies in the redshift range 0 < z ≤ 1, with a limiting magnitude KAB = 23.5 mag. We measured the SN rate per unit volume for SN Ia and core collapse SNe in different bins of redshifts. The values are consistent with other measurements from the literature. Conclusions: The dispersion of the rate measurements for SNe-Ia is comparable to the scatter of the theoretical tracks for single degenerate (SD) and double degenerate (DD) binary systems models, therefore it is not possible to disentangle among the two different progenitor scenarios. However, among the three tested models (SD and the two flavours of DD that either have a steep DDC or a wide DDW delay time distribution), the SD appears to give a better fit across the whole redshift range, whereas the DDC better matches the steep rise up to redshift ~1.2. The DDW instead appears to be less favoured. Unlike recent claims, the core collapse SN rate is fully consistent with the prediction that is based on recent estimates of star formation history and standard progenitor mass range. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 088.D-4006, 088.D-4007, 089.D-0244, 089.D-0248, 090.D-0078, 090.D-0079, 088.D-4013, 089.D-0250, 090.D-0081.Appendix A is available in electronic form at http://www.aanda.org
GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies
NASA Astrophysics Data System (ADS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd
2014-11-01
One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.
GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd
2013-01-01
One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.
Spectroscopic Needs for Imaging Dark Energy Experiments
Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; ...
2015-03-15
Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter further, enhancing the science return from planned experiments greatly (increasing the Dark Energy Task Force figure of merit by up to ~50%); Options: This spectroscopy will most efficiently be done by covering as much of the optical and near-infrared spectrum as possible at modestly high spectral resolution (λ/Δλ > ~3000), while maximizing the telescope collecting area, field of view on the sky, and multiplexing of simultaneous spectra. The most efficient instrument for this would likely be either the proposed GMACS/MANIFEST spectrograph for the Giant Magellan Telescope or the OPTIMOS spectrograph for the European Extremely Large Telescope, depending on actual properties when built. The PFS spectrograph at Subaru would be next best and available considerably earlier, c. 2018; the proposed ngCFHT and SSST telescopes would have similar capabilities but start later. Other key options, in order of increasing total time required, are the WFOS spectrograph at TMT, MOONS at the VLT, and DESI at the Mayall 4 m telescope (or the similar 4MOST and WEAVE projects); of these, only DESI, MOONS, and PFS are expected to be available before 2020. Table 2-3 of this white paper summarizes the observation time required at each facility for strawman training samples. To attain secure redshift measurements for a high fraction of targeted objects and cover the full redshift span of future experiments, additional near-infrared spectroscopy will also be required; this is best done from space, particularly with WFIRST-2.4 and JWST; Calibration: The first several moments of redshift distributions (the mean, RMS redshift dispersion, etc.), must be known to high accuracy for cosmological constraints not to be systematics-dominated (equivalently, the moments of the distribution of differences between photometric and true redshifts could be determined instead). The ultimate goal of calibration is to characterize these moments for every subsample used in analyses - i.e., to minimize the uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<~0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 30–60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <~0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ~100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy – training and calibration of photometric redshifts – will require two separate solutions. For ongoing and future projects to reach their full potential, new spectroscopic samples of faint objects will be needed for training; those new samples may be suitable for calibration, but the latter possibility is uncertain. In contrast, wide-area samples of bright objects are poorly suited for training, but can provide high-precision calibrations via cross-correlation techniques. Additional training/calibration redshifts and/or host galaxy spectroscopy would enhance the use of supernovae and galaxy clusters for cosmology. We also summarize additional work on photometric redshift techniques that will be needed to prepare for data from ongoing and future dark energy experiments.« less
The 6dF Galaxy Survey: Mass and Motions in the Local Universe
NASA Astrophysics Data System (ADS)
Colless, M.; Jones, H.; Campbell, L.; Burkey, D.; Taylor, A.; Saunders, W.
2005-01-01
The 6dF Galaxy Survey will provide 167000 redshifts and about 15000 peculiar velocities for galaxies over most of the southern sky out to about cz = 30000 km/s. The survey is currently almost half complete, with the final observations due in mid-2005. An initial data release was made public in December 2002; the first third of the dataset will be released at the end of 2003, with the remaining thirds being released at the end of 2004 and 2005. The status of the survey, the survey database and other relevant information can be obtained from the 6dFGS web site at http://www.mso.anu.edu.au/6dFGS. In terms of constraining cosmological parameters, combining the 6dFGS redshift and peculiar velocity surveys will allow us to: (1) break the degeneracy between the redshift-space distortion parameter beta = Omega_m0.6b/b and the galaxy-mass correlation parameter rg; (2) measure the four parameters Ag, Gamma, beta and rg with precisions of between 1% and 3%; (3) measure the variation of rg and b with scale to within a few percent over a wide range of scales.
KiDS-i-800: comparing weak gravitational lensing measurements from same-sky surveys
NASA Astrophysics Data System (ADS)
Amon, A.; Heymans, C.; Klaes, D.; Erben, T.; Blake, C.; Hildebrandt, H.; Hoekstra, H.; Kuijken, K.; Miller, L.; Morrison, C. B.; Choi, A.; de Jong, J. T. A.; Glazebrook, K.; Irisarri, N.; Joachimi, B.; Joudaki, S.; Kannawadi, A.; Lidman, C.; Napolitano, N.; Parkinson, D.; Schneider, P.; van Uitert, E.; Viola, M.; Wolf, C.
2018-07-01
We present a weak gravitational lensing analysis of 815 deg2 of i-band imaging from the Kilo-Degree Survey (KiDS-i-800). In contrast to the deep r-band observations, which take priority during excellent seeing conditions and form the primary KiDS data set (KiDS-r-450), the complementary yet shallower KiDS-i-800 spans a wide range of observing conditions. The overlapping KiDS-i-800 and KiDS-r-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis we introduce two new `null' tests. The `nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-i-800 and KiDS-r-450 shear measurements agree at the level of 1 ± 4 per cent. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy lensing signal from the full KiDS-i-800 and KiDS-r-450 surveys and find that the measurements agree to 7 ± 5 per cent when the KiDS-i-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.
KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys
NASA Astrophysics Data System (ADS)
Amon, A.; Heymans, C.; Klaes, D.; Erben, T.; Blake, C.; Hildebrandt, H.; Hoekstra, H.; Kuijken, K.; Miller, L.; Morrison, C. B.; Choi, A.; de Jong, J. T. A.; Glazebrook, K.; Irisarri, N.; Joachimi, B.; Joudaki, S.; Kannawadi, A.; Lidman, C.; Napolitano, N.; Parkinson, D.; Schneider, P.; van Uitert, E.; Viola, M.; Wolf, C.
2018-04-01
We present a weak gravitational lensing analysis of 815deg2 of i-band imaging from the Kilo-Degree Survey (KiDS-i-800). In contrast to the deep r-band observations, which take priority during excellent seeing conditions and form the primary KiDS dataset (KiDS-r-450), the complementary yet shallower KiDS-i-800 spans a wide range of observing conditions. The overlapping KiDS-i-800 and KiDS-r-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis we introduce two new `null' tests. The `nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-i-800 and KiDS-r-450 shear measurements agree at the level of 1 ± 4%. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy lensing signal from the full KiDS-i-800 and KiDS-r-450 surveys and find that the measurements agree to 7 ± 5% when the KiDS-i-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.
Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption
NASA Astrophysics Data System (ADS)
Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.
2016-12-01
The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.
An extended Zel'dovich model for the halo mass function
NASA Astrophysics Data System (ADS)
Lim, Seunghwan; Lee, Jounghun
2013-01-01
A new way to construct a fitting formula for the halo mass function is presented. Our formula is expressed as a solution to the modified Jedamzik matrix equation that automatically satisfies the normalization constraint. The characteristic parameters expressed in terms of the linear shear eigenvalues are empirically determined by fitting the analytic formula to the numerical results from the high-resolution N-body simulation and found to be independent of scale, redshift and background cosmology. Our fitting formula with the best-fit parameters is shown to work excellently in the wide mass-range at various redshifts: The ratio of the analytic formula to the N-body results departs from unity by up to 10% and 5% over 1011 <= M/(h-1Msolar) <= 5 × 1015 at z = 0,0.5 and 1 for the FoF-halo and SO-halo cases, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less
New insights on the accuracy of photometric redshift measurements
NASA Astrophysics Data System (ADS)
Massarotti, M.; Iovino, A.; Buzzoni, A.; Valls-Gabaud, D.
2001-12-01
We use the deepest and most complete redshift catalog currently available (the Hubble Deep Field (HDF) North supplemented by new HDF South redshift data) to minimize residuals between photometric and spectroscopic redshift estimates. The good agreement at zspec < 1.5 shows that model libraries provide a good description of the galaxy population. At zspec >= 2.0, the systematic shift between photometric and spectroscopic redshifts decreases when the modeling of the absorption by the interstellar and intergalactic media is refined. As a result, in the entire redshift range z in [0, 6], residuals between photometric and spectroscopic redshifts are roughly halved. For objects fainter than the spectroscopic limit, the main source of uncertainty in photometric redshifts is related to photometric errors, and can be assessed with Monte Carlo simulations.
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uros; ...
2015-11-19
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc –1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.« less
Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets
NASA Astrophysics Data System (ADS)
Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran
2010-02-01
We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.
NASA Astrophysics Data System (ADS)
Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.
2015-04-01
Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a natural way. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Teppei; Hand, Nick; Seljak, Uros
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc –1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.« less
The Vimos VLT deep survey. Global properties of 20,000 galaxies in the IAB < 22.5 WIDE survey
NASA Astrophysics Data System (ADS)
Garilli, B.; Le Fèvre, O.; Guzzo, L.; Maccagni, D.; Le Brun, V.; de la Torre, S.; Meneux, B.; Tresse, L.; Franzetti, P.; Zamorani, G.; Zanichelli, A.; Gregorini, L.; Vergani, D.; Bottini, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Blaizot, J.; Bongiorno, A.; Cucciati, O.; Mellier, Y.; Moreau, C.; Paioro, L.
2008-08-01
The VVDS-Wide survey has been designed to trace the large-scale distribution of galaxies at z ~ 1 on comoving scales reaching ~100~h-1 Mpc, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude IAB = 22.5, targeting four independent fields with sizes of up to 4 deg2 each. We discuss the survey strategy which covers 8.6 deg2 and present the general properties of the current redshift sample. This includes 32 734 spectra in the four regions, covering a total area of 6.1 deg2 with a sampling rate of 22 to 24%. This paper accompanies the public release of the first 18 143 redshifts of the VVDS-Wide survey from the 4 deg2 contiguous area of the F22 field at RA = 22^h. We have devised and tested an objective method to assess the quality of each spectrum, providing a compact figure-of-merit. This is particularly effective in the case of long-lasting spectroscopic surveys with varying observing conditions. Our figure of merit is a measure of the robustness of the redshift measurement and, most importantly, can be used to select galaxies with uniform high-quality spectra to carry out reliable measurements of spectral features. We also use the data available over the four independent regions to directly measure the variance in galaxy counts. We compare it with general predictions from the observed galaxy two-point correlation function at different redshifts and with that measured in mock galaxy surveys built from the Millennium simulation. The purely magnitude-limited VVDS Wide sample includes 19 977 galaxies, 304 type I AGNs, and 9913 stars. The redshift success rate is above 90% independent of magnitude. A cone diagram of the galaxy spatial distribution provides us with the current largest overview of large-scale structure up to z ~ 1, showing a rich texture of over- and under-dense regions. We give the mean N(z) distribution averaged over 6.1 deg2 for a sample limited in magnitude to IAB = 22.5. Comparing galaxy densities from the four fields shows that in a redshift bin Δz = 0.1 at z ~ 1 one still has factor-of-two variations over areas as large as ~ 0.25 deg2. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone. It is also in fairly good statistical agreement with that predicted by the Millennium simulations. The VVDS WIDE survey currently provides the largest area coverage among redshift surveys reaching z ~ 1. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even 1 deg2 size should be interpreted with caution. The survey data represent a rich data base to select complete sub-samples of high-quality spectra and to study galaxy ensemble properties and galaxy clustering over unprecedented scales at these redshifts. The redshift catalog of the 4 deg2 F22 field is publicly available at http://cencosw.oamp.fr.
The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4
NASA Technical Reports Server (NTRS)
Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.
2012-01-01
Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 < z < 1:4 from the All-Wavelength Extended Groth Strip International Survey (AEGIS). This consists in the Bayesian analysis of the observed galaxy spectral ' energy distributions with a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R,l and K(sub s) bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFH on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.
The Grism Lens-Amplified Survey from Space (GLASS). I. Survey Overview and First Data Release
NASA Astrophysics Data System (ADS)
Treu, T.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Wang, X.; Bradač, M.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Huang, K.-H.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.
2015-10-01
We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of 10 massive clusters of galaxies at redshift z = 0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 (WFC3) yields near-infrared spectra of the cluster cores covering the wavelength range 0.81-1.69 μm through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACS J0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than {H}{{AB}}=23 is visually inspected by at least two co-authors and a redshift is measured when sufficient information is present in the spectra. Furthermore, we conducted a thorough search for emission lines through all of the GLASS WFC3 spectra with the aim of measuring redshifts for sources with continuum fainter than {H}{{AB}}=23. We provide a catalog of 139 emission-line-based spectroscopic redshifts for extragalactic sources, including three new redshifts of multiple image systems (one probable, two tentative). In addition to the data itself, we also release software tools that are helpful to navigate the data.
The accelerated build-up of the red sequence in high-redshift galaxy clusters
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.
2016-04-01
We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
Jouvel, S.; Delubac, T.; Comparat, J.; ...
2017-03-24
We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouvel, S.; Delubac, T.; Comparat, J.
We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less
Internal kinematics of disk galaxies in the local universe
NASA Astrophysics Data System (ADS)
Catinella, Barbara
2005-11-01
This dissertation makes use of a homogeneous sample of several thousand normal, non-interacting, spiral galaxies, for which I-band photometry and optical and/ or radio spectroscopy are available, to investigate the average kinematic properties of disk systems at low redshifts ( z [Special characters omitted.] 0.1). New long-slit Ha rotation curves (RCs) for 402 galaxies, which were incorporated into the larger sample, are presented in this work. The main goals of this thesis are: (a) The definition of a set of average, or template , RCs in bins covering a wide range of galaxy luminosity. The template relations represent an accurate description of the average circular velocity field of local spiral galaxies, and are intended to be a standard reference for more distant samples and to constrain theoretical models of galactic disks. (b) The characterization of the systematics associated with different velocity width measurement techniques, and the derivation of a robust measure of rotational velocity to be used for applications of the Tully-Fisher (TF) distance method. A direct cross-calibration of the optical and radio widths has been obtained. (c) The assessment of the impact of the limitations on optical line widths extracted from fixed apertures, such as those being collected for ~10 6 galaxies by the on-going Sloan Digital Sky Survey (SDSS). Since the SDSS fiber technique generally does not sample the full extent of a galaxy RC, the observed line widths yield rotational width measurements that depend on the redshifts of the objects, on the physical sizes of their line-emitting regions, and on the intrinsic shapes of their RCs. Numerical simulations of these biases have been carried out for galaxies with realistic circular velocity fields (described by the template RCs) in the redshift range covered by the SDSS spectroscopic sample. Statistical corrections to be applied to the aperture line widths as a function of galaxy redshift and luminosity have been derived, and their impact on the TF relation examined. The use of the SDSS line widths, corrected for aperture effects, has the potential to solve the debated issue of luminosity evolution of galaxies at intermediate redshifts.
Halo Profiles and the Concentration–Mass Relation for a ΛCDM Universe
NASA Astrophysics Data System (ADS)
Child, Hillary L.; Habib, Salman; Heitmann, Katrin; Frontiere, Nicholas; Finkel, Hal; Pope, Adrian; Morozov, Vitali
2018-05-01
Profiles of dark matter-dominated halos at the group and cluster scales play an important role in modern cosmology. Using results from two very large cosmological N-body simulations, which increase the available volume at their mass resolution by roughly two orders of magnitude, we robustly determine the halo concentration–mass (c‑M) relation over a wide range of masses, employing multiple methods of concentration measurement. We characterize individual halo profiles, as well as stacked profiles, relevant for galaxy–galaxy lensing and next-generation cluster surveys; the redshift range covered is 0 ≤ z ≤ 4, with a minimum halo mass of M 200c ∼ 2 × 1011 M ⊙. Despite the complexity of a proper description of a halo (environmental effects, merger history, nonsphericity, relaxation state), when the mass is scaled by the nonlinear mass scale M ⋆(z), we find that a simple non-power-law form for the c–M/M ⋆ relation provides an excellent description of our simulation results across eight decades in M/M ⋆ and for 0 ≤ z ≤ 4. Over the mass range covered, the c–M relation has two asymptotic forms: an approximate power law below a mass threshold M/M ⋆ ∼ 500–1000, transitioning to a constant value, c 0 ∼ 3 at higher masses. The relaxed halo fraction decreases with mass, transitioning to a constant value of ∼0.5 above the same mass threshold. We compare Navarro–Frenk–White (NFW) and Einasto fits to stacked profiles in narrow mass bins at different redshifts; as expected, the Einasto profile provides a better description of the simulation results. At cluster scales at low redshift, however, both NFW and Einasto profiles are in very good agreement with the simulation results, consistent with recent weak lensing observations.
SuperSpec, The On-Chip Spectrometer: Improved NEP and Antenna Performance
NASA Astrophysics Data System (ADS)
Wheeler, Jordan; Hailey-Dunsheath, S.; Shirokoff, E.; Barry, P. S.; Bradford, C. M.; Chapman, S.; Che, G.; Doyle, S.; Glenn, J.; Gordon, S.; Hollister, M.; Kovács, A.; LeDuc, H. G.; Mauskopf, P.; McGeehan, R.; McKenney, C.; Reck, T.; Redford, J.; Ross, C.; Shiu, C.; Tucker, C.; Turner, J.; Walker, S.; Zmuidzinas, J.
2018-05-01
SuperSpec is a new technology for mm and sub-mm spectroscopy. It is an on-chip spectrometer being developed for multi-object, moderate-resolution (R˜ 300 ), large bandwidth survey spectroscopy of high-redshift galaxies for the 1 mm atmospheric window. This band accesses the CO ladder in the redshift range of z = 0-4 and the [CII] 158 μm line from redshift z = 5-9. SuperSpec employs a novel architecture in which detectors are coupled to a series of resonant filters along a single microwave feedline instead of using dispersive optics. This construction allows for the creation of a full spectrometer occupying only ˜ 10 cm^2 of silicon, a reduction in size of several orders of magnitude when compared to standard grating spectrometers. This small profile enables the production of future multi-beam spectroscopic instruments envisioned for the millimeter band to measure the redshifts of dusty galaxies efficiently. The SuperSpec collaboration is currently pushing toward the deployment of a SuperSpec demonstration instrument in fall of 2018. The progress with the latest SuperSpec prototype devices is presented; reporting increased responsivity via a reduced inductor volume (2.6 μm^3 ) and the incorporation of a new broadband antenna. A detector NEP of 3-4 × 10^{-18} W/Hz^{0.5} is obtained, sufficient for background-limited observation on mountaintop sites. In addition, beam maps and efficiency measurements of a new wide-band dual bow-tie slot antenna are shown.
NASA Astrophysics Data System (ADS)
Graur, Or; SDF SN Team
2012-01-01
The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z‧ bands. We have discovered 150 SNe out to redshift z≈ 2. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form &Psi(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙.
NASA Astrophysics Data System (ADS)
Montana, Alfredo; Aretxaga, I.; Austermann, J.; Bock, J.; Chapin, E.; Gaztanaga, E.; Hughes, D.; Lowenthal, J.; Mauskopf, P.; Perera, T.; Scott, K.; Wilson, G.; Yun, M.
2007-05-01
We present simulations of the submillimetre/millimetre (sub-mm) sky to study the environment of luminous starburst galaxies, radio galaxies and AGN towards biased-regions (large-scale over-densities) in the high-redshift universe. Guided by recent results from AzTEC extragalactic surveys at 1.1mm, we describe the impact of this population of galaxies, that dominate the sub-mm extragalactic background, on the detectability of the Sunyaev-Zel'dovich effect (SZE) as a function of redshift. These results will be presented in the context of the next generation of wide-area surveys to identify high-redshift clusters via the SZE.
Designing a space-based galaxy redshift survey to probe dark energy
NASA Astrophysics Data System (ADS)
Wang, Yun; Percival, Will; Cimatti, Andrea; Mukherjee, Pia; Guzzo, Luigi; Baugh, Carlton M.; Carbone, Carmelita; Franzetti, Paolo; Garilli, Bianca; Geach, James E.; Lacey, Cedric G.; Majerotto, Elisabetta; Orsi, Alvaro; Rosati, Piero; Samushia, Lado; Zamorani, Giovanni
2010-12-01
A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ~3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ~20000deg2 over with σz/(1 + z) <= 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.
A faint field-galaxy redshift survey in quasar fields
NASA Technical Reports Server (NTRS)
Yee, Howard K. C.; Ellingson, Erica
1993-01-01
Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.
SHELS: A complete galaxy redshift survey with R ≤ 20.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.
2014-08-01
The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.{sub 2000} = 09{sup h}19{sup m}32.4 and decl.{sub 2000} = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg{sup 2} F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a viewmore » of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D {sub n}4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2« less
The Number Density of Quiescent Compact Galaxies at Intermediate Redshift
NASA Astrophysics Data System (ADS)
Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor
2014-09-01
Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.
Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.
2018-01-01
We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
NASA Technical Reports Server (NTRS)
Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.
1994-01-01
We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median redshift of these galaxies is approximately less than 0.4, the HST resolution allows us to study sub kpc size scales at the galaxy, which cannot be done with stable images over wide fields from the best ground-based sites.
[Using neural networks based template matching method to obtain redshifts of normal galaxies].
Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng
2005-06-01
Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.
Evolution of the major merger galaxy pair fraction at z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, R. C.; Hsieh, B. C.; Lin, L.
We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies andmore » is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).« less
NASA Technical Reports Server (NTRS)
Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.
2000-01-01
We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.
The Weyl Definition of Redshifts
ERIC Educational Resources Information Center
Harvey, Alex
2012-01-01
In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…
NASA Astrophysics Data System (ADS)
Ho, Kar Wei; Ariffin, A.
2016-12-01
Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.
21-cm radiation: a new probe of variation in the fine-structure constant.
Khatri, Rishi; Wandelt, Benjamin D
2007-03-16
We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.
NASA Astrophysics Data System (ADS)
Smith, Brent M.; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Jiang, Linhua; Dijkstra, Mark; Koekemoer, Anton M.; Bielby, Richard; Inoue, Akio K.; MacKenty, John W.; O’Connell, Robert W.; Silk, Joseph I.
2018-02-01
We present observations of escaping Lyman Continuum (LyC) radiation from 34 massive star-forming galaxies (SFGs) and 12 weak AGN with reliably measured spectroscopic redshifts at z≃ 2.3{--}4.1. We analyzed Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) mosaics of the Early Release Science (ERS) field in three UVIS filters to sample the rest-frame LyC over this redshift range. With our best current assessment of the WFC3 systematics, we provide 1σ upper limits for the average LyC emission of galaxies at < z> = 2.35, 2.75, and 3.60 to ∼28.5, 28.1, and 30.7 mag in image stacks of 11–15 galaxies in the WFC3/UVIS F225W, F275W, and F336W, respectively. The LyC flux of weak AGN at < z> = 2.62 and 3.32 are detected at 28.3 and 27.4 mag with S/Ns of ∼2.7 and 2.5 in F275W and F336W for stacks of 7 and 3 AGN, respectively, while AGN at < z> = 2.37 are constrained to ≳27.9 mag at 1σ in a stack of 2 AGN. The stacked AGN LyC light profiles are flatter than their corresponding non-ionizing UV continuum profiles out to radii of r≲ 0\\buildrel{\\prime\\prime}\\over{.} 9, which may indicate a radial dependence of porosity in the ISM. With synthetic stellar SEDs fit to UV continuum measurements longward of {{Ly}}α and IGM transmission models, we constrain the absolute LyC escape fractions to {f}{esc}{abs}≃ {22}-22+44% at < z> = 2.35 and ≲55% at < z> = 2.75 and 3.60, respectively. All available data for galaxies, including published work, suggests a more sudden increase of {f}{esc} with redshift at z≃ 2. Dust accumulating in (massive) galaxies over cosmic time correlates with increased H I column density, which may lead to reducing {f}{esc} more suddenly at z≲ 2. This may suggest that SFGs collectively contributed to maintaining cosmic reionization at redshifts z≳ 2{--}4, while AGN likely dominated reionization at z≲ 2.
Black Hole Masses for Type I Active Galactic Nuclei in the Chandra Cosmos Legacy Survey
NASA Astrophysics Data System (ADS)
Nagaraj, Gautam; Fornasini, Francesca; Civano, Francesca Maria
2018-01-01
Tight local relations between SMBH masses and galaxy properties have established the fundamental connection between SMBHs and their host galaxies. However, in order to better understand the coevolution of SMBHs and their host galaxies over cosmic time, we need measurements of black hole masses, AGN luminosities, and galaxy stellar masses from sizable samples of AGN covering lower luminosities than the brightest quasars spanning a wide redshift range. In this study, we report masses of the SMBHs of 224 Type I AGNs from the Chandra COSMOS Legacy Survey as determined by the line widths of Mg II 2798, Hb 4862, and Ha 6564 via scaling relations derived from reverberation mapping. Preliminary comparison with host galaxy luminosities and stellar masses suggests an increase in Eddington ratio with redshift, consistent with previous studies. In addition, our derived SMBH masses fall above the local AGN MBH--M* (galactic stellar mass) relation from Reines & Volonteri (2015), but it is still not clear whether this results from redshift evolution of the MBH--M* relation or from the incompleteness of the spectroscopic surveys available. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
The signature of the first stars in atomic hydrogen at redshift 20.
Visbal, Eli; Barkana, Rennan; Fialkov, Anastasia; Tseliakhovich, Dmitriy; Hirata, Christopher M
2012-07-05
Dark and baryonic matter moved at different velocities in the early Universe, which strongly suppressed star formation in some regions. This was estimated to imprint a large-scale fluctuation signal of about two millikelvin in the 21-centimetre spectral line of atomic hydrogen associated with stars at a redshift of 20, although this estimate ignored the critical contribution of gas heating due to X-rays and major enhancements of the suppression. A large velocity difference reduces the abundance of haloes and requires the first stars to form in haloes of about a million solar masses, substantially greater than previously expected. Here we report a simulation of the distribution of the first stars at redshift 20 (cosmic age of around 180 million years), incorporating all these ingredients within a 400-megaparsec box. We find that the 21-centimetre hydrogen signature of these stars is an enhanced (ten millikelvin) fluctuation signal on the hundred-megaparsec scale, characterized by a flat power spectrum with prominent baryon acoustic oscillations. The required sensitivity to see this signal is achievable with an integration time of a thousand hours with an instrument like the Murchison Wide-field Array or the Low Frequency Array but designed to operate in the range of 50-100 megahertz.
Universal fitting formulae for baryon oscillation surveys
NASA Astrophysics Data System (ADS)
Blake, Chris; Parkinson, David; Bassett, Bruce; Glazebrook, Karl; Kunz, Martin; Nichol, Robert C.
2006-01-01
The next generation of galaxy surveys will attempt to measure the baryon oscillations in the clustering power spectrum with high accuracy. These oscillations encode a preferred scale which may be used as a standard ruler to constrain cosmological parameters and dark energy models. In this paper we present simple analytical fitting formulae for the accuracy with which the preferred scale may be determined in the tangential and radial directions by future spectroscopic and photometric galaxy redshift surveys. We express these accuracies as a function of survey parameters such as the central redshift, volume, galaxy number density and (where applicable) photometric redshift error. These fitting formulae should greatly increase the efficiency of optimizing future surveys, which requires analysis of a potentially vast number of survey configurations and cosmological models. The formulae are calibrated using a grid of Monte Carlo simulations, which are analysed by dividing out the overall shape of the power spectrum before fitting a simple decaying sinusoid to the oscillations. The fitting formulae reproduce the simulation results with a fractional scatter of 7 per cent (10 per cent) in the tangential (radial) directions over a wide range of input parameters. We also indicate how sparse-sampling strategies may enhance the effective survey area if the sampling scale is much smaller than the projected baryon oscillation scale.
NASA Astrophysics Data System (ADS)
Salim, Samir; Boquien, Médéric; Lee, Janice C.
2018-05-01
We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that {A}λ /{A}V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2015-11-15
We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters.more » We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.« less
New Discoveries Fill the Quasar Gap
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
Quasars active and luminous galactic centers can be difficult to find at some high redshifts due to their camouflaging color. A team of scientists has now come up with a way to detect these distant monsters in spite of their disguise.Quasar CamouflageThe color track of quasars between 5 z 6 in the commonly used i z and r i bands. Each dot on the red line marks a 0.1 difference in redshift. The contours show the colors of M dwarfs, from early type to late type. Quasars at a redshift of 5.3 z 5.7 are clearly contaminated by M dwarfs, making them difficult to identify. [Adapted from Yang et al. 2017]One of the key ways we can study the early universe is by building a large sample of high-redshift quasars. In particular, we believe that reionization of the universe is just completing around z 6. Quasars near this redshift are crucial tools for probing the post-reionization epoch and exploring the evolution of the intergalactic medium, quasar evolution, and early supermassive black hole growth.But quasars at this redshift are difficult to detect! The problem is contamination: quasars at this distance are the same color in commonly used optical bands as cool M-dwarf stars. As a result, surveys searching for quasars have often just cut out that entire section of the color space in order to avoid this contamination.This means that theres a huge gap in our sample of quasars around z 5.5: of the more than 300,000 quasars known, only 30 have been found in the redshift range of 5.3 z 5.7.The addition of new colorcolor selection criteria using infrared bands (bottom two plots) allows the authors to differentiate quasars (blue) from M dwarfs (grey), which isnt possible when only the traditional optical colorcolor selection criteria are used (top plot). [Adapted from Yang et al. 2017]A New ApproachIn a recent publication led by Jinyi Yang (Peking University, China and Steward Observatory, University of Arizona), a team of scientists has demonstrated a new technique for finding these missing quasars. The team uses this technique to perform the first systematic survey of luminous quasars at a redshift near z = 5.5.Instead of relying only on the conventional color space in broad optical bands, Yang and collaborators selected candidates by also looking at their colors in near-infrared and mid-infrared bands. The team used observations from the Sloan Digital Sky Survey, the UKIRT Infrared Deep Sky Surveys Large Area Survey, the VISTA Hemisphere Survey, and the Wide Field Survey Explorer.Examining the quasar candidates in these color spaces allowed the authors to more clearly differentiate between the M dwarfs and the quasars, so that they could select only the candidates that clearly fell in the regions dominated by quasars in all three spaces. Yang and collaborators then performed spectroscopic follow-up on their candidates to confirm them.Gap Quasars UncoveredThe authors found 21 new high-redshift quasars (red), including 15 in the range of 5.3 z 5.7. [Adapted from Yang et al. 2017]The team found a total of 21 new quasars from their main sample, with 15 new quasars discovered specifically in the redshift range of 5.3 z 5.7. This nearly doubles the number of known quasars at z 5.5!This initial success has more applications in the future; upcoming surveys will provide an even larger sample to examine for z 5.5 quasars. The team demonstrated that their pipeline can be applied to such surveys by testing it on some preliminary data from the UKIRT Hemisphere Survey. In just this initial test they already discovered another z 5.5 quasar, demonstrating that theyll have little difficultly finding more once the complete data set is released.CitationJinyi Yang et al 2017 AJ 153 184. doi:10.3847/1538-3881/aa6577
A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.
2005-02-01
The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z)
NASA Astrophysics Data System (ADS)
Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.
2018-01-01
We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z < 0.5. This practically doubles the effective sampling of the VIMOS spectrograph over the range 0.5 < z < 1.2 (reaching 47% on average), yielding a final median local galaxy density close to 5 × 10-3h3 Mpc-3. The total area spanned by the final data set is ≃ 23.5 deg2, corresponding to 288 VIMOS fields with marginal overlaps, split over two regions within the CFHTLS-Wide W1 and W4 equatorial fields (at RA ≃ 2 and ≃ 22 h, respectively). Spectra were observed at a resolution R = 220, covering a wavelength range 5500-9500 Å. Data reduction and redshift measurements were performed through a fully automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at
Multipole analysis of redshift-space distortions around cosmic voids
NASA Astrophysics Data System (ADS)
Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen
2017-07-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.; et al.
We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy ofmore » $$\\sim0.02$$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $$\\texttt{COSMOS}$$ 30-band photometry and find that our two very different methods produce consistent constraints.« less
The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8
NASA Astrophysics Data System (ADS)
Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie
2013-06-01
We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.
Spectroscopic CCD surveys for quasars at large redshift. 3: The Palomar Transit Grism Survey catalog
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.
1994-01-01
This paper reports the initial results of the Palomar Transit Grism Survey (PTGS). The PTGS was designed to produce a sample of z greater than 2.7 quasars that were identified by well-defined selection criteria. The survey consists of six narrow (approximately equal to 8.5 min wide) strips of sky; the total effective area is 61.47 sq deg. Low-resolution slitless spectra, covering the wavelength range from 4400 to 7500 A, were obtained for approximately 600 000 objects. The wavelength- and flux-calibrated spectra were searched for emission lines with an automatic software algorithm. A total to 1655 emission features in the grism data satisfied our signal-to-noise ratio and equivalent width selection criteria; subsequent slit spectroscopy of the candidates confirmed the existence of 1052 lines (928 different objects). Six groups of emission lines were detected in the survey: Lyman alpha + N V, C IV, C III1, Mg II, H Beta + (O III), and H alpha + (S II). More than two-thirds of the candidates are low-redshift (z less than 0.45) emission-line galaxies; ninety objects are high-redshift quasars (z greater than 2.7) detected via their Lyman alpha + N V emission lines. The survey contains three previously unknown quasars brighter than 17th magnitude; all three have redshifts of approximately equal to 1.3. In this paper we present the observational properties of the survey, the algorithms used to select the emission-line candidates, and the catalog of emission-line objects.
Well behaved parametric class of relativistic charged fluid ball in general relativity
NASA Astrophysics Data System (ADS)
Pant, Neeraj
2011-04-01
The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0≤ K≤42) for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=2 and X=0.30, the maximum mass of the star comes out to be 4.96 M Θ with linear dimension 34.16 km and central redshift and surface redshift 2.1033 and 0.683 respectively. In absence of the charge we are left behind with the well behaved fourth model of Durgapal (J. Phys., A, Math. Gen. 15:2637, 1982).
A Ly{alpha} GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta
2012-06-20
Ly{alpha} emitting galaxies can be used to study cosmological reionization, because a neutral intergalactic medium (IGM) scatters Ly{alpha} photons into diffuse halos whose surface brightness falls below typical survey detection limits. Here, we present the Ly{alpha} emitting galaxy LAE J095950.99+021219.1, identified at redshift z = 6.944 in the COSMOS field using narrowband imaging and follow-up spectroscopy with the IMACS instrument on the Magellan I Baade telescope. With a single object spectroscopically confirmed so far, our survey remains consistent with a wide range of IGM neutral fraction at z Almost-Equal-To 7, but further observations are planned and will help clarify themore » situation. Meantime, the object we present here is only the third Ly{alpha}-selected galaxy to be spectroscopically confirmed at z {approx}> 7, and is {approx}2-3 times fainter than the previously confirmed z Almost-Equal-To 7 Ly{alpha} galaxies.« less
The ALHAMBRA survey: evolution of galaxy clustering since z ˜ 1
NASA Astrophysics Data System (ADS)
Arnalte-Mur, P.; Martínez, V. J.; Norberg, P.; Fernández-Soto, A.; Ascaso, B.; Merson, A. I.; Aguerri, J. A. L.; Castander, F. J.; Hurtado-Gil, L.; López-Sanjuan, C.; Molino, A.; Montero-Dorta, A. D.; Stefanon, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Masegosa, J.; Moles, M.; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.
2014-06-01
We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 < z < 1.25 using data from the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB < 24. Given the depth of the survey, we select samples in B-band luminosity down to Lth ≃ 0.16L* at z = 0.9. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h-1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h-1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ˜1-3 galaxies per halo.
Moderate resolution spectrophotometry of high redshift quasars
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.
1991-01-01
A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.
NASA Astrophysics Data System (ADS)
Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.
2018-03-01
Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42
An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys
NASA Astrophysics Data System (ADS)
Seijak, Uros
Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we improved the redshift space distortion growth rate measurement precision by a factor of 2.5 using customized clustering statistics in the non-linear regime that were immunized against observational systematics. We look forward to addressing the unique challenges of modeling and empirically characterizing the WFIRST galaxies and observational systematics.
NASA Astrophysics Data System (ADS)
Nyland, K.; Harwood, J. J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G. V.; Davis, T. A.; Greene, J. E.; Kimball, A.; Lacy, M.; Lonsdale, Carol; Lonsdale, Colin; Maksym, W. P.; Molnár, D. C.; Morabito, L.; Murphy, E. J.; Patil, P.; Prandoni, I.; Sargent, M.; Vlahakis, C.
2018-05-01
Energetic feedback by active galactic nuclei (AGNs) plays an important evolutionary role in the regulation of star formation on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment, and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred kilometers) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multiwavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few parsec to a few kiloparsec, such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift.
NASA Astrophysics Data System (ADS)
Onoue, Masafusa; Kashikawa, Nobunari; Uchiyama, Hisakazu; Akiyama, Masayuki; Harikane, Yuichi; Imanishi, Masatoshi; Komiyama, Yutaka; Matsuoka, Yoshiki; Nagao, Tohru; Nishizawa, Atsushi J.; Oguri, Masamune; Ouchi, Masami; Tanaka, Masayuki; Toba, Yoshiki; Toshikawa, Jun
2018-01-01
We investigate the galaxy overdensity around proto-cluster scale quasar pairs at high (z > 3) and low (z ˜ 1) redshift based on the unprecedentedly wide and deep optical survey of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first-year survey data covering effectively ˜121 deg2 with the 5σ depth of i ˜ 26.4 and the SDSS DR12Q catalog, we find two luminous pairs at z ˜ 3.3 and 3.6 which reside in >5σ overdensity regions of g-dropout galaxies at i < 25. The projected separations of the two pairs are R⊥ = 1.75 and 1.04 proper Mpc (pMpc), and their velocity offsets are ΔV = 692 and 1448 km s-1, respectively. This result is in clear contrast to the average z ˜ 4 quasar environments as discussed in Uchiyama et al. (2018, PASJ 70, S32) and implies that the quasar activities of the pair members are triggered via major mergers in proto-clusters, unlike the vast majority of isolated quasars in general fields that may turn on via non-merger events such as bar and disk instabilities. At z ˜ 1, we find 37 pairs with R⊥ < 2 pMpc and ΔV < 2300 km s-1 in the current HSC-Wide coverage, including four from Hennawi et al. (2006, AJ, 131, 1). The distribution of the peak overdensity significance within two arcminutes around the pairs has a long tail toward high-density (>4σ) regions. Thanks to the large sample size, we find statistical evidence that this excess is unique to the pair environments when compared to single-quasar and randomly selected galaxy environments at the same redshift range. Moreover, there are nine small-scale (R⊥ < 1 pMpc) pairs, two of which are found to reside in cluster fields. Our results demonstrate that <2 pMpc scale quasar pairs at both redshift ranges tend to occur in massive haloes, although perhaps not the most massive ones, and that they are useful in searching for rare density peaks.
NASA Technical Reports Server (NTRS)
Hathi, N. P.; Cohen, S. H.; Ryan, R. E., Jr.; Finkelstein, S. L.; McCarthy, P. J.; Windhorst, R. A.; Yan, H.; Koekemoer, A. M.; Rutkowski, M. J.; OConnell, R. W.;
2012-01-01
We analyze the spectral energy distributions (SEDs) of Lyman break galaxies . (LBGs) at z approx = 1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST /WFC3 obse,rvations cover about 50 arcmin2 in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z approx = 1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope f3 is redder than at high redshift (z > 3), where LBGs are less dusty; (3) on average, LBGs at .z approx = 1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities, though their median values are similar within 1a uncertainties. This could imply that identical dropout selection technique, at all. redshifts, find physically similar galaxies; and (4) the stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of approx 0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of approx 0.90. These relations hold true - within luminosities probed in this study - for LBGs from z approx = 1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z approx = 2, but to avoid any selection biases, and for direct comparison with LBGs at z > 3, a true Lyman break selection at z approx = 2 is essential. The future HST UV surveys,. both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stecker, Floyd William; Scully, Sean T.
2010-02-01
We derive a relation for the steepening of blazar {gamma}-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar {gamma}-rays with low-energy photons of the 'intergalactic background light' (IBL). Given this relation, with good enough data on the mean {gamma}-ray spectral energy distribution of TeV-selected BL Lac objects, the redshift evolutionmore » of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV-selected blazars.« less
Evolution of HI from Z=5 to the present
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, L. J.
2002-01-01
Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.
Multipole analysis of redshift-space distortions around cosmic voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrainmore » the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.« less
Galaxy luminosity function: evolution at high redshift
NASA Astrophysics Data System (ADS)
Martinet, N.; Durret, F.; Guennou, L.; Adami, C.
2014-12-01
There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4
NASA Astrophysics Data System (ADS)
Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman
2018-06-01
We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.
(Sub)millimetre-Selected Galaxies and the Cosmic Star-Formation History
NASA Astrophysics Data System (ADS)
Koprowski, Maciej
2015-03-01
Understanding the time evolution of the star formation in the Universe is one of the main aims of observational astronomy. Since a significant portion of the UV starlight is being absorbed by dust and re-emitted in the IR, we need to understand both of those regimes to properly describe the cosmic star formation history. In UV, the depth and the resolution of the data permits calculations of the star formation rate densities out to very high redshifts (z˜8-9). In IR however, the large beam sizes and the relatively shallow data limits these calculations to z˜2. In this thesis, I explore the SMA and PdBI high-resolution follow-up of 30 bright sources originally selected by AzTEC and LABOCA instruments at 1.1 mm and 870 μm respectively in conjunction with the SCUBA-2 Cosmology Legacy Survey (S2CLS) deep COSMOS and wide UDS maps, where 106 and 283 sources were detected, with the signal-to-noise ratio of > 5 and > 3.5 at 850 μm respectively. I find that the (sub)mm-selected galaxies reside and the mean redshifts of z ≈ 2.5±0.05 with the exception of the brightest sources which z seem to lie at higher redshifts (z ≈ 3.5±0.2), most likely due to the apparent z correlation of the (sub)mm flux with redshift, where brighter sources tend to lie at higher redshifts. Stellar masses, M\\dot, and star formation rates, SFRs, were found (M\\dot ≥ 10^10 M⊙ and SFR ≥ 100 M⊙ yr-1 ) and used to calculate the specific SFRs. I determine that the (sub)mm-selected sources mostly lie on the high-mass end of the star formation 'main-sequence' which makes them a high-mass extension of normal star forming galaxies. I also find that the specific SFR slightly evolves at redshifts 2 - 4, suggesting that the efficiency of the star formation seems to be increasing at these redshifts. Using the S2CLS data, the bolometric IR luminosity functions (IR LFs) were found for a range of redshifts z = 1.2 - 4.2 and the contribution of the SMGs tothe total star formation rate density (SFRD) was calculated. The IR LFs were found to evolve out to redshift ∼ 2.5. The star formation activity in the Universe was found to peak at z ≈ 2 followed by a slight decline. Assuming the IR to total SFRD correction found in the literature the SFRD found in this work closely follows the best-fitting function of Madau & Dickinson (2014).
Clustering in the SDSS Redshift Survey
NASA Astrophysics Data System (ADS)
Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration
2002-05-01
We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.
High-Redshift SNe with Subaru and HST
NASA Astrophysics Data System (ADS)
Rubin, David; Suzuki, Nao; Regnault, Nicolas; Aldering, Gregory; Amanullah, Rahman; Antilogus, Pierre; Astier, Pierre; Barbary, Kyle; Betoule, Marc; Boone, Kyle Robert; Currie, Miles; Deustua, Susana; Doi, Mamoru; Fruchter, Andrew; Goobar, Ariel; Hayden, Brian; Hazenberg, Francois; Hook, Isobel; Huang, Xiaosheng; Jiang, Jian; Kato, Takahiro; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Maeda, Keiichi; Morokuma, Tomoki; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Ruiz-Lapuente, Pilar; Sako, Masao; Myers Saunders, Clare; Spadafora, Anthony L.; Tanaka, Masaomi; Tominaga, Nozomu; Yasuda, Naoki; Yoshida, Naoki
2018-01-01
High-redshift type Ia supernovae are crucial for constraining any time variation in dark energy. Here, we present the first discoveries and light curves from the SUbaru Supernovae with Hubble Infrared (SUSHI) program, which combines high-redshift SN discoveries from the Subaru Strategic Program (SSP, as well as other Subaru time) with HST WFC3 IR followup. This program efficiently uses the wide field and high collecting area of Subaru Hyper Suprime-Cam for optical light curves, but still obtains a precision NIR color. We are on track to double the number of well-measured SNe Ia at z > 1.1, triggering on 23 SNe Ia in our first season.
NASA Astrophysics Data System (ADS)
Wolf, C.; Johnson, A. S.; Bilicki, M.; Blake, C.; Amon, A.; Erben, T.; Glazebrook, K.; Heymans, C.; Hildebrandt, H.; Joudaki, S.; Klaes, D.; Kuijken, K.; Lidman, C.; Marin, F.; Parkinson, D.; Poole, G.
2017-04-01
We present a new training set for estimating empirical photometric redshifts of galaxies, which was created as part of the 2-degree Field Lensing Survey project. This training set is located in a ˜700 deg2 area of the Kilo-Degree-Survey South field and is randomly selected and nearly complete at r < 19.5. We investigate the photometric redshift performance obtained with ugriz photometry from VST-ATLAS and W1/W2 from WISE, based on several empirical and template methods. The best redshift errors are obtained with kernel-density estimation (KDE), as are the lowest biases, which are consistent with zero within statistical noise. The 68th percentiles of the redshift scatter for magnitude-limited samples at r < (15.5, 17.5, 19.5) are (0.014, 0.017, 0.028). In this magnitude range, there are no known ambiguities in the colour-redshift map, consistent with a small rate of redshift outliers. In the fainter regime, the KDE method produces p(z) estimates per galaxy that represent unbiased and accurate redshift frequency expectations. The p(z) sum over any subsample is consistent with the true redshift frequency plus Poisson noise. Further improvements in redshift precision at r < 20 would mostly be expected from filter sets with narrower passbands to increase the sensitivity of colours to small changes in redshift.
Beyond the plane-parallel approximation for redshift surveys
NASA Astrophysics Data System (ADS)
Castorina, Emanuele; White, Martin
2018-06-01
Redshift -space distortions privilege the location of the observer in cosmological redshift surveys, breaking the translational symmetry of the underlying theory. This violation of statistical homogeneity has consequences for the modelling of clustering observables, leading to what are frequently called `wide-angle effects'. We study these effects analytically, computing their signature in the clustering of the multipoles in configuration and Fourier space. We take into account both physical wide-angle contributions as well as the terms generated by the galaxy selection function. Similar considerations also affect the way power spectrum estimators are constructed. We quantify in an analytical way the biases that enter and clarify the relation between what we measure and the underlying theoretical modelling. The presence of an angular window function is also discussed. Motivated by this analysis, we present new estimators for the three dimensional Cartesian power spectrum and bispectrum multipoles written in terms of spherical Fourier-Bessel coefficients. We show how the latter have several interesting properties, allowing in particular a clear separation between angular and radial modes.
The Distinct Build-Up Of Dense And Normal Massive Passive Galaxies In Vipers
NASA Astrophysics Data System (ADS)
Gargiulo, Adriana; Vipers Team
2017-06-01
At fixed stellar mass, the population of passive galaxies has increased its mean effective radius < Re > by a factor 5 in the last 10 Gyr, decreasing its mean stellar mass density (S = Mstar/(2πRe 2 ) by a factor >> 10. Whether this increase in < Re > is mainly due to the size-growth of individual galaxies through dry mergers, or to the fact that newly quenched galaxies have a larger size, is still matter of debate. A promising approach to shed light on this issue is to investigate the evolution of the number density of passive galaxies as a function of their mass density. In this context, massive (Mstar >10^11 Msun) passive galaxies are the most intriguing systems to study, since, in a hierarchical scenario, they are expected to accrete their stellar mass mainly by mergers. The wide area (˜ 16 sq. deg) and high sampling rate (˜ 40%) of the spectroscopic survey VIPERS allowed us to collect a sample of ˜ 2000 passive massive galaxies over the redshift range 0.5 < z < 1.0 and to study, with unprecedented statistics, the evolution of their number density as function of their mean stellar mass density in this redshift range. Taking advantage of both spectroscopic (D4000) and photometric (SED fitting) data available, we studied the age of the stellar population of passive galaxies as function both of redshift and mass density. This information, combined with the evolution of the number density allowed us to put constraints on the mass accretion scenarios of passive galaxies. In this talk I will present our results and conclusions and how they depend on the environment in which the galaxies reside.
Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description
NASA Astrophysics Data System (ADS)
Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew
2017-10-01
We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.
Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)
NASA Astrophysics Data System (ADS)
Botticella, M. T.; Riello, M.; Cappellaro, E.; Benetti, S.; Altavilla, G.; Pastorello, A.; Turatto, M.; Greggio, L.; Patat, F.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.
2008-02-01
Aims:To measure the supernova (SN) rates at intermediate redshift we performed a search, the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. Methods: We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of 43 000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. Results: The type Ia SN rate, at mean redshift z=0.3, is 0.22+0.10 +0.16-0.08 -0.14 h702 SNu, while the CC SN rate, at z=0.21, is 0.82+0.31 +0.30-0.24 -0.26 h702 SNu. The quoted errors are the statistical and systematic uncertainties. Conclusions: With respect to the local value, the CC SN rate at z=0.2 is higher by a factor of 2, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2{-}3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe than SNe Ia. We have exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations. We conclude that in order to constrain the mass range of CC SN progenitors and SN Ia progenitor models it is necessary to reduce the uncertainties in the cosmic SFH. In addition it is important to apply a consistent dust extinction correction both to SF and to CC SN rate and to measure the SN Ia rate in star forming and in passively evolving galaxies over a wide redshift range. Based on observations collected at the European Southern Observatory, using the 2.2 m MPG/ESO telescope on the La Silla (ESO Programmes 62.H-0833, 63.H-0322, 64.H-0390, 67.D-0422, 68.D-0273, 69.D-0453, 72.D-0670, 72.D-0745, 73.D-0670, 74.A-9008, 75.D-0662) and using Very Large Telescope on the Cerro Paranal (ESO Programme 74.D-0714). Table [see full textsee full textsee full text], Figs. [see full textsee full textsee full text]-[see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
Star trapping and metallicity enrichment in quasars and active galactic nuclei
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lin, D. N. C.; Wampler, E. J.
1993-01-01
Recent observational evidence suggests that the metallicity in quasars within a wide range of redshifts, in particular in gas flowing out of the nuclear regions, may be approximately redshift-independent and comparable with or larger than solar. It is plausible that the nuclear metallicity can be internally generated and maintained at approximately time-stationary values in quasars. We identify and estimate efficiency of a mechanism for rapid metallicity enrichment of quasar nuclear gas (in general, in active galactic nuclei) based on star-gas interactions and equivalent to an unusual mode of massive star formation. The mechanism involves capture of low-mass stars from the host galaxy's nucleus by the assemblages of clouds or by accretion disks orbiting the central massive objects (e.g., black holes). Trapping of stars within gaseous disks/clouds occurs through resonant density and bending wave excitation, as well as by hydrodynamical drag. The time scale for trapping stars with total mass equal to that of disk fragment/cloud is of order Hubble time and is remarkably model-independent. Our results show that the described mechanism can produce features suggested by observations, for example, the (super) solar gas metallicity in the nucleus. Thus the observed metallicities in high-redshift quasars do not necessarily imply that global star formation and efficient chemical changes have occurred in their host galaxies at very early cosmological epochs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Hyunjin; Im, Myungshin; Jeon, Yiseul
We present spectra of 1796 sources selected in the AKARI North Ecliptic Pole Wide Survey field, obtained with MMT/Hectospec and WIYN/Hydra, for which we measure 1645 redshifts. We complemented the generic flux-limited spectroscopic surveys at 11 {mu}m and 15 {mu}m, with additional sources selected based on the MIR and optical colors. In MMT/Hectospec observations, the redshift identification rates are {approx}80% for objects with R < 21.5 mag. On the other hand, in WIYN/Hydra observations, the redshift identification rates are {approx}80% at R magnitudes brighter than 19 mag. The observed spectra were classified through the visual inspection or from the linemore » diagnostics. We identified 1128 star-forming or absorption-line-dominated galaxies, 198 Type-1 active galactic nuclei (AGNs), 8 Type-2 AGNs, 121 Galactic stars, and 190 spectra in unknown category due to low signal-to-noise ratio. The spectra were flux-calibrated but to an accuracy of 0.1-0.18 dex for most of the targets and worse for the remainder. We derive star formation rates (SFRs) from the mid-infrared fluxes or from the optical emission lines, showing that our sample spans an SFR range of 0.1 to a few hundred M{sub Sun} yr{sup -1}. We find that the extinction inferred from the difference between the IR and optical SFR increases as the IR luminosity increases but with a large scatter.« less
Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties
NASA Astrophysics Data System (ADS)
Krick, J. E.; Bernstein, R. A.
2007-08-01
We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.
The DESI Experiment Part I: Science,Targeting, and Survey Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamousa, Amir; et al.
DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up tomore » $z=1.0$. To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to $z=1.7$. Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts ($ 2.1 < z < 3.5$), for the Ly-$$\\alpha$$ forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median $$z\\approx 0.2$$. In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions.« less
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions
NASA Astrophysics Data System (ADS)
Loveday, J.; Norberg, P.; Baldry, I. K.; Driver, S. P.; Hopkins, A. M.; Peacock, J. A.; Bamford, S. P.; Liske, J.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2012-02-01
Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-10-03
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.
Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications
NASA Astrophysics Data System (ADS)
Ma, Chung-Pei
1996-11-01
This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.
Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE
NASA Astrophysics Data System (ADS)
Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo
2018-06-01
2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.
NASA Astrophysics Data System (ADS)
Stanley, F.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; Wang, L.; Aird, J. A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Knudsen, K. K.; Michałowski, M. J.; Valiante, E.; De Zotti, G.; Furlanetto, C.; Ivison, R.; Maddox, S.; Smith, M. W. L.
2017-12-01
We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2-2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12-500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.
Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status
NASA Technical Reports Server (NTRS)
Rhodes, Jason
2011-01-01
Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy
IGMtransmission: Transmission curve computation
NASA Astrophysics Data System (ADS)
Harrison, Christopher M.; Meiksin, Avery; Stock, David
2015-04-01
IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.
NASA Astrophysics Data System (ADS)
Berger, Edo; Cenko, Stephen; Schmidt, Brian; Perley, Daniel; Berger, Edo; Fox, Derek; Fruchter, Andrew; Bloom, Joshua; Prochaska, Jason X.; Lopez, Sebastian; Cobb, Bethany; Roth, Kathy; Levan, Andrew; Tanvir, Nial; Rapoport, Sharon; Yuan, Fang; Chornock, Ryan; Wen-Fai, Fong; Morgan, Adam; Wiersema, Klaas; Cucchiara, Antonino
2013-08-01
The study of gamma-ray burst (GRB) afterglows, host galaxies, and associated supernovae (SNe) sheds light on a wide range of open questions in astrophysics, ranging from the deaths of massive stars to cosmic chemical enrichment and the reionization epoch, and soon, the electromagnetic (EM) counterparts of gravitational wave (GW) sources. Over the past decade, Gemini has played a leading role in all aspects of GRB science through its combination of rapid-response spectroscopy and imaging coupled with deep late-time host galaxy, afterglow, and GRB-SN follow-up. Here, we propose to step forward in our long-standing program of ToO observations, with this proposal focusing on "Rapid ToO" science, observations at t <˜ 1 day. In conjunction with an array of multi-wavelength EM facilities, we focus on three key science topics: (1) Identification, characterization, and exploitation of high-redshift GRBs in order to study the evolving IGM and galaxy populations at these redshifts; (2) Studies of short GRB afterglows and their environments to yield insight into the nature of their progenitor population, for connection with forthcoming GW facilities; and (3) Observation of exceptionally energetic bursts detected by the Fermi-LAT instrument, to test models of burst engines and enable their use as testbeds for quantum gravity effects.
NASA Astrophysics Data System (ADS)
Berger, Edo; Fox, Derek; Chornock, Ryan; Fong, Wen-Fai; Cobb, Bethany; Cenko, Brad; Perley, Daniel; Bloom, Joshua; Prochaska, Jason X.; Morgan, Adam; Cucchiara, Antonino; Levan, Andrew; Tanvir, Nial; Fruchter, Andrew; Lopez, Sebastian; Wiersema, Klaas; Roth, Kathy
2014-02-01
The study of gamma-ray burst (GRB) afterglows, host galaxies, and associated supernovae (SNe) sheds light on a wide range of open questions in astrophysics, ranging from the deaths of massive stars to cosmic chemical enrichment and the reionization epoch, and soon, the electromagnetic (EM) counterparts of gravitational wave (GW) sources. Over the past decade, Gemini has played a leading role in all aspects of GRB science through its combination of rapid-response spectroscopy and imaging coupled with deep late-time host galaxy, afterglow, and GRB-SN follow-up. Here, we propose to step forward in our long-standing program of ToO observations, with this proposal focusing on "Rapid ToO" science, observations at t <˜ 1 day. In conjunction with an array of multi-wavelength EM facilities, we focus on three key science topics: (1) Identification, characterization, and exploitation of high-redshift GRBs in order to study the evolving IGM and galaxy populations at these redshifts; (2) Studies of short GRB afterglows and their environments to yield insight into the nature of their progenitor population, for connection with forthcoming GW facilities; and (3) Observation of exceptionally energetic bursts detected by the Fermi-LAT instrument, to test models of burst engines and enable their use as testbeds for quantum gravity effects.
Dios: The Dark Baryon Exploring Mission
NASA Technical Reports Server (NTRS)
T.Ohashi; Ishisaki, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.;
2016-01-01
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30 diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.
Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55
NASA Astrophysics Data System (ADS)
Núñez, Carolina; Spergel, David N.; Ho, Shirley
2017-02-01
We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z< 0.55. Stellar contamination is estimated to be 1.8%.
Morphology and Structure of High-redshift Massive Galaxies in the CANDELS Fields
NASA Astrophysics Data System (ADS)
Guan-wen, Fang; Ze-sen, Lin; Xu, Kong
2018-01-01
Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M⊙. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ∼ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).
Rapid modelling of the redshift-space power spectrum multipoles for a masked density field
NASA Astrophysics Data System (ADS)
Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.
2017-01-01
In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.
The Type Ia Supernova Rate and Delay-Time Distribution
NASA Astrophysics Data System (ADS)
Graur, Or
2013-11-01
The nature of the progenitor stellar systems of thermonuclear, or Type Ia, supernovae (SNe Ia) remains unknown. Unlike core-collapse (CC) SNe, which have been successfully linked, at least partially, to various types of massive stars, the progenitors of SNe Ia are to date undetected in pre-explosion images and the nature of these progenitors can only be probed using indirect methods. In this thesis, I present three SN surveys aimed at measuring the rates at which SNe Ia explode at different times throughout the Universe's history and in different types of galaxies. I use these rates to re-construct the SN Ia delay-time distribution (DTD), a function that connects between the star-formation history (SFH) of a specific stellar environment and its SN Ia rate, and I use it to constrain different progenitor models. In Chapter 1, I provide a brief introduction of the field. This is followed, in Chapter 2, by a description of the Subaru Deep Field (SDF) SN Survey. Over a period of three years between 2005-2008, the SDF was observed on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i', and z' bands. In this survey, I discover 150 SNe out to redshift z ~ 2, including 27 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. The SN Ia rate measurements from this sample are consistent with those derived from the Hubble Space Telescope (HST) GOODS sample, but the overall uncertainty of the 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50%. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD is a power law of the form Psi(t) ~ t^beta, with index beta = -1.1 ± 0.1 (statistical) ± 0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we map the cosmic history of iron accumulation and predict that the mean present-day cosmic iron abundance is in the range Z_Fe = (0.09-0.37) Z_Fe,solar. Most SNe have been discovered in dedicated imaging surveys and have been classified by means of follow-up spectroscopy. However, it is also possible to combine the discovery and classification stages by means of a spectroscopic SN survey. In Chapter 3, I develop a method to detect SN spectra buried in galaxy spectra acquired by large-scale spectroscopic galaxy surveys. Applying this procedure to the ~700,000 galaxy spectra in the 7th Data Release of the Sloan Digital Sky Survey (SDSS) that have SFHs derived with the VErsatile SPectral Analysis code (VESPA), I detect 90 SNe Ia and 10 Type II SNe. I use the SN Ia sample to measure SN Ia rates per unit stellar mass and confirm, at the median redshift of the sample, z = 0.1, the inverse dependence on galaxy mass of the SN Ia rate per unit mass, previously reported by Li et al. (2011a) for a local sample. I further confirm, following Kistler et al. (2013), that this relation can be explained by the combination of galaxy "downsizing" and a power-law DTD with an index of -1. Finally, I use the SN sample, combined with the individual galaxy SFHs, to derive the late component of the DTD, finding a value consistent with previous derivations. Chapter 4 presents the near-final SN sample and SN Ia rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on HST, we image 25 galaxy clusters and blank fields of galaxies. I report a sample of 22 SNe discovered in the blank fields around 20 of the 25 galaxy clusters. Of these, 11 are classified as SNe Ia, including four SNe Ia at redshifts z > 1.2. I measure volumetric SN Ia rates out to redshift z = 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates I measure in Chapter 2 and with those from the HST/GOODS survey. Together with the most accurate and precise measurements at redshifts z < 1, they result in a best-fitting power-law DTD with an index of -0.93 +0.05(0.11) -0.06(0.12) (statistical) +0.12 -0.08 (systematic). The results of Chapters 2-4, summarized in Chapter 5, join other recent evidence suggestive of the double-degenerate progenitor scenario. A power-law DTD with an index of ~-1 can be explained by the gravitational merger of two carbon-oxygen white dwarfs. However, this form of the DTD does not necessarily exclude other progenitor scenarios or the possibility that there is more than one SN Ia production channel. In Chapter 5, I describe ongoing and future work that addresses this problem. Specifically, it may be possible to infer the existence of multiple production channels by studying the prompt component of the DTD. This can be achieved either by measuring volumetric SN Ia rates at higher redshifts than presented here, or by measuring SN Ia rates per unit mass in low-mass, dwarf galaxies. I present an initial sample of four SNe Ia discovered among ~52,000 SDSS galaxy spectra using the procedure developed in Chapter 3. The rate measured with this sample is not accurate enough to distinguish between DTD models, but it shows that with a larger galaxy sample, such as is being acquired by future iterations of the SDSS, such distinction will be possible. Finally, I show in Chapter 5 initial results from a program to obtain spectroscopic redshifts for the SN host galaxies in Chapter 2 with the highest photometric-based redshifts. This will eventually reduce the systematic error in the high-redshift SN Ia rate.
A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect
NASA Technical Reports Server (NTRS)
Koo, David C.; Kron, Richard G.
1987-01-01
A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.
A blind green bank telescope millimeter-wave survey for redshifted molecular absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanekar, N.; Gupta, A.; Carilli, C. L.
2014-02-10
We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has amore » total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.« less
Bars in Field and Cluster Galaxies at Intermediate Redshifts
NASA Astrophysics Data System (ADS)
Barazza, F. D.; Jablonka, P.; Ediscs Collaboration
2009-12-01
We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.
Galaxy clusters in the cosmic web
NASA Astrophysics Data System (ADS)
Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.
2014-12-01
Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4
Identifying High-redshift Gamma-Ray Bursts with RATIR
NASA Astrophysics Data System (ADS)
Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Kutyrev, A. S.; Lee, W. H.; Richer, M. G.; Klein, C. R.; Fox, O. D.; Prochaska, J. X.; Bloom, J. S.; Troja, E.; Ramirez-Ruiz, E.; de Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Gehrels, N.; Moseley, H.
2014-07-01
We present a template-fitting algorithm for determining photometric redshifts, z phot, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z phot < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z phot in the ranges of 4 < z phot <~ 8 and 9 < z phot < 10 and can robustly determine when z phot > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z phot < 4 when z sim > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.
OBSCURED STAR FORMATION AND ENVIRONMENT IN THE COSMOS FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feruglio, C.; Aussel, H.; Le Floc'h, E.
2010-09-20
We investigate the effects of the environment on star formation in a sample of massive luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) with S(24 {mu}m) >80 {mu}Jy and i {sup +} < 24 in the COSMOS field. We exploit the accurate photometric redshifts in COSMOS to characterize the galaxy environment and study the evolution of the fraction of LIRGs and ULIRGs in different environments in the redshift range z = 0.3-1.2 and in bins of stellar mass. We find that the environment plays a role in the star formation processes and evolution of LIRGs and ULIRGs. We find anmore » overall increase of the ULIRG+LIRG fraction in an optically selected sample with increasing redshift, as expected from the evolution of the star formation rate (SFR) density. We find that the ULIRG+LIRG fraction decreases with increasing density up to z {approx} 1, and that the dependence on density flattens with increasing redshift. We do not observe the reversal of the SFR density relation up to z = 1 in massive LIRGs and ULIRGs, suggesting that such reversal might occur at higher redshift in this infrared luminosity range.« less
X-ray morphological study of galaxy cluster catalogues
NASA Astrophysics Data System (ADS)
Democles, Jessica; Pierre, Marguerite; Arnaud, Monique
2016-07-01
Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.
Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurgaliev, D.; McDonald, M.; Benson, B. A.
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less
NASA Technical Reports Server (NTRS)
Horack, J. M.; Emslie, A. G.; Hartmann, D. H.
1995-01-01
In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.
Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters
Nurgaliev, D.; McDonald, M.; Benson, B. A.; ...
2017-05-16
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less
The kinematic component of the cosmological redshift
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2011-05-01
It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.
VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)
NASA Astrophysics Data System (ADS)
Wen, Z. L.; Han, J. L.; Liu, F. S.
2012-06-01
Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).
The research and development program for the SNAP dark energy experiment
NASA Astrophysics Data System (ADS)
Levi, Michael E.
2007-03-01
The SNAP mission includes two surveys to study dark energy. In the deep survey, we detect more than 2000 matched Type Ia supernovae within a 7.5 deg2 field, with redshifts covering the range z=0.1 1.7. This uniform and high-quality set of “standard candles” will provide the most precise mapping of the expansion of the universe through the magnitude-redshift relation (Hubble diagram) ever constructed. The SNAP wide survey maps 1000 deg2/year in nine passbands to 28th magnitude. A weak-lensing study of the wide survey data traces the growth of structure and provides completely independent constraints on dark energy parameters. SNAP utilizes a 2 m class rigid light-weight telescope with a three-mirror anastigmatic design for a large, diffraction-limited field of view. The telescope feeds an instrumented ˜0.7 deg2 focal plane with ˜600 million pixels sensitive to wavelengths from 400 to 1700 nm. Full-depletion, high-purity silicon CCDs detect visible wavelengths, and 1700 nm cutoff HgCdTe detector arrays detect the near-IR. Passive cooling of the focal plane, fixed solar panels, fixed filters, and fixed antenna for telemetry simplify the mission. Room temperature operation of the telescope facilitates preflight testing. The satellite is placed in orbit about the second Earth Sun Lagrange point (L2).
The Infrared Properties of Sources Matched in the Wise All-Sky and Herschel ATLAS Surveys
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J. B.; Maddox, Steve J.; Hoyos, Carlos;
2012-01-01
We describe the infrared properties of sources detected over approx 36 sq deg of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (HATLAS) and Wide-field Infrared Survey (WISE). With 5sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx 630 deg(exp -2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +/- 50% scatter over approx 1.5 orders of magnitude in luminosity, approx 10(exp 9) - 10(exp 10.5) Solar Luminosity By contrast, the matched sources without previously measured redshifts (r approx > 20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z approx > 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T approx < 20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx 30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample
The Infrared Properties of Sources Matched in the WISE All-Sky and Herschel Atlas Surveys
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Eisenhardt, Peter; Amblard, Alexandre; Temi, Pasquale; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J.;
2012-01-01
We describe the infrared properties of sources detected over approx. 36 deg2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5(sigma) point-source depths of 34 and 0.048 mJy at 250 microns and 3.4 microns, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx. 630 deg-2. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 microns and that at 250 microns, with +/-50% scatter over approx. 1.5 orders of magnitude in luminosity, approx. 10(exp 9) - 10(exp 10.5) Stellar Luminosity. By contrast, the matched sources without previously measured redshifts (r > or approx. 20.5) have 250-350 microns flux density ratios that suggest either high-redshift galaxies (z > or approx. 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T < or approx. 20). Their small 3.4-250 microns flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx. 30%) in a 12 microns flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.
NASA Astrophysics Data System (ADS)
TAMURA, NAOYUKI
2015-08-01
PFS (Prime Focus Spectrograph), a next generation facility instrument on Subaru, is a very wide-field, massively-multiplexed, and optical & near-infrared spectrograph. Exploiting the Subaru prime focus, 2400 reconfigurable fibers will be distributed in the 1.3 degree field. The spectrograph will have 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm at one exposure. The development of this instrument has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky commissioning in 2017-2018, and science operation in 2019. In parallel, the survey design has also been developed envisioning a Subaru Strategic Program (SSP) that spans roughly speaking 300 nights over 5 years. The major science areas are three-folds: Cosmology, galaxy/AGN evolution, and Galactic archaeology (GA). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of ~10 Gpc^3 in the redshift range of 0.8 < z < 2.4. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroidal galaxies, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for ~1 million stars as faint as V = 22 therefore out to large distances from the Sun. For the extragalactic program, our simulations suggest the wide wavelength coverage of PFS will be particularly powerful in probing the galaxy populations and its clustering properties over a wide redshift range. We will conduct a survey of color-selected 1 < z < 2 galaxies and AGN over 20 square degrees down to J = 23.4, yielding a fair sample of galaxies with stellar masses above ˜10^10 solar masses. Further, PFS will also provide unique spectroscopic opportunities even in the era of Euclid, LSST, WFIRST and TMT. In this presentation, an overview of the instrument, current project status and path forward will be given.
The quest for infall in star-forming regions
NASA Astrophysics Data System (ADS)
Wyrowski, Friedrich
2018-06-01
Observation of infall is key to our understanding of the accretion process in star formation. High-resolution spectroscopy allows us to resolve molecular lines originating from the dense molecular envelopes of the forming (proto-) stars to deduce the kinematics of the gas. In this contribution, I'll describe how SOFIA can significantly contribute to the quest for and characterisation of infall by providing unique access to molecular lines at THz frequencies that allow red-shifted absorption studies as direct probe of infall and that provide access to fine structure and high excitation lines that probe outflowing gas as indirect evidence for accretion. In particular, I will report on a recent study using the GREAT high-spectral resolution instrument on-board of SOFIA to observe ammonia at 1.8 THz. Eight out of eleven observed massive clumps have been found with red-shifted absorption that is indicative of infall motions. This fraction of 72% is substantially higher than that found in past searches for the blue-skewed profile signature. The observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages.
Astrophysics to z approx. 10 with Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Hughes, Scott; Lang, Ryan
2007-01-01
The most useful characterization of a gravitational wave detector's performance is the accuracy with which astrophysical parameters of potential gravitational wave sources can be estimated. One of the most important source types for the Laser Interferometer Space Antenna (LISA) is inspiraling binaries of black holes. LISA can measure mass and spin to better than 1% for a wide range of masses, even out to high redshifts. The most difficult parameter to estimate accurately is almost always luminosity distance. Nonetheless, LISA can measure luminosity distance of intermediate-mass black hole binary systems (total mass approx.10(exp 4) solar mass) out to z approx.10 with distance accuracies approaching 25% in many cases. With this performance, LISA will be able to follow the merger history of black holes from the earliest mergers of proto-galaxies to the present. LISA's performance as a function of mass from 1 to 10(exp 7) solar mass and of redshift out to z approx. 30 will be described. The re-formulation of LISA's science requirements based on an instrument sensitivity model and parameter estimation will be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlah, Zvonimir; Seljak, Uroš; Okumura, Teppei
Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model eachmore » of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.« less
Determining the Optimal Design for a New ADR Mechanical Support
NASA Astrophysics Data System (ADS)
Waldvogel, Kelly; Stacey, Gordon; Nikola, Thomas; Parshley, Stephen
2018-01-01
ZEUS-2 is a grating spectrometer that is used to observe emission lines in submillimeter wavelengths. It is capable of detecting redshifted fine structure lines of galaxies over a wide redshift range. ZEUS-2 can observe carbon, nitrogen, and oxygen lines, which will in turn allow for modeling of optically thick molecular clouds, provide information about star temperatures, and help gain insight about the interstellar medium and gases from which stars form. The detections collected by ZEUS-2 can provide a glimpse into star formation in the early universe and improve the current understanding of the star formation process.ZEUS-2 utilizes an Adiabatic Demagnetization Refrigerator (ADR) to cool its detectors to around 100 mK. Copper rods connect the salt pills within the ADR and the mechanical supports. These supports are comprised of three main pieces: a base member, an inner member, and a guard member. On two separate mechanical supports, the Kevlar strands have broken. This led to thermal contact between the three members, preventing the detector from reaching its final operating temperature. It is clear that a replacement mechanical support system is necessary for operation.
VizieR Online Data Catalog: Redshift reliability flags (VVDS data) (Jamal+, 2018)
NASA Astrophysics Data System (ADS)
Jamal, S.; Le Brun, V.; Le Fevre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.
2017-09-01
The VIMOS VLT Deep Survey (Le Fevre et al. 2013A&A...559A..14L) is a combination of 3 i-band magnitude limited surveys: Wide (17.5<=iAB<=22.5; 8.6deg2), Deep (17.5<=iAB<=24; 0.6deg2) and Ultra-Deep (23<=iAB<=24.75; 512arcmin2), that produced a total of 35526 spectroscopic galaxy redshifts between 0 and 6.7 (22434 in Wide, 12051 in Deep and 1041 in UDeep). We supplement spectra of the VIMOS VLT Deep Survey (VVDS) with newly-defined redshift reliability flags obtained from clustering (unsupervised classification in Machine Learning) a set of descriptors from individual zPDFs. In this paper, we exploit a set of 24519 spectra from the VVDS database. After computing zPDFs for each individual spectrum, a set of (8) descriptors of the zPDF are extracted to build a feature matrix X (dimension = 24519 rows, 8 columns). Then, we use a clustering (unsupervised algorithms in Machine Learning) algorithm to partition the feature space into distinct clusters (5 clusters: C1,C2,C3,C4,C5), each depicting a different level of confidence to associate with the measured redshift zMAP (Maximum-A-Posteriori estimate that corresponds to the maximum of the redshift PDF). The clustering results (C1,C2,C3,C4,C5) reported in the table are those used in the paper (Jamal et al, 2017) to present the new methodology of automating the zspec reliability assessment. In particular, we would like to point out that they were obtained from first tests conducted on the VVDS spectroscopic data (end of 2016). Therefore, the table does not depict immutable results (on-going improvements). Future updates of the VVDS redshift reliability flags can be expected. (1 data file).
NASA Astrophysics Data System (ADS)
Castellano, M.; Amorín, R.; Merlin, E.; Fontana, A.; McLure, R. J.; Mármol-Queraltó, E.; Mortlock, A.; Parsa, S.; Dunlop, J. S.; Elbaz, D.; Balestra, I.; Boucaud, A.; Bourne, N.; Boutsia, K.; Brammer, G.; Bruce, V. A.; Buitrago, F.; Capak, P.; Cappelluti, N.; Ciesla, L.; Comastri, A.; Cullen, F.; Derriere, S.; Faber, S. M.; Giallongo, E.; Grazian, A.; Grillo, C.; Mercurio, A.; Michałowski, M. J.; Nonino, M.; Paris, D.; Pentericci, L.; Pilo, S.; Rosati, P.; Santini, P.; Schreiber, C.; Shu, X.; Wang, T.
2016-05-01
Aims: We present the first public release of photometric redshifts, galaxy rest frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. The released catalogues aim to provide a reference for future investigations of extragalactic populations in these legacy fields: from lensed high-redshift galaxies to cluster members themselves. Methods: We exploit a multiwavelength catalogue, ranging from Hubble Space Telescope (HST) to ground-based K and Spitzer IRAC, which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multiband information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone, or from a stack of four WFC3 bands. To minimize systematics, median photometric redshifts are assembled from six different approaches to photo-z estimates. Their reliability is assessed through a comparison with available spectroscopic samples. State-of-the-art lensing models are used to derive magnification values on an object-by-object basis by taking into account sources positions and redshifts. Results: We show that photometric redshifts reach a remarkable ~3-5% accuracy. After accounting for magnification, the H-band number counts are found to be in agreement at bright magnitudes with number counts from the CANDELS fields, while extending the presently available samples to galaxies that, intrinsically, are as faint as H ~ 32-33, thanks to strong gravitational lensing. The Frontier Fields allow the galaxy stellar mass distribution to be probed, depending on magnification, at 0.5-1.5 dex lower masses with respect to extragalactic wide fields, including sources at Mstar ~ 107-108 M⊙ at z > 5. Similarly, they allow the detection of objects with intrinsic star formation rates (SFRs) >1 dex lower than in the CANDELS fields reaching 0.1-1 M⊙/yr at z ~ 6-10. The catalogues, together with the final processed images for all HST bands (as well as some diagnostic data and images), are publicly available and can be downloaded from the Astrodeep website at http://www.astrodeep.eu/frontier-fields/ and from a dedicated CDS webpage (http://astrodeep.u-strasbg.fr/ff/index.html). The catalogues are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A31
NASA Astrophysics Data System (ADS)
Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.
2018-06-01
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.
Davis, C.; Rozo, E.; Roodman, A.; ...
2018-03-26
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.; Rozo, E.; Roodman, A.
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less
The nature of the redshift and directly observed quasar statistics.
Segal, I E; Nicoll, J F; Wu, P; Zhou, Z
1991-07-01
The nature of the cosmic redshift is one of the most fundamental questions in modern science. Hubble's discovery of the apparent Expansion of the Universe is derived from observations on a small number of galaxies at very low redshifts. Today, quasar redshifts have a range more than 1000 times greater than those in Hubble's sample, and represent more than 100 times as many objects. A recent comprehensive compilation of published measurements provides the basis for a study indicating that quasar observations are not in good agreement with the original predictions of the Expanding Universe theory, but are well fit by the predictions of an alternative theory having fewer adjustable parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allevato, V.; Hasinger, G.; Salvato, M.
2011-08-01
We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I{sub AB} < 23 and spectroscopic redshifts z < 4, extracted from the 0.5-2 keV X-ray mosaic of the 2.13 deg{sup 2} XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over time. We find evidence of a redshift evolution of the bias factor formore » the total population of XMM-COSMOS AGNs from b-bar (z-bar =0.92)=2.30{+-}0.11 to b-bar (z-bar =1.94)=4.37{+-}0.27 with an average mass of the hosting dark matter (DM) halos log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.12 {+-} 0.12 that remains constant at all z < 2. Splitting our sample into broad optical line AGNs (BL), AGNs without broad optical lines (NL), and X-ray unobscured and obscured AGNs, we observe an increase of the bias with redshift in the range z-bar = 0.7-2.25 and z-bar = 0.6-1.5 which corresponds to a constant halo mass of log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.28 {+-} 0.07 and log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.00 {+-} 0.06 for BL/X-ray unobscured AGNs and NL/X-ray obscured AGNs, respectively. The theoretical models, which assume a quasar phase triggered by major mergers, cannot reproduce the high bias factors and DM halo masses found for X-ray selected BL AGNs with L{sub BOL} {approx} 2 x 10{sup 45} erg s{sup -1}. Our work extends up to z {approx} 2.2 the z {approx}< 1 statement that, for moderate-luminosity X-ray selected BL AGNs, the contribution from major mergers is outnumbered by other processes, possibly secular ones such as tidal disruptions or disk instabilities.« less
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function.more » Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.« less
3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3
NASA Astrophysics Data System (ADS)
van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.
2014-06-01
Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.
Probing the galaxy-halo connection in UltraVISTA to z ˜ 2
NASA Astrophysics Data System (ADS)
McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.
2015-05-01
We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.
NASA Astrophysics Data System (ADS)
Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.
2016-04-01
The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.
THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Yiping; Bolton, Adam S.; Montero-Dorta, Antonio D.
We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thoroughmore » exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.« less
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
AWAKENING OF THE HIGH-REDSHIFT BLAZAR CGRaBS J0809+5341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliya, Vaidehi S.; Stalin, C. S.; Parker, M. L.
2015-04-20
CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ∼5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of −30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on boardmore » the Fermi Gamma-Ray Space Telescope. A high optical polarization of ∼10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 10{sup 45} erg s{sup −1} and 10{sup 8.4} M{sub ⊙}, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.« less
NASA Astrophysics Data System (ADS)
Riess, Adam G.; Rodney, Steven A.; Scolnic, Daniel M.; Shafer, Daniel L.; Strolger, Louis-Gregory; Ferguson, Henry C.; Postman, Marc; Graur, Or; Maoz, Dan; Jha, Saurabh W.; Mobasher, Bahram; Casertano, Stefano; Hayden, Brian; Molino, Alberto; Hjorth, Jens; Garnavich, Peter M.; Jones, David O.; Kirshner, Robert P.; Koekemoer, Anton M.; Grogin, Norman A.; Brammer, Gabriel; Hemmati, Shoubaneh; Dickinson, Mark; Challis, Peter M.; Wolff, Schuyler; Clubb, Kelsey I.; Filippenko, Alexei V.; Nayyeri, Hooshang; U, Vivian; Koo, David C.; Faber, Sandra M.; Kocevski, Dale; Bradley, Larry; Coe, Dan
2018-02-01
We present an analysis of 15 Type Ia supernovae (SNe Ia) at redshift z> 1 (9 at 1.5< z< 2.3) recently discovered in the CANDELS and CLASH Multi-Cycle Treasury programs using WFC3 on the Hubble Space Telescope. We combine these SNe Ia with a new compilation of ∼1050 SNe Ia, jointly calibrated and corrected for simulated survey biases to produce accurate distance measurements. We present unbiased constraints on the expansion rate at six redshifts in the range 0.07< z< 1.5 based only on this combined SN Ia sample. The added leverage of our new sample at z> 1.5 leads to a factor of ∼3 improvement in the determination of the expansion rate at z = 1.5, reducing its uncertainty to ∼20%, a measurement of H(z=1.5)/{H}0 = {2.69}-0.52+0.86. We then demonstrate that these six derived expansion rate measurements alone provide a nearly identical characterization of dark energy as the full SN sample, making them an efficient compression of the SN Ia data. The new sample of SNe Ia at z> 1.5 usefully distinguishes between alternative cosmological models and unmodeled evolution of the SN Ia distance indicators, placing empirical limits on the latter. Finally, employing a realistic simulation of a potential Wide-Field Infrared Survey Telescope SN survey observing strategy, we forecast optimistic future constraints on the expansion rate from SNe Ia.
High redshift QSOs and the x ray background
NASA Technical Reports Server (NTRS)
Impey, Chris
1993-01-01
ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitrin, A.; Broadhurst, T.; Coe, D.
2011-12-01
We examine the inner mass distribution of the relaxed galaxy cluster A383 (z = 0.189), in deep 16 band Hubble Space Telescope/ACS+WFC3 imaging taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage, 2000-16000 A, to better identify lensed systems and generate precise photometric redshifts. This photometric information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply lensed images and candidates, so that a total of 27more » multiple images of nine systems are used to tightly constrain the inner mass profile gradient, dlog {Sigma}/dlog r {approx_equal} -0.6 {+-} 0.1 (r < 160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01 < z < 6.03, with the higher-redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap ({approx}0.7-1 arcmin). Combining weak and strong lensing, the overall mass profile is well fitted by a Navarro-Frenk-White profile with M{sub vir} = (5.37{sup +0.70}{sub -0.63} {+-} 0.26) Multiplication-Sign 10{sup 14} M{sub Sun} h{sup -1} and a relatively high concentration, c{sub vir} = 8.77{sup +0.44}{sub -0.42} {+-} 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of A383 is modest by the standards of other lensing clusters, r{sub E} {approx_equal} 16 {+-} 2'' (for z{sub s} = 2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray-selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias.« less
Pla, Daniel; Tan, Derek S.; Gin, David Y.
2014-01-01
A key thioether substituent in readily accessible 2-alkyl-5-(methylthio)tetrazoles enables facile photoinduced denitrogenation and intramolecular nitrile imine 1,3-dipolar cycloaddition to afford a wide range of polycyclic pyrazoline products with excellent diastereoselectivity. The methylthio group red-shifts the UV absorbance of the tetrazole, obviating the requirement in all previous substrate systems for at least one aryl substituent, and can subsequently be converted into a variety of other functionalities. This synthetic platform has been applied to the concise total syntheses of the alkaloid natural products (±)-newbouldine and withasomnine. PMID:25114776
NASA Astrophysics Data System (ADS)
Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.
2017-01-01
Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4
Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Onoue, Masafusa
High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars selection. Its application with 27 photometric bands to the COSMOS quasars at 3 < z < 5 have shown that almost all of the known quasars are correctly classified with small dispersion σ|Δz|/(1+z)=0.01 and as low as η=2.5% outlier rate. At present, the HSC survey have successfully covered ~100 deg2 of HSC-Wide area in full colors. From the first-year data products, we have already started z > 6 quasar selection, and it is expected that the first HSC quasar discovery will be in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, K. D.; Peterson, B. M.; Horne, Keith
We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for aboutmore » half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.« less
Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4–0.9] redshift range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guennou, L.; et al.
2014-01-17
Context. The DAFT/FADA survey is based on the study of ~90 rich(masses found in the literature >2 x 10^14 M_⊙)and moderately distant clusters (redshifts 0.4 < z < 0.9), all withHST imaging data available. This survey has two main objectives: to constrain dark energy(DE) using weak lensing tomography on galaxy clusters and to build a database (deepmulti-band imaging allowing photometric redshift estimates, spectroscopic data, X-raydata) of rich distant clusters to study their properties.
Dark energy equation of state parameter and its evolution at low redshift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in
In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range ofmore » parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.« less
Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology
NASA Astrophysics Data System (ADS)
Speagle, Joshua S.; Eisenstein, Daniel J.
2017-07-01
We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
Suzaku Wide-band All-sky Monitor (WAM) observations of GRBs and SGRs
NASA Astrophysics Data System (ADS)
Yamaoka, Kazutaka; Ohno, Masanori; Tashiro, Makoto S.; Hurley, Kevin; Krimm, Hans A.; Lien, Amy Y.; Ohmori, Norisuke; Sugita, Satoshi; Urata, Yuji; Yasuda, Tetsuya; Enomoto, Junichi; Fujinuma, Takeshi; Fukazawa, Yasushi; Hanabata, Yoshitaka; Iwakiri, Wataru; Kawano, Takafumi; Kinoshita, Ryuuji; Kokubun, Motohide; Makishima, Kazuo; Matsuoka, Shunsuke; Nagayoshi, Tsutomu; Nakagawa, Yujin; Nakaya, Souhei; Nakazawa, Kazuhiro; Nishioka, Yusuke; Sakamoto, Takanori; Takahashi, Tadayuki; Takeda, Sawako; Terada, Yukikatsu; Yabe, Seiya; Yamauchi, Makoto; Yoshida, Hiraku
2017-06-01
We will review results for gamma-ray bursts (GRBs) and soft gamma repeaters (SGRs), obtained from the Suzaku Wide-band All-sky Monitor (WAM) which operated for about 10 years from 2005 to 2015. The WAM is a BGO (bismuth germanate: Bi4Ge3O12) lateral shield for the Hard X-ray Detector (HXD), used mainly for rejecting its detector background, but it also works as an all-sky monitor for soft gamma-ray transients in the 50-5000 keV range thanks to its large effective area (˜600 cm2 at 1 MeV for one detector) and wide field of view (about half of the entire sky). The WAM actually detected more than 1400 GRBs and 300 bursts from SGRs, and this detection number is comparable to that of other GRB-specific instruments. Based on the 10 years of operation, we describe timing and spectral performance for short GRBs, weak GRBs with high redshifts, and time-resolved pulses with good statistics.
The Far-Infrared Spectral Energy Distributions of Quasars
NASA Technical Reports Server (NTRS)
Wilkes, Belinda J.; West, Donald K. (Technical Monitor)
2001-01-01
The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultraviolet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO's contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.
Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations
NASA Astrophysics Data System (ADS)
Reddy, Naveen A.; Steidel, Charles C.; Fadda, Dario; Yan, Lin; Pettini, Max; Shapley, Alice E.; Erb, Dawn K.; Adelberger, Kurt L.
2006-06-01
We use very deep Spitzer MIPS 24 μm observations to examine the bolometric luminosities (Lbol) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UnGR) z~2 galaxies, supplemented with near-IR-selected (``BzK'' and ``DRG'') and submillimeter galaxies at similar redshifts, in the GOODS-N field. Focusing on redshifts 1.5
NASA Astrophysics Data System (ADS)
Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand
SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.
ISO Key Project: Exploring the Full Range of Quasar/AGN Properties
NASA Technical Reports Server (NTRS)
Wilkes, B.
2001-01-01
The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultra-violet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution, remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.
Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities
NASA Astrophysics Data System (ADS)
Yuan, Weimin; Amati, Lorenzo; Cannizzo, John K.; Cordier, Bertrand; Gehrels, Neil; Ghirlanda, Giancarlo; Götz, Diego; Produit, Nicolas; Qiu, Yulei; Sun, Jianchao; Tanvir, Nial R.; Wei, Jianyan; Zhang, Chen
2016-12-01
High-redshift Gamma-Ray Bursts (GRBs) beyond redshift {˜}6 are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provides a promising technology for the detection of faint GRBs at very large distances, based on which the THESEUS, Einstein Probe and other mission concepts have been proposed. Follow-up observations and exploration of the reionization era will be enabled by large facilities such as SKA in the radio, the 30 m class telescopes in the optical/near-IR, and the space-borne WFIRST and JWST in the optical/near-IR/mid-IR. In addition, the X-ray and γ-ray polarization experiment POLAR is also introduced.
The evolution of the dust temperatures of galaxies in the SFR-M∗ plane up to z ∼ 2
NASA Astrophysics Data System (ADS)
Magnelli, B.; Lutz, D.; Saintonge, A.; Berta, S.; Santini, P.; Symeonidis, M.; Altieri, B.; Andreani, P.; Aussel, H.; Béthermin, M.; Bock, J.; Bongiovanni, A.; Cepa, J.; Cimatti, A.; Conley, A.; Daddi, E.; Elbaz, D.; Förster Schreiber, N. M.; Genzel, R.; Ivison, R. J.; Le Floc'h, E.; Magdis, G.; Maiolino, R.; Nordon, R.; Oliver, S. J.; Page, M.; Pérez García, A.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Rosario, D.; Roseboom, I.; Sanchez-Portal, M.; Scott, D.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wang, L.; Wuyts, S.
2014-01-01
We study the evolution of the dust temperature of galaxies in the SFR- M∗ plane up to z ~ 2 using far-infrared and submillimetre observations from the Herschel Space Observatory taken as part of the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time key programmes. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M∗) and redshift estimates, we grid the SFR- M∗parameter space in several redshift ranges and estimate the mean dust temperature (Tdust) of each SFR-M∗ - z bin. Dust temperatures are inferred using the stacked far-infrared flux densities (100-500 μm) of our SFR-M∗ - z bins. At all redshifts, the dust temperature of galaxies smoothly increases with rest-frame infrared luminosities (LIR), specific SFRs (SSFR; i.e., SFR/M∗), and distances with respect to the main sequence (MS) of the SFR- M∗ plane (i.e., Δlog (SSFR)MS = log [SSFR(galaxy)/SSFRMS(M∗,z)]). The Tdust - SSFR and Tdust - Δlog (SSFR)MS correlations are statistically much more significant than the Tdust - LIR one. While the slopes of these three correlations are redshift-independent, their normalisations evolve smoothly from z = 0 and z ~ 2. We convert these results into a recipe to derive Tdust from SFR, M∗ and z, valid out to z ~ 2 and for the stellar mass and SFR range covered by our stacking analysis. The existence of a strong Tdust - Δlog (SSFR)MS correlation provides us with several pieces of information on the dust and gas content of galaxies. Firstly, the slope of the Tdust - Δlog (SSFR)MS correlation can be explained by the increase in the star-formation efficiency (SFE; SFR/Mgas) with Δlog (SSFR)MS as found locally by molecular gas studies. Secondly, at fixed Δlog (SSFR)MS, the constant dust temperature observed in galaxies probing wide ranges in SFR and M∗ can be explained by an increase or decrease in the number of star-forming regions with comparable SFE enclosed in them. And thirdly, at high redshift, the normalisation towards hotter dust temperature of the Tdust - Δlog (SSFR)MS correlation can be explained by the decrease in the metallicities of galaxies or by the increase in the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different. MS galaxies have star-forming regions with low SFEs and thus cold dust, while galaxies situated far above the MS seem to be in a starbursting phase characterised by star-forming regions with high SFEs and thus hot dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm.
Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing
2014-10-20
We demonstrate an all-fiber tunable Tm/Ho-codoped laser operating in the 2 μm wavelength region. The wavelength tuning range of the Tm/Ho-codoped fiber laser (THFL) with 1-m length of Tm/Ho-codoped fiber (THDF) was from 1727 nm to 2030 nm. Efficient short wavelength operation and ultra-wide wavelength tuning range of 303 nm were both achieved. To the best of our knowledge, this is the broadest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. By increasing the THDF length to 2 m, the obtainable wavelength of the THFL was further red-shifted to the range from 1768 nm to 2071 nm. The output power of the THFL was scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm.
The XXL Survey. VI. The 1000 brightest X-ray point sources
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Pacaud, F.; Paltani, S.; Ranalli, P.; Ramos-Ceja, M. E.; Faccioli, L.; Plionis, M.; Adami, C.; Bongiorno, A.; Brusa, M.; Chiappetti, L.; Desai, S.; Elyiv, A.; Lidman, C.; Melnyk, O.; Pierre, M.; Piconcelli, E.; Vignali, C.; Alis, S.; Ardila, F.; Arnouts, S.; Baldry, I.; Bremer, M.; Eckert, D.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Liske, J.; Maurogordato, S.; Menanteau, F.; Mohr, J. J.; Owers, M.; Poggianti, B.; Pompei, E.; Sadibekova, T.; Stanford, A.; Tuffs, R.; Willis, J.
2016-06-01
Context. X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). Usually, a combination of deep and wide surveys is necessary to create a complete picture of the population. Deep X-ray surveys provide the faint population at high redshift, while wide surveys provide the rare bright sources. Nevertheless, very wide area surveys often lack the ancillary information available for modern deep surveys. The XXL survey spans two fields of a combined 50 deg2 observed for more than 6Ms with XMM-Newton, occupying the parameter space that lies between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. Aims: This paper marks the first release of the XXL point source catalogue including four optical photometry bands and redshift estimates. Our sample is selected in the 2 - 10 keV energy band with the goal of providing a sizable sample useful for AGN studies. The limiting flux is F2 - 10 keV = 4.8 × 10-14 erg s-1 cm-2. Methods: We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources by means of a likelihood ratio test. We improve upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift category (passive, star forming, starburst, AGN, quasi-stellar objects (QSO)). Additionally, we assign a probability to each source that indicates whether it might be a star or an outlier. We apply Bayesian analysis to model the X-ray spectra assuming a power-law model with the presence of an absorbing medium. Results: We find that the average unabsorbed photon index is ⟨Γ⟩ = 1.85 ± 0.40 while the average hydrogen column density is log ⟨NH⟩ = 21.07 ± 1.2 cm-2. We find no trend of Γ or NH with redshift and a fraction of 26% absorbed sources (log NH> 22) consistent with the literature on bright sources (log Lx> 44). The counterpart identification rate reaches 96.7% for sources in the northern field, 97.7% for the southern field, and 97.2% in total. The photometric redshift accuracy is 0.095 for the full XMM-XXL with 28% catastrophic outliers estimated on a sample of 339 sources. Conclusions: We show that the XXL-1000-AGN sample number counts extended the number counts of the COSMOS survey to higher fluxes and are fully consistent with the Euclidean expectation. We constrain the intrinsic luminosity function of AGN in the 2 - 10 keV energy band where the unabsorbed X-ray flux is estimated from the X-ray spectral fit up to z = 3. Finally, we demonstrate the presence of a supercluster size structure at redshift 0.14, identified by means of percolation analysis of the XXL-1000-AGN sample. The XXL survey, reaching a medium flux limit and covering a wide area, is a stepping stone between current deep fields and planned wide area surveys. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories under programme ID 089.A-0666 and LP191.A-0268.A copy of the XXL-1000-AGN Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A5
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Durret, Florence; Adami, Christophe; Rudnick, Gregory
2017-08-01
Characterizing the evolution of the faint end of the cluster red sequence (RS) galaxy luminosity function (GLF) with redshift is a milestone in understanding galaxy evolution. However, the community is still divided in that respect, hesitating between an enrichment of the RS due to efficient quenching of blue galaxies from z 1 to present-day or a scenario in which the RS is built at a higher redshift and does not evolve afterwards. Recently, it has been proposed that surface brightness (SB) selection effects could possibly solve the literature disagreement, accounting for the diminishing RS faint population in ground-based observations. We investigate this hypothesis by comparing the RS GLFs of 16 CLASH clusters computed independently from ground-based Subaru/Suprime-Cam V and Ip or Ic images and space-based HST/ACS F606W and F814W images in the redshift range 0.187 ≤ z ≤ 0.686. We stack individual cluster GLFs in two redshift bins (0.187 ≤ z ≤ 0.399 and 0.400 ≤ z ≤ 0.686) and two mass (6 × 1014M⊙ ≤ M200< 1015M⊙ and 1015M⊙ ≤ M200) bins, and also measure the evolution with the enclosing radius from 0.5 Mpc up to the virial radius for the Subaru large field of view data. Finally, we simulate the low-redshift clusters at higher redshift to investigate SB dimming effects. We find similar RS GLFs for space- and ground-based data, with a difference of 0.2σ in the faint end parameter α when stacking all clusters together and a maximum difference of 0.9σ in the case of the high-redshift stack, demonstrating a weak dependence on the type of observation in the probed range of redshift and mass. When considering the full sample, we estimate α = - 0.76 ± 0.07 and α = - 0.78 ± 0.06 with HST and Subaru, respectively. We note a mild variation of the faint end between the high- and low-redshift subsamples at a 1.7σ and 2.6σ significance. We investigate the effect of SB dimming by simulating our low-redshift galaxies at high redshift. We measure an evolution in the faint end slope of less than 1σ in this case, implying that the observed signature is larger than one would expect from SB dimming alone, and indicating a true evolution in the faint end slope. Finally, we find no variation with mass or radius in the probed range of these two parameters. We therefore conclude that quenching is mildly affecting cluster galaxies at z ≲ 0.7 leading to a small enrichment of the RS until today, and that the different faint end slopes observed in the literature are probably due to specific cluster-to-cluster variation. Based on publicly available HST data acquired with ACS through the CLASH and COSMOS surveys. Also based on Subaru Suprime-Cam archive data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
NASA Astrophysics Data System (ADS)
Firth, A. E.; Somerville, R. S.; McMahon, R. G.; Lahav, O.; Ellis, R. S.; Sabbey, C. N.; McCarthy, P. J.; Chen, H.-W.; Marzke, R. O.; Wilson, J.; Abraham, R. G.; Beckett, M. G.; Carlberg, R. G.; Lewis, J. R.; Mackay, C. D.; Murphy, D. C.; Oemler, A. E.; Persson, S. E.
2002-05-01
The Las Campanas Infrared (LCIR) Survey, using the Cambridge Infra-Red Survey Instrument (CIRSI), reaches H ~21 over nearly 1deg2 . In this paper we present results from 744arcmin2 centred on the Hubble Deep Field South for which UBVRI optical data are publicly available. Making conservative magnitude cuts to ensure spatial uniformity, we detect 3177 galaxies to H =20.0 in 744arcmin2 and a further 842 to H =20.5 in a deeper subregion of 407arcmin2 . We compare the observed optical-infrared (IR) colour distributions with the predictions of semi-analytic hierarchical models and find reasonable agreement. We also determine photometric redshifts, finding a median redshift of ~0.55. We compare the redshift distributions N (z ) of E, Sbc, Scd and Im spectral types with models, showing that the observations are inconsistent with simple passive-evolution models while semi-analytic models provide a reasonable fit to the total N (z ) but underestimate the number of z ~1 red spectral types relative to bluer spectral types. We also present N (z ) for samples of extremely red objects (EROs) defined by optical-IR colours. We find that EROs with R -H >4 and H <20.5 have a median redshift z m ~1 while redder colour cuts have slightly higher z m . In the magnitude range 19
NASA Technical Reports Server (NTRS)
Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.;
2014-01-01
We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.
Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter
2005-01-01
We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graur, O.; Rodney, S. A.; Riess, A. G.
2014-03-01
We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit onmore » the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.« less
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; ...
2016-09-26
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. In conclusion, thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and withmore » efficiency of 3.2 μW/GHz.« less
Tracing Large-Scale Structure with Radio Sources
NASA Astrophysics Data System (ADS)
Lindsay, S. N.
2015-02-01
In this thesis, I investigate the spatial distribution of radio sources, and quantify their clustering strength over a range of redshifts, up to z _ 2:2, using various forms of the correlation function measured with data from several multi-wavelength surveys. I present the optical spectra of 30 radio AGN (S1:4 > 100 mJy) in the GAMA/H-ATLAS fields, for which emission line redshifts could be deduced, from observations of 79 target sources with the EFOSC2 spectrograph on the NTT. The mean redshift of these sources is z = 1:2; 12 were identified as quasars (40 per cent), and 6 redshifts (out of 24 targets) were found for AGN hosts to multiple radio components. While obtaining spectra for hosts of these multi-component sources is possible, their lower success rate highlights the difficulty in acheiving a redshift-complete radio sample. Taking an existing spectroscopic redshift survey (GAMA) and radio sources from the FIRST survey (S1:4 > 1 mJy), I then present a cross-matched radio sample with 1,635 spectroscopic redshifts with a median value of z = 0:34. The spatial correlation function of this sample is used to find the redshiftspace (s0) and real-space correlation lengths (r0 _ 8:2 h Mpc), and a mass bias of _1.9. Insight into the redshift-dependence of these quantities is gained by using the angular correlation function and Limber inversion to measure the same spatial clustering parameters. Photometric redshifts! from SDSS/UKIDSS are incorporated to produce a larger matched radio sample at z ' 0:48 (and low- and high-redshift subsamples at z ' 0:30 and z ' 0:65), while their redshift distribution is subtracted from that taken from the SKADS radio simulations to estimate the redshift distribution of the remaining unmatched sources (z ' 1:55). The observed bias evolution over this redshift range is compared with model predictions based on the SKADS simulations, with good agreement at low redshift. The bias found at high redshift significantly exceeds these predictions, however, suggesting a more massive population of galaxies than expected, either due to the relative proportions of different radio sources, or a greater typical halo mass for the high-redshift sources. Finally, the reliance on a model redshift distribution to reach to higher redshifts is removed, as the angular cross-correlation function is used with deep VLA data (S1:4 > 90 _Jy) and optical/IR data from VIDEO/CFHTLS (Ks < 23:5) over 1 square degree. With high-quality photometric redshifts up to z _ 4, and a high signal-to-noise clustering measurement (due to the _100,000 Ks-selected galaxies), I am able to find the bias of a matched sample of only 766 radio sources (as well as of v vi the VIDEO sources), divided into 4 redshift bins reaching a median bias at z ' 2:15. Again, at high redshift, the measured bias appears to exceed the prediction made from the SKADS simulations. Applying luminosity cuts to the radio sample at L > 1023 WHz and higher (removing any non-AGN sources), I find a bias of 8-10 at z _ 1:5, considerably higher than for the full sample, and consistent with the more numerous FRI AGN having similar mass to the FRIIs (M _ 10^14 M_), contrary to the assumptions made in the SKADS simulations. Applying this adjustment to the model bias produces a better fit to the observations for the FIRST radio sources cross-matched with GAMA/SDSS/UKIDSS, as well as for the high-redshift radio sources in VIDEO. Therefore, I have shown that we require a more robust model of the evolution of AGN, and their relation to the underlying dark matter distribution. In particular, understanding these quantities for the abundant FRI population is crucial if we are to use such sources to probe the cosmological model as has been suggested by a number of authors (e.g. Raccanelli et al., 2012; Camera et al., 2012; Ferramacho et al., 2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerji, M.; Jouvel, S.; Lin, H.
2014-11-25
We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band ( grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factormore » of ~4.5 relative to a simple catalogue level matching and results in a ~1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES+VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z ~ 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less
The Evolution of Metallicity and Metallicity Gradients from z = 2.7 to 0.6 with KMOS3D
NASA Astrophysics Data System (ADS)
Wuyts, Eva; Wisnioski, Emily; Fossati, Matteo; Förster Schreiber, Natascha M.; Genzel, Reinhard; Davies, Ric; Mendel, J. Trevor; Naab, Thorsten; Röttgers, Bernhard; Wilman, David J.; Wuyts, Stijn; Bandara, Kaushala; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabriel B.; Burkert, Andreas; Chan, Jeffrey; Galametz, Audrey; Kulkarni, Sandesh K.; Lang, Philipp; Lutz, Dieter; Momcheva, Ivelina G.; Nelson, Erica J.; Rosario, David; Saglia, Roberto P.; Seitz, Stella; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter
2016-08-01
We present measurements of the [N II]/Hα ratio as a probe of gas-phase oxygen abundance for a sample of 419 star-forming galaxies at z = 0.6-2.7 from the KMOS3D near-IR multi-integral field unit (IFU) survey. The mass-metallicity relation (MZR) is determined consistently with the same sample selection, metallicity tracer, and methodology over the wide redshift range probed by the survey. We find good agreement with long-slit surveys in the literature, except for the low-mass slope of the relation at z˜ 2.3, where this sample is less biased than previous samples based on optical spectroscopic redshifts. In this regime we measure a steeper slope than some literature results. Excluding the contribution from active galactic nuclei from the MZR reduces sensitivity at the high-mass end, but produces otherwise consistent results. There is no significant dependence of the [N II]/Hα ratio on star formation rate at fixed redshift and stellar mass. The IFU data allow spatially resolved measurements of [N II]/Hα, from which we can infer abundance gradients for 180 galaxies, thus tripling the current sample in the literature. The observed gradients are on average flat, with only 15 gradients statistically offset from zero at \\gt 3σ . We have modeled the effect of beam smearing, assuming a smooth intrinsic radial gradient and known seeing, inclination, and effective radius for each galaxy. Our seeing-limited observations can recover up to 70% of the intrinsic gradient for the largest, face-on disks, but only 30% for the smaller, more inclined galaxies. We do not find significant trends between observed or corrected gradients and any stellar population, dynamical, or structural galaxy parameters, mostly in agreement with existing studies with much smaller sample sizes. In cosmological simulations, strong feedback is generally required to produce flat gradients at high redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerji, M.; Jouvel, S.; Lin, H.
2014-11-25
We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor ofmore » similar to 4.5 relative to a simple catalogue level matching and results in a similar to 1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z similar to 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less
NASA Astrophysics Data System (ADS)
Silverman, Jeffrey M.; Foley, Ryan J.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Barth, Aaron J.; Chornock, Ryan; Griffith, Christopher V.; Kong, Jason J.; Lee, Nicholas; Leonard, Douglas C.; Matheson, Thomas; Miller, Emily G.; Steele, Thea N.; Barris, Brian J.; Bloom, Joshua S.; Cobb, Bethany E.; Coil, Alison L.; Desroches, Louis-Benoit; Gates, Elinor L.; Ho, Luis C.; Jha, Saurabh W.; Kandrashoff, Michael T.; Li, Weidong; Mandel, Kaisey S.; Modjaz, Maryam; Moore, Matthew R.; Mostardi, Robin E.; Papenkova, Marina S.; Park, Sung; Perley, Daniel A.; Poznanski, Dovi; Reuter, Cassie A.; Scala, James; Serduke, Franklin J. D.; Shields, Joseph C.; Swift, Brandon J.; Tonry, John L.; Van Dyk, Schuyler D.; Wang, Xiaofeng; Wong, Diane S.
2012-09-01
In this first paper in a series, we present 1298 low-redshift (z ≲ 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 to 2008 as part of the Berkeley Supernova Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10 400 Å, roughly twice as wide as spectra from most previously published data sets. We present our observing and reduction procedures, and we describe the resulting SN Database, which will be an online, public, searchable data base containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry), utilizing our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire data set, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our data set includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. The sheer size of the BSNIP data set and the consistency of our observation and reduction methods make this sample unique among all other published SN Ia data sets and complementary in many ways to the large, low-redshift SN Ia spectra presented by Matheson et al. and Blondin et al. In other BSNIP papers in this series, we use these data to examine the relationships between spectroscopic characteristics and various observables such as photometric and host-galaxy properties.
Hard X-ray spectral investigations of gamma-ray bursts 120521C and 130606A at high-redshift z ˜ 6
NASA Astrophysics Data System (ADS)
Yasuda, T.; Urata, Y.; Enomoto, J.; Tashiro, M. S.
2017-04-01
This study presents a temporal and spectral analysis of the prompt emission of two high-redshift gamma-ray bursts (GRBs), 120521C at z ˜ 6 and 130606A at z ˜ 5.91, using data obtained from the Swift-XRT/BAT and the Suzaku-WAM simultaneously. Based on follow-up XRT observations, the longest durations of the prompt emissions were approximately 80 s (120521C) and 360 s (130606A) in the rest-frames of the two GRBs. These objects are thus categorized as long-duration GRBs; however, the durations are short compared with the predicted duration of GRBs originating from first-generation stars. Because of the wide bandpass of the instruments, covering the ranges 15 keV-5 MeV (BAT-WAM) and 0.3 keV-5.0 MeV (XRT-BAT-WAM), we could successfully determine the νFν peak energies E_peak^src in the rest-frame and isotropic-equivalent radiated energies Eiso; E^src_peak = 682^{+845}_{-207} keV and E_iso = (8. 25^{+2.24}_{-1.96}) × 10^{52} erg for 120521C, and E^src_peak = 1209^{+553}_{-304} keV and E_iso = (2.82^{+0.17}_{-0.71}) × 10^{53} erg for 130606A. These obtained characteristic parameters are in accordance with the well-known relationship between E_peak^src and Eiso (Amati relationship). In addition, we examined the relationships between E_peak^src and the 1-s peak luminosity, Lp, and between E_peak^src and the geometrical corrected radiated energy, Eγ, and confirmed the E_peak^src-Lp (Yonetoku) and E_peak^src-Eγ (Ghirlanda) relationships. The results imply that these high-redshift GRBs at z ˜ 6, which are expected to have radiated during the reionization epoch, have properties similar to those of low-redshift GRBs regarding X-ray prompt emission.
WISPIR: A Wide-Field Imaging SPectrograph for the InfraRed for the SPICA Observatory
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Mundy, Lee G.
2010-01-01
We have undertaken a study of a far infrared imaging spectrometer based on a Fourier transform spectrometer that uses well-understood, high maturity optics, cryogenics, and detectors to further our knowledge of the chemical and astrophysical evolution of the Universe as it formed planets, stars, and the variety of galaxy morphologies that we observe today. The instrument, Wide-field Imaging Spectrometer for the InfraRed (WISPIR), would operate on the SPICA observatory, and will feature a spectral range from 35 - 210 microns and a spectral resolving power of R=1,000 to 6,000, depending on wavelength. WISPIR provides a choice of full-field spectral imaging over a 2'x2' field or long-slit spectral imaging along a 2' slit for studies of astrophysical structures in the local and high-redshift Universe. WISPIR in long-slit mode will attain a sensitivity two orders of magnitude better than what is currently available.
NASA Astrophysics Data System (ADS)
Heap, Sara
2009-07-01
Hubble's Next Generation Spectral Library {NGSL} comprises intermediate-resolution {R 1000} STIS spectra of 378 stars having a wide range in metallicity and age. Unique features of the NGSL include its broad wavelength coverage {1,800-10,100 ?} and high-S/N, absolute spectrophotometry. When incorporated in modern stellar population synthesis codes, the NGSL should enable us to constrain simultaneously the star-formation history and metal-enrichment history of galaxies over a wide redshift interval {z= 0-2}. In AR10659, we laid the foundation for tracing the spectral evolution of galaxies by putting the NGSL in order. We now propose to derive the atmospheric and fundamental parameters of the program stars, generate integrated spectra of stellar populations of different metallicities and initial mass functions, and derive spectral diagnostics of the age, metalllicity and E{B-V} of stellar populations.
A Spherical Harmonic Analysis of the Ooty Wide Field Array (OWFA) Visibility Signal
NASA Astrophysics Data System (ADS)
Chatterjee, Suman; Bharadwaj, Somnath
2018-04-01
Considering redshifted 21-cm intensity mapping with the upcoming OWFA whose field of view subtends ˜57° in the N-S direction, we present a formalism which relates the measured visibilities to the spherical harmonic coefficients of the sky signal. We use this to calculate window functions which relate the two-visibility correlations i.e. the correlation between the visibilities measured at two baselines and two frequencies, to different multipoles of the multi-frequency angular power spectrum Cℓ(ν1, ν2). The formalism here is validated using simulations. We also present approximate closed form analytical expressions which can be used to calculate the window functions. Comparing the widely adopted flat sky approximation, we find that its predictions match those of our spherical harmonic formalism to within 16% across the entire OWFA baseline range. The match improves at large baselines where we have <5% deviations.
High-resolution observations of radio-source hot spots at 329 MHz
NASA Technical Reports Server (NTRS)
Linfield, R.; Simon, R. S.
1984-01-01
The hot spots of several luminous double radio sources have been observed at 329 MHz with VLBI at fringe spacings ranging from 0.05 to 0.70 arcsec. Two out of two high-redshift (z = about 0.5) sources, but only one of six low-redshift (z = about 0.05) sources, were detected. For the low-redshift source (3C 234) which was detected, either the hot spot is larger at 329 MHz than at 15 GHz, or else the brightness contrast between it and the surrounding lobe is lower at the lower frequency.
Color-magnitude relations in nearby galaxy clusters
NASA Astrophysics Data System (ADS)
Rasheed, Mariwan A.; Mohammad, Khalid K.
2018-06-01
The rest-frame (g-r) /Mr color-magnitude relations of 12 Abell-type clusters are analyzed in the redshift range (0.02≲ z ≲ 0.10) and within a projected radius of 0.75 Mpc using photometric data from SDSS-DR9. We show that the color-magnitude relation parameters (slope, zero-point, and scatter) do not exhibit significant evolution within this low-redshift range. Thus, we can say that during the look-back time of z ˜ 0.1 all red sequence galaxies evolve passively, without any star formation activity.
SED-dependent galactic extinction prescription for Euclid and future cosmological surveys
NASA Astrophysics Data System (ADS)
Galametz, Audrey; Saglia, Roberto; Paltani, Stéphane; Apostolakos, Nikolaos; Dubath, Pierre
2017-02-01
The outcome of upcoming cosmological surveys will depend on the accurate estimates of photometric redshifts. In the framework of the implementation of the photometric redshift algorithm for the ESA Euclid mission, we are exploring new avenues to improve current template-fitting methods. This paper focusses in particular on the prescription of the extinction of a source light by dust in the Milky Way. Since Galactic extinction strongly correlates with wavelength and photometry is commonly obtained through broad-band filters, the amount of absorption depends on the source intrinsic spectral energy distribution (SED), a point however neglected as the source SED is not known a-priori. A consequence of this dependence is that the observed EB-V (=AB-AV) will in general be different from the EB-V used to normalise the Galactic absorption law kλ (=Aλ/EB-V). Band-pass corrections are thus required to adequately renormalise the law for a given SED. In this work, we assess the band-pass corrections of a range of SEDs and find they vary by up to 20%. We have investigated how neglecting these corrections biases the calibration of dust into reddening map and how the scaling of the map depends of the sources used for its calibration. We derive dust-to-reddening scaling factors from the colour excesses of z< 0.4 SDSS red galaxies and show that band-pass corrections predict the observed differences. Extinction corrections are then estimated for a range of SEDs and a set of optical to near-infrared filters relevant to Euclid and upcoming cosmological ground-based surveys. For high extinction line-of-sights (EB-V> 0.1, 8% of the Euclid Wide survey), the variations in corrections can be up to 0.1 mag in the "bluer" optical filters (ugr) and up to 0.04 mag in the near-infrared filters. We find that an inaccurate correction of Galactic extinction critically affects photometric redshift estimates. In particular, for high extinction lines of sights and z < 0.5, the bias (I.e. the mean Δz = zphot-zreal) exceeds 0.2%(1 + z), the precision required for weak-lensing analyses. Additional uncertainty on the parametrisation of the Milky Way extinction curve itself further reduces the photometric redshift precision. We propose a new prescription of Galactic absorption for template-fitting algorithms which takes into consideration the dependence of extinction with SED.
NASA Astrophysics Data System (ADS)
Pharo, John; Malhotra, Sangeeta; Rhoads, James; Ryan, Russell; Tilvi, Vithal; Pirzkal, Norbert; Finkelstein, Steven; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Zheng, Zhenya; Hathi, Nimish; Kim, Keunho; Joshi, Bhavin; Yang, Huan; Christensen, Lise; Cimatti, Andrea; Gardner, Jonathan P.; Zakamska, Nadia; Ferreras, Ignacio; Hibon, Pascale; Pasquali, Anna
2018-04-01
We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope (HST), which assists in redshift determination by further constraining the shape of the broadband spectral energy distribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-infrared photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W < 26.5 AB mag with a redshift range of 0 < z < 6, we find a typical error of Δz = 0.03 ∗ (1 + z) for the purely photometric redshifts; with the addition of FIGS spectra, these become Δz = 0.02 ∗ (1 + z), an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the four fields. The strongest overdensity, matching a spectroscopically identified cluster at z = 0.85, has 28 potential member galaxies, of which eight have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at z = 1.84 has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find four overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.
2012-01-01
We measure the photometric properties of 105 giant arcs that were identified in systematic searches for galaxy-cluster-scale strong lenses in the Second Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. The cluster lenses span 0.2 < zl < 1.2 in redshift, with a median \\bar{z}_{l}=0.58. Using broadband color criteria we sort the entire arc sample into redshift bins based on u-g and g-r colors, and also r-z colors for the ~90% of arcs that have z-band data. This analysis yields broad redshift constraints with 71+5 - 4% of the arcs at z >= 1.0, 64+6 - 4% at z >= 1.4, 56+5 - 4% at z >= 1.9, and 21+4 - 2% at z >= 2.7. The remaining 29+03 - 5% have z < 1. The inferred median redshift is \\bar{z}_{s} = 2.0+/- 0.1, in good agreement with a previous determination from a smaller sample of brighter arcs (g <~ 22.5). This agreement confirms that zs = 2.0 ± 0.1 is the typical redshift for giant arcs with g <~ 24 that are produced by cluster-scale strong lenses and that there is no evidence for strong evolution in the redshift distribution of arcs over a wide range of g-band magnitudes (20 <= g <=24). Establishing that half of all giant arcs are at z >~ 2 contributes significantly toward relieving the tension between the number of arcs observed and the number expected in a ΛCDM cosmology, but there is considerable evidence to suggest that a discrepancy persists. Additionally, this work confirms that forthcoming large samples of giant arcs will supply the observational community with many magnified galaxies at z >~ 2. Based on observations taken at the Southern Astrophysical Research Telescope (SOAR), a collaboration between CNP-Brazil, NOAO, The University of North Carolina at Chapel Hill, and Michigan State University and the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Additional supporting observations come from the 2.5 m Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: The United States, The United Kingdom, Canada, Chile, Australia, Brazil, and Argentina.
[A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].
Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng
2006-09-01
The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.
Cooperative photometric redshift estimation
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.
2017-06-01
In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.
Ding, Lijun; Gao, Yan; Di, Junwei
2016-09-15
Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
NASA Astrophysics Data System (ADS)
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
NASA Astrophysics Data System (ADS)
Sugita, Satoshi; Yamaoka, Kazutaka; Ohno, Masanori; Tashiro, Makoto S.; Nakagawa, Yujin E.; Urata, Yuji; Pal'Shin, Valentin; Golenetskii, Sergei; Sakamoto, Takanori; Cummings, Jay; Krimm, Hans; Stamatikos, Michael; Parsons, Ann; Barthelmy, Scott; Gehrels, Neil
2009-06-01
We present the results of the high-redshift GRB 050904 at z = 6.295 from joint spectral analysis among Swift-BAT, Konus-Wind, and Suzaku-WAM, covering a wide energy range of 15--5000keV. The νFu spectrum peak energy, Epeak, was measured at 314+173-89 keV, corresponding to 2291+1263-634 keV in the source frame, and the isotropic equivalent radiated energy, Eiso, was estimated to be 1.04+0.25-0.17 × 1054erg. Both are among the highest values that have ever been measured. GRBs with such a high Eiso (˜1054erg) might be associated with prompt optical emission. The derived spectral and energetic parameters are consistent with the correlation between the rest-frame Ep,i and the Eiso (Amati relation), but not with the correlation between the intrinsic peak energy Ep,i and the collimation-corrected energy Eγ (Ghirlanda relation), unless the density of the circumburst environment of this burst is much larger than the nominal value, as suggested by other wavelength observations. We also discuss the possibility that this burst is an outlier in the correlation between Ep,i and the peak luminosity Lp (Yonetoku relation).
Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024
NASA Astrophysics Data System (ADS)
Leethochawalit, Nicha; Kirby, Evan N.; Moran, Sean M.; Ellis, Richard S.; Treu, Tommaso
2018-03-01
We present the stellar mass–stellar metallicity relationship (MZR) in the galaxy cluster Cl0024+1654 at z ∼ 0.4 using full-spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M * = 109.7 M ⊙, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037 ± 0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with the formation time of galaxies, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope ([{Fe}/{{H}}]\\propto (0.16+/- 0.03){log}{M}* ). The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range.
Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3*
NASA Technical Reports Server (NTRS)
Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Francoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne;
2017-01-01
We observed the [C II] line in 15 lensed galaxies at redshifts 1 less than z less than 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3sigma or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 10(exp 7) solar luminosity to 3.7 × 10(exp 9) solar luminosity (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.
Herschel Extreme Lensing Line Observations: [CII] Variations in Galaxies at Redshifts z=1-3
NASA Astrophysics Data System (ADS)
Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, K.; Yang, Huan; Carilli, Chris; Combes, Françoise; Dassas, Karine; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey
2017-01-01
We observed the [C II] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C II] with Herschel. The [C II] luminosity in this sample ranges from 8 × 107 L⊙ to 3.7 × 109 L⊙ (after correcting for magnification), confirming that [C II] is a strong tracer of the ISM at high redshifts. The ratio of the [C II] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C II]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C II]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C II]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C II]/FIR correlates most strongly with dust temperature. The [C II] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan
We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to themore » total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.« less
Reconstructing the dark sector interaction with LISA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Rong-Gen; Yang, Tao; Tamanini, Nicola, E-mail: cairg@itp.ac.cn, E-mail: nicola.tamanini@cea.fr, E-mail: yangtao@itp.ac.cn
We perform a forecast analysis of the ability of the LISA space-based interferometer to reconstruct the dark sector interaction using gravitational wave standard sirens at high redshift. We employ Gaussian process methods to reconstruct the distance-redshift relation in a model independent way. We adopt simulated catalogues of standard sirens given by merging massive black hole binaries visible by LISA, with an electromagnetic counterpart detectable by future telescopes. The catalogues are based on three different astrophysical scenarios for the evolution of massive black hole mergers based on the semi-analytic model of E. Barausse, Mon. Not. Roy. Astron. Soc. 423 (2012) 2533.more » We first use these standard siren datasets to assess the potential of LISA in reconstructing a possible interaction between vacuum dark energy and dark matter. Then we combine the LISA cosmological data with supernovae data simulated for the Dark Energy Survey. We consider two scenarios distinguished by the time duration of the LISA mission: 5 and 10 years. Using only LISA standard siren data, the dark sector interaction can be well reconstructed from redshift z ∼1 to z ∼3 (for a 5 years mission) and z ∼1 up to z ∼5 (for a 10 years mission), though the reconstruction is inefficient at lower redshift. When combined with the DES datasets, the interaction is well reconstructed in the whole redshift region from 0 z ∼ to z ∼3 (5 yr) and z ∼0 to z ∼5 (10 yr), respectively. Massive black hole binary standard sirens can thus be used to constrain the dark sector interaction at redshift ranges not reachable by usual supernovae datasets which probe only the z ∼< 1.5 range. Gravitational wave standard sirens will not only constitute a complementary and alternative way, with respect to familiar electromagnetic observations, to probe the cosmic expansion, but will also provide new tests to constrain possible deviations from the standard ΛCDM dynamics, especially at high redshift.« less
NASA Astrophysics Data System (ADS)
Hviding, Raphael E.; Hickox, Ryan C.; Hainline, Kevin N.; Carroll, Christopher M.; DiPompeo, Michael A.; Yan, Wei; Jones, Mackenzie L.
2018-02-01
We present the results of an optical spectroscopic survey of 46 heavily obscured quasar candidates. Objects are selected using their mid-infrared (mid-IR) colours and magnitudes from the Wide-Field Infrared Survey Explorer (WISE) anzd their optical magnitudes from the Sloan Digital Sky Survey. Candidate Active Galactic Nuclei (AGNs) are selected to have mid-IR colours indicative of quasar activity and lie in a region of mid-IR colour space outside previously published X-ray based selection regions. We obtain optical spectra for our sample using the Robert Stobie Spectrograph on the Southern African Large Telescope. 30 objects (65 per cent) have identifiable emission lines, allowing for the determination of spectroscopic redshifts. Other than one object at z ˜ 2.6, candidates have moderate redshifts ranging from z = 0.1 to 0.8 with a median of 0.3. 21 (70 per cent) of our objects with identified redshift (46 per cent of the whole sample) are identified as AGNs through common optical diagnostics. We model the spectral energy distributions of our sample and found that all require a strong AGN component, with an average intrinsic AGN fraction at 8 μm of 0.91. Additionally, the fits require large extinction coefficients with an average E(B - V)AGN = 17.8 (average A(V)AGN = 53.4). By focusing on the area outside traditional mid-IR photometric cuts, we are able to capture and characterize a population of deeply buried quasars that were previously unattainable through X-ray surveys alone.
Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range
NASA Astrophysics Data System (ADS)
Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-01-01
Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org
VizieR Online Data Catalog: The MBH-σ relation for active galaxies (Bennert+,
NASA Astrophysics Data System (ADS)
Bennert, V. N.; Treu, T.; Auger, M. W.; Cosens, M.; Park, D.; Rosen, R.; Harris, C. E.; Malkan, M. A.; Woo, J.-H.
2017-09-01
The sample was selected from the SDSS Data Release (DR) six following these criteria: (i) MBH>107 Mȯ as estimated based on optical luminosity and FWHM of the broad Hβ line; (ii) redshift range 0.02
Revived STIS. II. Properties of Stars in the Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, D.
2010-01-01
Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.
Properties of Spectrally Defined Red QSOs at z = 0.3–1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw
We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOsmore » with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.« less
NASA Astrophysics Data System (ADS)
Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John
2017-11-01
Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).
NASA Astrophysics Data System (ADS)
Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer
2007-02-01
We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.
Dark matter annihilation in the circumgalactic medium at high redshifts
NASA Astrophysics Data System (ADS)
Schön, S.; Mack, K. J.; Wyithe, J. S. B.
2018-03-01
Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However, when modelling such potential signals at high redshift, the emergence of both DM and baryonic structure, as well as the complexities of the energy transfer process, needs to be taken into account. In the following paper, we present a detailed energy deposition code and use this to examine the energy transfer efficiency of annihilating DM at high redshift, including the effects on baryonic structure. We employ the PYTHIA code to model neutralino-like DM candidates and their subsequent annihilation products for a range of masses and annihilation channels. We also compare different density profiles and mass-concentration relations for 105-107 M⊙ haloes at redshifts 20 and 40. For these DM halo and particle models, we show radially dependent ionization and heating curves and compare the deposited energy to the haloes' gravitational binding energy. We use the `filtered' annihilation spectra escaping the halo to calculate the heating of the circumgalactic medium and show that the mass of the minimal star-forming object is increased by a factor of 2-3 at redshift 20 and 4-5 at redshift 40 for some DM models.
Predicting the High Redshift Galaxy Population for JWST
NASA Astrophysics Data System (ADS)
Flynn, Zoey; Benson, Andrew
2017-01-01
The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-barmore » =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.« less
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
NASA Astrophysics Data System (ADS)
Laurent, Pierre; Eftekharzadeh, Sarah; Le Goff, Jean-Marc; Myers, Adam; Burtin, Etienne; White, Martin; Ross, Ashley J.; Tinker, Jeremy; Tojeiro, Rita; Bautista, Julian; Brinkmann, Jonathan; Comparat, Johan; Dawson, Kyle; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; McGreer, Ian D.; Palanque-Delabrouille, Nathalie; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Weinberg, David; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9
The Identification of Z-dropouts in Pan-STARRS1: Three Quasars at 6.5< z< 6.7
NASA Astrophysics Data System (ADS)
Venemans, B. P.; Bañados, E.; Decarli, R.; Farina, E. P.; Walter, F.; Chambers, K. C.; Fan, X.; Rix, H.-W.; Schlafly, E.; McMahon, R. G.; Simcoe, R.; Stern, D.; Burgett, W. S.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Tonry, J. L.; Waters, C.; AlSayyad, Y.; Banerji, M.; Chen, S. S.; González-Solares, E. A.; Greiner, J.; Mazzucchelli, C.; McGreer, I.; Miller, D. R.; Reed, S.; Sullivan, P. W.
2015-03-01
Luminous distant quasars are unique probes of the high-redshift intergalactic medium (IGM) and of the growth of massive galaxies and black holes in the early universe. Absorption due to neutral hydrogen in the IGM makes quasars beyond a redshift of z≃ 6.5 very faint in the optical z band, thus locating quasars at higher redshifts requires large surveys that are sensitive above 1 micron. We report the discovery of three new z\\gt 6.5 quasars, corresponding to an age of the universe of \\lt 850 Myr, selected as z-band dropouts in the Pan-STARRS1 survey. This increases the number of known z\\gt 6.5 quasars from four to seven. The quasars have redshifts of z = 6.50, 6.52, and 6.66, and include the brightest z-dropout quasar reported to date, PSO J036.5078 + 03.0498 with {{M}1450}=-27.4. We obtained near-infrared spectroscopy for the quasars, and from the Mg ii line, we estimate that the central black holes have masses between 5 × 108 and 4 × 109 {{M}⊙ } and are accreting close to the Eddington limit ({{L}Bol}/{{L}Edd}=0.13-1.2). We investigate the ionized regions around the quasars and find near-zone radii of {{R}NZ}=1.5-5.2 proper Mpc, confirming the trend of decreasing near-zone sizes with increasing redshift found for quasars at 5.7\\lt z\\lt 6.4. By combining RNZ of the PS1 quasars with those of 5.7\\lt z\\lt 7.1 quasars in the literature, we derive a luminosity-corrected redshift evolution of {{R}NZ,corrected}=(7.2+/- 0.2)-(6.1+/- 0.7)× (z-6) Mpc. However, the large spread in RNZ in the new quasars implies a wide range in quasar ages and/or a large variation in the neutral hydrogen fraction along different lines of sight. Based in part on observations collected at the European Southern Observatory, Chile, programs 179.A-2010, 092.A-0150, 093.A-0863, and 093.A-0574, and at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). This paper also includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution, and with the LBT.
NASA Astrophysics Data System (ADS)
Nishimichi, Takahiro; Taruya, Atsushi; Koyama, Kazuya; Sabiu, Cristiano
2010-07-01
We study the halo bispectrum from non-Gaussian initial conditions. Based on a set of large N-body simulations starting from initial density fields with local type non-Gaussianity, we find that the halo bispectrum exhibits a strong dependence on the shape and scale of Fourier space triangles near squeezed configurations at large scales. The amplitude of the halo bispectrum roughly scales as fNL2. The resultant scaling on the triangular shape is consistent with that predicted by Jeong & Komatsu based on perturbation theory. We systematically investigate this dependence with varying redshifts and halo mass thresholds. It is shown that the fNL dependence of the halo bispectrum is stronger for more massive haloes at higher redshifts. This feature can be a useful discriminator of inflation scenarios in future deep and wide galaxy redshift surveys.
MALS–NOT: Identifying Radio-bright Quasars for the MeerKAT Absorption Line Survey
NASA Astrophysics Data System (ADS)
Krogager, J.-K.; Gupta, N.; Noterdaeme, P.; Ranjan, A.; Fynbo, J. P. U.; Srianand, R.; Petitjean, P.; Combes, F.; Mahabal, A.
2018-03-01
We present a preparatory spectroscopic survey to identify radio-bright, high-redshift quasars for the MeerKAT Absorption Line Survey. The candidates have been selected on the basis of a single flux density limit at 1.4 GHz (>200 mJy), together with mid-infrared color criteria from the Wide-field Infrared Survey Explorer. Through spectroscopic observations using the Nordic Optical Telescope, we identify 72 quasars out of 99 candidates targeted. We measure the spectroscopic redshifts based on characteristic, broad emission lines present in the spectra. Of these 72 quasars, 64 and 48 objects are at sufficiently high redshift (z > 0.6 and z > 1.4) to be used for the L-band and UHF-band spectroscopic follow-up with the Square Kilometre Array precursor in South Africa: the MeerKAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanxia; Ma He; Peng Nanbo
We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISEmore » sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.« less
VizieR Online Data Catalog: SDSS-DR9 photometric redshifts (Brescia+, 2014)
NASA Astrophysics Data System (ADS)
Brescia, M.; Cavuoti, S.; Longo, G.; de Stefano, V.
2014-07-01
We present an application of a machine learning method to the estimation of photometric redshifts for the galaxies in the SDSS Data Release 9 (SDSS-DR9). Photometric redshifts for more than 143 million galaxies were produced. The MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) model provided within the framework of the DAMEWARE (DAta Mining and Exploration Web Application REsource) is an interpolative method derived from machine learning models. The obtained redshifts have an overall uncertainty of σ=0.023 with a very small average bias of about 3x10-5 and a fraction of catastrophic outliers of about 5%. After removal of the catastrophic outliers, the uncertainty is about σ=0.017. The catalogue files report in their name the range of DEC degrees related to the included objects. (60 data files).
NASA Astrophysics Data System (ADS)
Webb, T. M. A.; O'Donnell, D.; Yee, H. K. C.; Gilbank, David; Coppin, Kristen; Ellingson, Erica; Faloon, Ashley; Geach, James E.; Gladders, Mike; Noble, Allison; Muzzin, Adam; Wilson, Gillian; Yan, Renbin
2013-10-01
We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15 M ⊙. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011 M ⊙, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M_{cluster} \\sim M_{cluster}^{-1.5+/- 0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ~ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ~ 0.75 have the same or less star formation per unit mass or galaxy as the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jinyi; Wu, Xue-Bing; Wang, Feige
We present initial results from the first systematic survey of luminous z ∼ 5.5 quasars. Quasars at z ∼ 5.5, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium, quasar evolution, and the early super-massive black hole growth. However, it has been very challenging to select quasars at redshifts 5.3 ≤ z ≤ 5.7 using conventional color selections, due to their similar optical colors to late-type stars, especially M dwarfs, resulting in a glaring redshift gap in quasar redshift distributions. We develop a new selection technique for z ∼ 5.5 quasars based on optical, near-IR, and mid-IRmore » photometric data from Sloan Digital Sky Survey (SDSS), UKIRT InfraRed Deep Sky Surveys—Large Area Survey (ULAS), VISTA Hemisphere Survey (VHS), and Wide Field Infrared Survey Explorer . From our pilot observations in the SDSS-ULAS/VHS area, we have discovered 15 new quasars at 5.3 ≤ z ≤ 5.7 and 6 new lower redshift quasars, with SDSS z band magnitude brighter than 20.5. Including other two z ∼ 5.5 quasars already published in our previous work, we now construct a uniform quasar sample at 5.3 ≤ z ≤ 5.7, with 17 quasars in a ∼4800 square degree survey area. For further application in a larger survey area, we apply our selection pipeline to do a test selection by using the new wide field J-band photometric data from a preliminary version of the UKIRT Hemisphere Survey (UHS). We successfully discover the first UHS selected z ∼ 5.5 quasar.« less
PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter
2013-08-20
We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less
Clustering properties of g -selected galaxies at z ~ 0.8
Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...
2016-06-21
In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less
The luminosity function of quasars
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1995-01-01
We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.
Weak lensing by galaxy troughs in DES Science Verification data
Gruen, D.; Friedrich, O.; Amara, A.; ...
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less
The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter G.
2005-12-01
We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0
A quantitative study of peculiarities in galaxy morphology
NASA Astrophysics Data System (ADS)
Wu, Katherine Liang-Kai
I have developed a refined version of the asymmetry parameter first presented by Abraham et al. (1996). Coupled with a simple concentration index, this pair of indices, AW-CW, is compared to Abraham et al.'s log(AA)-log(C A) algorithm. These indices are then applied to a large sample of galaxies in the Hubble Deep Field with photometric redshifts from Connolly (1999). This allows investigation of trends at redshifts which have been largely inaccessible until now. The final sample consists of ~350 objects detected by the AW-CW algorithms with first-moment radii, r1 >= 0'.2 (corresponding to F814WAB ~ 26). The distribution of objects in the AW- CW plane is found to change with redshift. The region of the AW - CW plane populated by objects out to z ~ 1.2 is roughly constant. Accounting for bandpass shifting effects, this region resembles that populated by local bright galaxies (Frei et al. 1996) cosmologically simulated at z = 0.8. Beyond z ~ 1.2, the distribution of galaxies undergoes a significant change. Highly concentrated objects disappear from the AW-C W plane, while high asymmetry objects appear. The high concentration objects below z ~ 1.2 all have early-type morphologies. Very low resolution SEDs of these galaxies created using colors from Williams et al. (1996) are used to calculate the expected appearance of these objects at higher redshifts (z = 1.5 and 2.3). Assuming their luminosities and SEDs have not changed, one-third of the z ~ 0.8 objects would be undetected at z = 1.5, and 97% would disappear by z = 2.3. Any true drop in the number density of these objects would be completely masked by such strong selection effects. An increase in the number and degree of asymmetric objects is also seen beyond z ~ 1.2. Many of these objects exhibit multiple condensations, consistent with merging. Though the shifting of the ultraviolet galaxy spectrum into the F814W-band may be partially responsible, the majority of the increase in both number and degree of asymmetry appears to reflect a genuinely higher number density of asymmetric objects at earlier epochs. AW and CW are shown to be useful tools for exploring galaxy morphology over a wide range of redshifts. Future refinements combined with better SEDs and evolutionary models will undoubtedly reveal valuable insight into galaxy evolution.
The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3
NASA Astrophysics Data System (ADS)
Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.
2013-03-01
We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0.07, respectively.
NASA Astrophysics Data System (ADS)
Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.
2017-11-01
We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9
The redshift evolution of major merger triggering of luminous AGNs: a slight enhancement at z ˜ 2
NASA Astrophysics Data System (ADS)
Hewlett, Timothy; Villforth, Carolin; Wild, Vivienne; Mendez-Abreu, Jairo; Pawlik, Milena; Rowlands, Kate
2017-09-01
Active galactic nuclei (AGNs), particularly the most luminous AGNs, are commonly assumed to be triggered through major mergers; however, observational evidence for this scenario is mixed. To investigate any influence of galaxy mergers on AGN triggering and luminosities through cosmic time, we present a sample of 106 luminous X-ray-selected type 1 AGNs from the COSMOS survey. These AGNs occupy a large redshift range (0.5 < z < 2.2) and two orders of magnitude in X-ray luminosity (˜1043-1045 erg s-1). AGN hosts are carefully mass and redshift matched to 486 control galaxies. A novel technique for identifying and quantifying merger features in galaxies is developed, subtracting galfit galaxy models and quantifying the residuals. Comparison to visual classification confirms this measure reliably picks out disturbance features in galaxies. No enhancement of merger features with increasing AGN luminosity is found with this metric, or by visual inspection. We analyse the redshift evolution of AGNs associated with galaxy mergers and find no merger enhancement in lower redshift bins. Contrarily, in the highest redshift bin (z ˜ 2) AGNs are ˜4 times more likely to be in galaxies exhibiting evidence of morphological disturbance compared to control galaxies, at 99 per cent confidence level (˜2.4σ) from visual inspection. Since only ˜15 per cent of these AGNs are found to be in morphologically disturbed galaxies, it is implied that major mergers at high redshift make a noticeable but subdominant contribution to AGN fuelling. At low redshifts, other processes dominate and mergers become a less significant triggering mechanism.
Optimized Clustering Estimators for BAO Measurements Accounting for Significant Redshift Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Ashley J.; Banik, Nilanjan; Avila, Santiago
2017-05-15
We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the BAO information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line-of-sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertaintymore » $$\\sigma_z \\geq 0.02(1+z)$$ we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for $$\\sigma_z \\geq 0.02(1+z)$$. For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations of galaxy simulations mimicking the Dark Energy Survey Year 1 sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.« less
Optimized clustering estimators for BAO measurements accounting for significant redshift uncertainty
NASA Astrophysics Data System (ADS)
Ross, Ashley J.; Banik, Nilanjan; Avila, Santiago; Percival, Will J.; Dodelson, Scott; Garcia-Bellido, Juan; Crocce, Martin; Elvin-Poole, Jack; Giannantonio, Tommaso; Manera, Marc; Sevilla-Noarbe, Ignacio
2017-12-01
We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the baryon acoustic oscillation (BAO) information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line of sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertainty σz ≥ 0.02(1 + z), we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for σz ≥ 0.02(1 + z). For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations (combining two separate sets) of galaxy simulations mimicking the Dark Energy Survey Year 1 (DES Y1) sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.
Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies
NASA Astrophysics Data System (ADS)
Graham, Melissa L.; Connolly, Andrew J.; Ivezić, Željko; Schmidt, Samuel J.; Jones, R. Lynne; Jurić, Mario; Daniel, Scott F.; Yoachim, Peter
2018-01-01
In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspect makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the “best” photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10 year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-z results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and z-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-z results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regard to the minimum quality of photo-z as the survey progresses.
Redshifts for 2410 Galaxies in the Century Survey Region
NASA Astrophysics Data System (ADS)
Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Brown, Warren R.; Fabricant, Daniel G.; Geller, Margaret J.; Huchra, John P.; Marzke, Ronald O.; Sakai, Shoko
2001-12-01
The Century Survey strip covers 102 deg2 within the limits 8h5<=α<=16h5, 29.0d<=δ<=30.0d, equinox B1950.0. The strip passes through the Corona Borealis supercluster and the outer region of the Coma cluster. Within the Century Survey region, we have measured 2410 redshifts that constitute four overlapping complete redshift surveys: (1) 1728 galaxies with Kron-Cousins Rph<=16.13 covering the entire strip, (2) 507 galaxies with Rph<=16.4 in right ascension range 8h32m<=α<=10 h45m, equinox B1950.0, (3) 1251 galaxies with absorption- and K-corrected RCCDc<=16.2 (where ``c'' indicates ``corrected'') covering the right ascension range 8h5<=α<=13h5, equinox B1950.0, and (4) 1255 galaxies with absorption- and K-corrected VCCDc<=16.7 also covering the right ascension range 8h5<=α<=13h5, equinox B1950.0. All these redshift samples are more than 98% complete to the specified magnitude limit. We derived samples 1 and 2 from scans of the POSS1 red (E) plates calibrated with CCD photometry. We derived samples 3 and 4 from deep V and R CCD images covering the entire region. We include coarse morphological types for all the galaxies in sample 1. The distribution of (V-R)CCD for each type corresponds appropriately with the classification. Work reported here is based partly on observations obtained at the Michigan-Dartmouth-MIT Observatory.
NASA Astrophysics Data System (ADS)
Yun, Min
Studies of massive galaxy clusters and groups at redshifts below 1 typically find environments with little-to-no star formation activity, in sharp contrast with the field. Over-dense regions are dominated by passively-evolving spheroidal (S0) and elliptical galaxies, whereas galaxies in the field tend to have spiral morphologies, younger stellar populations, and systematically higher star formation rates. Studies of the galaxy populations of clusters and massive galaxy groups have found that the increase in the fraction of spirals at higher redshifts corresponds to a decline in the fraction of S0 galaxies, which strongly suggests that field spirals are transformed into S0 galaxies at some point in their transition between field and cluster regions. This transformation necessarily involves an increase in the stellar content of the bulge relative to the disk, and then a removal of disk gas accompanied by either a rapid or gradual decline in star formation to eventually produce a red, spheroidal, passively-evolving S0 galaxy. Deep and wide area cosmological surveys such as the GOODS and COSMOS have shown that both environment and stellar mass play a distinct role in the overall galaxy evolution over a wide redshift range (to z~3). The density-morphology relation and the blue-fraction, first noted in the targeted studies of clusters and groups, also appears to be an extension of the evolutionary trends seen in the field sample. However, the trends seen in these large cosmological surveys should be taken with a caution since they are broad statistical trends of primarily massive galaxies with relatively poor sensitivity on star formation rate (SFR), associated with a relatively narrow range of sparsely sampled galaxy density. This can lead to potentially serious shortcomings when studying the role of environment because many of the physical mechanisms involved may preferentially impact the lower mass galaxies. The dominant physical mechanism(s) responsible for this transformation are still being debated, but the overwhelming evidence has shown that spirals are readily altered in groups or cluster outskirts prior to falling into a galaxy cluster (pre-processing). This implies that the best approach to catch galaxy transformation in the act is to examine galaxies in lower density environments. A complete accounting of star-formation activity for galaxies over a wide range masses and environments is needed to assess which of many possible mechanisms is the dominant cause of galaxy transformation in over-dense regions. The main goal of this proposed study is to examine the SF and quenching activities associated with galaxies using the high spatial resolution of the targeted studies of individual clusters, but covering much larger areas and density ranges (from voids to cluster cores) with the sample statistics approaching those of the cosmological surveys such as COSMOS, using exquisite stellar mass and SFR (both UV and IR) sensitivity. To achieve this, we propose a multi-wavelength study (with a specific emphasis on GALEX and WISE) of the two most prominent large scale structures in the local universe: the Coma and Perseus-Pisces Superclusters. The total sample area covers ~3000 sq. degree and contains about 7000 spectroscopically identified galaxies (from SDSS and archival spectra). In addition, we will evaluate the impacts of the high mass and SFR cut employed by deep cosmological surveys by paring down our sample in stellar mass and SFR (and resulting coarse galaxy density estimates) and examine whether any important insights are missed as a result.
NASA Technical Reports Server (NTRS)
Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.;
2010-01-01
We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.
We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradientmore » field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.« less
Lyman-alpha fractions in the Hubble Ultra Deep Field at 4 < z < 6
NASA Astrophysics Data System (ADS)
Harish, Santosh; Malhotra, Sangeeta; Rhoads, James; Christensen, Lise; Tilvi, Vithal; Finkelstein, Steven; Pharo, John
2018-01-01
Lyman-alpha (Lya) emitting galaxies at high-redshifts serve as a good probe of neutral hydrogen in the intergalactic medium (IGM). Here we present measurements of the Lya fraction using a sample of Lyman-break galaxies (LBGs) between 4 < z < 6 with deep HST grism observations from the GRAPES/PEARS projects as well as spectroscopic observations from the MUSE integral-field spectrograph. The sample of LBGs at z~5 & 6 are spectroscopically confirmed with deep HST grism data from the GRAPES and PEARS projects. We also measure Lya fractions using a sample of photometrically-selected LBGs for the same redshift range. In addition, we study the EW distribution in relation to continuum and line luminosities, as well as the relation between photometric and spectroscopic redshift. We find that objects with higher EWs tend to have larger differences between photometric and spectroscopic redshifts.
NASA Technical Reports Server (NTRS)
Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish;
2013-01-01
Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.
Evidence of redshifts in the average solar line profiles of C IV and Si IV from OSO-8 observations
NASA Technical Reports Server (NTRS)
Roussel-Dupre, D.; Shine, R. A.
1982-01-01
Line profiles of C IV and Si V obtained by the Colorado spectrometer on OSO-8 are presented. It is shown that the mean profiles are redshifted with a magnitude varying from 6-20 km/s, and with a mean of 12 km/s. An apparent average downflow of material in the 50,000-100,000 K temperature range is measured. The redshifts are observed in the line center positions of spatially and temporally averaged profiles and are measured either relative to chromospheric Si I lines or from a comparison of sun center and limb profiles. The observations of 6-20 km/s redshifts place constraints on the mechanisms that dominate EUV line emission since it requires a strong weighting of the emission in regions of downward moving material, and since there is little evidence for corresponding upward moving materials in these lines.
NASA Astrophysics Data System (ADS)
Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.
2013-09-01
Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/
Constraining Both the Star-Formation History and Metal-Enrichment History of Galaxies
NASA Astrophysics Data System (ADS)
Heap, Sara
2005-07-01
Using 380 stellar spectra from Hubble's Next Generation Spectral Library {NGSL; PI=Michael Gregg; GO 9088, 9786} incorporated in our stellar population synthesis code {Bruzual & Charlot 2003}, we propose to constrain simultaneously the star-formation history and mean age, stellar metallicity and mass of galaxies over a wide redshift interval {z= 0 -2}. The main advantages of the NGSL are the high-quality spectrophotometry {S/N >50} and broad wavelength coverage {2000-10, 000 Ang} of the STIS spectra. The NGSL enables mid-UV as well as optical spectral indices to be used, thereby increasing the redshift interval of their application. It also guarantees consistency in treating low- and high-redshift galaxies, since the same stars are used as spectral templates. To realize the full potential of the NGSL, however, will require significant custom data-processing, calibration, and evaluation of the STIS data.
Understanding The Heating And Cooling Of Galaxies Over Cosmic Time With BLISS on SPICA
NASA Astrophysics Data System (ADS)
Armus, Lee; Helou, G.; Bradford, M.; Murphy, E.; Appleton, P.
2011-05-01
In order to gain a comprehensive picture of galaxy evolution, we need to accurately measure the growing population of stars and super-massive black holes in dark matter halos. The processes that regulate this evolution are invariably those that are the most difficult to simulate, namely gas heating and cooling, star formation, black hole fueling and feedback from supernovae and AGN. Measurements of the PAH features, atomic fine-structure and H2 lines in the mid-infrared with Spitzer have been used successfully to probe the dust properties, power sources and state of the ISM in normal, starburst and AGN host galaxies at 0 < z < 3. At high redshifts, these lines enter the far-infrared, which is also home to critical diagnostics of the neutral and ionized ISM, such as [OI], [OIII], [NII], and [CII]. Recent results from Herschel, CSO, IRAM and APEX suggest that there is an extremely large range in far-infrared line fluxes and physical conditions among the most luminous, high-z galaxies. However, to measure the rest-frame far-infrared cooling lines in galaxies that dominate the far-infrared background, along with the full suite of mid-infrared atomic and molecular gas and dust features in ULIRGs over a wide range in redshift, a broadband spectrometer capable of reaching the natural astrophysical background over the 30-400 micron range is required. The Background Limited Infrared Sub-millimeter Spectrometer (BLISS) on the Japanese-led SPICA mission, would deliver unmatched sensitivity to evolving, dusty galaxies over all epochs. Here we discuss the scientific rationale behind BLISS and the opportunities afforded by US participation in the SPICA mission.
NASA Astrophysics Data System (ADS)
Iglesias-Groth, S.; Díaz-Sánchez, A.; Rebolo, R.; Dannerbauer, H.
2017-05-01
We present results from a near-/mid-IR search for submillimetre galaxies over a region of 6230 deg2 of the southern sky. We used a cross-correlation of the VISTA Hemispheric Survey (VHS) and the WISE data base to identify bright galaxies (Ks ≤ 18.2) with near-/mid-IR colours similar to those of the high-redshift lensed submm galaxy SMM J2135-0102. We find seven galaxies that fulfil all five adopted near-/mid-IR colour (NMIRQC) criteria and resemble the SED of the reference galaxy at these wavelengths. For these galaxies, which are broadly distributed in the sky, we determined photometric redshifts in the range z = 1.6-3.2. We searched the VHS for clusters of galaxies, which may be acting as gravitational lenses, and found that six out of the seven galaxies are located within 3.5 arcmin of a cluster/group of galaxies. Using the J-Ks versus J sequences, we determine photometric redshifts for these clusters/groups in the range z = 0.2-0.9. We propose the newly identified sources are ultrabright high-redshift lensed SMG candidates. Follow-up observations in the submm and mm are key to determine the ultimate nature of these objects.
Observing the high redshift Universe with Euclid
NASA Astrophysics Data System (ADS)
Laureijs, René; Euclid Collaboration
2018-05-01
Euclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ~260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid's standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data
Kyle S. Dawson
2016-02-04
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Lastly, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle S. Dawson
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of d A(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Lastly, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less
Evolution of the degree of substructures in simulated galaxy clusters
NASA Astrophysics Data System (ADS)
De Boni, Cristiano; Böhringer, Hans; Chon, Gayoung; Dolag, Klaus
2018-05-01
We study the evolution of substructure in the mass distribution with mass, redshift and radius in a sample of simulated galaxy clusters. The sample, containing 1226 objects, spans the mass range M200 = 1014 - 1.74 × 1015 M⊙ h-1 in six redshift bins from z = 0 to z = 1.179. We consider three different diagnostics: 1) subhalos identified with SUBFIND; 2) overdense regions localized by dividing the cluster into octants; 3) offset between the potential minimum and the center of mass. The octant analysis is a new method that we introduce in this work. We find that none of the diagnostics indicate a correlation between the mass of the cluster and the fraction of substructures. On the other hand, all the diagnostics suggest an evolution of substructures with redshift. For SUBFIND halos, the mass fraction is constant with redshift at Rvir, but shows a mild evolution at R200 and R500. Also, the fraction of clusters with at least a subhalo more massive than one thirtieth of the total mass is less than 20%. Our new method based on the octants returns a mass fraction in substructures which has a strong evolution with redshift at all radii. The offsets also evolve strongly with redshift. We also find a strong correlation for individual clusters between the offset and the fraction of substructures identified with the octant analysis. Our work puts strong constraints on the amount of substructures we expect to find in galaxy clusters and on their evolution with redshift.
NASA Astrophysics Data System (ADS)
Marinoni, Christian; Davis, Marc; Newman, Jeffrey A.; Coil, Alison L.
2002-11-01
We have developed a new geometrical method for identifying and reconstructing a homogeneous and highly complete set of galaxy groups within flux-limited redshift surveys. Our method combines information from the three-dimensional Voronoi diagram and its dual, the Delaunay triangulation, to obtain group and cluster catalogs that are remarkably robust over wide ranges in redshift and degree of density enhancement. As free by-products, this Voronoi-Delaunay method (VDM) provides a nonparametric measurement of the galaxy density around each object observed and a quantitative measure of the distribution of cosmological voids in the survey volume. In this paper, we describe the VDM algorithm in detail and test its effectiveness using a family of mock catalogs that simulate the Deep Extragalactic Evolutionary Probe (DEEP2) Redshift Survey, which should present at least as much challenge to cluster reconstruction methods as any other near-future survey that is capable of resolving their velocity dispersions. Using these mock DEEP2 catalogs, we demonstrate that the VDM algorithm can be used to identify a homogeneous set of groups in a magnitude-limited sample throughout the survey redshift window 0.7
Clustering of High-Redshift Quasars
NASA Astrophysics Data System (ADS)
Timlin, John D., III
In this work, we investigate the clustering of faint quasars in the early Universe and use the clustering strength to gain a better understanding of quasar feedback mechanisms and the growth of central supermassive black holes at early times in the history of the Universe. It has long been understood (e.g., Hopkins et al. 2007a) that the clustering of distant quasars can be used as a probe of different feedback models; however, until now, there was no sample of faint, high-redshift quasars with sufficient density to accurately measure the clustering strength. Therefore we conducted a new survey to increase the number density of these objects. Here, we describe the Spitzer -IRAC Equatorial Survey (SpIES) which is a moderately deep, large-area Spitzer survey which was designed to discover faint, high-redshift (2.9 ≤ z ≤ 5.1) quasars. SpIES spans 115 deg 2 in the equatorial "Stripe 82" region of the Sloan Digital Sky Survey (SDSS) and probes to 5sigma depths of 6.13 microJy (21.93 AB magnitude) and 5.75 microJy (22.0 AB magnitude) at 3.6 and 4.5 microns. At these depths, SpIES is able to observe faint quasars, and we show that SpIES recovers 94% of the high-redshift (z ≥ 3.5), spectroscopically-confirmed quasars that lie within its footprint. SpIES is also ideally located on Stripe 82 for two reasons: It surrounds existing infrared data from the Spitzer-HETDEX Exploratory Large-area (SHELA) survey which increases the area of infrared coverage, and there is a wide range of multi-wavelength, multi-epoch ancillary data on Stripe 82 which we can use together to select high-redshift quasar candidates. To photometrically identify quasar candidates, we combined the optical data from the Sloan Digital Sky Survey and the infrared data from SpIES and SHELA and employed three machine learning algorithms. These algorithms were trained on the optical/infrared colors of known, high-redshift quasars. Using this method, we generate a sample of 1378 objects that are both faint (i ≥ 20.2) and high-redshift (2.9 ≤ z ≤ 5.1) which we use to compute the angular two-point correlation function. We fit a single power-law model with an index of delta = 1.39 +/- 0.618 and amplitude of theta0 = 0.71 +/- 0.546 arcmin to the correlation function, as well as a dark matter model with a bias of b = 6.78 +/- 1.79. The bias in our investigation suggests a model of quasar feedback that considers quasar activity as an intermittent phase in galaxy evolution. If this model is correct, quasar feedback is strong enough to periodically halt the accretion of gas onto the central supermassive black hole of the quasar, which shuts down quasar activity and causes the black hole to stop growing, however it is not strong enough to completely shut down the quasar in the early Universe.
A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.
1998-01-01
The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.
A technique for using radio jets as extended gravitational lensing probes
NASA Technical Reports Server (NTRS)
Kronberg, Philipp P.; Dyer, Charles C.; Burbidge, E. Margaret; Junkkarinen, Vesa T.
1991-01-01
A new and potentially powerful method of measuring the mass of a galaxy (or dark matter concentration) which lies close in position to a background polarized radio jet is proposed. Using the fact that the polarization angle is not changed by lensing, an 'alignment-breaking parameter' is defined which is a sensitive indicator of gravitational distortion. The method remains sensitive over a wide redshift range of the gravitational lens. This technique is applied to the analysis of polarimetric observations of the jet of 3C 9 at z = 2.012, combined with a newly discovered 20.3 mag foreground galaxy at z = 0.2538 to 'weigh' the galaxy and obtain an approximate upper limit to the mass-to-light ratio.
Simulating the large-scale structure of HI intensity maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus
Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 2048{sup 3} particles (particle mass 1.6 × 10{sup 11} M{sub ⊙} / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (10{sup 8} M{sub ⊙} / h < M{sub halo} < 10{sup 13} M{sub ⊙} / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 ∼< z ∼< 0.9 in redshift bins of width Δ z ≈ 0.05 andmore » cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, S.L.; et al.
We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with zmore » $$_{AB}$$ < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria from 1533 deg$$^{2}$$ using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{\\alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based $$\\chi^{2}$$-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z $$\\sim$$ 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 10$^6$ - 10$^7$ years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has J$$_{AB}$$ = 19.75 is the second most luminous quasar known with z > 6.5.« less
NASA Astrophysics Data System (ADS)
Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.
2017-01-01
We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.
NASA Astrophysics Data System (ADS)
O'Donoghue, Aileen A.; Haynes, Martha P.; Koopmann, Rebecca A.; Jones, Michael G.; Hallenbeck, Gregory L.; Giovanelli, Riccardo; Hoffman, Lyle; Craig, David W.; Undergraduate ALFALFA Team
2017-01-01
We have completed three “Harvesting ALFALFA” Arecibo observing programs in the direction of the Pisces-Perseus Supercluster (PPS) since ALFALFA observations were finished in 2012. The first was to perform follow-up observations on high signal-to-noise (S/N > 6.5) ALFALFA detections needing confirmation and low S/N sources lacking optical counterparts. A few more high S/N objects were observed in the second program along with targets visually selected from the Sloan Digital Sky Survey (SDSS). The third program included low S/N ALFALFA sources having optical counterparts with redshifts that were unknown or differed from the ALFALFA observations. It also included more galaxies selected from SDSS by eye and by Structured Query Language (SQL) searches with parameters intended to select galaxies at the distance of the PPS (~6,000 km/s). We used pointed basic Total-Power Position-Switched Observations in the 1340 - 1430 MHz ALFALFA frequency range. For sources of known redshift, we used the Wideband Arecibo Pulsar Processors (WAPP’s) , while for sources of unknown redshift we utilized a hybrid/dual bandwidth Doppler tracking mode using the Arecibo Interim 50-MHz Correlator with 9-level sampling.Results confirmed that a few high S/N ALFALFA sources are spurious as expected from the work of Saintonge (2007), low S/N ALFALA sources lacking an optical counterpart are all likely to be spurious, but low S/N sources with optical counterparts are generally reliable. Of the optically selected sources, about 80% were detected and tended to be near the distance of the PPS.This work has been supported by NSF grant AST-1211005.
NASA Technical Reports Server (NTRS)
Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Gronwall, Chile Caryl; Ciardullo, Robin; Lai, Kamson
2011-01-01
We present a rest-frame ultraviolet morphological analysis of 108 z = 2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z = 3.1 . Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field surveys, we measure the size and photometric component distributions, where photo- metric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii < 2 kpc, but the median half-light radius rises from 0.97 kpc at z = 3.1 to 1.41 kpc at z = 2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of mUlti-component systems. In the z = 2.1 LAE sample, we see clear correlations between the LAE size and other physical properties derived from its SED. LAEs are found to be larger for galaxies with larger stellar mass, larger star formation rate, and larger dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at that redshift, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lya emission.
NASA Technical Reports Server (NTRS)
Livermore, R. C.; Jones, T.; Richard, J.; Bower, R. G.; Ellis, R. S.; Swinbank, A. M.; Rigby, J. R.; Smail, Ian; Arribas, S.; Rodriguez-Zaurin, J.;
2013-01-01
We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Ha emission in a sample of eight gravitationally lensed galaxies at z = 1-1.5. The magnification caused by the foreground clusters enables us to obtain a median source plane spatial resolution of 360 pc, as well as providing magnifications in flux ranging from approximately 10× to approximately 50×. This enables us to identify resolved star-forming HII regions at this epoch and therefore study their Ha luminosity distributions for comparisons with equivalent samples at z approximately 2 and in the local Universe. We find evolution in the both luminosity and surface brightness of HII regions with redshift. The distribution of clump properties can be quantified with an HII region luminosity function, which can be fit by a power law with an exponential break at some cut-off, and we find that the cut-off evolves with redshift. We therefore conclude that 'clumpy' galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves follow similar scaling relations to those at z = 0, but their HII regions are larger and brighter and thus appear as clumps which dominate the morphology of the galaxy. A simple theoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc shows that the clumpy morphologies of high-z galaxies are driven by the competing effects of higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclic frequencies which stabilize the disc.
Analysis of the SFR-M∗ plane at z < 3: single fitting versus multi-Gaussian decomposition
NASA Astrophysics Data System (ADS)
Bisigello, L.; Caputi, K. I.; Grogin, N.; Koekemoer, A.
2018-01-01
The analysis of galaxies on the star formation rate-stellar mass (SFR-M∗) plane is a powerful diagnostic for galaxy evolution at different cosmic times. We consider a sample of 24 463 galaxies from the CANDELS/GOODS-S survey to conduct a detailed analysis of the SFR-M∗ relation at redshifts re than three dex in stellar mass. To obtain SFR estimates, we utilise mid- and far-IR photometry when available, and rest-UV fluxes for all the other galaxies. We perform our analysis in different redshift bins, with two different methods: 1) a linear regression fitting of all star-forming galaxies, defined as those with specific SFRs log 10(sSFR/ yr-1) > -9.8, similarly to what is typically done in the literature; 2) a multi-Gaussian decomposition to identify the galaxy main sequence (MS), the starburst sequence and the quenched galaxy cloud. We find that the MS slope becomes flatter when higher stellar mass cuts are adopted, and that the apparent slope change observed at high masses depends on the SFR estimation method. In addition, the multi-Gaussian decomposition reveals the presence of a starburst population which increases towards low stellar masses and high redshifts. We find that starbursts make up 5% of all galaxies at z = 0.5-1.0, while they account for 16% of galaxies at 2
Glimpsing the imprint of local environment on the galaxy stellar mass function
NASA Astrophysics Data System (ADS)
Tomczak, Adam R.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy R.; Wu, Po-Feng; Holden, Bradford; Kocevski, Dale D.; Mei, Simona; Pelliccia, Debora; Rumbaugh, Nicholas; Shen, Lu
2017-12-01
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 109 M⊙. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct three-dimensional density maps between 0.55 < z < 1.3 using a Voronoi tessellation approach. We find that the shape of the SMF depends strongly on local environment exhibited by a smooth, continual increase in the relative numbers of high- to low-mass galaxies towards denser environments. A straightforward implication is that local environment proportionally increases the efficiency of (a) destroying lower mass galaxies and/or (b) growth of higher mass galaxies. We also find a presence of this environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments, we devise a simple semi-empirical model. The model begins with a sample of ≈106 galaxies at zstart = 5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to zfinal = 0.8 following empirical prescriptions for star-formation, quenching and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).
Dense magnetized plasma associated with a fast radio burst.
Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K
2015-12-24
Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.
LOFAR-Boötes: properties of high- and low-excitation radio galaxies at 0.5 < z < 2.0
NASA Astrophysics Data System (ADS)
Williams, W. L.; Calistro Rivera, G.; Best, P. N.; Hardcastle, M. J.; Röttgering, H. J. A.; Duncan, K. J.; de Gasperin, F.; Jarvis, M. J.; Miley, G. K.; Mahony, E. K.; Morabito, L. K.; Nisbet, D. M.; Prandoni, I.; Smith, D. J. B.; Tasse, C.; White, G. J.
2018-04-01
This paper presents a study of the redshift evolution of radio-loud active galactic nuclei (AGN) as a function of the properties of their galaxy hosts in the Boötes field. To achieve this we match low-frequency radio sources from deep 150-MHz LOFAR (LOw Frequency ARray) observations to an I-band-selected catalogue of galaxies, for which we have derived photometric redshifts, stellar masses, and rest-frame colours. We present spectral energy distribution (SED) fitting to determine the mid-infrared AGN contribution for the radio sources and use this information to classify them as high- versus low-excitation radio galaxies (HERGs and LERGs) or star-forming galaxies. Based on these classifications, we construct luminosity functions for the separate redshift ranges going out to z = 2. From the matched radio-optical catalogues, we select a sub-sample of 624 high power (P150 MHz > 1025 W Hz-1) radio sources between 0.5 ≤ z < 2. For this sample, we study the fraction of galaxies hosting HERGs and LERGs as a function of stellar mass and host galaxy colour. The fraction of HERGs increases with redshift, as does the fraction of sources in galaxies with lower stellar masses. We find that the fraction of galaxies that host LERGs is a strong function of stellar mass as it is in the local Universe. This, combined with the strong negative evolution of the LERG luminosity functions over this redshift range, is consistent with LERGs being fuelled by hot gas in quiescent galaxies.
Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO
NASA Astrophysics Data System (ADS)
Avila, S.; Crocce, M.; Ross, A. J.; García-Bellido, J.; Percival, W. J.; Banik, N.; Camacho, H.; Kokron, N.; Chan, K. C.; Andrade-Oliveira, F.; Gomes, R.; Gomes, D.; Lima, M.; Rosenfeld, R.; Salvador, A. I.; Friedrich, O.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Davis, C.; De Vicente, J.; Doel, P.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Hartley, W. G.; Hollowood, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Miquel, R.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Dark Energy Survey Collaboration
2018-05-01
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a 2LPT density field with an empirical halo bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range 0.45 < z < 1.4. Uncertainties introduced by so-called photometric redshifts estimators were modelled with a double-skewed-Gaussian curve fitted to the data. We populate halos with galaxies by introducing a hybrid Halo Occupation Distribution - Halo Abundance Matching model with two free parameters. These are adjusted to achieve a galaxy bias evolution b(zph) that matches the data at the 1-σ level in the range 0.6 < zph < 1.0. We further analyse the galaxy mock catalogues and compare their clustering to the data using the angular correlation function w(θ), the comoving transverse separation clustering ξμ < 0.8(s⊥) and the angular power spectrum Cℓ, finding them in agreement. This is the first large set of three-dimensional {ra,dec,z} galaxy mock catalogues able to simultaneously accurately reproduce the photometric redshift uncertainties and the galaxy clustering.
3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3
NASA Technical Reports Server (NTRS)
VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.;
2014-01-01
Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moresco, M.; Cimatti, A.; Jimenez, R.
2012-08-01
We present new improved constraints on the Hubble parameter H(z) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies ( ∼ 11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez and Loeb (2002), whose differential age evolutionmore » as a function of cosmic time directly probes H(z). We analyze the 4000 Å break (D4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H(z), and determine its change in H(z) to a precision of 5–12% mapping homogeneously the redshift range up to z ∼ 1.1; for the first time, we place a constraint on H(z) at z≠0 with a precision comparable with the one achieved for the Hubble constant (about 5–6% at z ∼ 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a ΛCDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z ∼ 2.« less
NASA Technical Reports Server (NTRS)
Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.;
2012-01-01
We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.
Is Space Really Expanding? A Counterexample
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2007-03-01
In all Friedman models, the cosmological redshift is widely interpreted as a consequence of the general-relativistic phenomenon of expansion of space. Other commonly believed consequences of this phenomenon are superluminal recession velocities of distant galaxies, and the distance to the particle horizon greater than ct (where t is the age of the Universe), in apparent conflict with special relativity. Here, we study a particular Friedman model: empty universe. This model exhibits both cosmological redshift, superluminal velocities and infinite distance to the horizon. However, we show that the cosmological redshift is there simply a relativistic Doppler shift. Moreover, apparently superluminal velocities and ‘acausal’ distance to the horizon are in fact a direct consequence of special-relativistic phenomenon of time dilation, as well as of the adopted definition of distance in cosmology. There is no conflict with special relativity, whatsoever. In particular, inertial recession velocities are subluminal. Since in the real Universe, sufficiently distant galaxies recede with relativistic velocities, these special-relativistic effects must be at least partly responsible for the cosmological redshift and the aforementioned ‘superluminalities’, commonly attributed to the expansion of space. Let us finish with a question resembling a Buddhism-Zen ‘koan’: in an empty universe, what is expanding?
NASA Astrophysics Data System (ADS)
Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Tenneti, Ananth; Bird, Simeon; Battaglia, Nicholas; Wilkins, Stephen
2015-07-01
Whether or not among the myriad tiny protogalaxies there exists a population with similarities to present-day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the first massive galaxies to form are predicted to have extensive rotationally supported disks. Although their morphology resembles in some ways Milky Way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low-redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift z = 8-10, we have found that disk galaxies make up 70% of the population of galaxies with stellar mass {10}10{M}⊙ or greater. Cold dark matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g., WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make new tests of cosmology possible.
The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
NASA Astrophysics Data System (ADS)
Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.
2017-06-01
We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R
Galaxy Evolution Across The Redshift Desert
NASA Astrophysics Data System (ADS)
Kotulla, Ralf
2010-01-01
GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.
Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, C.; Prandoni, I.; Lapi, A.
We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statisticsmore » at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.« less
VizieR Online Data Catalog: Spitzer MIR AGN survey. I. (Lacy+, 2013)
NASA Astrophysics Data System (ADS)
Lacy, M.; Ridgway, S. E.; Gates, E. L.; Nielsen, D. M.; Petric, A. O.; Sajina, A.; Urrutia, T.; Cox Drews, S.; Harrison, C.; Seymour, N.; Storrie-Lombardi, L. J.
2013-10-01
A wide range of optical facilities and instruments were used for spectroscopic follow-up of our AGN candidates. Most of the bright samples were followed up with 3-5m telescopes and longslit spectroscopy (Hale with COSMIC, SOAR with Goodman, and Shane with Kast), whereas the fainter samples were followed up with multifiber and/or 6-8m class telescopes (Blanco with Hydra, MMT with Hectospec, and Gemini-South with GMOS (program GS-2008B-C4)). We also obtained spectra of some of the bright candidates with a successful poor weather (scheduling band 4) program at Gemini-South (program GS-2008B-Q86). Some objects had spectra available in archives from the SDSS, 2dF, (Colless et al. 2001, Cat. VII/250) or 6dF (Jones et al. 2009, Cat. VII/259) surveys and some have redshifts and classifications in the literature, all found using the NASA Extragalactic Database (NED). Table 2 gives details of the spectroscopic observations or literature references as appropriate. For some high-redshift candidates with ambiguous or low signal-to-noise optical spectra, we were able to obtain near-infrared spectra with the IRTF using SpeX (2007 June), Gemini with NIRI (program GN2009B-C-8), and Triplespec (2008 July and 2011 July) on Palomar. (5 data files).
Following the Cosmic Evolution of Pristine Gas. II. The Search for Pop III–bright Galaxies
NASA Astrophysics Data System (ADS)
Sarmento, Richard; Scannapieco, Evan; Cohen, Seth
2018-02-01
Direct observational searches for Population III (Pop III) stars at high redshift are faced with the question of how to select the most promising targets for spectroscopic follow-up. To help answer this, we use a large-scale cosmological simulation, augmented with a new subgrid model that tracks the fraction of pristine gas, to follow the evolution of high-redshift galaxies and the Pop III stars they contain. We generate rest-frame ultraviolet (UV) luminosity functions for our galaxies and find that they are consistent with current z≥slant 7 observations. Throughout the redshift range 7≤slant z≤slant 15, we identify “Pop III–bright” galaxies as those with at least 75% of their flux coming from Pop III stars. While less than 1% of galaxies brighter than {m}UV,{AB}}=31.4 mag are Pop III–bright in the range 7≤slant z≤slant 8, roughly 17% of such galaxies are Pop III–bright at z = 9, immediately before reionization occurs in our simulation. Moving to z = 10, {m}UV,{AB}}=31.4 mag corresponds to larger, more luminous galaxies, and the Pop III–bright fraction falls off to 5%. Finally, at the highest redshifts, a large fraction (29% at z = 14 and 41% at z = 15) of all galaxies are Pop III–bright regardless of magnitude. While {m}UV,{AB}}=31.4 mag galaxies are extremely rare during this epoch, we find that 13% of galaxies at z = 14 are Pop III–bright with {m}UV,{AB}}≤slant 33 mag, a intrinsic magnitude within reach of the James Webb Space Telescope using lensing. Thus, we predict that the best redshift to search for luminous Pop III–bright galaxies is just before reionization, while lensing surveys for fainter galaxies should push to the highest redshifts possible.
Galaxy And Mass Assembly (GAMA): spectroscopic analysis
NASA Astrophysics Data System (ADS)
Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.
2013-04-01
The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.
HIRAX: a probe of dark energy and radio transients
NASA Astrophysics Data System (ADS)
Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.
2016-08-01
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.
The 3D-HST Survey: An Introduction
NASA Astrophysics Data System (ADS)
Momcheva, Ivelina G.; Van Dokkum, P. G.; Brammer, G.; Franx, M.; Skelton, R.; Lundgren, B.; Whitaker, K. E.; 3D-HST Team
2013-01-01
3D-HST is a near-IR spectroscopic survey with the Hubble Space Telescope designed to study galaxy evolution at 1
The ASTRO-H X-ray astronomy satellite
NASA Astrophysics Data System (ADS)
Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Marshall; Bialas, Thomas; Blandford, Roger D.; Boyce, Kevin; Brenneman, Laura; Brown, Gregory; Cackett, Ed; Canavan, Edgar; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gilmore, Kirk; Guainazzi, Matteo; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Harayama, Atsushi; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishimura, Kosei; Ishisaki, Yoshitaka; Itoh, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Jewell, Chris; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kawano, Taro; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimball, Mark; Kimura, Masashi; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Konami, Saori; Kosaka, Tatsuro; Koujelev, Alexander; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, François; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Masters, Candace; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McGuinness, Daniel; McNamara, Brian; Miko, Joseph; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Moroso, Franco; Muench, Theodore; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagano, Housei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Pontius, James; Porter, F. S.; Pottschmidt, Katja; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Ricci, Claudio; Russell, Helena; Safi-Harb, Samar; Saito, Shinya; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sato, Kosuke; Sato, Rie; Sato, Goro; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiroaki; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Yoshihiro; Ueda, Shutaro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Watanabe, Tomomi; Werner, Norbert; White, Nicholas; Wilkins, Dan; Yamada, Shinya; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen; ZuHone, John
2014-07-01
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE <= 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
GOLDRUSH. III. A systematic search for protoclusters at z ˜ 4 based on the >100 deg2 area
NASA Astrophysics Data System (ADS)
Toshikawa, Jun; Uchiyama, Hisakazu; Kashikawa, Nobunari; Ouchi, Masami; Overzier, Roderik; Ono, Yoshiaki; Harikane, Yuichi; Ishikawa, Shogo; Kodama, Tadayuki; Matsuda, Yuichi; Lin, Yen-Ting; Onoue, Masafusa; Tanaka, Masayuki; Nagao, Tohru; Akiyama, Masayuki; Komiyama, Yutaka; Goto, Tomotsugu; Lee, Chien-Hsiu
2018-01-01
We conduct a systematic search for galaxy protoclusters at z ˜ 3.8 based on the latest internal data release (S16A) of the Hyper Suprime-Cam Subaru strategic program (HSC-SSP). In the Wide layer of the HSC-SSP, we investigate the large-scale projected sky distribution of g-dropout galaxies over an area of 121 deg2, and identify 216 large-scale overdense regions (>4 σ overdensity significance) that are likely protocluster candidates. Of these, 37 are located within 8΄ (3.4 physical Mpc) of other protocluster candidates of higher overdensity, and are expected to merge into a single massive structure by z = 0. Therefore, we find 179 unique protocluster candidates in our survey. A cosmological simulation that includes projection effects predicts that more than 76% of these candidates will evolve into galaxy clusters with halo masses of at least 1014 M⊙ by z = 0. The unprecedented size of our protocluster candidate catalog allows us to perform, for the first time, an angular clustering analysis of the systematic sample of protocluster candidates. We find a correlation length of 35.0 h-1 Mpc. The relation between correlation length and number density of z ˜ 3.8 protocluster candidates is consistent with the prediction of the ΛCDM model, and the correlation length is similar to that of rich clusters in the local universe. This result suggests that our protocluster candidates are tracing similar spatial structures to those expected from the progenitors of rich clusters, and enhances the confidence that our method for identifying protoclusters at high redshifts is robust. In years to come, our protocluster search will be extended to the entire HSC-SSP Wide sky coverage of ˜ 1400 deg2 to probe cluster formation over a wide redshift range of z ˜ 2-6.
Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift
NASA Astrophysics Data System (ADS)
de Barros, S.; Schaerer, D.; Stark, D. P.
2014-03-01
Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org
Intervening O vi Quasar Absorption Systems at Low Redshift: A Significant Baryon Reservoir.
Tripp; Savage; Jenkins
2000-05-01
Far-UV echelle spectroscopy of the radio-quiet QSO H1821+643 (zem=0.297), obtained with the Space Telescope Imaging Spectrograph (STIS) at approximately 7 km s-1 resolution, reveals four definite O vi absorption-line systems and one probable O vi absorber at 0.15
Understanding the Formation and Evolution of Galaxies in the Cosmic Dawn
NASA Astrophysics Data System (ADS)
Finkelstein, Steven
2015-08-01
The past decade has resulted in a dramatic proliferation of our knowledge of galaxy formation and evolution at redshifts greater than six, less than one billion years after the Big Bang. In this review talk, I will discuss the progress made via a combination of deep space and wide ground-based imaging surveys, as well as spectroscopic followup. The combination of the Hubble Space Telescope CANDELS, HUDF and HFF surveys has resulted in the discovery of more than 1000 galaxies at z > 6. By studying the rest-frame ultraviolet (UV) luminosity functions of these galaxies, we have found that the slope of the faint-end steepens with increasing redshift, to a value of -2 by z=7. Assuming that this steep slopes extends well beyond our detection limit, galaxies can produce enough ionizing photons to complete reionization by z=6. However, there are hints, both theoretical and observational, that the slope may flatten out, creating a problem for the reionization budget. At the bright end, surprises were also in store, as rather than the expected luminosity evolution, the characteristic UV luminosity L* is strangely constant from z=4-8, with some evidence from ground-based surveys that the fall off at brighter magnitudes is less severe than exponential. Although the dust (and presumably metal) content of faint galaxies has been found to decrease from z=4 to 7, the attenuation in the brightest galaxies is roughly constant across this redshift range, thus decreasing dust is likely not the culprit for the non-evolving L*. Rather, it appears as if the physics of star-formation is changing, with a likely combination of factors increasing the efficiency with which distant galaxies convert their gas into stars. Finally, while the spectroscopic followup of these galaxies has been difficult, via deep near-infrared exposures we now have 2-3 robust Lyman-alpha redshifts at z > 7.5. More troubling is the growing list of non-detections. While samples are still small, this may indicate a rapidly increasing neutral fraction, although the changing star-formation processes in these galaxies also likely play a role.
NASA Technical Reports Server (NTRS)
Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan;
2013-01-01
We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.
NASA Astrophysics Data System (ADS)
Faisst, Andreas L.; Masters, Daniel; Wang, Yun; Merson, Alexander; Capak, Peter; Malhotra, Sangeeta; Rhoads, James E.
2018-03-01
We present an empirical parameterization of the [N II]/Hα flux ratio as a function of stellar mass and redshift valid at 0 < z < 2.7 and 8.5< {log}(M/{M}ȯ )< 11.0. This description can (i) easily be applied to simulations for modeling [N II]λ6584 line emission, (ii) deblend [N II] and Hα in current low-resolution grism and narrow-band observations to derive intrinsic Hα fluxes, and (iii) reliably forecast the number counts of Hα emission-line galaxies for future surveys, such as those planned for Euclid and the Wide Field Infrared Survey Telescope (WFIRST). Our model combines the evolution of the locus on the Baldwin, Phillips & Terlevich (BPT) diagram measured in spectroscopic data out to z ∼ 2.5 with the strong dependence of [N II]/Hα on stellar mass and [O III]/Hβ observed in local galaxy samples. We find large variations in the [N II]/Hα flux ratio at a fixed redshift due to its dependency on stellar mass; hence, the assumption of a constant [N II] flux contamination fraction can lead to a significant under- or overestimate of Hα luminosities. Specifically, measurements of the intrinsic Hα luminosity function derived from current low-resolution grism spectroscopy assuming a constant 29% contamination of [N II] can be overestimated by factors of ∼8 at {log}(L)> 43.0 for galaxies at redshifts z ∼ 1.5. This has implications for the prediction of Hα emitters for Euclid and WFIRST. We also study the impact of blended Hα and [N II] on the accuracy of measured spectroscopic redshifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreras, Ignacio; Trujillo, Ignacio, E-mail: i.ferreras@ucl.ac.uk
At the core of the standard cosmological model lies the assumption that the redshift of distant galaxies is independent of photon wavelength. This invariance of cosmological redshift with wavelength is routinely found in all galaxy spectra with a precision of Δ z ∼ 10{sup −4}. The combined use of approximately half a million high-quality galaxy spectra from the Sloan Digital Sky Survey (SDSS) allows us to explore this invariance down to a nominal precision in redshift of 10{sup −6} (statistical). Our analysis is performed over the redshift interval 0.02 < z < 0.25. We use the centroids of spectral linesmore » over the 3700–6800 Å rest-frame optical window. We do not find any difference in redshift between the blue and red sides down to a precision of 10{sup −6} at z ≲ 0.1 and 10{sup −5} at 0.1 ≲ z ≲ 0.25 (i.e., at least an order of magnitude better than with single galaxy spectra). This is the first time the wavelength-independence of the (1 + z ) redshift law is confirmed over a wide spectral window at this precision level. This result holds independently of the stellar population of the galaxies and their kinematical properties. This result is also robust against wavelength calibration issues. The limited spectral resolution ( R ∼ 2000) of the SDSS data, combined with the asymmetric wavelength sampling of the spectral features in the observed restframe due to the (1 + z ) stretching of the lines, prevent our methodology from achieving a precision higher than 10{sup −5}, at z > 0.1. Future attempts to constrain this law will require high quality galaxy spectra at higher resolution ( R ≳ 10,000).« less
MARZ: Manual and automatic redshifting software
NASA Astrophysics Data System (ADS)
Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.
2016-04-01
The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.
A high deuterium abundance at redshift z = 0.7.
Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V
1997-07-17
Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.
OzDES multifibre spectroscopy for the Dark Energy Survey: First-year operation and results
Yuan, Fang
2015-07-29
The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxiesmore » and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as m r = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. In conclusion, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.« less
OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results
NASA Astrophysics Data System (ADS)
Yuan, Fang; Lidman, C.; Davis, T. M.; Childress, M.; Abdalla, F. B.; Banerji, M.; Buckley-Geer, E.; Carnero Rosell, A.; Carollo, D.; Castander, F. J.; D'Andrea, C. B.; Diehl, H. T.; Cunha, C. E.; Foley, R. J.; Frieman, J.; Glazebrook, K.; Gschwend, J.; Hinton, S.; Jouvel, S.; Kessler, R.; Kim, A. G.; King, A. L.; Kuehn, K.; Kuhlmann, S.; Lewis, G. F.; Lin, H.; Martini, P.; McMahon, R. G.; Mould, J.; Nichol, R. C.; Norris, R. P.; O'Neill, C. R.; Ostrovski, F.; Papadopoulos, A.; Parkinson, D.; Reed, S.; Romer, A. K.; Rooney, P. J.; Rozo, E.; Rykoff, E. S.; Sako, M.; Scalzo, R.; Schmidt, B. P.; Scolnic, D.; Seymour, N.; Sharp, R.; Sobreira, F.; Sullivan, M.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Wechsler, R. H.; Wester, W.; Wilcox, H.; Zhang, B.; Abbott, T.; Allam, S.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carrasco Kind, M.; Covarrubias, R.; Crocce, M.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; Marshall, J.; Miller, C. J.; Miquel, R.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.
2015-09-01
The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as mr = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey.
Digging for the Truth: Photon Archeology with GLAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stecker, F. W.
2007-07-12
Stecker, Malkan and Scully, have shown how ongoing deep surveys of galaxy luminosity functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities for energies from 0.03 eV to the Lyman limit at 13.6 eV and for redshifts out to 6 (called here the intergalactic background light or IBL). From these calculations of the IBL at various redshifts, they predict the present and past optical depth of the universe to high energy {gamma}-rays owing to interactions with photons of the IBL and the 2.7 K CMB.more » We discuss here how this proceedure can be reversed by looking for sharp cutoffs in the spectra of extragalactic {gamma}-ray sources such as blazars at high redshifts in the multi-GeV energy range with GLAST (Gamma-Ray Large Are Space Telescope). By determining the cutoff energies of sources with known redshifts, we can refine our determination of the IBL photon densities in the past, i.e., the archeo-IBL, and therefore get a better measure of the past history of the total star formation rate. Conversely, observations of sharp high energy cutoffs in the {gamma}-ray spectra of sources at unknown redshifts can be used instead of spectral lines to give a measure of their redshifts.« less
NASA Astrophysics Data System (ADS)
Masters, Daniel C.; Stern, Daniel; Cohen, Judy; Capak, Peter
2018-01-01
A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field. Doing so will require accurate redshifts to the billions of galaxies that comprise the weak lensing samples of these surveys; achieving the required accuracy is a “tall pole” challenge for both missions. Here we present the ongoing Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to Euclid depth. C3R2 is an ambitious Keck spectroscopy program, with a survey design based on a machine learning technique that allows us to optimally select the most important galaxies to sample the full range of galaxy colors. C3R2 is a multi-center program with time from all the primary Keck partners (Caltech, UC, Hawaii, and NASA), with a total of 34.5 Keck nights allocated to this project. Data Release 1, including 1283 high-confidence spectroscopic redshifts, is published as Masters, Stern, Cohen, Capak, et al. (2017), and we are currently completing Data Release 2, which will include >2000 additional high-confidence spectroscopic redshifts (Masters et al., in prep.). We will discuss current results and prospects for the survey going forward.
Photometric redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1
NASA Astrophysics Data System (ADS)
Tanaka, Masayuki; Coupon, Jean; Hsieh, Bau-Ching; Mineo, Sogo; Nishizawa, Atsushi J.; Speagle, Joshua; Furusawa, Hisanori; Miyazaki, Satoshi; Murayama, Hitoshi
2018-01-01
Photometric redshifts are a key component of many science objectives in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). In this paper, we describe and compare the codes used to compute photometric redshifts for HSC-SSP, how we calibrate them, and the typical accuracy we achieve with the HSC five-band photometry (grizy). We introduce a new point estimator based on an improved loss function and demonstrate that it works better than other commonly used estimators. We find that our photo-z's are most accurate at 0.2 ≲ zphot ≲ 1.5, where we can straddle the 4000 Å break. We achieve σ[Δzphot/(1 + zphot)] ˜ 0.05 and an outlier rate of about 15% for galaxies down to i = 25 within this redshift range. If we limit ourselves to a brighter sample of i < 24, we achieve σ ˜ 0.04 and ˜8% outliers. Our photo-z's should thus enable many science cases for HSC-SSP. We also characterize the accuracy of our redshift probability distribution function (PDF) and discover that some codes over-/underestimate the redshift uncertainties, which has implications for N(z) reconstruction. Our photo-z products for the entire area in Public Data Release 1 are publicly available, and both our catalog products (such as point estimates) and full PDFs can be retrieved from the data release site, "https://hsc-release.mtk.nao.ac.jp/".
Cosmic Reionization on Computers: Properties of the Post-reionization IGM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.; Becker, George D.; Fan, Xiaohui
Here, we present a comparison between several observational tests of the post-reionization IGM and the numerical simulations of reionization completed under the Cosmic Reionization On Computers (CROC) project. The CROC simulations match the gap distribution reasonably well, and also provide a good match for the distribution of peak heights, but there is a notable lack of wide peaks in the simulated spectra and the flux PDFs are poorly matched in the narrow redshift interval 5.5 < z < 5.7, with the match at other redshifts being significantly better, albeit not exact. Both discrepancies are related: simulations show more opacity thanmore » the data.« less
Cosmic Reionization on Computers: Properties of the Post-reionization IGM
Gnedin, Nickolay Y.; Becker, George D.; Fan, Xiaohui
2017-05-19
Here, we present a comparison between several observational tests of the post-reionization IGM and the numerical simulations of reionization completed under the Cosmic Reionization On Computers (CROC) project. The CROC simulations match the gap distribution reasonably well, and also provide a good match for the distribution of peak heights, but there is a notable lack of wide peaks in the simulated spectra and the flux PDFs are poorly matched in the narrow redshift interval 5.5 < z < 5.7, with the match at other redshifts being significantly better, albeit not exact. Both discrepancies are related: simulations show more opacity thanmore » the data.« less
Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers
NASA Astrophysics Data System (ADS)
Paterno-Mahler, Rachel Beth
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
Instrumental and Calibration Advancements for the Dark Ages Radio Explorer (DARE)
NASA Astrophysics Data System (ADS)
Monsalve, Raul A.; Burns, Jack O.; Bradley, Richard F.; Tauscher, Keith; Nhan, Bang; Bowman, Judd D.; Purcell, William R.; Newell, David; Draper, David
2017-01-01
The Dark Ages Radio Explorer (DARE) is a space mission concept proposed to NASA to measure with high precision the monopole component of the redshifted 21-cm signal from neutral hydrogen originated during cosmic dawn at redshifts 35 > z > 11. For the 21-cm line, these high redshifts correspond to the frequency range 40-120 MHz. Through its spectral features, this signal will provide a wealth of information about the large-scale physics of the first stars, galaxies and black holes. The signal is expected to have an absolute amplitude below 200 mK, which is five orders of magnitude smaller than the diffuse foregrounds dominated by Galactic synchrotron radiation. In order to avoid the impact of the Earth’s ionosphere, which corrupts low-frequency radio waves through refraction, absorption, and emission, this measurement is conducted from orbit above the far side of the Moon. This location is ideal because it enables the Moon to shield the spacecraft from Solar radiation and terrestrial radio-frequency interference. The DARE instrument is designed around a dual-polarization, widefield, wideband, biconical antenna, which provides full-Stokes capabilities in order to measure and remove the low-level polarized component of the foregrounds. The spacecraft is rotated about its boresight axis at 1 RPM to modulate the foregrounds and separate them from the spatially uniform cosmological signal. The instrument requires exquisite calibration to reach a sensitivity of a few mK in the presence of strong foregrounds. For this purpose, the frequency-dependent antenna beam is characterized to 20 ppm. This is accomplished through a combination of electromagnetic simulations, anechoic chamber measurements, and on-orbit mapping using a calibrated high-power ground-based source. The DARE front-end receiver is characterized on the ground in terms of its input impedance, gain, noise properties, and stability. Its performance is verified when operating on-orbit at a fixed temperature, through bidirectional injection of pilot frequency tones that also allow to verify the stability of the antenna. All these instrumental and calibration advancements allow to precisely measure and characterize a wide range cosmological models.
X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey
NASA Astrophysics Data System (ADS)
Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji
2018-01-01
We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.
NASA Astrophysics Data System (ADS)
Chapin, Edward L.; Pope, Alexandra; Scott, Douglas; Aretxaga, Itziar; Austermann, Jason E.; Chary, Ranga-Ram; Coppin, Kristen; Halpern, Mark; Hughes, David H.; Lowenthal, James D.; Morrison, Glenn E.; Perera, Thushara A.; Scott, Kimberly S.; Wilson, Grant W.; Yun, Min S.
2009-10-01
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ~1mJy. Searching deep 1.4GHz Very Large Array (VLA) and Spitzer 3-24μm catalogues, we identify robust counterparts for 21 1.1mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of z = 2.7, somewhat higher than z = 2.0 for 850μm selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift z = 1.1460. We measure the 850μm to 1.1mm colour of our sources and do not find evidence for `850μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T, and dust emissivity indices β for the sample, concluding that existing estimates T ~ 30K and β ~ 1.75 are consistent with these new data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.; Aldering, G.; Aragon, C.
2015-02-10
We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less
Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila, S.; et al.
Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a $2LPT$ density field with an exponential bias. For each of them, a lightconemore » is constructed by the superposition of snapshots in the redshift range $0.45« less
A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodney, Steven A.; Riess, Adam G.; Jones, David O.
2012-02-10
We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing amore » full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.« less
Modelling the angular correlation function and its full covariance in photometric galaxy surveys
NASA Astrophysics Data System (ADS)
Crocce, Martín; Cabré, Anna; Gaztañaga, Enrique
2011-06-01
Near-future cosmology will see the advent of wide-area photometric galaxy surveys, such as the Dark Energy Survey (DES), that extend to high redshifts (z˜ 1-2) but give poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function w(θ), or the Cℓ power spectrum, will become the standard approach to extracting cosmological information or to studying the nature of dark energy through the baryon acoustic oscillations (BAO) probe. In this work we present a detailed model for w(θ) at large scales as a function of redshift and binwidth, including all relevant effects, namely non-linear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix, characterizing the angular correlation measurements, that takes into account the same effects as for w(θ) and also the possibility of a shot-noise component and partial sky coverage. Provided with a large-volume N-body simulation from the MICE collaboration, we built several ensembles of mock redshift bins with a sky coverage and depth typical of forthcoming photometric surveys. The model for the angular correlation and the one for the covariance matrix agree remarkably well with the mock measurements in all configurations. The prospects for a full shape analysis of w(θ) at BAO scales in forthcoming photometric surveys such as DES are thus very encouraging.
Photometric Redshifts of High-z BL Lacs from 3FGL Catalog
NASA Astrophysics Data System (ADS)
Kaur, A.; Rau, Arne; Ajello, Marco; Paliya, Vaidehi; Hartmann, Dieter; Greiner, Jochen; Bolmer, Jan; Schady, Patricia
2017-08-01
Determining redshifts for BL Lacertae (BL Lac) objects using the traditional spectroscopic method is challenging due to the absence of strong emission lines in their optical spectra. We employ the photometric dropout technique to determine redshifts for this class of blazars using the combined 13 broad-band filters from Swift-UVOT and the multi-channel imager GROND at the MPG 2.2 m telescope at ESO's La Silla Observatory. The wavelength range covered by these 13 filters extends from far ultraviolet to the near-Infrared. We report results on 40 new Fermi detected BL Lacs with the photometric redshifts determinations for 5 sources, with 3FGL J1918.2-4110 being the most distance in our sample at z=2.16. Reliable upper limits are provided for 20 sources in this sample. Using the highest energy photons for these Fermi-LAT sources, we evaluate the consistency with the Gamma-ray horizon due to the extragalactic background light.
Photometric Redshifts for the Large-Area Stripe 82X Multiwavelength Survey
NASA Astrophysics Data System (ADS)
Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; STRIPE 82X
2016-06-01
The Stripe 82X survey currently includes 6000 X-ray sources in 31.3 square degrees of XMM-Newton and Chandra X-ray coverage, most of which are AGN. Using a maximum-likelihood approach, we identified optical and infrared counterparts in the SDSS, VHS K-band and WISE W1-band catalogs. 1200 objects which had different best associations in different catalogs were checked by eye. Our most recent paper provided the multiwavelength catalogs for this sample. More than 1000 counterparts have spectroscopic redshifts, either from SDSS spectroscopy or our own follow-up program. Using the extensive multiwavelength data in this field, we provide photometric redshift estimates for most of the remaining sources, which are 80-90% accurate according to the training set. Our sample has a large number of candidates that are very faint in optical and bright in IR. We expect a large fraction of these objects to be the obscured AGN sample we need to complete the census on black hole growth at a range of redshifts.
Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.
2018-01-01
We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.
Recovering a redshift-extended varying speed of light signal from galaxy surveys
NASA Astrophysics Data System (ADS)
Salzano, Vincenzo
2017-04-01
We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade by Salzano, Dąbrowski, and Lazkoz [Phys. Rev. Lett.114, 101304 (2015), 10.1103/PhysRevLett.114.101304; Phys. Rev. D 93, 063521 (2016), 10.1103/PhysRevD.93.063521], where it was argued that such a signal could be detected at a single redshift location only. Here, we show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, WFirst-2.4 and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (baryon acoustic oscillations) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a ˜1 % VSL signal can be detected at 3 σ confidence level in the redshift interval z ∈[0. ,1.55 ]. Smaller signals (˜0.1 % ) will be hardly detected (even if some lower possibility for a 1 σ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a 0.01-order curvature in the same redshift range with a very high confidence.
Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data
NASA Astrophysics Data System (ADS)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo
2011-11-01
We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 < z < 0.9 in a search for luminous compact blue galaxies (LCBGs). Unlike traditional studies of galaxy clusters, we preferentially targeted blue cluster members identified via multi-band photometric pre-selection based on imaging data from the WIYN telescope. Of the 1288 sources that we targeted, we determined secure spectroscopic redshifts for 848 sources, yielding a total success rate of 66%. Our redshift measurements are in good agreement with those previously reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Probing the distance-duality relation with high- z data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holanda, R.F.L.; Busti, V.C.; Lima, F.S.
2017-09-01
Measurements of strong gravitational lensing jointly with type Ia supernovae (SNe Ia) observations have been used to test the validity of the cosmic distance duality relation (CDDR), D{sub L}( z )/[(1+ z ){sup 2D{sub A}}( z )]=η=1, where D{sub L}(z) and D{sub A}(z) are the luminosity and the angular diameter distances to a given redshift z , respectively. However, several lensing systems lie in the interval 1.4 ≤ z ≤ 3.6 i.e., beyond the redshift range of current SNe Ia compilations ( z ≈ 1.50), which prevents this kind of test to be fully explored. In this paper, we circumventmore » this problem by testing the CDDR considering observations of strong gravitational lensing along with SNe Ia and (a subsample from) the latest gamma-ray burst distance modulus data, whose redshift range is 0.033 ≤ z ≤ 9.3. We parameterize their luminosity distances with a second degree polynomial function and search for possible deviations from the CDDR validity by using four different η( z ) functions: η( z )=1+η{sub 0z}, η( z )=1+η{sub 0z}/(1+ z ), η( z )=(1+ z ){sup η{sub 0}} and η( z )=1+η{sub 0ln}(1+ z ). Unlike previous tests done at redshifts lower than 1.50, the likelihood for η{sub 0} depends strongly on the η( z ) function considered, but we find no significant deviation from the CDDR validity (η{sub 0}=0). However, our analyses also point to the fact that caution is needed when one fits data in higher redshifts to test the CDDR as well as a better understanding of the mass distribution of lenses also is required for more accurate results.« less
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2015-06-01
Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the figure of merit as a function of median redshift is higher for the 3D SFB method than for the 2D tomographic method. Conclusions: Constraints from the 3D SFB analysis are less sensitive to unavoidable systematics stemming from a redshift- and scale-dependent galaxy bias. Even for surveys that are optimised with tomography in mind, a 3D SFB analysis is more powerful. In addition, for survey optimisation, the figure of merit for the 3D SFB method increases more rapidly with redshift, especially at higher redshifts, suggesting that the 3D SFB method should be preferred for designing and analysing future wide-field spectroscopic surveys. CosmicPy, the Python package developed for this paper, is freely available at https://cosmicpy.github.io. Appendices are available in electronic form at http://www.aanda.org
SpIES: The Spitzer IRAC Equatorial Survey
NASA Technical Reports Server (NTRS)
Timlin, John D.; Ross, Nicholas P.; Richards, Gordon, T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz, E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat;
2016-01-01
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of approx.115 sq deg in the Equatorial SDSS Stripe 82 field using Spitzer during its "warm" mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > or = 3 to test various models for "feedback" from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > or = 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5 sigma depths of 6.13 µJy (21.93 AB magnitude) and 5.75 µJy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively-depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (approx.98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > or = 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 microns only detection catalog containing approx. 6.1 million sources, a 4.5 microns only detection catalog containing approx. 6.5 million sources, and a dual-band detection catalog containing approx. 5.4 million sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez, A.; Siana, B.; Masters, D.
Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sunmore » }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.« less
X-ray aspects of the DAFT/FADA clusters
NASA Astrophysics Data System (ADS)
Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.
2012-12-01
We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.
Compton thick active galactic nuclei in Chandra surveys
NASA Astrophysics Data System (ADS)
Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian
2014-09-01
We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model, and that this factor increases with redshift, consistent with an increase in the obscured fraction towards higher redshifts. The strong relationship between the parameters of obscuration and LX points towards an origin intrinsic to the AGN; however, the increase of the covering factor with redshift may point towards contributions to the obscuration by the host galaxy. We make NH, Γ (with uncertainties), observed X-ray fluxes and intrinsic 2-10 keV luminosities for all sources analysed in this work publicly available in an online catalogue.
THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Kyle S.; Bautista, Julian E.; Kneib, Jean-Paul
In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less
Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2016-06-20
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc –1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less
Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal
NASA Astrophysics Data System (ADS)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2016-06-01
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ˜ 10-15 only extends to < {{Δ }}{T}B> ˜ -25 {{mK}}, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%-50% at scales k ˜ 0.1-1h Mpc-1. This scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.
Substructures in DAFT/FADA survey clusters based on XMM and optical data
NASA Astrophysics Data System (ADS)
Durret, F.; DAFT/FADA Team
2014-07-01
The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.
The Stellar Mass Assembly of Galaxies at z=1 -- New Results from Subaru
NASA Astrophysics Data System (ADS)
Bundy, K.; Fukugita, M.; Ellis, R.; Conselice, C.; Kodama, T.; Brinchmann, J.
2002-12-01
We report on progress made analyzing deep CISCO K' imaging of well-studied HST redshift survey fields to determine the mass accretion and merger rates of field galaxies out to z ~1. Using an approach similar to that employed by Le Fevre et al. 2000, we find a field-corrected infrared pair fraction of 15% +/- 8% in the z ~ 0.5 to 1 redshift range. This is lower than the result of an equivalent analysis performed on WFPC2-814 images of the same fields, which delivers a pair fraction of 24% +/- 10% over the identical redshift range. Although currently marginal, this result supports the contention that optical pair fractions are inflated by associated star formation and that IR data will be more reliable in tracing the mass assembly history. Future observations will extend this sample beyond the 89 galaxies studied so far, allowing us to test this hypothesis more rigorously. We also report on a comparison between pair fraction and morphological type as wells as estimates of the stellar mass of companion galaxies, used to determine the time-dependent mass accretion rate.
Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc –1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less
Characterizing the Young Galaxies at Cosmic Dawn
NASA Astrophysics Data System (ADS)
Zheng, Wei
2013-10-01
We propose to analyze the data of the Hubble Frontier Fields, in order to discover and study galaxies at the highest redshifts and to an unprecedented depth. The redshift range of z 10-12 marks the beginning of the IGM reionization and remains as HST's last frontier. In the framework of the CLASH and related projects, our team has succeeded in finding the most distant galaxies. We will carry out a systematic search for galaxy candidates at z 10-12 in the proposed deep observations. At this redshift range, most of the spectral features are shifted longward of the WFC3/IR bands, and additional data are therefore needed in order to secure the candidates and study their intrinsic properties. We will {1} obtain deep photometry in complementary ground-based K-band observations; {2} estimate the global star-formation rate density; {3} measure the sources' UV continuum slope and {4} carry out ALMA observations to study the dust content. Finally, we will estimate the effect of these young galaxies in ionizing the IGM. Our study will serve as an ideal bridge between HST and JWST in exploring the cosmic dawn.
Compact stars in the non-minimally coupled electromagnetic fields to gravity
NASA Astrophysics Data System (ADS)
Sert, Özcan
2018-03-01
We investigate the gravitational models with the non-minimal Y(R)F^2 coupled electromagnetic fields to gravity, in order to describe charged compact stars, where Y( R) denotes a function of the Ricci curvature scalar R and F^2 denotes the Maxwell invariant term. We determine two parameter family of exact spherically symmetric static solutions and the corresponding non-minimal model without assuming any relation between energy density of matter and pressure. We give the mass-radius, electric charge-radius ratios and surface gravitational redshift which are obtained by the boundary conditions. We reach a wide range of possibilities for the parameters k and α in these solutions. Lastly we show that the models can describe the compact stars even in the more simple case α =3.
[Fe II] emissions associated with the young interacting binary UY Aurigae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyo, Tae-Soo; Hayashi, Masahiko; Beck, Tracy L.
We present high-resolution 1.06-1.28 μm spectra toward the interacting binary UY Aur obtained with GEMINI/NIFS and the adaptive optics system Altair. We have detected [Fe II] λ1.257 μm and He I λ1.083 μm lines from both UY Aur A (the primary source) and UY Aur B (the secondary). In [Fe II] UY Aur A drives fast and widely opening outflows with an opening angle of ∼90° along a position angle of ∼40°, while UY Aur B is associated with a redshifted knot. The blueshifted and redshifted emissions show a complicated structure between the primary and secondary. The radial velocities ofmore » the [Fe II] emission features are similar for UY Aur A and B: ∼ –100 km s{sup –1} for the blueshifted emission and ∼ +130 km s{sup –1} for the redshifted component. The He I line profile observed toward UY Aur A comprises a central emission feature with deep absorptions at both blueshifted and redshifted velocities. These absorption features may be explained by stellar wind models. The He I line profile of UY Aur B shows only an emission feature.« less
A study of the discrepant QSO X-ray luminosity function from the HEAO-2 data archive
NASA Technical Reports Server (NTRS)
Margon, B.
1986-01-01
Sensitive X-ray information for approximately 90 previously uncataloged Quasi-Stellar Objects (QSOs) in the redshift range 1.8 is less than or equal to z which is less than or equal to 3. Even with the longest esixting Einstein Observatory X-ray exposures, only 25% of these objects are positively detected in X-rays. The data were used to investigate the ensemble X-ray properties of high redshift QSOs, and the QSO population in general.
The Science Advantage of a Redder Filter for WFIRST
NASA Astrophysics Data System (ADS)
Bauer, James; Stauffer, John; Milam, Stefanie N.; Holler, Bryan J.
2018-01-01
WFIRST will be capable of providing Hubble-quality imaging performance over several thousand square degrees of the sky. The wide-area, high spatial resolution survey data from WFIRST will be unsurpassed for probably many decades into the future. With the current baseline design, the WFIRST filter complement will extend from the bluest wavelength allowed by the optical design to a reddest filter (F184W) that has a red cutoff at 2.0 microns. Extension of the imaging capabilities even slightly beyond the 2.0 micron wavelength cut-off would provide significant advantages over the presently proposed science for objects both near and far. The inclusion of a Ks (2.0-2.3 micron) filter would result in a wider range and more comprehensive set of Solar System investigations. It would also extend the range of higher-redshift population studies. In this poster, we outline some of the science advantages for adding a K filter, similar in bandpass to the 2MASS Ks filter, in order to extend the wavelength range for WFIRST as far to the red as the thermal performance of the spacecraft allows.
The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani
2018-01-01
Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1
Galaxy And Mass Assembly (GAMA): end of survey report and data release 2
NASA Astrophysics Data System (ADS)
Liske, J.; Baldry, I. K.; Driver, S. P.; Tuffs, R. J.; Alpaslan, M.; Andrae, E.; Brough, S.; Cluver, M. E.; Grootes, M. W.; Gunawardhana, M. L. P.; Kelvin, L. S.; Loveday, J.; Robotham, A. S. G.; Taylor, E. N.; Bamford, S. P.; Bland-Hawthorn, J.; Brown, M. J. I.; Drinkwater, M. J.; Hopkins, A. M.; Meyer, M. J.; Norberg, P.; Peacock, J. A.; Agius, N. K.; Andrews, S. K.; Bauer, A. E.; Ching, J. H. Y.; Colless, M.; Conselice, C. J.; Croom, S. M.; Davies, L. J. M.; De Propris, R.; Dunne, L.; Eardley, E. M.; Ellis, S.; Foster, C.; Frenk, C. S.; Häußler, B.; Holwerda, B. W.; Howlett, C.; Ibarra, H.; Jarvis, M. J.; Jones, D. H.; Kafle, P. R.; Lacey, C. G.; Lange, R.; Lara-López, M. A.; López-Sánchez, Á. R.; Maddox, S.; Madore, B. F.; McNaught-Roberts, T.; Moffett, A. J.; Nichol, R. C.; Owers, M. S.; Palamara, D.; Penny, S. J.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Sharp, R.; Sutherland, W.; Vázquez-Mata, J. A.; van Kampen, E.; Wilkins, S. M.; Williams, R.; Wright, A. H.
2015-09-01
The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ˜286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm-1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sérsic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.
Real- and redshift-space halo clustering in f(R) cosmologies
NASA Astrophysics Data System (ADS)
Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder
2017-05-01
We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.
VizieR Online Data Catalog: CANDELS z~2 galaxy properties (Trump+, 2014)
NASA Astrophysics Data System (ADS)
Trump, J. R.; Barro, G.; Juneau, S.; Weiner, B. J.; Luo, B.; Brammer, G. B.; Bell, E. F.; Brandt, W. N.; Dekel, A.; Guo, Y.; Hopkins, P. F.; Koo, D. C.; Kocevski, D. D.; McIntosh, D. H.; Momcheva, I.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kartaltepe, J.; Koekemoer, A. M.; Lotz, J.; Maseda, M.; Mozena, M.; Nandra, K.; Rosario, D. J.; Zeimann, G. R.
2017-04-01
We select a sample of 44 clumpy galaxies from the Great Observatories Origins Deep Survey South (GOODS-S; Giavalisco et al. 2004ApJ...600L..93G) region of CANDELS. For comparison, we also construct mass-matched samples of 41 smooth (non-clumpy) and 35 intermediate galaxies. All galaxies have H<24 (to ensure reliable classification of clumpiness) and have [O III] detected at the 3σ level (for reliable AGN line ratio diagnostics) in the redshift range 1.3
Revisiting the bulge-halo conspiracy - II. Towards explaining its puzzling dependence on redshift
NASA Astrophysics Data System (ADS)
Shankar, Francesco; Sonnenfeld, Alessandro; Grylls, Philip; Zanisi, Lorenzo; Nipoti, Carlo; Chae, Kyu-Hyun; Bernardi, Mariangela; Petrillo, Carlo Enrico; Huertas-Company, Marc; Mamon, Gary A.; Buchan, Stewart
2018-04-01
We carry out a systematic investigation of the total mass density profile of massive (log Mstar/M⊙ ˜ 11.5) early-type galaxies and its dependence on redshift, specifically in the range 0 ≲ z ≲ 1. We start from a large sample of Sloan Digital Sky Survey early-type galaxies with stellar masses and effective radii measured assuming two different profiles, de Vaucouleurs and Sérsic. We assign dark matter haloes to galaxies via abundance matching relations with standard ΛCDM profiles and concentrations. We then compute the total, mass-weighted density slope at the effective radius γ΄, and study its redshift dependence at fixed stellar mass. We find that a necessary condition to induce an increasingly flatter γ΄ at higher redshifts, as suggested by current strong lensing data, is to allow the intrinsic stellar profile of massive galaxies to be Sérsic and the input Sérsic index n to vary with redshift as n(z) ∝ (1 + z)δ, with δ ≲ -1. This conclusion holds irrespective of the input Mstar-Mhalo relation, the assumed stellar initial mass function (IMF), or even the chosen level of adiabatic contraction in the model. Secondary contributors to the observed redshift evolution of γ΄ may come from an increased contribution at higher redshifts of adiabatic contraction and/or bottom-light stellar IMFs. The strong lensing selection effects we have simulated seem not to contribute to this effect. A steadily increasing Sérsic index with cosmic time is supported by independent observations, though it is not yet clear whether cosmological hierarchical models (e.g. mergers) are capable of reproducing such a fast and sharp evolution.
On the Redshift of TeV BL Lac Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiano, Simona; Falomo, Renato; Landoni, Marco
2017-03-10
We report results of a spectroscopic campaign carried out at the 10 m Gran Telescopio Canarias for a sample of 22 BL Lac objects detected (or candidates) at TeV energies, aiming to determine or constrain their redshift. This is of fundamental importance for the interpretation of their emission models and for population studies and is also mandatory for studying the interaction of high-energy photons with the extragalactic background light using TeV sources. Optical spectra with high signal-to-noise ratios in the range 4250–10000 Å were obtained to search for faint emission or absorption lines from both the host galaxy and themore » nucleus. We determine a new redshift for PKS 1424+240 ( z = 0.604) and a tentative one for 1ES 0033+595 ( z = 0.467). We are able to set new spectroscopic redshift lower limits for three other sources on the basis of Mg ii and Ca ii intervening absorption features: BZB J1243+3627 ( z > 0.483), BZB J1540+8155 ( z > 0.672), and BZB 0J2323+4210 ( z > 0.267). We confirm previous redshift estimates for four blazars: S3 0218+357 ( z = 0.944), 1ES 1215+303 ( z = 0.129), W Comae ( z = 0.102), and MS 1221.8+2452 ( z = 0.218). For the remaining targets, in seven cases (S2 0109+22, 3C 66A, VER J0521+211, S4 0954+65, BZB J1120+4214, S3 1227+25, BZB J2323+4210), we do not validate the proposed redshift. Finally, for all sources of still-unknown redshift, we set a lower limit based on the minimum equivalent width of absorption features expected from the host galaxy.« less
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
Durret, F.; Adami, C.; Bertin, E.; ...
2015-06-10
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durret, F.; Adami, C.; Bertin, E.
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
The K-Band Quasar Luminosity Function from an SDSS and UKIDSS Matched Catalog
NASA Astrophysics Data System (ADS)
Peth, Michael; Ross, N. P.; Schneider, D. P.
2010-01-01
We match the 1,015,082 quasars from the Sloan Digital Sky Survey (SDSS) DR6 Photometric Quasar catalog to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) DR3 to produce a catalog of 130,827 objects with optical (ugriz) and infrared (YJHK) measurements over an area of 1,200 sq. deg. A matching radius of 1'’ is used; the positional standard deviations of SDSS DR6 quasars and UKIDSS LAS is δRA = 0.137'’ and δDec = 0.131''. The catalog contains 74,351 K-band detections and 42,133 objects have coverage in all four NIR bands. In addition to the catalog, we present optical and NIR color-redshift and color-color plots. The photometric vs. spectroscopic redshift plots demonstrate how unreliable high reported photometric redshifts can be. This forces us to focus on z4.6 quasars are compared to our highest redshift objects. The giK color-color plot demonstrates that stellar contamination only affects a small sample of the objects. Distributions for Y,J,H,K and i-bands reveal insights into the flux limits in each magnitude. We investigate the distribution of redshifts from different data sets and investigate the legitimacy of certain measured photometric redshift regions. For in-depth analysis, we focus on the 300 sq. deg area equatorial SDSS region designated as Stripe 82. We measure the observed K-band quasar luminosity function (QLF) for a subset of 9,872, z<2.2 objects. We find the shape of the K-band QLF is very similar to that of the optical QLF, over the considered redshift ranges. Our calculated K-Band QLFs broadly match previous optical QLFs calculated from the SDSS and 2SLAQ QSO surveys and should provide important constraints linking unobscured optical quasars to Mid-Infrared detected, dusty and obscured AGNs at high-redshift.
NASA Astrophysics Data System (ADS)
Jones, Kristen M.; Lacy, M.; Spitzer Extragalactic Representative Volume Survey Team
2014-01-01
Little is known about the environments of high redshift quasars, particularly those obscured by dust. Previous work suggests that dust-shrouded (type 2) quasars are at least as common as un-obscured optical (type 1) quasars; therefore, in order to fully understand the role quasars play in the evolutionary history of the universe, we must understand both types of objects. This project seeks to explore the environments in which obscured quasars form. In this poster, we present mid-infrared clustering measurements for a sample of 45 quasars with 1.3 < z < 2.5, a redshift range that is unexplored in the literature. The objects were selected using IRAC multi-color criteria to remove low-redshift starburst and quiescent galaxies, and subsequently had spectroscopy carried out to both obtain redshifts, and to distinguish between type 1 and type 2 quasars; the high-redshift sample presented in this paper is roughly evenly distributed between the two types. We use the SERVS galaxy catalogs to estimate the cross-correlation between each quasar and its surrounding galaxies. The amplitude of this function gives us the richness of the environments in which these quasars are found, and we compare our results with a matched sample with z < 1.3.
NASA Astrophysics Data System (ADS)
Yu, Hai; Ratra, Bharat; Wang, Fa-Yin
2018-03-01
We compile a complete collection of reliable Hubble parameter H(z) data to redshift z ≤ 2.36 and use them with the Gaussian Process method to determine continuous H(z) functions for various data subsets. From these continuous H(z)'s, summarizing across the data subsets considered, we find H 0 ∼ 67 ± 4 km s‑1 Mpc‑1, more consistent with the recent lower values determined using a variety of techniques. In most data subsets, we see a cosmological deceleration–acceleration transition at 2σ significance, with the data subsets transition redshifts varying over 0.33< {z}da}< 1.0 at 1σ significance. We find that the flat-ΛCDM model is consistent with the H(z) data to a z of 1.5 to 2.0, depending on data subset considered, with 2σ deviations from flat-ΛCDM above this redshift range. Using the continuous H(z) with baryon acoustic oscillation distance-redshift observations, we constrain the current spatial curvature density parameter to be {{{Ω }}}K0=-0.03+/- 0.21, consistent with a flat universe, but the large error bar does not rule out small values of spatial curvature that are now under debate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Akie; Matsuoka, Yoshiki, E-mail: ichikawa@cosmos.phys.sci.ehime-u.ac.jp
We present a new analysis of the stellar mass function and morphology of recently quenched galaxies (RQGs), whose star formation has been recently quenched for some reason. The COSMOS2015 catalog was exploited to select those galaxies at 0.2 < z < 4.8, over 1.5 deg{sup 2} of the Cosmic Evolution Survey (COSMOS) UltraVISTA field. This is the first time that RQGs are consistently selected and studied in such a wide range of redshift. We find increasing number density of RQGs with time in a broad mass range at z > 1, while low-mass RQGs start to grow very rapidly atmore » z < 1. We also demonstrate that the migration of RQGs may largely drive the evolution of the stellar mass function of passive galaxies. Moreover, we find that the morphological type distribution of RQGs are intermediate between those of star-forming and passive galaxies. These results indicate that RQGs represent a major transitional phase of galaxy evolution, in which star-forming galaxies turn into passive galaxies, accompanied by the build up of spheroidal component.« less
Effect of (Ag, Sn) Doping on the Structure and Optical Properties of Au Nanocluster
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Karna, Shashi
2014-03-01
Noble metal nanoclusters (NCs) consisting of a few to 35 atoms in size in the sub 2 nm range dimension are considered to be nontoxic as opposed to nanoparticles that are cytotoxic. Also, due to the quantum confinement of electrons, these NCs exhibit atom-like energy spectrum and display fluorescent properties useful in a wide range of applications, including medical diagnosis. The unique features of NCs such as size-tunable optical properties, intense fluorescence in the visible, and biocompatibility have stimulated an active area of investigation of noble metal NCs comprised of Au, Ag, Cu, and Pt. Furthermore, the electronic properties of nanoclusters can be modified by combining them with other elements. In this study, we consider the space-filled configuration of Au32 NC and investigate the effects of Ag and Sn atom incorporation on geometry and electronic spectrum. Our study suggests that Ag and Sn doping of Au32 NC red-shifts the absorption maximum and also reduces the oscillator strength.
THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, Maurilio; Gabasch, Armin; Drory, Niv
2009-08-10
The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonso, J.; Bizzocchi, L.; Grossi, M.
2011-12-20
Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610more » MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.« less
NASA Astrophysics Data System (ADS)
Harikane, Yuichi; Ouchi, Masami; Ono, Yoshiaki; Saito, Shun; Behroozi, Peter; More, Surhud; Shimasaku, Kazuhiro; Toshikawa, Jun; Lin, Yen-Ting; Akiyama, Masayuki; Coupon, Jean; Komiyama, Yutaka; Konno, Akira; Lin, Sheng-Chieh; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Shibuya, Takatoshi; Silverman, John
2018-01-01
We present clustering properties from 579492 Lyman-break galaxies (LBGs) at z ˜ 4-6 over the 100 deg2 sky (corresponding to a 1.4 Gpc3 volume) identified in early data of the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We derive angular correlation functions (ACFs) for the HSC LBGs with unprecedentedly high statistical accuracies at z ˜ 4-6, and compare them with the halo occupation distribution (HOD) models. We clearly identify significant ACF excesses in 10″ < θ < 90″, the transition scale between one- and two-halo terms, suggestive of the existence of the non-linear halo bias effect. Combining the HOD models and previous clustering measurements of faint LBGs at z ˜ 4-7, we investigate the dark matter halo mass (Mh) of the z ˜ 4-7 LBGs and its correlation with various physical properties including the star formation rate (SFR), the stellar-to-halo mass ratio (SHMR), and the dark matter accretion rate (\\dot{M}_{ h}) over a wide mass range of Mh/M⊙ = 4 × 1010-4 × 1012. We find that the SHMR increases from z ˜ 4 to 7 by a factor of ˜4 at Mh ≃ 1 × 1011 M⊙ , while the SHMR shows no strong evolution in the similar redshift range at Mh ≃ 1 × 1012 M⊙ . Interestingly, we identify a tight relation of SFR/\\dot{M}_{ h}-Mh showing no significant evolution beyond 0.15 dex in this wide mass range over z ˜ 4-7. This weak evolution suggests that the SFR/\\dot{M}_{ h}-Mh relation is a fundamental relation in high-redshift galaxy formation whose star formation activities are regulated by the dark matter mass assembly. Assuming this fundamental relation, we calculate the cosmic star formation rate densities (SFRDs) over z = 0-10 (a.k.a. the Madau-Lilly plot). The cosmic SFRD evolution based on the fundamental relation agrees with the one obtained by observations, suggesting that the cosmic SFRD increase from z ˜ 10 to 4 - 2 (decrease from z ˜ 4-2 to 0) is mainly driven by the increase of the halo abundance (the decrease of the accretion rate).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messias, H.; Afonso, J.; Salvato, M.
2012-08-01
It is widely accepted that observations at mid-infrared (mid-IR) wavelengths enable the selection of galaxies with nuclear activity, which may not be revealed even in the deepest X-ray surveys. Many mid-IR color-color criteria have been explored to accomplish this goal and tested thoroughly in the literature. Besides missing many low-luminosity active galactic nuclei (AGNs), one of the main conclusions is that, with increasing redshift, the contamination by non-active galaxies becomes significant (especially at z {approx}> 2.5). This is problematic for the study of the AGN phenomenon in the early universe, the main goal of many of the current and futuremore » deep extragalactic surveys. In this work new near- and mid-IR color diagnostics are explored, aiming for improved efficiency-better completeness and less contamination-in selecting AGNs out to very high redshifts. We restrict our study to the James Webb Space Telescope wavelength range (0.6-27 {mu}m). The criteria are created based on the predictions by state-of-the-art galaxy and AGN templates covering a wide variety of galaxy properties, and tested against control samples with deep multi-wavelength coverage (ranging from the X-rays to radio frequencies). We show that the colors K{sub s} - [4.5], [4.5] - [8.0], and [8.0] - [24] are ideal as AGN/non-AGN diagnostics at, respectively, z {approx}< 1, 1 {approx}< z {approx}< 2.5, and z {approx}> 2.5-3. However, when the source redshift is unknown, these colors should be combined. We thus develop an improved IR criterion (using K{sub s} and IRAC bands, KI) as a new alternative at z {approx}< 2.5. KI does not show improved completeness (50%-60% overall) in comparison to commonly used Infrared Array Camera (IRAC) based AGN criteria, but is less affected by non-AGN contamination (revealing a >50%-90% level of successful AGN selection). We also propose KIM (using K{sub s} , IRAC, and MIPS 24 {mu}m bands, KIM), which aims to select AGN hosts from local distances to as far back as the end of reionization (0 < z {approx}< 7) with reduced non-AGN contamination. However, the necessary testing constraints and the small control-sample sizes prevent the confirmation of its improved efficiency at z {approx}> 2.5. Overall, KIM shows a {approx}30%-40% completeness and a >70%-90% level of successful AGN selection. KI and KIM are built to be reliable against a {approx}10%-20% error in flux, are based on existing filters, and are suitable for immediate use.« less
Dusty Quasars at High Redshifts
NASA Astrophysics Data System (ADS)
Weedman, Daniel; Sargsyan, Lusine
2016-09-01
A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.
The infrared luminosity function of AKARI 90 μm galaxies in the local Universe
NASA Astrophysics Data System (ADS)
Kilerci Eser, Ece; Goto, Tomotsugu
2018-03-01
Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouwens, R. J.; Franx, M.; Labbe, I.
2012-08-01
Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta}more » measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolving along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from z {approx} 4-7 to z {approx} 2.« less
Blind Spectroscopic Galaxy Surveys Using an Ultra-Wide-Band Imaging Spectrograph on AtLAST and LST
NASA Astrophysics Data System (ADS)
Kohno, Kotaro
2018-01-01
A novel approach to elucidation of cosmic star formation history is a blind search for CO and [CII] emissions using a ultra-wide-band imaging spectrograph on the future large submm telescopes like AtLAST and LST. In particular, searching for [CII] emitters in the appropriate frequency range allows us to sample those sources very efficiently for a redshift range of 3.5 to 9 (190 to 420 GHz), reaching the star-formation in the EoR. Further, spectroscopic analysis of CO in the lower frequency bands will constrain the evolution of CO luminosity functions across cosmic time. We conducted a feasibility study of ``CO/[CII] tomography'' based on a mock galaxy catalog containing 1.4 million objects drawn from the S(3) -SAX (Obreschkow et al. 2009). We find that a blind spectroscopic survey using a 50-m telescope equipped with a 100-pixel imaging spectrograph, which covers 70-370 GHz simultaneously, will be promising indeed. A survey of 2 deg(2) in 1,000 hr (on-source) will uncover > 10^5 line-emitting galaxies in total, including 10^3 [CII] emitters in the EoR (Tamura et al., in prep.). Wider surveys (10 deg^2 or wider) will also be discussed for RSD science cases.
Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ˜ 1-2
NASA Astrophysics Data System (ADS)
Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.
2017-02-01
We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140< 24 mag in the redshift range 0.5< z< 3.0. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that it is a central or a satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}˜ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}⊙ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f˜ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.
The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6
NASA Astrophysics Data System (ADS)
Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.
2017-11-01
We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 < z < 6) and stellar masses (107-1011 M⊙), thus probing about 12 Gyr of galaxy evolution. Stellar masses are estimated from spectral energy distribution (SED) fitting over the extensive UV-to-NIR HST photometry available in these deep Hubble fields, adding Spitzer IRAC bands to better constrain masses for high-redshift (z ⩾ 3) galaxies. These stellar masses are used to isolate a sample of 54 major close pairs with a galaxy mass ratio limit of 1:6. Among this sample, 23 pairs are identified at high redshift (z ⩾ 3) through their Lyα emission. The sample of major close pairs is divided into five redshift intervals in order to probe the evolution of the merger fraction with cosmic time. Our estimates are in very good agreement with previous close pair counts with a constant increase of the merger fraction up to z ≈ 3 where it reaches a maximum of 20%. At higher redshift, we show that the fraction slowly decreases down to about 10% at z ≈ 6. The sample is further divided into two ranges of stellar masses using either a constant separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).
NASA Astrophysics Data System (ADS)
Glenn, Jason; Galaxy Evolution Probe Team
2018-01-01
The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the GEP concept is being developed to demonstrate the ambitious science that could be enabled by a Probe-class mission (defined to be in the cost range $400M to $1B). GEP concept study partners are the University of Colorado Boulder, JPL, and Ball Aerospace.
NASA Astrophysics Data System (ADS)
Mortlock, Alice; McLure, Ross J.; Bowler, Rebecca A. A.; McLeod, Derek J.; Mármol-Queraltó, Esther; Parsa, Shaghayegh; Dunlop, James S.; Bruce, Victoria A.
2017-02-01
We present the results of a new study of the K-band galaxy luminosity function (KLF) at redshifts z ≤ 3.75, based on a nested combination of the UltraVISTA, Cosmic Assembly Near-infrared Deep Legacy Extragalactic Survey and HUDF surveys. The large dynamic range in luminosity spanned by this new data set (3-4 dex over the full redshift range) is sufficient to clearly demonstrate for the first time that the faint-end slope of the KLF at z ≥ 0.25 is relatively steep (-1.3 ≤ α ≤ -1.5 for a single Schechter function), in good agreement with recent theoretical and phenomenological models. Moreover, based on our new data set, we find that a double Schechter function provides a significantly improved description of the KLF at z ≤ 2. At redshifts z ≥ 0.25, the evolution of the KLF is remarkably smooth, with little or no evolution evident at faint (MK ≥ -20.5) or bright magnitudes (MK ≤ -24.5). Instead, the KLF is seen to evolve rapidly at intermediate magnitudes, with the number density of galaxies at MK ≃-23 dropping by a factor of ≃5 over the redshift interval 0.25 ≤ z ≤ 3.75. Motivated by this, we explore a simple description of the evolving KLF based on a double Schechter function with fixed faint-end slopes (α1 = -0.5, α2 = -1.5) and a shared characteristic magnitude (MK^{star }). According to this parametrization, the normalization of the component which dominates the faint end of the KLF remains approximately constant, with φ ^{star }2 decreasing by only a factor of ≃2 between z ≃0 and 3.25. In contrast, the component which dominates the bright end of the KLF at low redshifts evolves dramatically, becoming essentially negligible by z ≃3. Finally, we note that within this parametrization, the observed evolution of MK^{star } between z ≃0 and 3.25 is entirely consistent with MK^{star } corresponding to a constant stellar mass of M⋆ ≃5 × 1010 M⊙ at all redshifts.
Far-Infrared Extragalactic Surveys: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Moseley, Samuel H., Jr.; Fisher, Richard R. (Technical Monitor)
2001-01-01
As much as one third of the luminosity of the local universe is emitted in the far infrared. In order to understand the history of energy release in the universe, it is crucial to characterize this rest-frame far-infrared contribution from the present back to the era of initial galaxy formation. Over the redshift range from 0 to 10, this energy is received in the 80 micrometers to 1 mm spectral region. In the 1980's the Infrared Astronomy Satellite (IRAS) all-sky survey provided the first comprehensive view of the far infrared emission from the local universe. The diffuse background measurements by Cosmic Background Explorer Satellite (COBE) have provided constraints on the integral contributions from the high redshift universe. In the past five years, submillimeter measurements made using the SCUBA instrument have revealed powerful high redshift sources. To develop a clear history of energy release in the universe, we need numbers and redshifts of representative populations of energetically important objects. The near future will bring the Space Infrared Telescope Facility Multiband Imaging Photometer (SIRTF)(MIPS) survey, which will cover about 100 square degrees at wavelengths out to 160 micrometers, providing a large sample of energetically important galaxies out to z of approx.3. In 2005, the Japanese IRIS survey will provide a 160 micrometers full sky survey, which will provide larger samples of the high z galaxy populations and will find intrinsically rare high luminosity objects. The SPIRE instrument on the FIRST facility will extend these surveys to longer wavelengths, providing a view of the universe at higher redshifts in three spectral bands. A concept for an all-sky submillimeter survey is under development, called the Survey of Infrared Cosmic Evolution (SIRCE). With a 2 m cryogenic telescope, it can map the entire sky to the confusion limit in the 100 to 500 micrometers range in six months. This survey will provide photometric redshifts, number counts, and will find the most luminous objects in the universe. In the next decade, the opening of the submillimeter, combined with the near infrared capability of NGST will provide us with a clear picture of energy release in the early universe.
Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5 less than z Less Than 3
NASA Technical Reports Server (NTRS)
Kurczynski, Peter; Gawiser, Eric; Acquaviva, Viviana; Bell, Eric F.; Dekel, Avishai; De Mello, Duilia F.; Ferguson, Henry C.; Gardner, Jonathan P.; Grogin, Norman A.
2016-01-01
We present estimates of intrinsic scatter in the star formation rate (SFR)--stellar mass (M*) correlation in the redshift range 0.5 less than z less than 3.0 and in the mass range 10(exp 7) less than M* less than 10(exp 11) solar mass. We utilize photometry in the Hubble Ultradeep Field (HUDF12) and Ultraviolet Ultra Deep Field (UVUDF) campaigns and CANDELS/GOODS-S and estimate SFR, M* from broadband spectral energy distributions and the best-available redshifts. The maximum depth of the UDF photometry (F160W 29.9 AB, 5 sigma depth) probes the SFR--M* correlation down to M* approximately 10(exp 7) solar mass, a factor of 10-100 x lower in M* than previous studies, and comparable to dwarf galaxies in the local universe. We find the slope of the SFR-M* relationship to be near unity at all redshifts and the normalization to decrease with cosmic time. We find a moderate increase in intrinsic scatter with cosmic time from 0.2 to 0.4 dex across the epoch of peak cosmic star formation. None of our redshift bins show a statistically significant increase in intrinsic scatter approximately 100 Myr. Our results are consistent with a picture of gradual and self-similar assembly of galaxies across more than three orders of magnitude in stellar mass from as low as 10(exp 7) solar mass.
Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom
2016-06-01
We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.
Galaxy cluster luminosities and colours, and their dependence on cluster mass and merger state
NASA Astrophysics Data System (ADS)
Mulroy, Sarah L.; McGee, Sean L.; Gillman, Steven; Smith, Graham P.; Haines, Chris P.; Démoclès, Jessica; Okabe, Nobuhiro; Egami, Eiichi
2017-12-01
We study a sample of 19 galaxy clusters in the redshift range 0.15 < z < 0.30 with highly complete spectroscopic membership catalogues (to K < K*(z) + 1.5) from the Arizona Cluster Redshift Survey, individual weak-lensing masses and near-infrared data from the Local Cluster Substructure Survey, and optical photometry from the Sloan Digital Sky Survey. We fit the scaling relations between total cluster luminosity in each of six bandpasses (grizJK) and cluster mass, finding cluster luminosity to be a promising mass proxy with low intrinsic scatter σln L|M of only ∼10-20 per cent for all relations. At fixed overdensity radius, the intercept increases with wavelength, consistent with an old stellar population. The scatter and slope are consistent across all wavelengths, suggesting that cluster colour is not a function of mass. Comparing colour with indicators of the level of disturbance in the cluster, we find a narrower variety in the cluster colours of 'disturbed' clusters than of 'undisturbed' clusters. This trend is more pronounced with indicators sensitive to the initial stages of a cluster merger, e.g. the Dressler Schectman statistic. We interpret this as possible evidence that the total cluster star formation rate is 'standardized' in mergers, perhaps through a process such as a system-wide shock in the intracluster medium.
Imprints of non-standard dark energy and dark matter models on the 21cm intensity map power spectrum
NASA Astrophysics Data System (ADS)
Carucci, Isabella P.; Corasaniti, Pier-Stefano; Viel, Matteo
2017-12-01
We study the imprint of non-standard dark energy (DE) and dark matter (DM) models on the 21cm intensity map power spectra from high-redshift neutral hydrogen (HI) gas. To this purpose we use halo catalogs from N-body simulations of dynamical DE models and DM scenarios which are as successful as the standard Cold Dark Matter model with Cosmological Constant (ΛCDM) at interpreting available cosmological observations. We limit our analysis to halo catalogs at redshift z=1 and 2.3 which are common to all simulations. For each catalog we model the HI distribution by using a simple prescription to associate the HI gas mass to N-body halos. We find that the DE models leave a distinct signature on the HI spectra across a wide range of scales, which correlates with differences in the halo mass function and the onset of the non-linear regime of clustering. In the case of the non-standard DM model significant differences of the HI spectra with respect to the ΛCDM model only arise from the suppressed abundance of low mass halos. These cosmological model dependent features also appear in the 21cm spectra. In particular, we find that future SKA measurements can distinguish the imprints of DE and DM models at high statistical significance.
BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope
NASA Technical Reports Server (NTRS)
Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff
2004-01-01
BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.
GRB physics and cosmology with peak energy-intensity correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawant, Disha, E-mail: sawant@fe.infn.it; University of Nice, 28 Avenue Valrose, Nice 06103; IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125
Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is amore » positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.« less
Weak lensing magnification in the Dark Energy Survey Science Verification Data
Garcia-Fernandez, M.; et al.
2018-02-02
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less
Weak lensing magnification in the Dark Energy Survey Science Verification Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Fernandez, M.; et al.
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less
Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.
NASA Astrophysics Data System (ADS)
Ventou, E.; Contini, T.; MUSE-GTO Collaboration
2017-06-01
Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.
Galaxies clustering around QSOs with z = 0.9-1.5 and the origin of blue field galaxies
NASA Technical Reports Server (NTRS)
Hintzen, Paul; Romanishin, W.; Valdes, Francisco
1991-01-01
Deep CCD images were obtained in Mould-Cousins R and I passbands of 16 radio quasars with z values between 0.9 and 1.5 and absolute values of b above 35 deg, chosen from the Veron-Cetty and Veron (1984) catalog. Results indicate that, in this population of radio quasars, there is a statistically significant excess of galaxies within 15 arcsec of the quasars and brighter than R = 23 and I = 22. However, contrary to the report of Tyson (1986), no excess was found of galaxies with R less than 21 lying within 30 arcsec of quasars in this redshift range. Data were also obtained for very blue galaxies seen among objects in the general field, all of which are bluer in R-I than Magellanic irregulars at any redshift less than 3. It is suggested that this population might be comprised of low-redshift low-luminosity (H II region) galaxies of the type studied by French (1980) and/or higher redshift galaxies with strong cooling flows and forbidden O II lines.
Galaxy formation in an intergalactic medium dominated by explosions
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Cowie, L. L.
1981-01-01
The evolution of galaxies in an intergalactic medium dominated by explosions of star systems is considered analogously to star formation by nonlinearly interacting processes in the interstellar medium. Conditions for the existence of a hydrodynamic instability by which galaxy formation leads to more galaxy formation due to the propagation of the energy released at the death of massive stars are examined, and it is shown that such an explosive amplification is possible at redshifts less than about 5 and stellar system masses between 10 to the 8th and 10 to the 12th solar masses. Explosions before a redshift of about 5 are found to lead primarily to the formation of massive stars rather than galaxies, while those at a redshift close to 5 will result in objects of normal galactic scale. The model also predicts a dusty interstellar medium preventing the detection of objects of redshift greater than 3, numbers and luminosities of protogalaxies comparable to present observations, unvirialized groups of galaxies lying on two-dimensional surfaces, and a significant number of black holes in the mass range 1000-10,000 solar masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, S. P.; Ashby, M. L. N.; Huang, J.-S.
Infrared 3.6-8 {mu}m images of the Extended Groth Strip yield plausible counterpart identifications for all but one of 510 radio sources in the AEGIS20 S(1.4 GHz) > 50 {mu}Jy sample. This is the first such deep sample that has been effectively 100% identified. Achieving the same identification rate at R band would require observations reaching R{sub AB} > 27. Spectroscopic redshifts are available for 46% of the sample and photometric redshifts for an additional 47%. Almost all of the sources with 3.6 {mu}m AB magnitudes brighter than 19 have spectroscopic redshifts z < 1.1, while fainter objects predominantly have photometricmore » redshifts with 1 {approx}< z {approx}< 3. Unlike more powerful radio sources that are hosted by galaxies having large stellar masses within a relatively narrow range, the AEGIS20 counterparts have stellar masses spanning more than a factor of 10 at z {approx} 1. The sources are roughly 10%-15% starbursts at z {approx}< 0.5 and 20%-25% active galactic nuclei mostly at z > 1 with the remainder of uncertain nature.« less
Weak lensing magnification in the Dark Energy Survey Science Verification Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Fernandez, M.; et al.
2016-11-30
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less
A High Space Density of Luminous Lyman Alpha Emitters at z ∼ 6.5
NASA Astrophysics Data System (ADS)
Bagley, Micaela B.; Scarlata, Claudia; Henry, Alaina; Rafelski, Marc; Malkan, Matthew; Teplitz, Harry; Dai, Y. Sophia; Baronchelli, Ivano; Colbert, James; Rutkowski, Michael; Mehta, Vihang; Dressler, Alan; McCarthy, Patrick; Bunker, Andrew; Atek, Hakim; Garel, Thibault; Martin, Crystal L.; Hathi, Nimish; Siana, Brian
2017-03-01
We present the results of a systematic search for Lyα emitters (LAEs) at 6≲ z≲ 7.6 using the HST WFC3 Infrared Spectroscopic Parallel (WISP) Survey. Our total volume over this redshift range is ∼ 8× {10}5 Mpc3, comparable to many of the narrowband surveys despite their larger area coverage. We find two LAEs at z = 6.38 and 6.44 with line luminosities of {L}Lyα }∼ 4.7× {10}43 erg s‑1, putting them among the brightest LAEs discovered at these redshifts. Taking advantage of the broad spectral coverage of WISP, we are able to rule out almost all lower-redshift contaminants. The WISP LAEs have a high number density of 7.7× {10}-6 Mpc‑3. We argue that the LAEs reside in megaparsec-scale ionized bubbles that allow the Lyα photons to redshift out of resonance before encountering the neutral intergalactic medium. We discuss possible ionizing sources and conclude that the observed LAEs alone are not sufficient to ionize the bubbles.
Mach's Principle to Hubble's Law and Light Relativity
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2018-01-01
Discovery of the redshift-distance relation to be linear (i.e. Hubble's law) for galaxies in the end of 1920s instigated us to widely accept expansion of the universe, originated from a big bang around 14 billion years ago. Finding of the redshift-distance relation to be weaker than linear for distant type Ia supernovae nearly two decades ago further precipitated us to largely agree with recent acceleration of the universe, driven by the mysterious dark energy. The time dilation measured for supernovae has been claimed as a direct evidence for the expansion of the universe, but scientists could not explain why quasars and gamma-ray bursts had not similar time dilations. Recently, an anomaly was found in the standard template for the width of supernova light curves to be proportional to the wavelength, which exactly removed the time dilation of supernovae and hence was strongly inconsistent with the conventional redshift mechanism. In this study, we have derived a new redshift-distance relation from Mach's principle with light relativity that describes the effect of light on spacetime as well as the influence of disturbed spacetime on the light inertia or frequency. A moving object or photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, we have modelled the effective gravitational force to be Newtonian and derived the new redshift-distance relation that can not only perfectly explain the redshift-distance measurement of distant type Ia supernovae but also inherently obtain Hubble's law as an approximate at small redshift. Therefore, the result obtained from this study does neither support the acceleration of the universe nor the expansion of the universe but prefers to Einstein's simplest cosmology of the static universe or Zhang's static or dynamic cosmology of the black hole universe. This work was partially supported by NSF/REU (Grant #: PHY-1559870) at Alabama A & M University
NASA Astrophysics Data System (ADS)
Thomas, R.; Le Fèvre, O.; Le Brun, V.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vanzella, E.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2017-01-01
The observed UV rest-frame spectra of distant galaxies are the result of their intrinsic emission combined with absorption along the line of sight produced by the inter-galactic medium (IGM). Here we analyse the evolution of the mean IGM transmission Tr(Lyα) and its dispersion along the line of sight for 2127 galaxies with 2.5 < z < 5.5 in the VIMOS Ultra Deep Survey (VUDS). We fitted model spectra combined with a range of IGM transmission to the galaxy spectra using the spectral fitting algorithm GOSSIP+. We used these fits to derive the mean IGM transmission towards each galaxy for several redshift slices from z = 2.5 to z = 5.5. We found that the mean IGM transmission defined as Tr(Lyα) = e- τ (with τ as the HI optical depth) is 79%, 69%, 59%, 55%, and 46% at redshifts 2.75, 3.22, 3.70, 4.23, and 4.77, respectively. We compared these results to measurements obtained from quasar lines of sight and found that the IGM transmission towards galaxies is in excellent agreement with quasar values up to redshift z 4. We found tentative evidence for a higher IGM transmission at z ≥ 4 compared to results from QSOs, but a degeneracy between dust extinction and IGM prevents us from firmly concluding whether the internal dust extinction for star-forming galaxies at z > 4 takes a mean value significantly in excess of E(B-V) > 0.15. Most importantly, we found a large dispersion of IGM transmission along the lines of sight towards distant galaxies with 68% of the distribution within 10 to 17% of the median value in δz = 0.5 bins, similar to what is found on the lines of sight towards QSOs. We demonstrate that taking this broad range of IGM transmission into account is important when selecting high-redshift galaxies based on their colour properties (e.g. LBG or photometric redshiftselection) because failing to do so causes a significant incompleteness in selecting high-redshift galaxy populations. We finally discuss the observed IGM properties and speculate that the broad range of observed transmissions might be the result of cosmic variance and clustering along lines of sight. This clearly shows that the sources that cause this extinction need to be more completely modelled. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jingzhe; Gonzalez, Anthony H.; Spilker, J. S.
To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubblemore » Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.« less
Stellar Masses and Star Formation Rates of Lensed, Dusty, Star-forming Galaxies from the SPT Survey
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony. H.; Spilker, J. S.; Strandet, M.; Ashby, M. L. N.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; de Breuck, C.; Brodwin, M.; Chapman, S. C.; Fassnacht, C. D.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Malkan, M.; Marrone, D. P.; Saliwanchik, B. R.; Vieira, J. D.; Weiss, A.; Welikala, N.
2015-10-01
To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ˜5 ×1010 M⊙. The intrinsic IR luminosities range from 4 × 1012 L⊙ to 4 × 1013 L⊙. They all have prodigious intrinsic SFRs of 510-4800 M⊙ yr-1. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.
EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles
2015-12-20
We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction ofmore » massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.« less
Searching for filaments and large-scale structure around DAFT/FADA clusters
NASA Astrophysics Data System (ADS)
Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.
2016-04-01
Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (z< ~ 0.3). Aims: This project is aimed at searching for extensions and filaments around clusters, traced by galaxies selected to be at the cluster redshift based on the red sequence. In the 0.4
The VLT/X-shooter GRB afterglow legacy survey
NASA Astrophysics Data System (ADS)
Kaper, Lex; Fynbo, Johan P. U.; Pugliese, Vanna; van Rest, Daan
2017-11-01
The Swift satellite allows us to use gamma-ray bursts (GRBs) to peer through the hearts of star forming galaxies through cosmic time. Our open collaboration, representing most of the active European researchers in this field, builds a public legacy sample of GRB X-shooter spectroscopy while Swift continues to fly. To date, our spectroscopy of more than 100 GRB afterglows covers a redshift range from 0.059 to about 8 (Tanvir et al. 2009, Nature 461, 1254), with more than 20 robust afterglow-based metallicity measurements (over a redshift range from 1.7 to 5.9). With afterglow spectroscopy (throughout the electromagnetic spectrum from X-rays to the sub-mm) we can hence characterize the properties of star-forming galaxies over cosmic history in terms of redshift, metallicity, molecular content, ISM temperature, UV-flux density, etc.. These observations provide key information on the final evolution of the most massive stars collapsing into black holes, with the potential of probing the epoch of the formation of the first (very massive) stars. VLT/X-shooter (Vernet et al. 2011, A&A 536, A105) is in many ways the ideal GRB follow-up instrument and indeed GRB follow-up was one of the primary science cases behind the instrument design and implementation. Due to the wide wavelength coverage of X-shooter, in the same observation one can detect molecular H2 absorption near the atmospheric cut-off and many strong emission lines from the host galaxy in the near-infrared (e.g., Friis et al. 2015, MNRAS 451, 167). For example, we have measured a metallicity of 0.1 Z ⊙ for GRB 100219A at z = 4.67 (Thöne et al. 2013, MNRAS 428, 3590), 0.02 Z ⊙ for GRB 111008A at z = 4.99 (Sparre et al. 2014, ApJ 785, 150) and 0.05 Z ⊙ for GRB 130606A at z = 5.91 (Hartoog et al. 2015, A&A 580, 139). In the latter, the very high value of [Al/Fe]=2.40 +/- 0.78 might be due to a proton capture process and may be a signature of a previous generation of massive (perhaps even the first) stars. Reconciling the abundance patterns of GRB absorbers, other types of absorbers (in particular QSO DLAs), and old stars in the Local Group is an important long-term goal of this program (see Sparre et al. 2014, ApJ 785, 150). Metallicities are also measured from host emission lines (Krühler et al. 2015, A&A 581, A125). GRB spectroscopy also allows us to determine the dust content of their environments, both through analysis of the depletion pattern and the measurement of the associated extinction (Japelj et al. 2015, A&A 451, 2050). This way one can quantify the dust-to-metals ratio and its evolution with redshift. The detection of GRBs at z > 6 shows that GRBs have become competitive as a tool to identifying galaxies at the highest redshifts and unsurpassed in providing detailed abundance information via absorption line spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.
We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stackmore » the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.« less
Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation
NASA Technical Reports Server (NTRS)
Henry, Alaina; Scarlata, Claudia; Dominguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc;
2013-01-01
We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10(exp 8) < M/Stellar Mass < or approx. 10(exp 10), obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < or approx. z < or approx. 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([O II] (lambda)(lambda)3726, 3729 + [OIII] (lambda)(lambda)4959, 5007)/H(beta). Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10(exp 9.8) Stellar Mass to 12+log(O/H)= 8.2 at M = 10(exp 8.2) Stellar Mass. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M > or approx. 10(exp 9.5) Stellar Mass and z approx. 2.3. Within the statistical uncertainties, our MZ relation agrees with the z approx. 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.
The third data release of the Kilo-Degree Survey and associated data products
NASA Astrophysics Data System (ADS)
de Jong, Jelte T. A.; Verdois Kleijn, Gijs A.; Erben, Thomas; Hildebrandt, Hendrik; Kuijken, Konrad; Sikkema, Gert; Brescia, Massimo; Bilicki, Maciej; Napolitano, Nicola R.; Amaro, Valeria; Begeman, Kor G.; Boxhoorn, Danny R.; Buddelmeijer, Hugo; Cavuoti, Stefano; Getman, Fedor; Grado, Aniello; Helmich, Ewout; Huang, Zhuoyi; Irisarri, Nancy; La Barbera, Francesco; Longo, Giuseppe; McFarland, John P.; Nakajima, Reiko; Paolillo, Maurizio; Puddu, Emanuella; Radovich, Mario; Rifatto, Agatino; Tortora, Crescenzo; Valentijn, Edwin A.; Vellucci, Civita; Vriend, Willem-Jan; Amon, Alexandra; Blake, Chris; Choi, Ami; Conti, Ian Fenech; Gwyn, Stephen D. J.; Herbonnet, Ricardo; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Merten, Julian; Miller, Lance; Schneider, Peter; Viola, Massimo
2017-08-01
Context. The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Aims: Here we present the third public data release and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. Methods: A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. Results: In this third data release an additional 292 new survey tiles (≈300 deg2) stacked ugri images are made available, accompanied by weight maps, masks, and source lists. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (44 deg2). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5σ in a 2'' aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7''. The photometric homogenization scheme ensures accurate colours and an absolute calibration stable to ≈2% for gri and ≈3% in u. Separately released for the combined area of all KiDS releases to date are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.
NASA Technical Reports Server (NTRS)
Maughan, B. J.; Jones, L. R.; Ebeling, H.; Scharf, C.
2006-01-01
The X-ray properties of a sample of 11 high-redshift (0.6 < z < 1 .O) clusters observed with Chardm and/or XMM-Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the L-T, M-T, M(sub 2)-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high redshift (B = 3.32 +/- 0.37) is consistent with the local relation, and significantly steeper than the self-similar prediction of B = 2. This suggests that the same non-gravitational processes are responsible for steepening the local and high-z relations, possibly occurring universally at z is approximately greater than 1 or in the early stages of the cluster formation, prior to their observation. The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is Beta = 0.66 +/- 0.05, the mean gas mass fractions within R(sub 2500(z)) and R(200(z)) are 0.069 +/- 0.012 and 0.11 +/- 0.02, respectively, and the mean metallicity of the sample is 0.28 +/- 0.11 Z(sub solar).
The mid-infrared properties and gas content of active galaxies over large lookback times
NASA Astrophysics Data System (ADS)
Curran, S. J.; Duchesne, S. W.
2018-05-01
Upon an expansion of all of the searches for redshifted H I 21-cm absorption (0.002 1 ≤ z ≤ 5.19), we update recent results regarding the detection of 21-cm in the non-local Universe. Specifically, we confirm that photo-ionization of the gas is the mostly likely cause of the low detection rate at high redshift, in addition to finding that at z ≲ 0.1 there may also be a decrease in the detection rate, which we suggest is due to the dilution of the absorption strength by 21-cm emission. By assuming that associated and intervening absorbers have similar cosmological mass densities, we find evidence that the spin temperature of the gas evolves with redshift, consistent with heating by ultraviolet photons. From the near-infrared (λ = 3.4, 4.6 and 12 μm) colours, we see that radio galaxies become more quasar-like in their activity with increasing redshift. We also find that the non-detection of 21-cm absorption at high redshift is not likely to be due to the selection of gas-poor ellipticals, in addition to a strong correlation between the ionizing photon rate and the [3.4] - [4.6] colour, indicating that the UV photons arise from AGN activity. Like previous studies, we find a correlation between the detection of 21-cm absorption and the [4.6] - [12] colour, which is a tracer of star-forming activity. However, this only applies at the lowest redshifts (z ≲ 0.1), the range considered by the other studies.
VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)
NASA Astrophysics Data System (ADS)
McLure, R.; Pentericci, L.; Vandels Team
2017-11-01
This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0
Long-range (fractal) correlations in the LEDA database.
NASA Astrophysics Data System (ADS)
di Nella, H.; Montuori, M.; Paturel, G.; Pietronero, L.; Sylos Labini, F.
1996-04-01
All the recent redshift surveys show highly irregular patterns of galaxies on scales of hundreds of megaparsecs such as chains, walls and cells. One of the most powerful catalog of galaxies is represented by the LEDA database that contains more than 36,000 galaxies with redshift. We study the correlation properties of such a sample finding that galaxy distribution shows well defined fractal nature up to R_S_~150h^-1^Mpc with fractal dimension D~2. We test the consistency of these results versus the incompleteness in the sample.
Tests of the gravitational redshift effect in space-born and ground-based experiments
NASA Astrophysics Data System (ADS)
Vavilova, I. B.
2018-02-01
This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.
Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu
2018-04-01
We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i < 0.64) colors and a wide range of morphologies. Since we focus on extended galaxies (r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.
NASA Astrophysics Data System (ADS)
Deane, R. P.; Obreschkow, D.; Heywood, I.
2015-09-01
Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.
Detection strategies for the first supernovae with JWST
NASA Astrophysics Data System (ADS)
Hartwig, Tilman; Bromm, Volker; Loeb, Abraham
2018-06-01
Pair-instability supernovae (PISNe) are very luminous explosions of massive, low metallicity stars. They can potentially be observed out to high redshifts due to their high explosion energies, thus providing a probe of the Universe prior to reionization. The near-infrared camera, NIRCam, on board the James Webb Space Telescope is ideally suited for detecting their redshifted ultraviolet emission. We calculate the photometric signature of high-redshift PISNe and derive the optimal detection strategy for identifying their prompt emission and possible afterglow. We differentiate between PISNe and other sources that could have a similar photometric signature, such as active galactic nuclei or high-redshift galaxies. We demonstrate that the optimal strategy, which maximizes the visibility time of the PISN lightcurve per invested exposure time, consists of the two wide-band filters F200W and F356W with an exposure time of 600 s. For such exposures, we expect one PISN at z ≲ 7.5 per at least 50,000 different field of view, which can be accomplished with parallel observations and an extensive archival search. The PISN afterglow, caused by nebular emission and reverberation, is very faint and requires unfeasibly long exposure times to be uniquely identified. However, this afterglow would be visible for several hundred years, about two orders of magnitude longer than the prompt emission, rendering PISNe promising targets for future, even more powerful telescopes.
ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belczynski, Krzysztof; Holz, Daniel E.; Fryer, Chris L.
2010-01-01
GRB 080913 and GRB 090423 are the most distant gamma-ray bursts (GRBs) known to date, with spectroscopically determined redshifts of z = 6.7 and z = 8.1, respectively. The detection of bursts at this early epoch of the universe significantly constrains the nature of GRBs and their progenitors. We perform population synthesis studies of the formation and evolution of early stars, and calculate the resulting formation rates of short- and long-duration GRBs at high redshift. The peak of the GRB rate from Population II stars occurs at z approx 7 for a model with efficient/fast mixing of metals, while itmore » is found at z approx 3 for an inefficient/slow metallicity evolution model. We show that in the redshift range 6 approx< z approx< 10, essentially all GRBs originate from Population II stars, regardless of the metallicity evolution model. These stars (having small, but non-zero metallicity) are the most likely progenitors for both long GRBs (collapsars) and short GRBs (neutron star-neutron star or blackhole-neutron star mergers) at this epoch. Although the predicted intrinsic rates of long and short GRBs are similar at these high redshifts, observational selection effects lead to higher (a factor of approx10) observed rates for long GRBs. We conclude that the two recently observed high-z GRB events are most likely long GRBs originating from Population II collapsars.« less
Supernova Cosmology Without Spectroscopy
NASA Astrophysics Data System (ADS)
Johnson, Elizabeth; Scolnic, Daniel; Kessler, Rick; Rykoff, Eli; Rozo, Eduardo
2018-01-01
Present and future supernovae (SN) surveys face several challenges: the ability to acquire redshifts of either the SN or its host galaxy, the ability to classify a SN without a spectrum, and unknown relations between SN luminosity and host galaxy type. We present here a new approach that addresses these challenges. From the large sample of SNe discovered and measured by the Dark Energy Survey (DES), we cull the sample to only supernovae (SNe) located in luminous red galaxies (LRGs). For these galaxies, photometric redshift estimates are expected to be accurate to a standard deviation of 0.02x(1+z). In addition, only Type Ia Supernovae are expected to exist in these galaxies, thereby providing a pure SNIa sample. Furthermore, we can combine this high-redshift sample with a low-redshift SN sample of only SNe located in LRGs, thereby producing a sample that is less sensitive to host galaxy relations because the host galaxy demographic is consistent across the redshift range. We find that the current DES sample has ~250 SNe in LRGs, a similar amount to current SNIa samples used to measure cosmological parameters. We present our method to produce a photometric-only Hubble diagram and measure cosmological parameters. Finally, we discuss systematic uncertainties from this approach, and forecast constraints from this method for LSST, which should have a sample roughly 200 times as large.
Optical signatures of high-redshift galaxy clusters
NASA Technical Reports Server (NTRS)
Evrard, August E.; Charlot, Stephane
1994-01-01
We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, S. L.; McMahon, R. G.; Martini, P.
Here, we present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, i, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Lymore » α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg ii and CO-based redshift estimators. We find two z ~6.2 quasars with H ii near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 10 6-10 7 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224–4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.« less
Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation
Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; ...
2015-09-18
We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 10 43.0 erg s –1 while the low redshifts (z ≤ 0.3) showmore » an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 10 41.6 erg s –1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1) –1 at z ≤ 2 while the faint end evolves as ~3(z + 1) –1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less
Reed, S. L.; McMahon, R. G.; Martini, P.; ...
2017-03-24
Here, we present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, i, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Lymore » α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg ii and CO-based redshift estimators. We find two z ~6.2 quasars with H ii near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 10 6-10 7 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224–4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.« less
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.
1996-01-01
With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.
2014-11-01
Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens ofmore » kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.« less
NASA Astrophysics Data System (ADS)
Reed, S. L.; McMahon, R. G.; Martini, P.; Banerji, M.; Auger, M.; Hewett, P. C.; Koposov, S. E.; Gibbons, S. L. J.; Gonzalez-Solares, E.; Ostrovski, F.; Tie, S. S.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.
2017-07-01
We present the discovery and spectroscopic confirmation with the European Southern Observatory New Technology Telescope (NTT) and Gemini South telescopes of eight new, and the rediscovery of two previously known, 6.0 < z < 6.5 quasars with zAB < 21.0. These quasars were photometrically selected without any morphological criteria from 1533 deg2 using spectral energy distribution (SED) model fitting to photometric data from Dark Energy Survey (g, r, I, z, Y), VISTA Hemisphere Survey (J, H, K) and Wide-field Infrared Survey Explorer (W1, W2). The photometric data were fitted with a grid of quasar model SEDs with redshift-dependent Ly α forest absorption and a range of intrinsic reddening as well as a series of low-mass cool star models. Candidates were ranked using an SED-model-based χ2-statistic, which is extendable to other future imaging surveys (e.g. LSST and Euclid). Our spectral confirmation success rate is 100 per cent without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants, the method allows large data sets to be processed without human intervention and without being overrun by spurious false candidates. We also present a robust parametric redshift estimator that gives comparable accuracy to Mg II and CO-based redshift estimators. We find two z ˜ 6.2 quasars with H II near zone sizes ≤3 proper Mpc that could indicate that these quasars may be young with ages ≲ 106-107 years or lie in over dense regions of the IGM. The z = 6.5 quasar VDES J0224-4711 has JAB = 19.75 and is the second most luminous quasar known with z ≥ 6.5.
Precision cosmology with weak gravitational lensing
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.
In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my outlook on the future of weak lensing studies of cosmology.
NASA Technical Reports Server (NTRS)
Xia, Lifang; Malhotra, Sangetta; Rhoads, James; Pirzkal, Nor; Straughn, Amber; Finkelstein, Steven; Cohen, Seth; Kuntschner, Harald; Walsh, Jeremy; Windhorst, Rogier A.;
2012-01-01
Galaxies selected on the basis of their emission line strength. show low metallicities, regardless of their redshifts. We conclude this from a sample of faint galaxies at redshifts between 0.6 < z < 2.4, selected by their prominent emission lines in low resolution grism spectra in the optiCa.i with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) and in the near-infrared using Wide-Field Camera 3 (WFC3). Using a sample of 11 emission line galaxies (ELGs) at 0.6 < z < 2.4 with luminosities of -22 approx < MB approx -19 which have [OII], H-Beta, and [OIII] line flux measurements from the combination of two grism spectral surveys, we use the R23 method to derive the gas-phase oxygen abundances: 7.5 <12+log(0/H)<8.5. The galaxy stellar masses are derived using Bayesian based Markov Chain Monte Carlo (pi MC(exp 2)) fitting of their Spectral Energy Distribution (SED), and span the mass range 8.1 < log(M(stellar)/M(solar)) < 10.1. These galaxies show a mass-metal1icity (M-L) and Luminosity-Metallicity (LZ) relation, which is offset by -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah
The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power tomore » measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.« less
Updated tomographic analysis of the integrated Sachs-Wolfe effect and implications for dark energy
NASA Astrophysics Data System (ADS)
Stölzner, Benjamin; Cuoco, Alessandro; Lesgourgues, Julien; Bilicki, Maciej
2018-03-01
We derive updated constraints on the integrated Sachs-Wolfe (ISW) effect through cross-correlation of the cosmic microwave background with galaxy surveys. We improve with respect to similar previous analyses in several ways. First, we use the most recent versions of extragalactic object catalogs, SDSS DR12 photometric redshift (photo-z ) and 2MASS Photo-z data sets, as well as those employed earlier for ISW, SDSS QSO photo-z and NVSS samples. Second, we use for the first time the WISE × SuperCOSMOS catalog, which allows us to perform an all-sky analysis of the ISW up to z ˜0.4 . Third, thanks to the use of photo-z s , we separate each data set into different redshift bins, deriving the cross-correlation in each bin. This last step leads to a significant improvement in sensitivity. We remove cross-correlation between catalogs using masks which mutually exclude common regions of the sky. We use two methods to quantify the significance of the ISW effect. In the first one, we fix the cosmological model, derive linear galaxy biases of the catalogs, and then evaluate the significance of the ISW using a single parameter. In the second approach we perform a global fit of the ISW and of the galaxy biases varying the cosmological model. We find significances of the ISW in the range 4.7 - 5.0 σ thus reaching, for the first time in such an analysis, the threshold of 5 σ . Without the redshift tomography we find a significance of ˜4.0 σ , which shows the importance of the binning method. Finally we use the ISW data to infer constraints on the dark energy redshift evolution and equation of state. We find that the redshift range covered by the catalogs is still not optimal to derive strong constraints, although this goal will be likely reached using future datasets such as from Euclid, LSST, and SKA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, P.; Gruen, D.; McClintock, T.
We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parametermore » $$5 \\leq \\lambda \\leq 180$$ and redshift $$0.2 \\leq z \\leq 0.8$$, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentering; deviations from the NFW halo profile; halo triaxiality; and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, $$\\mathcal{M}(\\lambda,z) \\varpropto M_0 \\lambda^{F} (1+z)^{G}$$. We find $$M_0 \\equiv \\langle M_{200\\mathrm{m}}\\,|\\,\\lambda=30,z=0.5\\rangle=\\left[ 2.35 \\pm 0.22\\ \\rm{(stat)} \\pm 0.12\\ \\rm{(sys)} \\right] \\cdot 10^{14}\\ M_\\odot$$, with $$F = 1.12\\,\\pm\\,0.20\\ \\rm{(stat)}\\, \\pm\\, 0.06\\ \\rm{(sys)}$$ and $$G = 0.18\\,\\pm\\, 0.75\\ \\rm{(stat)}\\, \\pm\\, 0.24\\ \\rm{(sys)}$$. The amplitude of the mass-richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. (2016) and with the Saro et al. (2015) calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass-richness relation of redMaPPer clusters has been calibrated with weak lensing from $$z\\leq 0.3$$ to $$z\\leq0.8$$. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies.« less
Size evolution of star-forming galaxies with 2
NASA Astrophysics Data System (ADS)
Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.
2016-08-01
Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with IAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2
NASA Astrophysics Data System (ADS)
Tasca, L. A. M.; Le Fèvre, O.; Hathi, N. P.; Schaerer, D.; Ilbert, O.; Zamorani, G.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Paltani, S.; Ribeiro, B.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.
2015-09-01
We study the evolution of the star formation rate (SFR) - stellar mass (M⋆) relation and specific star formation rate (sSFR) of star-forming galaxies (SFGs) since a redshift z ≃ 5.5 using 2435 (4531) galaxies with highly reliable spectroscopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log (SFR) - log (M⋆) relation for SFGs remains roughly linear all the way up to z = 5, but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M⋆ ≥ 3.2 × 109M⊙ the SFR increases by a factor of ~13 between z = 0.4 and z = 2.3. Weextend this relation up to z = 5, finding an additional increase in SFR by a factor of 1.7 from z = 2.3 to z = 4.8 for masses M⋆ ≥ 1010M⊙. We observe a turn-off in the SFR-M⋆ relation at the highest mass end up to a redshift z ~ 3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z ~ 2, but it grows much less rapidly in 2
Bright compact bulges at intermediate redshifts
NASA Astrophysics Data System (ADS)
Sachdeva, Sonali; Saha, Kanak
2018-07-01
Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.
The Galaxy Count Correlation Function in Redshift Space Revisited
NASA Astrophysics Data System (ADS)
Campagne, J.-E.; Plaszczynski, S.; Neveu, J.
2017-08-01
In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.
Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry
NASA Astrophysics Data System (ADS)
DiPompeo, M. A.; Bovy, J.; Myers, A. D.; Lang, D.
2015-09-01
Extreme deconvolution (XD) of broad-band photometric data can both separate stars from quasars and generate probability density functions for quasar redshifts, while incorporating flux uncertainties and missing data. Mid-infrared photometric colours are now widely used to identify hot dust intrinsic to quasars, and the release of all-sky WISE data has led to a dramatic increase in the number of IR-selected quasars. Using forced photometry on public WISE data at the locations of Sloan Digital Sky Survey (SDSS) point sources, we incorporate this all-sky data into the training of the XDQSOz models originally developed to select quasars from optical photometry. The combination of WISE and SDSS information is far more powerful than SDSS alone, particularly at z > 2. The use of SDSS+WISE photometry is comparable to the use of SDSS+ultraviolet+near-IR data. We release a new public catalogue of 5537 436 (total; 3874 639 weighted by probability) potential quasars with probability PQSO > 0.2. The catalogue includes redshift probabilities for all objects. We also release an updated version of the publicly available set of codes to calculate quasar and redshift probabilities for various combinations of data. Finally, we demonstrate that this method of selecting quasars using WISE data is both more complete and efficient than simple WISE colour-cuts, especially at high redshift. Our fits verify that above z ˜ 3 WISE colours become bluer than the standard cuts applied to select quasars. Currently, the analysis is limited to quasars with optical counterparts, and thus cannot be used to find highly obscured quasars that WISE colour-cuts identify in significant numbers.
Cluster candidates around low-power radio galaxies at z ∼ 1-2 in cosmos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castignani, G.; Celotti, A.; De Zotti, G.
2014-09-10
We search for high-redshift (z ∼1-2) galaxy clusters using low power radio galaxies (FR I) as beacons and our newly developed Poisson probability method based on photometric redshift information and galaxy number counts. We use a sample of 32 FR Is within the Cosmic Evolution Survey (COSMOS) field from the Chiaberge et al. catalog. We derive a reliable subsample of 21 bona fide low luminosity radio galaxies (LLRGs) and a subsample of 11 high luminosity radio galaxies (HLRGs), on the basis of photometric redshift information and NRAO VLA Sky Survey radio fluxes. The LLRGs are selected to have 1.4 GHzmore » rest frame luminosities lower than the fiducial FR I/FR II divide. This also allows us to estimate the comoving space density of sources with L {sub 1.4} ≅ 10{sup 32.3} erg s{sup –1} Hz{sup –1} at z ≅ 1.1, which strengthens the case for a strong cosmological evolution of these sources. In the fields of the LLRGs and HLRGs we find evidence that 14 and 8 of them reside in rich groups or galaxy clusters, respectively. Thus, overdensities are found around ∼70% of the FR Is, independently of the considered subsample. This rate is in agreement with the fraction found for low redshift FR Is and it is significantly higher than that for FR IIs at all redshifts. Although our method is primarily introduced for the COSMOS survey, it may be applied to both present and future wide field surveys such as Sloan Digital Sky Survey Stripe 82, LSST, and Euclid. Furthermore, cluster candidates found with our method are excellent targets for next generation space telescopes such as James Webb Space Telescope.« less
A 14 h-3 Gpc3 study of cosmic homogeneity using BOSS DR12 quasar sample
NASA Astrophysics Data System (ADS)
Laurent, Pierre; Le Goff, Jean-Marc; Burtin, Etienne; Hamilton, Jean-Christophe; Hogg, David W.; Myers, Adam; Ntelis, Pierros; Pâris, Isabelle; Rich, James; Aubourg, Eric; Bautista, Julian; Delubac, Timothée; du Mas des Bourboux, Hélion; Eftekharzadeh, Sarah; Palanque Delabrouille, Nathalie; Petitjean, Patrick; Rossi, Graziano; Schneider, Donald P.; Yeche, Christophe
2016-11-01
The BOSS quasar sample is used to study cosmic homogeneity with a 3D survey in the redshift range 2.2 < z < 2.8. We measure the count-in-sphere, N(< r), i.e. the average number of objects around a given object, and its logarithmic derivative, the fractal correlation dimension, D2(r). For a homogeneous distribution N(< r) propto r3 and D2(r) = 3. Due to the uncertainty on tracer density evolution, 3D surveys can only probe homogeneity up to a redshift dependence, i.e. they probe so-called ``spatial isotropy". Our data demonstrate spatial isotropy of the quasar distribution in the redshift range 2.2 < z < 2.8 in a model-independent way, independent of any FLRW fiducial cosmology, resulting in 3 - langleD2rangle < 1.7 × 10-3 (2 σ) over the range 250 < r < 1200 h-1 Mpc for the quasar distribution. If we assume that quasars do not have a bias much less than unity, this implies spatial isotropy of the matter distribution on large scales. Then, combining with the Copernican principle, we finally get homogeneity of the matter distribution on large scales. Alternatively, using a flat ΛCDM fiducial cosmology with CMB-derived parameters, and measuring the quasar bias relative to this ΛCDM model, our data provide a consistency check of the model, in terms of how homogeneous the Universe is on different scales. D2(r) is found to be compatible with our ΛCDM model on the whole 10 < r < 1200 h-1 Mpc range. For the matter distribution we obtain 3 - langleD2rangle < 5 × 10-5 (2 σ) over the range 250 < r < 1200 h-1 Mpc, consistent with homogeneity on large scales.
Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - I. Catalogue
NASA Astrophysics Data System (ADS)
O'Mill, Ana Laura; Duplancic, Fernanda; García Lambas, Diego; Valotto, Carlos; Sodré, Laerte
2012-04-01
We present a new catalogue of galaxy triplets derived from the Sloan Digital Sky Survey (SDSS) Data Release 7. The identification of systems was performed considering galaxies brighter than Mr=-20.5 and imposing constraints over the projected distances, radial velocity differences of neighbouring galaxies and isolation. To improve the identification of triplets, we employed a data pixelization scheme, which allows us to handle large amounts of data as in the SDSS photometric survey. Using spectroscopic and photometric data in the redshift range 0.01 ≤z≤ 0.40, we obtain 5901 triplet candidates. We have used a mock catalogue to analyse the completeness and contamination of our methods. The results show a high level of completeness (˜80 per cent) and low contamination (˜5 per cent). By using photometric and spectroscopic data, we have also addressed the effects of fibre collisions in the spectroscopic sample. We have defined an isolation criterion considering the distance of the triplet brightest galaxy to the closest neighbour cluster, to describe a global environment, as well as the galaxies within a fixed aperture, around the triplet brightest galaxy, to measure the local environment. The final catalogue comprises 1092 isolated triplets of galaxies in the redshift range 0.01 ≤z≤ 0.40. Our results show that photometric redshifts provide very useful information, allowing us to complete the sample of nearby systems whose detection is affected by fibre collisions, as well as extending the detection of triplets to large distances, where spectroscopic redshifts are not available.
The Abundance of Low-Luminosity Lyα Emitters at High Redshift
NASA Astrophysics Data System (ADS)
Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad
2004-05-01
We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5
Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey
NASA Astrophysics Data System (ADS)
Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III
2002-05-01
We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian random field. We suggest that in two dimensions the genus measurement is less sensitive to nonlinear effects because of the effective smoothing over the thickness of the slice.
Testing the anisotropy of cosmic acceleration from Pantheon supernovae sample
NASA Astrophysics Data System (ADS)
Sun, Z. Q.; Wang, F. Y.
2018-05-01
In this paper, we study the anisotropy of cosmic acceleration the using Pantheon sample, which includes 1049 spectroscopically confirmed type Ia supernovae (SNe Ia) covering the redshift range 0.01 < z < 2.3. In hemisphere comparison method, we find the dipole direction is (l = 110 ± 11°, b = 15 ± 19°) with the maximum anisotropy level of δ =0.105 {}^{+0.002}_{-0.005}. From the dipole fitting method, we find that the magnitude of anisotropy is A = (2.6 ± 2.6) × 10-4, and the direction of the dipole (l = 108.2°+43.0°-76.9°, b = 7.1°+41.2°-77.5°) in the galactic coordinate system. The result is weakly dependent on redshift from the redshift tomography analysis. The anisotropy is small and the isotropic cosmological model is an excellent approximation.
Probing dark energy in the scope of a Bianchi type I spacetime
NASA Astrophysics Data System (ADS)
Amirhashchi, Hassan
2018-03-01
It is well known that the flat Friedmann-Robertson-Walker metric is a special case of Bianchi type I spacetime. In this paper, we use 38 Hubble parameter, H (z ), measurements at intermediate redshifts 0.07 ≤z ≤2.36 and its joint combination with the latest "joint light curves" (JLA) sample, comprising 740 type Ia supernovae in the redshift range of z ɛ [0.01 ,1.30 ] to constrain the parameters of the Bianchi type I dark energy model. We also use the same datasets to constrain flat a Λ CDM model. In both cases, we specifically address the expansion rate H0 as well as the transition redshift zt determinations out of these measurements. In both models, we found that using joint combination of datasets gives rise to lower values for model parameters. Also to compare the considered cosmologies, we have made Akaike information criterion and Bayes factor (Ψ ) tests.
Srianand, R; Chand, H; Petitjean, P; Aracil, B
2004-03-26
We present the results of a detailed many-multiplet analysis performed on a new sample of Mg ii systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in alpha derived from our analysis over the redshift range 0.4=z=2.3 is Deltaalpha/alpha=(-0.06+/-0.06)x10(-5). The median redshift of our sample (z approximately 1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3sigma limit, -2.5 x 10(-16)=(Deltaalpha/alphaDeltat)=+1.2 x 10(-16) yr(-1), for the time variation of alpha, that forms the strongest constraint obtained based on high redshift quasar absorption line systems.
Redshift space clustering of galaxies and cold dark matter model
NASA Technical Reports Server (NTRS)
Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt
1993-01-01
The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.
The effect of Cd substitution doping on the bandgap and absorption spectrum of ZnO
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Li, Yong; Qu, Lingfeng; Zhao, Chunwang
2016-08-01
Many research papers have reported that in the ultraviolet area of 290-360 nm wavelength range, blueshift and redshift in the absorption spectrum occurred in ZnO with Cd doping; however, there is no reasonable theoretical explanation to this so far. To solve this problem, this study investigates the differences of blueshift and redshift in doping system by adopting plane-wave ultrasoft pseudopotential technology based on the density functional theory and applying LDA + U method to calculate band structures, density of states and absorption spectrum distribution of the models, which is on the basis of model geometry optimization. By increasing the Cd doping concentration, the following results are obtained: increased volume of the mixed system, raised total energy, a decrease in stability, narrowed bandgaps and a significant redshift in the absorption spectrum in the ultraviolet or visible light area.
First neutral atomic hydrogen images of quasar host galaxies.
NASA Astrophysics Data System (ADS)
Lim, J.; Ho, P. T. P.
1999-12-01
Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Here the authors image quasar host galaxies in the redshifted 21-cm line emission of neutral atomic hydrogen (H I) gas, which in nearby galaxies has proven to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighbouring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearences, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations provide a better understanding of the likely stage of their interaction.
Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf
2014-07-10
We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, M.; Elbaz, D.; Daddi, E.
We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less
GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies
NASA Astrophysics Data System (ADS)
Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.
2012-09-01
Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve. Table of multi-colour photometry for the 751 galaxies is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A141
NASA Technical Reports Server (NTRS)
Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.;
2008-01-01
We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.
Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure
NASA Astrophysics Data System (ADS)
Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel
2018-01-01
We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Recalculating the quasar luminosity function of the extended Baryon Oscillation Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Caditz, David M.
2017-12-01
Aims: The extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey provides a uniform sample of over 13 000 variability selected quasi-stellar objects (QSOs) in the redshift range 0.68
NASA Astrophysics Data System (ADS)
Rigby, J. R.; Bayliss, M. B.; Sharon, K.; Gladders, M. D.; Chisholm, J.; Dahle, H.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Kelson, D. D.
2018-03-01
We introduce Project MEGaSaURA: the Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N = 15 bright gravitationally lensed galaxies at redshifts of 1.68 < z < 3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200 < λ o < 8280 Å the average spectral resolving power is R = 3300. The median spectrum has a signal-to-noise ratio (S/N) = 21 per resolution element at 5000 Å. As such, the MEGaSaURA spectra have superior S/N and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.
CMB lensing tomography with the DES Science Verification galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannantonio, T.
We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < z phot < 1.2, a cross-correlation signal is detected at 6σ and 4σ with SPT and Planck respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2σ) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution ofmore » the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 ± 0.16 times as large as predicted in the LCDM Planck cosmology, a 1.7σ deviation.« less
CMB lensing tomography with the DES Science Verification galaxies
Giannantonio, T.
2016-01-07
We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < z phot < 1.2, a cross-correlation signal is detected at 6σ and 4σ with SPT and Planck respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2σ) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution ofmore » the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 ± 0.16 times as large as predicted in the LCDM Planck cosmology, a 1.7σ deviation.« less
Physical Properties of 15 Quasars at z ≳ 6.5
NASA Astrophysics Data System (ADS)
Mazzucchelli, C.; Bañados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Walter, F.; Eilers, A.-C.; Rix, H.-W.; Simcoe, R.; Stern, D.; Fan, X.; Schlafly, E.; De Rosa, G.; Hennawi, J.; Chambers, K. C.; Greiner, J.; Burgett, W.; Draper, P. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E.; Metcalfe, N.; Waters, C.; Wainscoat, R. J.
2017-11-01
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at z> 6.5 (<800 Myr after the big bang). In this work, we present six additional z≳ 6.5 quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 z≳ 6.5 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of z≳ 6.5 quasars show large blueshifts of the broad C IV λ1549 emission line compared to the systemic redshift of the quasars, with a median value ˜3× higher than a quasar sample at z˜ 1; (2) we estimate the quasars’ black hole masses ({M}{BH} ˜ (0.3-5) × 109 M ⊙) via modeling of the Mg II λ2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with < ({L}{bol}/{L}{Edd})> =0.39) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe II/Mg II abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for z˜ 6 quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C II] 158 μm emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C II]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.
Reionization of Hydrogen and Helium by Early Stars and Quasars
NASA Astrophysics Data System (ADS)
Wyithe, J. Stuart B.; Loeb, Abraham
2003-04-01
We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.
Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields
NASA Technical Reports Server (NTRS)
Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt
2010-01-01
Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.
NASA Technical Reports Server (NTRS)
Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe;
2010-01-01
We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.
EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1-3 IN COSMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoville, N.; Benson, A.; Fu, Hai
2013-05-01
Large-scale structures (LSSs) out to z < 3.0 are measured in the Cosmic Evolution Survey (COSMOS) using extremely accurate photometric redshifts (photoz). The K{sub s} -band-selected sample (from Ultra-Vista) is comprised of 155,954 galaxies. Two techniques-adaptive smoothing and Voronoi tessellation-are used to estimate the environmental densities within 127 redshift slices. Approximately 250 statistically significant overdense structures are identified out to z = 3.0 with shapes varying from elongated filamentary structures to more circularly symmetric concentrations. We also compare the densities derived for COSMOS with those based on semi-analytic predictions for a {Lambda}CDM simulation and find excellent overall agreement between themore » mean densities as a function of redshift and the range of densities. The galaxy properties (stellar mass, spectral energy distributions (SEDs), and star formation rates (SFRs)) are strongly correlated with environmental density and redshift, particularly at z < 1.0-1.2. Classifying the spectral type of each galaxy using the rest-frame b - i color (from the photoz SED fitting), we find a strong correlation of early-type galaxies (E-Sa) with high-density environments, while the degree of environmental segregation varies systematically with redshift out to z {approx} 1.3. In the highest density regions, 80% of the galaxies are early types at z = 0.2 compared to only 20% at z = 1.5. The SFRs and the star formation timescales exhibit clear environmental correlations. At z > 0.8, the SFR density is uniformly distributed over all environmental density percentiles, while at lower redshifts the dominant contribution is shifted to galaxies in lower density environments.« less
WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan Huanyuan; Tao Charling; Kneib, Jean-Paul
2012-03-20
We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent withmore » predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.« less
VizieR Online Data Catalog: The HIZOA-S survey (Staveley-Smith+, 2016)
NASA Astrophysics Data System (ADS)
Staveley-Smith, L.; Kraan-Korteweg, R. C.; Schroder, A. C.; Henning, P. A.; Koribalski, B. S.; Stewart, I. M.; Heald, G.
2016-07-01
The observations described here were taken with the 21cm multibeam receiver at the 64m Parkes radio telescope between 1997 March 22 and 2000 June 8, contemporaneously with the southern component of HIPASS. The observations cover the Galactic longitude range 212°
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Abir; Sethi, Shiv K.; Mondal, Rajesh
The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionizationmore » fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc{sup −1}. Assuming a fiducial model where a neutral hydrogen fraction x-bar {sub HI} = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation z{sub f} > 4 × 10{sup 5} (for LFDM) and the axion mass m{sub a} > 2.6 × 10{sup −23} eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: z{sub f} > 2 × 10{sup 5} and m{sub a} > 10{sup −23} eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM.« less
Is There a Maximum Star Formation Rate in High-redshift Galaxies?
NASA Astrophysics Data System (ADS)
Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.
2014-03-01
We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific Research. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.
Cosmic growth and expansion conjoined
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2017-01-01
Cosmological measurements of both the expansion history and growth history have matured, and the two together provide an important test of general relativity. We consider their joint evolutionary track, showing that this has advantages in distinguishing cosmologies relative to considering them individually or at isolated redshifts. In particular, the joint comparison relaxes the shape degeneracy that makes fσ8(z) curves difficult to separate from the overall growth amplitude. The conjoined method further helps visualization of which combinations of redshift ranges provide the clearest discrimination. We examine standard dark energy cosmologies, modified gravity, and "stuttering" growth, each showing distinct signatures.
SACS: Spitzer Archival Cluster Survey
NASA Astrophysics Data System (ADS)
Stern, Daniel
Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys combined, providing a high-purity, uniform sample. Matching the Spitzer/IRAC-selected clusters with data at similar and longer wavelengths available in the archive (WISE 3- 5μm, Spitzer/MIPS 24μm or Herschel/SPIRE 250μm data) we will be also able to study the dependence on the environment of star formation and AGN activity out to z~2, and to study the effect of star-forming galaxies and AGNs on cosmological results from ongoing Sunyaev-Zel'dovich (SZ) and X-ray cluster surveys. The identified clusters will be valuable for both astrophysics and cosmology. In terms of astrophysics, the redshift probed by the MIR color selection targets a key epoch in cluster development, when star formation is shutting down and the galaxies are becoming passive. Massive clusters also distort space-time around them, creating powerful gravitational telescopes that lens the distant universe. This both allows detailed studies of the lensed objects with otherwise unachievable sensitivity, as well as provides a unique probe of the mass distribution in the lensing cluster. In terms of cosmology, clusters are the most massive structures in the universe, and their space density is sensitive to basic cosmological parameters. Clusters identified by this program will become a lasting legacy of Spitzer, providing exciting targets for Chandra, Hubble, James Webb Space Telescope (JWST), Astro-H, Athena, as well as future 30-m class ground-based telescopes (e.g., GMT, ELT, TMT). The upcoming large-scale, space-based surveys of eROSITA, Euclid, and WFIRST all have distant cluster studies as key scientific goals. Our proposed survey will provide new high redshift targets for those satellites, enabling unique, exciting multi-wavelength studies of the Spitzer-selected sample, as well as a training set to identify additional high-redshift clusters outside of the Spitzer footprint.
Confronting models of star formation quenching in galaxy clusters with archival Spitzer data
NASA Astrophysics Data System (ADS)
Rudnick, Gregory
Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine the evolution in cluster galaxy SFRs over 6 billion years making minimal assumptions about the infalling galaxy population. 3. Provide a rigorous test of the quenching processes embedded in the theoretical models. We will create observed realizations of the theoretical models by subjecting them to our observational selection. This will enable a fair comparison between the models and the data, which will provide a valuable test of current theoretical implementations of quenching processes. We will also modify the quenching prescriptions in the models to determine the parameters required to reproduce the observations. The proposed research is novel for several reasons. 1) We have wide-field Spitzer/MIPS data that allows us to robustly measure SFRs in our distant cluster galaxies. WISE data on local clusters will provide us with analogous measurements in the nearby Universe. 2) Our significant investment in ancillary spectroscopy allows us to identify infalling galaxies that will eventually join the central regions of the cluster z=0. 3) Our intermediate redshift cluster sample was chosen to have characteristics expected for the progenitors of a large fraction of the known clusters at z=0. 4) We will take advantage of our own cosmological simulations of structure growth to interpret our data. 5) We have optical photometry over the full infall region, allowing us to control for stellar masses and to distinguish passive from dusty star-forming galaxies. We will learn which, if any, of the quenching prescriptions currently employed in semi-analytic models correctly reproduces the observed characteristics of the galaxies that will become cluster galaxies at z=0. We will pinpoint the cluster-centric radii over which quenching takes place between. We will determine the timescale (as a function of stellar mass) over which it must take place. This program will cement the legacy of Spitzer and WISE as tools for studying galaxy formation in clusters.