NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates
NASA Astrophysics Data System (ADS)
Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.
2017-12-01
The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.
Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.
2016-06-01
Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.
Gene flow analysis method, the D-statistic, is robust in a wide parameter space.
Zheng, Yichen; Janke, Axel
2018-01-08
We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.
Nijman, Vincent; Aliabadian, Mansour
2013-11-01
The mitochondrial cytochrome c-oxidase subunit I (cox1) can serve as a fast and accurate marker for the identification of animal species, and for the discovery of new species across the tree of life. Distinguishing species using this universal molecular marker, a technique known as DNA barcoding, relies on the identifying the gap between intra- and interspecific divergence. One of the difficulties could be wide-ranging, cosmopolitan species that show large amounts of morphological variation. The barn owl Tyto alba is a case in point. It occurs worldwide and varies morphologically, leading to the recognition of many subspecies or, more recently, species. We analysed data from the cox1 gene for 31 individuals of seven subspecies, and compared this with 214 sequences from 29 other owl species. Phylogenetic analysis of the T. alba samples gives very strong support for an Old World alba-clade (three subspecies) and a New World furcata-clade (four subspecies) that are genetically equidistant. The amount of intraspecific variation within each of these clades ranges from 0.66-0.99%, but variation among these clades ranges from 5.33-6.20%. Combined these data suggest that barn owl of the Old World is indeed best considered a separate species different from that of the New World. For combined dataset, sample size of owl species (n between 1 and 21 sequences) increased with geographic range size but we did not find significant relationships between interspecific divergence and sample size or between interspecific divergence and geographic range. For 21/24 species of owls with sample sizes of n ≥4 the maximum interspecific divergences was ≤ 3.00%. However, similar to those found in barn owls, the largest amount of divergence (3.23-4.09%) was present in two other wide-ranging species (Strix nebulosa and Aegolius funereus) raising the possibility of multiple species in other wide-ranging owls as well.
NASA Astrophysics Data System (ADS)
Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.
2014-01-01
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f
Indetermination of particle sizing by laser diffraction in the anomalous size ranges
NASA Astrophysics Data System (ADS)
Pan, Linchao; Ge, Baozhen; Zhang, Fugen
2017-09-01
The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.
Growing stock levels in even-aged ponderosa pine
Clifford A. Myers
1967-01-01
Growth of the most widely distributed pine in North America is under joint study by the western Forest and Range Experiment Stations of the U. S. Forest Service. Young, even-aged ponderosa pine (Pinus ponderosa Laws.) stands are being examined over a wide range of tree sizes, stand densities, and site index. The single plan that co-...
Kim, YongTae; Chung, Bomy Lee; Ma, Mingming; Mulder, Willem J. M.; Fayad, Zahi A.; Farokhzad, Omid C.; Langer, Robert
2012-01-01
Lipid-polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process, but are restricted by a low throughput. In this study we present a pattern-tunable microvortex platform that allows mass production and size control of LPH nanoparticles with superior reproducibility and homogeneity. We demonstrate that by varying flow rates (i.e. Reynolds number (30∼150)) we can control the nanoparticle size (30∼170nm) with high productivity (∼3g/hour) and low polydispersity (∼0.1). Our approach may contribute to efficient development and optimization of a wide range of multicomponent nanoparticles for medical imaging and drug delivery. PMID:22716029
Silver nanoparticles: Synthesis methods, bio-applications and properties.
Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad
2016-01-01
Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.
Transport characteristics of μ-SQUIDs for probing magnetism
NASA Astrophysics Data System (ADS)
Biswas, Sourav; Paul, Sagar; Parashari, Harsh; Winkelmann, Clemens B.; Courtois, Hervé; Gupta, Anjan K.
2018-04-01
We study the transport properties of niobium (Nb) based micron sized superconducting quantum interference devices (μ-SQUID), which are designed to eliminate thermal hysteresis down to 1.3 K. Current-voltage characteristics are non-hysterestic at the lowest temperature. Large voltage oscillations with magnetic field are observed for a wide range of bias currents with good flux sensitivity and reduced flux noise. However, devices with fins and devices on sapphire substrate show hysteresis for wide range of bath temperature. We have also been able to see the sign of magnetic response from a single micron size ferromagnetic permalloy ellipse using the μ-SQUID.
"V-junction": a novel structure for high-speed generation of bespoke droplet flows.
Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew
2015-01-21
We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.
French Sizing of Medical Devices is not Fit for Purpose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kibriya, Nabil, E-mail: nabskib@yahoo.co.uk; Hall, Rebecca; Powell, Steven
PurposeThe purpose of the study is to quantify the variation in the metric equivalent of French size in a range of medical devices, from various manufacturers, used in interventional radiology.MethodsThe labelling of a range of catheters, introducers, drains, balloons, stents, and endografts was examined. Products were chosen to achieve a broad range of French sizes from several manufacturers. To assess manufacturing accuracy, eight devices were selected for measurement using a laser micrometer. The external diameters of three specimens of each device were measured at centimeter intervals along the length of the device to ensure uniformity.ResultsA total of 200 labels ofmore » interventional radiology equipment were scrutinized. The results demonstrate a wide variation in the metric equivalent of French sizing. Labelled products can vary in diameter across the product range by up to 0.79 mm.The devices selected for measurement with the non-contact laser micrometer demonstrate acceptable manufacturing consistency. The external diameter differed by 0.05 mm on average.ConclusionsOur results demonstrate wide variation in the interpretation of the French scale by different manufacturers of medical devices. This has the potential to lead to problems using coaxial systems especially when the products are from different manufacturers. It is recommended that standard labelling should be employed by all manufacturers conveying specific details of the equipment. Given the wide variation in the interpretation of the French scale, our opinion is that this scale either needs to be abandoned or be strictly defined and followed.« less
Dunne, Peter W; Starkey, Chris L; Gimeno-Fabra, Miquel; Lester, Edward H
2014-02-21
Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
The application of dual fuel /JP-LH2/ for hypersonic cruise vehicles
NASA Technical Reports Server (NTRS)
Weidner, J. P.
1978-01-01
The possibility of utilizing jet fuel (JP) stored primarily in the wings of hydrogen-fueled hypersonic cruise vehicles has been evaluated and compared to the performance of all hydrogen-fueled aircraft. Parametric investigations of wing loading, thrust-to-weight ratio, payload size and vehicle size are presented. Results indicate improvements in performance for a wide range of potential payload sizes, particularly when in-flight refueling of the JP fuel is considered as a means of increasing range and mission flexibility.
High Gain and Wide Range Time Amplifier Using Inverter Delay Chain in SR Latches
NASA Astrophysics Data System (ADS)
Lee, Jaejun; Lee, Sungho; Song, Yonghoon; Nam, Sangwook
This paper presents a time amplifier design that improves time resolution using an inverter chain delay in SR latches. Compared with the conventional design, the proposed time amplifier has better characteristics such as higher gain, wide range, and small die size. It is implemented using 0.13µm standard CMOS technology and the experimental results agree well with the theory.
2012-01-01
of exploiting a wide range of habitats, reported population parameters such as density and survival vary widely indicating variation in habitat quality...more strongly influenced by the “riskiness” of the habitat than by resource availability [8]. Swift fox population parameters in different landscapes...we explored the effects of landscape heterogeneity on population parameters likely to reflect habitat quality, such as population density, home range
Home range characteristics of Mexican Spotted Owls in the canyonlands of Utah
Willey, D.W.; van Riper, Charles
2007-01-01
We studied home-range characteristics of adult Mexican Spotted Owls (Strix occidentalis lucida) in southern Utah. Twenty-eight adult owls were radio-tracked using a ground-based telemetry system during 1991-95. Five males and eight females molted tail feathers and dropped transmitters within 4 wk. We estimated cumulative home ranges for 15 Spotted Owls (12 males, 3 females). The mean estimate of cumulative home-range size was not statistically different between the minimum convex polygon and adaptive kernel (AK) 95% isopleth. Both estimators yielded relatively high SD, and male and female range sizes varied widely. For 12 owls tracked during both the breeding and nonbreeding seasons, the mean size of the AK 95% nonbreeding home range was 49% larger than the breeding home-range size. The median AK 75% bome-range isopleth (272 ha) we observed was similar in size to Protected Activity Centers (PACs) recommended by a recovery team. Our results lend support to the PAC concept and we support continued use of PACs to conserve Spotted Owl habitat in Utah. ?? 2007 The Raptor Research Foundation, Inc.
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-01-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp–166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules. PMID:24918865
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
NASA Astrophysics Data System (ADS)
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-06-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.
Coaxial EMI Sensor for UXO Detection and Discrimination
2008-05-01
Raleigh, North Carolina. Geophex has a 10 m x 10 m test bed in which 21 metal pipes of various sizes, some ferrous (steel) and some nonferrous (3...spectral matching was expected to lower the FAR, but with the wide range of anticipated UXO in terms of size and metal content, the corresponding wide...warrant further investigation.” Grid squares with a response stage below the stated noise threshold are declared empty (neither UXO nor metallic
Development of microsatellite markers from crape myrtle (Lagerstroemia L.)
USDA-ARS?s Scientific Manuscript database
Lagerstroemia L. (crape myrtle) is an economically important woody plant genus with several deciduous flowering ornamental species. A wide range of flower colors, long flowering periods, growth habits ranging from miniature to tree sizes, and exfoliating bark characteristics provide horticulturists ...
High Efficiency Variable Speed Versatile Power Air Conditioning System
2013-08-08
Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology
The measurement of acoustic properties of limited size panels by use of a parametric source
NASA Astrophysics Data System (ADS)
Humphrey, V. F.
1985-01-01
A method of measuring the acoustic properties of limited size panels immersed in water, with a truncated parametric array used as the acoustic source, is described. The insertion loss and reflection loss of thin metallic panels, typically 0·45 m square, were measured at normal incidence by using this technique. Results were obtained for a wide range of frequencies (10 to 100 kHz) and were found to be in good agreement with the theoretical predictions for plane waves. Measurements were also made of the insertion loss of aluminium, Perspex and G.R.P. panels for angles of incidence up to 50°. The broad bandwidth available from the parametric source permitted detailed measurements to be made over a wide frequency range using a single transmitting transducer. The small spot sizes obtainable with the parametric source also helped to reduce the significance of diffraction from edges of the panel under test.
SIZE DISTRIBUTION OF SEA-SALT EMISSIONS AS A FUNCTION OF RELATIVE HUMIDITY
This note presents a straightforward method to correct sea-salt-emission particle-size distributions according to local relative humidity. The proposed method covers a wide range of relative humidity (0.45 to 0.99) and its derivation incorporates recent laboratory results on sea-...
USDA-ARS?s Scientific Manuscript database
Hybrid catfish production ponds often produce a wide size range of fish and payments to farmers may be reduced due to discounts for larger fish. This study was conducted to determine effect of grading hybrid catfish fingerlings on the size distribution of harvested foodfish. Three 0.25-acre ponds we...
Landscape heterogeneity-biodiversity relationship: effect of range size.
Katayama, Naoki; Amano, Tatsuya; Naoe, Shoji; Yamakita, Takehisa; Komatsu, Isamu; Takagawa, Shin-ichi; Sato, Naoto; Ueta, Mutsuyuki; Miyashita, Tadashi
2014-01-01
The importance of landscape heterogeneity to biodiversity may depend on the size of the geographic range of species, which in turn can reflect species traits (such as habitat generalization) and the effects of historical and contemporary land covers. We used nationwide bird survey data from Japan, where heterogeneous landscapes predominate, to test the hypothesis that wide-ranging species are positively associated with landscape heterogeneity in terms of species richness and abundance, whereas narrow-ranging species are positively associated with landscape homogeneity in the form of either open or forest habitats. We used simultaneous autoregressive models to explore the effects of climate, evapotranspiration, and landscape heterogeneity on the richness and abundance of breeding land-bird species. The richness of wide-ranging species and the total species richness were highest in heterogeneous landscapes, where many wide-ranging species showed the highest abundance. In contrast, the richness of narrow-ranging species was not highest in heterogeneous landscapes; most of those species were abundant in either open or forest landscapes. Moreover, in open landscapes, narrow-ranging species increased their species richness with decreasing temperature. These results indicate that heterogeneous landscapes are associated with rich bird diversity but that most narrow-ranging species prefer homogeneous landscapes--particularly open habitats in colder regions, where grasslands have historically predominated. There is a need to reassess the generality of the heterogeneity-biodiversity relationship, with attention to the characteristics of species assemblages determined by environments at large spatiotemporal scales.
Landscape Heterogeneity–Biodiversity Relationship: Effect of Range Size
Katayama, Naoki; Amano, Tatsuya; Naoe, Shoji; Yamakita, Takehisa; Komatsu, Isamu; Takagawa, Shin-ichi; Sato, Naoto; Ueta, Mutsuyuki; Miyashita, Tadashi
2014-01-01
The importance of landscape heterogeneity to biodiversity may depend on the size of the geographic range of species, which in turn can reflect species traits (such as habitat generalization) and the effects of historical and contemporary land covers. We used nationwide bird survey data from Japan, where heterogeneous landscapes predominate, to test the hypothesis that wide-ranging species are positively associated with landscape heterogeneity in terms of species richness and abundance, whereas narrow-ranging species are positively associated with landscape homogeneity in the form of either open or forest habitats. We used simultaneous autoregressive models to explore the effects of climate, evapotranspiration, and landscape heterogeneity on the richness and abundance of breeding land-bird species. The richness of wide-ranging species and the total species richness were highest in heterogeneous landscapes, where many wide-ranging species showed the highest abundance. In contrast, the richness of narrow-ranging species was not highest in heterogeneous landscapes; most of those species were abundant in either open or forest landscapes. Moreover, in open landscapes, narrow-ranging species increased their species richness with decreasing temperature. These results indicate that heterogeneous landscapes are associated with rich bird diversity but that most narrow-ranging species prefer homogeneous landscapes—particularly open habitats in colder regions, where grasslands have historically predominated. There is a need to reassess the generality of the heterogeneity-biodiversity relationship, with attention to the characteristics of species assemblages determined by environments at large spatiotemporal scales. PMID:24675969
Impact of particle concentration and out-of-range sizes on the measurements of the LISST
NASA Astrophysics Data System (ADS)
Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth
2018-05-01
The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.
Is My Penis Normal? (For Teens)
... worried about whether his penis is a normal size. There's a fairly wide range of normal penis sizes — just as there is for every other body part. And just like other parts of the body, how a penis appears at different stages of a guy's life varies quite a ...
Qualitative Meta-Analysis on the Hospital Task: Implications for Research
ERIC Educational Resources Information Center
Noll, Jennifer; Sharma, Sashi
2014-01-01
The "law of large numbers" indicates that as sample size increases, sample statistics become less variable and more closely estimate their corresponding population parameters. Different research studies investigating how people consider sample size when evaluating the reliability of a sample statistic have found a wide range of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe; Camilla, S.
The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the referencemore » material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.« less
Thermocapillary flow contribution to dropwise condensation heat transfer
NASA Astrophysics Data System (ADS)
Phadnis, Akshay; Rykaczewski, Konrad
2017-11-01
With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.
Rivers, James W.; Johnson, Matthew J.; Haig, Susan M.; Schwarz, Carl J.; Burnett, Joseph; Brandt, Joseph; George, Daniel; Grantham, Jesse
2014-01-01
Condors and vultures comprise the only group of terrestrial vertebrates in the world that are obligate scavengers, and these species move widely to locate ephemeral, unpredictable, and patchily-distributed food resources. In this study, we used high-resolution GPS location data to quantify monthly home range size of the critically endangered California Condor Gymnogyps californianus throughout the annual cycle in California. We assessed whether individual-level characteristics (age, sex and breeding status) and factors related to endangered species recovery program efforts (rearing method, release site) were linked to variation in monthly home range size. We found that monthly home range size varied across the annual cycle, with the largest monthly home ranges observed during late summer and early fall (July–October), a pattern that may be linked to seasonal changes in thermals that facilitate movement. Monthly home ranges of adults were significantly larger than those of immatures, but males and females used monthly home ranges of similar size throughout the year and breeding adults did not differ from non-breeding adults in their average monthly home range size. Individuals from each of three release sites differed significantly in the size of their monthly home ranges, and no differences in monthly home range size were detected between condors reared under captive conditions relative to those reared in the wild. Our study provides an important foundation for understanding the movement ecology of the California Condor and it highlights the importance of seasonal variation in space use for effective conservation planning for this critically endangered species.
Taylor's law and body size in exploited marine ecosystems.
Cohen, Joel E; Plank, Michael J; Law, Richard
2012-12-01
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.
Taylor's law and body size in exploited marine ecosystems
Cohen, Joel E; Plank, Michael J; Law, Richard
2012-01-01
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught. PMID:23301181
Solid state neutron detector array
Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.
1999-01-01
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.
Methods for sample size determination in cluster randomized trials
Rutterford, Clare; Copas, Andrew; Eldridge, Sandra
2015-01-01
Background: The use of cluster randomized trials (CRTs) is increasing, along with the variety in their design and analysis. The simplest approach for their sample size calculation is to calculate the sample size assuming individual randomization and inflate this by a design effect to account for randomization by cluster. The assumptions of a simple design effect may not always be met; alternative or more complicated approaches are required. Methods: We summarise a wide range of sample size methods available for cluster randomized trials. For those familiar with sample size calculations for individually randomized trials but with less experience in the clustered case, this manuscript provides formulae for a wide range of scenarios with associated explanation and recommendations. For those with more experience, comprehensive summaries are provided that allow quick identification of methods for a given design, outcome and analysis method. Results: We present first those methods applicable to the simplest two-arm, parallel group, completely randomized design followed by methods that incorporate deviations from this design such as: variability in cluster sizes; attrition; non-compliance; or the inclusion of baseline covariates or repeated measures. The paper concludes with methods for alternative designs. Conclusions: There is a large amount of methodology available for sample size calculations in CRTs. This paper gives the most comprehensive description of published methodology for sample size calculation and provides an important resource for those designing these trials. PMID:26174515
Particulate matter in the air is known for causing adverse health effects and yet estimating lung deposition dose is difficult because exposure conditions vary widely. We measured total deposition fraction (TDF) of monodisperse aerosols in the size range of 0.04 - 5 micron in dia...
An abundance of small exoplanets around stars with a wide range of metallicities.
Buchhave, Lars A; Latham, David W; Johansen, Anders; Bizzarro, Martin; Torres, Guillermo; Rowe, Jason F; Batalha, Natalie M; Borucki, William J; Brugamyer, Erik; Caldwell, Caroline; Bryson, Stephen T; Ciardi, David R; Cochran, William D; Endl, Michael; Esquerdo, Gilbert A; Ford, Eric B; Geary, John C; Gilliland, Ronald L; Hansen, Terese; Isaacson, Howard; Laird, John B; Lucas, Philip W; Marcy, Geoffrey W; Morse, Jon A; Robertson, Paul; Shporer, Avi; Stefanik, Robert P; Still, Martin; Quinn, Samuel N
2012-06-13
The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.
Mathaes, Roman; Winter, Gerhard; Engert, Julia; Besheer, Ahmed
2013-09-10
Non-spherical micro- and nanoparticles have recently gained considerable attention due to their surprisingly different interaction with biological systems compared to their spherical counterparts, opening new opportunities for drug delivery and vaccination. Up till now, electron microscopy is the only method to quantitatively identify the critical quality attributes (CQAs) of non-spherical particles produced by film-stretching; namely size, morphology and the quality of non-spherical particles (degree of contamination with spherical ones). However, electron microscopy requires expensive instrumentation, demanding sample preparation and non-trivial image analysis. To circumvent these drawbacks, the ability of different particle analysis methods to quantitatively identify the CQA of spherical and non-spherical poly(1-phenylethene-1,2-diyl (polystyrene) particles over a wide size range (40 nm, 2 μm and 10 μm) was investigated. To this end, light obscuration, image-based analysis methods (Microflow imaging, MFI, and Vi-Cell XR Coulter Counter) and flow cytometry were used to study particles in the micron range, while asymmetric flow field fractionation (AF4) coupled to multi-angle laser scattering (MALS) and quasi elastic light scattering (QELS) was used for particles in the nanometer range, and all measurements were benchmarked against electron microscopy. Results show that MFI can reliably identify particle size and aspect ratios of the 10 μm particles, but not the 2 μm ones. Meanwhile, flow cytometry was able to differentiate between spherical and non-spherical 10 or 2 μm particles, and determine the amount of impurities in the sample. As for the nanoparticles, AF4 coupled to MALS and QELS allowed the measurement of the geometric (rg) and hydrodynamic (rh) radii of the particles, as well as their shape factors (rg/rh), confirming their morphology. While this study shows the utility of MFI, flow cytometry and AF4 for quantitative evaluation of the CQA of non-spherical particles over a wide size range, the limitations of the methods are discussed. The use of orthogonal characterization methods can provide a complete picture about the CQA of non-spherical particles over a wide size range. Copyright © 2013 Elsevier B.V. All rights reserved.
Astronomical near-infrared echelle gratings
NASA Astrophysics Data System (ADS)
Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming
2014-07-01
High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.
Comet nuclear magnitudes and a new size distribution using archived NEAT data.
NASA Astrophysics Data System (ADS)
Bambery, R. J.; Hicks, M. D.; Pravdo, S. H.; Helin, E. F.; Lawrence, K. J.
2002-09-01
A reliable estimate of the size distribution of cometary nuclei provides important constraints on the formation and dynamical/physical evolution of these bodies as well as their relative proportions in the near-Earth population. The basic data of nuclear sizes has been difficult to obtain, due to the shroud of dust that envelopes the nucleus across a wide range of heliocentric distances. Only two comets, P/Halley and P/Borrelly, have had direct imaging of their nuclei from spacecraft encounters, though high spatial-resolution imaging by the Hubble Space Telescope has also yielded very reliable diameters [1]. Other observers have recently used ground-based photometry to obtain cumulative size-frequency distributions which are not in agreement [2,3]. One possible source of error is the need to include data from a wide range of telescopes and reduction techniques. We shall obtain a new estimate of the size-frequency distribution using a self-consistent data-set. The Near-Earth Asteroid Tracking (NEAT) Program at the Jet Propulsion laboratory remotely operates two 1.2-meter telescopes at widely geographically separated locations on a near-nightly basis. All NEAT data is archived and publically available through the SKYMORPH website (http:/skyview.gsfc.nasa.gov/skymorph/skymorph.html) Though optimized to discover near-Earth asteroids, we have obtained over 300 CCD images of approximately 40 short and long-period comets over the last 15 months. Though we model coma contamination for all images, we shall concentrate on the fraction of comets at heliocentric distances greater than 3 AU. Our data will be used to derive an independent comet size-frequency distribution .
Measuring Snow Grain Size with the Near-Infrared Emitting Reflectance Dome (NERD)
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.
2014-12-01
Because of its high visible albedo, snow plays a large role in Earth's surface energy balance. This role is a subject of intense study, but due to the wide range of snow albedo, variations in the characteristics of snow grains can introduce radiative feedbacks in a snow pack. Snow grain size, for example, is one property which directly affects a snow pack's absorption spectrum. Previous studies model and observe this spectrum, but potential feedbacks induced by these variations are largely unknown. Here, we implement a simple and inexpensive technique to measure snow grain size in an instrument we call the Near-infrared Emitting Reflectance Dome (NERD). A small black styrene dome (~17cm diameter), fitted with two narrowband light-emitting diodes (LEDs) centered around 1300nm and 1550nm and three near-infrared reverse-biased photodiodes, is placed over the snow surface enabling a multi-spectral measurement of the hemispheric directional reflectance factor (HDRF). We illuminate the snow at each wavelength, measure directional reflectance, and infer grain size from the difference in HDRFs measured on the same snow crystals at fixed viewing angles. We validate measurements from the NERD using two different reflectance standards, materials designed to be near perfect Lambertian reflectors, having known, constant reflectances (~99% and ~55%) across a wide range of wavelengths. Using a 3D Monte Carlo model simulating photon pathways through a pack of spherical snow grains, we calculate the difference in HDRFs at 1300nm and 1550nm to predict the calibration curve for a wide range of grain sizes. This theoretically derived curve gives a relationship between effective radius and the difference in HDRFs and allows us to approximate grain sizes using the NERD in just a few seconds. Further calibration requires knowledge of truth values attainable using a previously validated instrument or measurements from an inter-comparison workshop.
Rai, Kedar N; Jain, Subodh K
1982-06-01
Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.
Exploring metrics to express energy expenditure of physical activity in youth
USDA-ARS?s Scientific Manuscript database
Several approaches have been used to express energy expenditure in youth, but no consensus exists as to which best normalizes data for the wide range of ages and body sizes across a range of physical activities. This study examined several common metrics for expressing energy expenditure to determin...
Okada, Kensuke; Hoshino, Takahiro
2017-04-01
In psychology, the reporting of variance-accounted-for effect size indices has been recommended and widely accepted through the movement away from null hypothesis significance testing. However, most researchers have paid insufficient attention to the fact that effect sizes depend on the choice of the number of levels and their ranges in experiments. Moreover, the functional form of how and how much this choice affects the resultant effect size has not thus far been studied. We show that the relationship between the population effect size and number and range of levels is given as an explicit function under reasonable assumptions. Counterintuitively, it is found that researchers may affect the resultant effect size to be either double or half simply by suitably choosing the number of levels and their ranges. Through a simulation study, we confirm that this relation also applies to sample effect size indices in much the same way. Therefore, the variance-accounted-for effect size would be substantially affected by the basic research design such as the number of levels. Simple cross-study comparisons and a meta-analysis of variance-accounted-for effect sizes would generally be irrational unless differences in research designs are explicitly considered.
Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance
NASA Astrophysics Data System (ADS)
Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena
2017-11-01
A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.
Marine reserves: fish life history and ecological traits matter.
Claudet, J; Osenberg, C W; Domenici, P; Badalamenti, F; Milazzo, M; Falcón, J M; Bertocci, I; Benedetti-Cecchi, L; García-Charton, J A; Goñi, R; Borg, J A; Forcada, A; De Lucia, G A; Perez-Ruzafa, A; Afonso, P; Brito, A; Guala, I; Le Diréach, L; Sanchez-Jerez, P; Somerfield, P J; Planes, S
2010-04-01
Marine reserves are assumed to protect a wide range of species from deleterious effects stemming from exploitation. However, some species, due to their ecological characteristics, may not respond positively to protection. Very little is known about the effects of life history and ecological traits (e.g., mobility, growth, and habitat) on responses of fish species to marine reserves. Using 40 data sets from 12 European marine reserves, we show that there is significant variation in the response of different species of fish to protection and that this heterogeneity can be explained, in part, by differences in their traits. Densities of targeted size-classes of commercial species were greater in protected than unprotected areas. This effect of protection increased as the maximum body size of the targeted species increased, and it was greater for species that were not obligate schoolers. However, contrary to previous theoretical findings, even mobile species with wide home ranges benefited from protection: the effect of protection was at least as strong for mobile species as it was for sedentary ones. Noncommercial bycatch and unexploited species rarely responded to protection, and when they did (in the case of unexploited bentho-pelagic species), they exhibited the opposite response: their densities were lower inside reserves. The use of marine reserves for marine conservation and fisheries management implies that they should ensure protection for a wide range of species with different life-history and ecological traits. Our results suggest this is not the case, and instead that effects vary with economic value, body size, habitat, depth range, and schooling behavior.
Influence of fuel temperature on atomization performance of pressure-swirl atomizers
NASA Astrophysics Data System (ADS)
Wang, X. F.; Lefebvre, A. H.
The influence of fuel temperature on mean drop size and drop-size distribution is examined for aviation gasoline and diesel oil, using three pressure-swirl simplex nozzles. Spray characteristics are measured over wide ranges of fuel injection pressure and ambient air pressure using a Malvern spray analyzer. Fuel temperatures are varied from -20 C to +50 C. Over this range of temperature, the overall effect of an increase in fuel temperature is to reduce the mean drop size and broaden the distribution of drop sizes in the spray. Generally, it is found that the influence of fuel temperature on mean drop size is far more pronounced for diesel oil than for gasoline. For both fuels the beneficial effect of higher fuel temperatures on atomization quality is sensibly independent of ambient air pressure.
A microwave scattering model for layered vegetation
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.
1992-01-01
A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.
Class Size and Student Performance at a Public Research University: A Cross-Classified Model
ERIC Educational Resources Information Center
Johnson, Iryna Y.
2010-01-01
This study addresses several methodological problems that have confronted prior research on the effect of class size on student achievement. Unlike previous studies, this analysis accounts for the hierarchical data structure of student achievement, where grades are nested within classes and students, and considers a wide range of class sizes…
NASA Astrophysics Data System (ADS)
Smith, David R. R.; Patterson, Roy D.
2005-11-01
Glottal-pulse rate (GPR) and vocal-tract length (VTL) are related to the size, sex, and age of the speaker but it is not clear how the two factors combine to influence our perception of speaker size, sex, and age. This paper describes experiments designed to measure the effect of the interaction of GPR and VTL upon judgements of speaker size, sex, and age. Vowels were scaled to represent people with a wide range of GPRs and VTLs, including many well beyond the normal range of the population, and listeners were asked to judge the size and sex/age of the speaker. The judgements of speaker size show that VTL has a strong influence upon perceived speaker size. The results for the sex and age categorization (man, woman, boy, or girl) show that, for vowels with GPR and VTL values in the normal range, judgements of speaker sex and age are influenced about equally by GPR and VTL. For vowels with abnormal combinations of low GPRs and short VTLs, the VTL information appears to decide the sex/age judgement.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.
2017-01-01
Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.
Occurrence and dominance of six Pacific Northwest conifer species
Todd A. Schroeder; Andreas Hamann; Tongli Wang; Nicholas C. Coops
2010-01-01
This study develops near range-wide predictive distribution maps for six important conifer species (Pseudotsuga menziesii, Tsuga heterophylla, Pinus contorta, Thuja plicata, Larix occidentalis, and Picea glauca) using forest inventory data collected across the United States and Canada. Species model accuracies are compared with range size using a rank scoring system. A...
Occupancy in continuous habitat
Efford, Murray G.; Dawson, Deanna K.
2012-01-01
The probability that a site has at least one individual of a species ('occupancy') has come to be widely used as a state variable for animal population monitoring. The available statistical theory for estimation when detection is imperfect applies particularly to habitat patches or islands, although it is also used for arbitrary plots in continuous habitat. The probability that such a plot is occupied depends on plot size and home-range characteristics (size, shape and dispersion) as well as population density. Plot size is critical to the definition of occupancy as a state variable, but clear advice on plot size is missing from the literature on the design of occupancy studies. We describe models for the effects of varying plot size and home-range size on expected occupancy. Temporal, spatial, and species variation in average home-range size is to be expected, but information on home ranges is difficult to retrieve from species presence/absence data collected in occupancy studies. The effect of variable home-range size is negligible when plots are very large (>100 x area of home range), but large plots pose practical problems. At the other extreme, sampling of 'point' plots with cameras or other passive detectors allows the true 'proportion of area occupied' to be estimated. However, this measure equally reflects home-range size and density, and is of doubtful value for population monitoring or cross-species comparisons. Plot size is ill-defined and variable in occupancy studies that detect animals at unknown distances, the commonest example being unlimited-radius point counts of song birds. We also find that plot size is ill-defined in recent treatments of "multi-scale" occupancy; the respective scales are better interpreted as temporal (instantaneous and asymptotic) rather than spatial. Occupancy is an inadequate metric for population monitoring when it is confounded with home-range size or detection distance.
Møller, Anders P.
2017-01-01
Understanding temporal variability in population size is important for conservation biology because wide population fluctuations increase the risk of extinction. Previous studies suggested that certain ecological, demographic, life-history and genetic characteristics of species might be related to the degree of their population fluctuations. We checked whether that was the case in a large sample of 231 European breeding bird species while taking a number of potentially confounding factors such as population trends or similarities among species due to common descent into account. When species-specific characteristics were analysed one by one, the magnitude of population fluctuations was positively related to coloniality, habitat, total breeding range, heterogeneity of breeding distribution and natal dispersal, and negatively related to urbanisation, abundance, relative number of subspecies, parasitism and proportion of polymorphic loci. However, when abundance (population size) was included in the analyses of the other parameters, only coloniality, habitat, total breeding range and abundance remained significantly related to population fluctuations. The analysis including all these predictors simultaneously showed that population size fluctuated more in colonial, less abundant species with larger breeding ranges. Other parameters seemed to be related to population fluctuations only because of their association with abundance or coloniality. The unexpected positive relationship between population fluctuations and total breeding range did not seem to be mediated by abundance. The link between population fluctuations and coloniality suggests a previously unrecognized cost of coloniality. The negative relationship between population size and population fluctuations might be explained by at least three types of non-mutually exclusive stochastic processes: demographic, environmental and genetic stochasticity. Measurement error in population indices, which was unknown, may have contributed to the negative relationship between population size and fluctuations, but apparently only to a minor extent. The association between population size and fluctuations suggests that populations might be stabilized by increasing population size. PMID:28253345
Traffic sharing algorithms for hybrid mobile networks
NASA Technical Reports Server (NTRS)
Arcand, S.; Murthy, K. M. S.; Hafez, R.
1995-01-01
In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.
Solid state neutron detector array
Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.
1999-08-17
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.
Habitat use of the Louisiana Waterthrush during the non-breeding season in Puerto Rico
M.T. Hallworth; L.R. Reitsma; K. Parent
2011-01-01
We used radiotelemetry to quantify habitat and spatial use patterns of neighboring Louisiana Waterthrush (Parkesia motacilla) along two streams in the Caribbean National Forest in Puerto Rico during 2005â2007. Home range sizes varied with younger birds having larger home ranges and core areas than older birds. All birds occupied some length of stream but a wide range...
Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Gockel, Joy; Sheridan, Luke; Narra, Sneha P.; Klingbeil, Nathan W.; Beuth, Jack
2017-12-01
Metal additive manufacturing (AM) is used for both prototyping and production of final parts. Therefore, there is a need to predict and control the microstructural size and morphology. Process mapping is an approach that represents AM process outcomes in terms of input variables. In this work, analytical, numerical, and experimental approaches are combined to provide a holistic view of trends in the solidification grain structure of Ti-6Al-4V across a wide range of AM process input variables. The thermal gradient is shown to vary significantly through the depth of the melt pool, which precludes development of fully equiaxed microstructure throughout the depth of the deposit within any practical range of AM process variables. A strategy for grain size control is demonstrated based on the relationship between melt pool size and grain size across multiple deposit geometries, and additional factors affecting grain size are discussed.
Complexity of Fit, with Application to Space Suits
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Benson, Elizabeth
2009-01-01
Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely fitting its potential wearers, a group of people from a broad spectrum of the population, and will detail some of the methods that can be employed to ensure and validate a good fit.
Fifty-year development of Douglas-fir stands planted at various spacings.
Donald L. Reukema
1979-01-01
A 51-yr record of observations in stands planted at six spacings, ranging from 4 to 12 ft, illustrates clearly the beneficial effects of wide initial spacing and the detrimental effects of carrying too many trees relative to the size to which they will be grown. Not only are trees larger, but yields per acre are greater at wide spacings.
Maximum size-density relationships for mixed softwoods in the northeastern USA
Dale S. Solomon; Lianjun Zhang
2002-01-01
The maximum size-density relationships or self-thinning lines were developed for three mix .ed-softwood climax forest habitats (hemlock-red spruce, spruce-fir, and cedar-black spruce) in the northeastern USA. The plot data were collected from an extensive data base used in growth studies from 1950 to 1970, and represented a wide range of species compositions, sites,...
A study on the trinucleotide repeat associated with Huntington`s disease in the Chinese
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bing-wen Soong; Jih-tsuu Wang
1994-09-01
Analysis of the polymorphic (CAG)n repeat in the hungingtin gene in the chinese confirmed the presence of an expanded repeat on all Huntington`s disease chromosomes. Measurement of the specific CAG repeat sequence in 34 HD chromosomes from 15 unrelated families and 190 control chromosomes from the Chinese population showed a range from 9 to 29 repeats in normal subjects and 40 to 58 in affected subjects. The size distributions of normal and affected alleles did not overlap. A clear correlation bewteen early onset of symptoms and very high repeat number was seen, but the spread of the age-at-onset in themore » major repeat range producing characteristic HD it too wide to be of diagnostic value. There was also variability in the transmitted repeat size for both sexes in the HD size range. Maternal HD alleles showed a moderate instability with a preponderance of size decrease, while paternal HD alleles had a tendency to increase in repeat size on transmission, the degree of which appeared proportional to the initial size.« less
Analysis of surface cracks in finite plates under tension or bending loads
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1979-01-01
Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.
Miller, Colleen R; Latimer, Christopher E; Zuckerberg, Benjamin
2018-05-01
Allen's rule predicts that homeotherms inhabiting cooler climates will have smaller appendages, while those inhabiting warmer climates will have larger appendages relative to body size. Birds' bills tend to be larger at lower latitudes, but few studies have tested whether modern climate change and urbanization affect bill size. Our study explored whether bill size in a wide-ranging bird would be larger in warmer, drier regions and increase with rising temperatures. Furthermore, we predicted that bill size would be larger in densely populated areas, due to urban heat island effects and the higher concentration of supplementary foods. Using measurements from 605 museum specimens, we explored the effects of climate and housing density on northern cardinal bill size over an 85-year period across the Linnaean subspecies' range. We quantified the geographic relationships between bill surface area, housing density, and minimum temperature using linear mixed effect models and geographically weighted regression. We then tested whether bill surface area changed due to housing density and temperature in three subregions (Chicago, IL., Washington, D.C., and Ithaca, NY). Across North America, cardinals occupying drier regions had larger bills, a pattern strongest in males. This relationship was mediated by temperature such that birds in warm, dry areas had larger bills than those in cool, dry areas. Over time, female cardinals' bill size increased with warming temperatures in Washington, D.C., and Ithaca. Bill size was smaller in developed areas of Chicago, but larger in Washington, D.C., while there was no pattern in Ithaca, NY. We found that climate and urbanization were strongly associated with bill size for a wide-ranging bird. These biogeographic relationships were characterized by sex-specific differences, varying relationships with housing density, and geographic variability. It is likely that anthropogenic pressures will continue to influence species, potentially promoting microevolutionary changes over space and time.
ERIC Educational Resources Information Center
Goodwin, Amanda P.; Ahn, Soyeon
2010-01-01
This study synthesizes 79 standardized mean-change differences between control and treatment groups from 17 independent studies, investigating the effect of morphological interventions on literacy outcomes for students with literacy difficulties. Average total sample size ranged from 15 to 261 from a wide range of grade levels. Overall,…
76 FR 5393 - Notice of Submission of Proposed Information Collection to OMB; HUD Stakeholder Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... Proposed Information Collection to OMB; HUD Stakeholder Survey AGENCY: Office of the Chief Information... will allow HUD to collect feedback from a wide range of stakeholder groups using a brief, optional survey to be completed in person at the end of each stakeholder event. The events range in size from...
Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall.
Negrón, Luis M; Díaz, Tanya L; Ortiz-Quiles, Edwin O; Dieppa-Matos, Diómedes; Madera-Soto, Bismark; Rivera, José M
2016-03-15
Nanoflowers (NFs) are flowered-shaped particles with overall sizes or features in the nanoscale. Beyond their pleasing aesthetics, NFs have found a number of applications ranging from catalysis, to sensing, to drug delivery. Compared to inorganic based NFs, their organic and hybrid counterparts are relatively underdeveloped mostly because of the lack of a reliable and versatile method for their construction. We report here a method for constructing NFs from a wide variety of biologically relevant molecules (guests), ranging from small molecules, like doxorubicin, to biomacromolecules, like various proteins and plasmid DNA. The method relies on the encapsulation of the guests within a hierarchically structured particle made from supramolecular G-quadruplexes. The size and overall flexibility of the guests dictate the broad morphological features of the resulting NFs, specifically, small and rigid guests favor the formation of NFs with spiky petals, while large and/or flexible guests promote NFs with wide petals. The results from experiments using confocal fluorescence microscopy, and scanning electron microscopy provides the basis for the proposed mechanism for the NF formation.
Turbine instabilities: Case histories
NASA Technical Reports Server (NTRS)
Laws, C. W.
1985-01-01
Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.
Antenna and Electronics Cost Tradeoffs For Large Arrays
NASA Technical Reports Server (NTRS)
D'Addario, Larry R.
2007-01-01
This viewgraph presentation describes the cost tradeoffs for large antenna arrays. The contents include: 1) Cost modeling for large arrays; 2) Antenna mechanical cost over a wide range of sizes; and 3) Cost of per-antenna electronics.
Operating manual: Fast response solar array simulator
NASA Technical Reports Server (NTRS)
Vonhatten, R.; Weimer, A.; Zerbel, D. W.
1971-01-01
The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.
Liu, Chao; Xue, Chundong; Chen, Xiaodong; Shan, Lei; Tian, Yu; Hu, Guoqing
2015-06-16
Viscoelasticity-induced particle migration has recently received increasing attention due to its ability to obtain high-quality focusing over a wide range of flow rates. However, its application is limited to low throughput regime since the particles can defocus as flow rate increases. Using an engineered carrier medium with constant and low viscosity and strong elasticity, the sample flow rates are improved to be 1 order of magnitude higher than those in existing studies. Utilizing differential focusing of particles of different sizes, here, we present sheathless particle/cell separation in simple straight microchannels that possess excellent parallelizability for further throughput enhancement. The present method can be implemented over a wide range of particle/cell sizes and flow rates. We successfully separate small particles from larger particles, MCF-7 cells from red blood cells (RBCs), and Escherichia coli (E. coli) bacteria from RBCs in different straight microchannels. The proposed method could broaden the applications of viscoelastic microfluidic devices to particle/cell separation due to the enhanced sample throughput and simple channel design.
2016-02-10
using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models
Bruno, Nicola; Uccelli, Stefano; Viviani, Eva; de'Sperati, Claudio
2016-10-01
According to a previous report, the visual coding of size does not obey Weber's law when aimed at guiding a grasp (Ganel et al., 2008a). This result has been interpreted as evidence for a fundamental difference between sensory processing in vision-for-perception, which needs to compress a wide range of physical objects to a restricted range of percepts, and vision-for-action when applied to the much narrower range of graspable and reachable objects. We compared finger aperture in a motor task (precision grip) and perceptual task (cross modal matching or "manual estimation" of the object's size). Crucially, we tested the whole range of graspable objects. We report that both grips and estimations clearly violate Weber's law with medium-to-large objects, but are essentially consistent with Weber's law with smaller objects. These results differ from previous characterizations of perception-action dissociations in the precision of representations of object size. Implications for current functional interpretations of the dorsal and ventral processing streams in the human visual system are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Memory-based snowdrift game on a square lattice
NASA Astrophysics Data System (ADS)
Shu, Feng; Liu, Xingwen; Fang, Kai; Chen, Hao
2018-04-01
Spatial reciprocity is an effective way widely accepted to facilitate cooperation. In the case of snowdrift game, some researches showed that spatial reciprocity inhibits cooperation for a very wide range of cost-to-benefit ratio r. However, some other researches found that based on the spatial reciprocity, a wider range of r is helpful to achieve a high cooperation level. Thus, how to enlarge the range of r for the purpose of promoting cooperation becomes a hot topic recently. This paper proposes a new memory-based method, in which each individual compares with its own previous payoffs to find out the maximal one as virtual payoff and then randomly compares with one of its neighbours to obtain the optimal strategy according to the given updating rules. It shows the positive effect of spatial reciprocity in the context of memory. Specifically, in this situation, not only the lower ratio can appear a high cooperation level, but also the larger ratio r can emerge a high cooperation level. That is, an expected cooperation level can be achieved simultaneously for small and large r. Furthermore, the scenarios of both constant-size memory and size-varying memory are investigated. An interesting phenomenon is discovered that the cooperation level drops down gradually as the memory size increases.
Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2017-10-11
Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.
The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds
NASA Technical Reports Server (NTRS)
Davies, R.
1978-01-01
Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.
Systematic Evaluation of Molecular Networks for Discovery of Disease Genes.
Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku; Zhang, Wei; Kreisberg, Jason F; Tamayo, Pablo; Ideker, Trey
2018-04-25
Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall. A general tendency is that performance scales with network size, suggesting that new interaction discovery currently outweighs the detrimental effects of false positives. Correcting for size, we find that the DIP network provides the highest efficiency (value per interaction). Based on these results, we create a parsimonious composite network with both high efficiency and performance. This work provides a benchmark for selection of molecular networks in human disease research. Copyright © 2018 Elsevier Inc. All rights reserved.
2017-01-01
We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779
Influence of feedstock particle size on lignocellulose conversion--a review.
Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay
2011-08-01
Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.
Comparative study of visual pathways in owls (Aves: Strigiformes).
Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Lisney, Thomas J; Wylie, Douglas R
2013-01-01
Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer. Copyright © 2012 S. Karger AG, Basel.
Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods
NASA Astrophysics Data System (ADS)
Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.
2011-11-01
Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.
Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses.
Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Torremorell, Montserrat
2015-01-01
When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m(3) within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x10(2) (in particles ranging from 1.1 to 2.1 μm) to 4.3x10(5) RNA copies/m(3) in the largest particles (9.0-10.0 μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1 μm in quantities ranging from 6x10(2) (0.4-0.7 μm) to 5.1x10(4) RNA copies/m(3) (9.0-10.0 μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x10(6) (0.4-0.7 μm) to 3.5x10(8) RNA copies/m(3) (9.0-10.0 μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1 μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of particle sizes. However, virus viability is particle size dependent.
Wildlife of southern forests habitat & management (Chapter 26): Terrestrial Small Mammals
James G. Dickson
2003-01-01
A variety of terrestrial small mammals with diverse size, form, geo- graphic range, and ecological niche inhabit southern forests. Some are highly specialized for their environment, such as the semi-aquatic species or fossorial species, such as moles. Some, such as the cotton rat, are widely distributed throughout the region and others highly restrictive in their range...
Sonochemical synthesis of silica particles and their size control
NASA Astrophysics Data System (ADS)
Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan
2016-09-01
Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Spielman, Steven R.
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...
2017-06-01
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
NASA Astrophysics Data System (ADS)
Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.
2010-12-01
Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
Shape and size engineered cellulosic nanomaterials as broad spectrum anti-microbial compounds.
Sharma, Priyanka R; Kamble, Sunil; Sarkar, Dhiman; Anand, Amitesh; Varma, Anjani J
2016-06-01
Oxidized celluloses have been used for decades as antimicrobial wound gauzes and surgical cotton. We now report the successful synthesis of a next generation narrow size range (25-35nm) spherical shaped nanoparticles of 2,3,6-tricarboxycellulose based on cellulose I structural features, for applications as new antimicrobial materials. This study adds to our previous study of 6-carboxycellulose. A wide range of bacteria such as Escherichia coli, Staphloccocus aureus, Bacillus subtilis and Mycobacterium tuberculosis (non-pathogenic as well as pathogenic strains) were affected by these polymers in in vitro studies. Activity against Mycobacteria were noted at high concentrations (MIC99 values 250-1000μg/ml, as compared to anti-TB drug Isoniazid 0.3μg/ml). However, the broad spectrum activity of oxidized celluloses and their nanoparticles against a wide range of bacteria, including Mycobacteria, show that these materials are promising new biocompatible and biodegradable drug delivery vehicles wherein they can play the dual role of being a drug encapsulant as well as a broad spectrum anti-microbial and anti-TB drug. Copyright © 2016. Published by Elsevier B.V.
Home range behavior among box turtles (Terrapene c. carolina) of a bottomland forest in Maryland
Stickel, L.F.
1989-01-01
Eastern box turtles (Terrapene c. carolina) in a Maryland bottomland forest were studied over a period of years (1944-1981). Home ranges of 51 males averaged 146 + SD 48 m long and 105 + SD 38 m wide; ranges of 52 females averaged 144 + SD 52 m long and 100 + SD 38 m wide. An approximation of average home range size, based on an ellipse, is 1.20 ha for males and 1.13 ha for females. Sizes of home ranges of individuals did not differ significantly between 1945 and the full term of their captures (0 =14 yr) (AOV; P > 0.05). Mean distance between capture sites, which provides an index to range size, was not significantly different among the years of 1945, 1955, 1965, and 1975 (AOV; P > 0.05). Geographic centers of ranges of 77 males in the bottomlands showed no significant (AOV; P > 0.05) change for 46, and change over relatively short distances (0 =57 + SD 23 m) for the others. Among 70 females, there was no significant change for 46 and change over short distances (0=61 + SD 24 m) for the others. Changes in location were more frequent between 1965 and 1975, a period of pronounced population decline, than between previous decades (significant only for females, x2 P < 0.025). Hibernation sites ordinarily (21 of 23 Individuals) were within the normal bottom]and range; hibernation sites of different years were near each other (all of 4 individuals). In contrast, nesting sites were far distant, extending the home range by 400-700 m, but those of different years were near each other (6 individuals). Mating partners occupied broadly overlapping or contiguous ranges (35 records). Interactions between males (18 records) were identical to courtship behavior, and are believed not to represent territorial aggression.
Shah, Ruchi R; Dodd, Stephanie; Schaefer, Mary; Ugozzoli, Mildred; Singh, Manmohan; Otten, Gillis R; Amiji, Mansoor M; O'Hagan, Derek T; Brito, Luis A
2015-04-01
Microfluidization is an established technique for preparing emulsion adjuvant formulations for use in vaccines. Although this technique reproducibly yields high-quality stable emulsions, it is complex, expensive, and requires proprietary equipment. For this study, we developed a novel and simple low shear process to prepare stable reproducible emulsions without the use of any proprietary equipment. We found this process can produce a wide range of differently sized emulsions based on the modification of ratios of oil and surfactants. Using this process, we prepared a novel 20-nm-sized emulsion that was stable, reproducible, and showed adjuvant effects. During evaluation of this emulsion, we studied a range of emulsions with the same composition all sized below 200; 20, 90, and 160 nm in vivo and established a correlation between adjuvant size and immune responses. Our studies indicate that 160-nm-sized emulsions generate the strongest immune responses. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Shaifer, J.
2016-02-01
The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.
Gravitational effects on body composition in birds
NASA Technical Reports Server (NTRS)
Smith, A. H.; Sanchez P., O.; Burton, R. R.
1975-01-01
Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.
2015-11-10
Locations of more than 1,000 craters mapped on Pluto by NASA New Horizons mission indicate a wide range of surface ages, which likely means that Pluto has been geologically active throughout its history. http://photojournal.jpl.nasa.gov/catalog/PIA20154
Ambient Tropospheric Particles
Atmospheric particulate matter (PM) is a complex mixture of solid and liquid particles suspended in ambient air (also known as the atmospheric aerosol). Ambient PM arises from a wide-range of sources and/or processes, and consists of particles of different shapes, sizes, and com...
Palatini, Paolo; Fania, Claudio; Gasparotti, Federica
2018-04-01
The aim of this study was to determine the accuracy of the WatchBP Office ABI monitor for office blood pressure measurement over a wide range of arm circumferences using the ANSI/AAMI/ISO 81060-2:2013 protocol. The device accuracy was tested in 88 participants whose mean±SD age was 54.5±17.6 years, whose arm circumference was 30.6±8.3 cm (range: 15-46 cm), and whose entry blood pressure (BP) was 138.3±23.4 mmHg for systolic and 83.7±14.6 mmHg for diastolic BP. Four cuffs (small, standard, large, and extra-large) suitable for arm circumferences ranging from 14.0 to 52.0 cm were used. The mean device-observer difference in the 264 separate BP data pairs was 0.7±3.8 mmHg for systolic BP and was 0.0±3.7 mmHg for diastolic BP. These data were in agreement with criterion 1 of the ANSI/AAMI/ISO 81060-2:2013 standard requirements (≤5±8 mmHg). Moreover, criterion 2 was satisfied, the mean±SD device-observer difference of the 88 participants being 0.7±3.1 and 0.0±3.2 mmHg, respectively, for systolic and diastolic BP. Good agreement between observer and device was present across the whole range of arm circumferences. These data show that the Microlife WatchBP Office ABI monitor satisfied the ANSI/AAMI/ISO 81060-2:2013 standard requirements across a wide range of arm sizes.
Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M. D.; Jogler, T.; Dumm, J.
In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less
Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array
Wood, M. D.; Jogler, T.; Dumm, J.; ...
2015-06-07
In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less
Wilder, Shawn M; Rypstra, Ann L
2008-09-01
Sexual cannibalism varies widely among spiders, but no general evolutionary hypothesis has emerged to explain its distribution across taxa. Sexual size dimorphism (SSD) also varies widely among spiders and could affect the vulnerability of males to cannibalistic attacks by females. We tested for a relationship between SSD and sexual cannibalism within and among species of spiders, using a broad taxonomic data set. For most species, cannibalism was more likely when males were much smaller than females. In addition, using phylogenetically controlled and uncontrolled analyses, there was a strong positive relationship between average SSD of a species and the frequency of sexual cannibalism. This is the first evidence that the degree of size difference between males and females is related to the phylogenetic distribution of sexual cannibalism among a broad range of spiders.
Fluctuating survival selection explains variation in avian group size
Brown, Charles R.; Brown, Mary Bomberger; Roche, Erin A.; O’Brien, Valerie A.; Page, Catherine E.
2016-01-01
Most animal groups vary extensively in size. Because individuals in certain sizes of groups often have higher apparent fitness than those in other groups, why wide group size variation persists in most populations remains unexplained. We used a 30-y mark–recapture study of colonially breeding cliff swallows (Petrochelidon pyrrhonota) to show that the survival advantages of different colony sizes fluctuated among years. Colony size was under both stabilizing and directional selection in different years, and reversals in the sign of directional selection regularly occurred. Directional selection was predicted in part by drought conditions: birds in larger colonies tended to be favored in cooler and wetter years, and birds in smaller colonies in hotter and drier years. Oscillating selection on colony size likely reflected annual differences in food availability and the consequent importance of information transfer, and/or the level of ectoparasitism, with the net benefit of sociality varying under these different conditions. Averaged across years, there was no net directional change in selection on colony size. The wide range in cliff swallow group size is probably maintained by fluctuating survival selection and represents the first case, to our knowledge, in which fitness advantages of different group sizes regularly oscillate over time in a natural vertebrate population. PMID:27091998
Fluctuating survival selection explains variation in avian group size.
Brown, Charles R; Brown, Mary Bomberger; Roche, Erin A; O'Brien, Valerie A; Page, Catherine E
2016-05-03
Most animal groups vary extensively in size. Because individuals in certain sizes of groups often have higher apparent fitness than those in other groups, why wide group size variation persists in most populations remains unexplained. We used a 30-y mark-recapture study of colonially breeding cliff swallows (Petrochelidon pyrrhonota) to show that the survival advantages of different colony sizes fluctuated among years. Colony size was under both stabilizing and directional selection in different years, and reversals in the sign of directional selection regularly occurred. Directional selection was predicted in part by drought conditions: birds in larger colonies tended to be favored in cooler and wetter years, and birds in smaller colonies in hotter and drier years. Oscillating selection on colony size likely reflected annual differences in food availability and the consequent importance of information transfer, and/or the level of ectoparasitism, with the net benefit of sociality varying under these different conditions. Averaged across years, there was no net directional change in selection on colony size. The wide range in cliff swallow group size is probably maintained by fluctuating survival selection and represents the first case, to our knowledge, in which fitness advantages of different group sizes regularly oscillate over time in a natural vertebrate population.
Fluctuating survival selection explains variation in avian group size
Brown, Charles B.; Brown, Mary Bomberger; Roche, Erin A.; O'brien, Valerie A; Page, Catherine E.
2016-01-01
Most animal groups vary extensively in size. Because individuals in certain sizes of groups often have higher apparent fitness than those in other groups, why wide group size variation persists in most populations remains unexplained. We used a 30-y mark–recapture study of colonially breeding cliff swallows (Petrochelidon pyrrhonota) to show that the survival advantages of different colony sizes fluctuated among years. Colony size was under both stabilizing and directional selection in different years, and reversals in the sign of directional selection regularly occurred. Directional selection was predicted in part by drought conditions: birds in larger colonies tended to be favored in cooler and wetter years, and birds in smaller colonies in hotter and drier years. Oscillating selection on colony size likely reflected annual differences in food availability and the consequent importance of information transfer, and/or the level of ectoparasitism, with the net benefit of sociality varying under these different conditions. Averaged across years, there was no net directional change in selection on colony size. The wide range in cliff swallow group size is probably maintained by fluctuating survival selection and represents the first case, to our knowledge, in which fitness advantages of different group sizes regularly oscillate over time in a natural vertebrate population.
NASA Astrophysics Data System (ADS)
Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.
2012-03-01
Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.
Average size of random polygons with fixed knot topology.
Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo
2003-07-01
We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.
Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.
Meroney, Robert N; Sheker, Robert E
2016-05-01
Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.
Selective encapsulation by Janus particles
NASA Astrophysics Data System (ADS)
Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.
2015-06-01
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.
Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter
2016-01-01
The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296
Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans
2013-01-01
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species. PMID:24244198
Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans
2013-11-01
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.
In large regions, human land uses typically overlay wide ranges of natural geomorphic factors that control stream habitat characteristics and benthic macroinvertebrate assemblages. Many macroinvertebrate measures of stream "health" show strong association with substrate size, a ...
Guidelines for the Design of GPS and LORAN Receiver Controls and Displays
DOT National Transportation Integrated Search
1995-03-01
Long range navigation (Loran) and global positioning system (GPS) receivers are widely used in aviation. The Loran and GPS receivers are similar in size and function but derive their navigation signals from different sources. The design of the contro...
Developing a National Stream Morphology Data Exchange: Needs, Challenges, and Opportunities.
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal ...
Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes.
Grabowski, Mark; Jungers, William L
2017-10-12
Body mass directly affects how an animal relates to its environment and has a wide range of biological implications. However, little is known about the mass of the last common ancestor (LCA) of humans and chimpanzees, hominids (great apes and humans), or hominoids (all apes and humans), which is needed to evaluate numerous paleobiological hypotheses at and prior to the root of our lineage. Here we use phylogenetic comparative methods and data from primates including humans, fossil hominins, and a wide sample of fossil primates including Miocene apes from Africa, Europe, and Asia to test alternative hypotheses of body mass evolution. Our results suggest, contrary to previous suggestions, that the LCA of all hominoids lived in an environment that favored a gibbon-like size, but a series of selective regime shifts, possibly due to resource availability, led to a decrease and then increase in body mass in early hominins from a chimpanzee-sized LCA.The pattern of body size evolution in hominids can provide insight into historical human ecology. Here, Grabowski and Jungers use comparative phylogenetic analysis to reconstruct the likely size of the ancestor of humans and chimpanzees and the evolutionary history of selection on body size in primates.
Defining space use and movements of Canada lynx with global positioning system telemetry
Burdett, C.L.; Moen, R.A.; Niemi, G.J.; Mech, L.D.
2007-01-01
Space use and movements of Canada lynx (Lynx canadensis) are difficult to study with very-high-frequency radiocollars. We deployed global positioning system (GPS) collars on 11 lynx in Minnesota to study their seasonal space-use patterns. We estimated home ranges with minimum-convex-polygon and fixed-kernel methods and estimated core areas with area/probability curves. Fixed-kernel home ranges of males (range = 29-522 km2) were significantly larger than those of females (range = 5-95 km2) annually and during the denning season. Some male lynx increased movements during March, the month most influenced by breeding activity. Lynx core areas were predicted by the 60% fixed-kernel isopleth in most seasons. The mean core-area size of males (range = 6-190 km2) was significantly larger than that of females (range = 1-19 km2) annually and during denning. Most female lynx were reproductive animals with reduced movements, whereas males often ranged widely between Minnesota and Ontario. Sensitivity analyses examining the effect of location frequency on home-range size suggest that the home-range sizes of breeding females are less sensitive to sample size than those of males. Longer periods between locations decreased home-range and core-area overlap relative to the home range estimated from daily locations. GPS collars improve our understanding of space use and movements by lynx by increasing the spatial extent and temporal frequency of monitoring and allowing home ranges to be estimated over short periods that are relevant to life-history characteristics. ?? 2007 American Society of Mammalogists.
High performance interconnection between high data rate networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.
1992-01-01
The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.
New Manufacturing Method for Paper Filler and Fiber Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doelle, Klaus
2011-06-26
The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp.more » The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12â pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.« less
The size distribution of interstellar grains
NASA Technical Reports Server (NTRS)
Witt, Adolf N.
1987-01-01
Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.
NASA Technical Reports Server (NTRS)
Nisbet, John S.
1988-01-01
General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.
Variability of back carbon in Northwest Greenland during the past 350 years
NASA Astrophysics Data System (ADS)
Goto-Azuma, Kumiko; Ogawa-Tsukagawa, Yoshimi; Kondo, Yutaka; Dallmayr, Remi; Hirabayashi, Motohiro; Ogata, Jun; Kitamura, Kyotaro; Kawamura, Kenji; Motoyama, Hideaki; Matoba, Sumito; Aoki, Teruo; Moteki, Nobuhiro; Ohata, Sho; Mori, Tatsuhiro; Koike, Makoto; Komuro, Yuki; Tsushima, Akane; Nagatsuka, Naoko
2017-04-01
An ice core to the depth of 225 m was drilled at the SIGMA-D site, Northwest Greenland, in 2014 under the SIGMA (Snow Impurity and Glacial Microbe Effects on Abrupt Warming in the Arctic) project (Matoba et al., 2015). The ice core was analyzed to the depth of 113 m with a Continuous Flow Analysis (CFA) system, which was recently built at the National Institute of Polar Research, Japan. The CFA system allowed high resolution analyses of black carbon (BC), stable isotopes of water, microparticles, electric conductivity, and trace elements (Na, K, Mg, Ca, Fe, and Al). BC was analyzed with a Wide Range SP2, which was recently developed by University of Tokyo (Mori et al., 2016). The Wide Range SP2 enabled us to measure BC particles with the size range between 40 and 4000 nm. Here we report the variability of BC concentrations and size distributions during the past 350 years. Anthropogenic impacts on concentrations, size distributions, and their seasonal variations were clearly seen during the first half of the 20th Century. References Matoba, S., H. Motoyama, K. Fujita. T. Yamasaki, M. Minowa, Y. Onuma Y. Komuro, T. Aoki, S. Yamaguchi, S. Sugiyama and H. Enomoto, Glaciological and meteorological observations at the SIGMA-D site, northwestern Greenland Ice Sheet. Bulletin of Glaciological Research 33, 7-10, 2015. Mori, T., N. Moteki, S. Ohata, M. Koike, K. Goto-Azuma, Y. Miyazaki and Y. Kondo, Improved technique for measuring the size distribution of black carbon particles in liquid water, Aerosol Science & Technology, 50, 3, 242-254, DOI: 10.1080/02786826.2016.1147644, 2016.
Sampling the quality of hardwood trees
Adrian M. Gilbert
1959-01-01
Anyone acquainted with the conversion of hardwood trees into wood products knows that timber has a wide range in quality. Some trees will yield better products than others. So, in addition to rate of growth and size, tree values are affected by the quality of products yielded.
NASA Technical Reports Server (NTRS)
Portnoy, W. M.; David, R. M.
1973-01-01
Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.
PARTICLE GROWTH IN HIGH-SPEED PARTICLE BEAM INLETS. (R823980)
Physical and chemical characterization of airborne particles is essential for determining their role in air pollution. Characterization instruments typically employ the use of sonic nozzles that transmit a wide range of particle sizes to a low-pressure region. The carrier gas ...
Interactions Forces and the Flow-Induced Coalescence of Drops and Bubbles
NASA Technical Reports Server (NTRS)
Leal, L. Gary; Israelachvili, J.
2004-01-01
In order to accomplish the proposed macroscale experimental goals, we designed and built a pair of miniaturized computer-controlled four-roll mills, similar but much smaller than the 4-roll mill that had been develop earlier in Prof. Leal's group for studies of drop deformation and breakup. This unique experimental facility allows for controlled experiments on the breakup and coalescence of very small drops in the size range of 20-200 micrometers in diameter for a wide variety of flows and under a wide range of flow conditions including time-dependent flows, etc. The small size of this device is necessary for coalescence studies, since coalescence occurs in viscous fluids at capillary numbers that are large enough to be experimentally accessible only for drops that are smaller than approximately 100_m in diameter. Using these miniaturized 4-roll mills, we have obtained the first quantitative data (so far as we are aware) on the flow-induced coalescence process.
Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey
Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.
1998-01-01
Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.
Raghupathi, Krishna R; Koodali, Ranjit T; Manna, Adhar C
2011-04-05
The antibacterial properties of zinc oxide nanoparticles were investigated using both gram-positive and gram-negative microorganisms. These studies demonstrate that ZnO nanoparticles have a wide range of antibacterial activities toward various microorganisms that are commonly found in environmental settings. The antibacterial activity of the ZnO nanoparticles was inversely proportional to the size of the nanoparticles in S. aureus. Surprisingly, the antibacterial activity did not require specific UV activation using artificial lamps, rather activation was achieved under ambient lighting conditions. Northern analyses of various reactive oxygen species (ROS) specific genes and confocal microscopy suggest that the antibacterial activity of ZnO nanoparticles might involve both the production of reactive oxygen species and the accumulation of nanoparticles in the cytoplasm or on the outer membranes. Overall, the experimental results suggest that ZnO nanoparticles could be developed as antibacterial agents against a wide range of microorganisms to control and prevent the spreading and persistence of bacterial infections.
Cell size control and homeostasis in bacteria
NASA Astrophysics Data System (ADS)
Bradde, Serena; Taheri, Sattar; Sauls, John; Hill, Nobert; Levine, Petra; Paulsson, Johan; Vergassola, Massimo; Jun, Suckjoon
2015-03-01
How cells control their size is a fundamental question in biology. The mechanisms for sensing size, time, or a combination of the two are not supported by experimental evidence. By analysing distributions of size at division at birth and generation time of hundreds of thousands of Gram-negative E. coli and Gram-positive B. subtilis cells under a wide range of tightly controlled steady-state growth conditions, we are now in the position to validate different theoretical models. In this talk I will present all possible models in details and present a general mechanism that quantitatively explains all measurable aspects of growth and cell division at both population and single-cell levels.
Energy Storage Sizing Taking Into Account Forecast Uncertainties and Receding Horizon Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Hug, Gabriela; Li, Xin
Energy storage systems (ESS) have the potential to be very beneficial for applications such as reducing the ramping of generators, peak shaving, and balancing not only the variability introduced by renewable energy sources, but also the uncertainty introduced by errors in their forecasts. Optimal usage of storage may result in reduced generation costs and an increased use of renewable energy. However, optimally sizing these devices is a challenging problem. This paper aims to provide the tools to optimally size an ESS under the assumption that it will be operated under a model predictive control scheme and that the forecast ofmore » the renewable energy resources include prediction errors. A two-stage stochastic model predictive control is formulated and solved, where the optimal usage of the storage is simultaneously determined along with the optimal generation outputs and size of the storage. Wind forecast errors are taken into account in the optimization problem via probabilistic constraints for which an analytical form is derived. This allows for the stochastic optimization problem to be solved directly, without using sampling-based approaches, and sizing the storage to account not only for a wide range of potential scenarios, but also for a wide range of potential forecast errors. In the proposed formulation, we account for the fact that errors in the forecast affect how the device is operated later in the horizon and that a receding horizon scheme is used in operation to optimally use the available storage.« less
USDA-ARS?s Scientific Manuscript database
Fusarium avenaceum is a fungus commonly isolated from soil and with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The physical sizes of the three genomes range from 41.6-43.2 MB...
AGT100 turbomachinery. [for automobiles
NASA Technical Reports Server (NTRS)
Tipton, D. L.; Mckain, T. F.
1982-01-01
High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.
Efficiency of planetesimal ablation in giant planetary envelopes
NASA Astrophysics Data System (ADS)
Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie
2016-12-01
Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.
Selective encapsulation by Janus particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.
2015-06-28
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less
Constraints on the adult-offspring size relationship in protists.
Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M
2013-12-01
The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
ATM observations - X-ray results. [solar coronal structure from Skylab experiments
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Zombeck, M.; Krieger, A. S.; Timothy, A. F.
1976-01-01
Preliminary results of the solar X-ray observations from Skylab are reviewed which indicate a highly structured nature for the corona, with closed magnetic-loop structures over a wide range of size scales. A description of the S-054 experiments is provided, and values are given for the parameters - including size, density, and temperature - describing a variety of typical coronal features. The structure and evolution of active regions, coronal holes, and bright points are discussed.
Fungal synthesis of size-defined nanoparticles
NASA Astrophysics Data System (ADS)
Zielonka, Aleksandra; Klimek-Ochab, Magdalena
2017-12-01
Fungi with metabolic capacities can efficiently synthesize a wide range of nanoparticles (NPs). This biotransformation process and its product have extensive applications especially for industry, agriculture and medicine, where NPs size and shape is essential and can be defined by specific analytical methods. Fungi cultivation and further bioconversion can be fully controlled to obtain the desired nanoparticles. Additionally, this review provides information about the fungus F. oxysporum, which is able to synthesize the largest amount of different types of NPs.
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.
2015-06-01
Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.
Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts
Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...
2017-10-03
Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less
Study into the correlation of dominant pore throat size and SIP relaxation frequency
NASA Astrophysics Data System (ADS)
Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett
2016-12-01
There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.
Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid
NASA Astrophysics Data System (ADS)
Sabeeh, Sabah H.; Hussein, Hashim Abed; Judran, Hadia Kadhim
Copper sulfate pentahydrate was used as a source of Cu ion with five different molarities (0.02, 0.05, 0.1, 0.15, 2 and 0.25M). XRD, FE-SEM and TEM techniques all showed that CuO samples have polycrystalline monoclinic structure. CuO prolate spheroid is assembled from nanoparticles as building units. It was demonstrated that the purity, morphology, size range of prolate spheroid and density of nano building units are significantly influenced by Cu precursor’s molarity. The pure phase of CuO prolate spheroid was produced via molarity of 0.2M with crystallite size of 15.1565nm while the particle size of building units ranges from 16nm to 21nm. The stability of CuO nanosuspension or nanofluid was evaluated by zeta potential analysis. The obtained properties of specific structure with large surface area of CuO prolate spheroid make it a promising candidate for wide range of potential applications as in nanofluids for cooling purposes.
Evidence for color fluctuations in hadrons from coherent nuclear diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankfurt, L.; Miller, G.A.; Strikman, M.
A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.
Efficiency of filtering materials used in respiratory protective devices against nanoparticles.
Brochocka, Agnieszka; Makowski, Krzysztof; Majchrzycka, Katarzyna; Grzybowski, Piotr
2013-01-01
The basic aim of this research was to establish the efficiency of filtering materials widely used in respiratory protection devices with particular interest in their porosity, degree of electric and changeable process parameters, such as the flow rate of the test nanoaerosol and the size range of nanoparticles. Tests were carried out with an NaCl solid aerosol of 3.2 × 105 particles/cm3 for the range of particle size of 7-270 nm, at aerosol flow rate of 1800, 2700, 3600, 4500 and 5400 L/h. The tests showed that electrospun nonwovens were the most effective filtering materials for nanoparticles over 20 nm. Melt-blown electret nonwovens with lower porosity than electrospun nonwovens had higher values of penetration of 1%-4%. Those materials provided very efficient protection against nanoparticles of certain sizes only.
Boitard, Simon; Rodríguez, Willy; Jay, Flora; Mona, Stefano; Austerlitz, Frédéric
2016-01-01
Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey), PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles. PMID:26943927
On-chip photonic particle sensor
NASA Astrophysics Data System (ADS)
Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian
2018-02-01
We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.
NASA Technical Reports Server (NTRS)
1981-01-01
Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.
78 FR 14053 - Vessel Documentation Renewal Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... fee of $26 per documented vessel. This proposed rule impacts a diverse set of industry sectors with a wide range of fleet sizes and revenues. Table 4 provides example data for three affected small..., Vessel Count, and Cost for Three Affected Small Entities Small entity Small entity Category representing...
Helping Kids Deal with Bullies
... such a wide range of situations, there's no one-size-fits all approach. What is advisable in one situation may not be appropriate in another. Many ... physical harm are involved. Sometimes it's useful to approach the bully's ... or counselors are the best ones to contact first. If you've tried those ...
E.R. Ferguson; E.R. Lawson; W.R. Maple; C. Mesavage
1968-01-01
Eastern redcedar (Juniperus virginiana L.) is the most widely distributed conifer of tree size in the Eastern United States (48). Its range also extends into southeastern Canada. The wood was once favored for domestic use and export because of its exceptional cutting qualities, durability, rich color, and aroma. It has now lost much of its...
New England wildlife: management forested habitats
Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier
1992-01-01
Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...
EFFECT OF IMPACTION, BOUNCE AND REAEROSOLIZATION ON THE COLLECTION EFFICIENCY OF IMPINGERS
The collection efficiency of liquid impingers was studied experimentally as a function of the sampling flow rate with test particles in the bacterial size range. Three impingers were tested: two All-Glass Impingers(AGI-4 and AGI-30),widely used for bioaerosol sampling, and a newl...
Strategies for high-throughput focused-beam ptychography
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
2017-08-08
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Strategies for high-throughput focused-beam ptychography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Meteoritical Society Annual Meeting, 57th, Prague, Czech Republic, July 25-29, 1994. [Abstracts only
NASA Technical Reports Server (NTRS)
1994-01-01
Ranging in size from mere grains and palm-size stones to boulders and many-mile- wide hunks of rock, meteorites hold many secrets of our solar system, and indeed of our universe. The 57th Annual Meeting of the Meteoritical Society discussed many aspects of this fascinating 'chunk' of the evolution of the Solar System. Topics covered included: chemical composition, meteorite types, meteorite age determination, meteorite origins, and find locations, as well as a multitude of other important subjects.
2016-02-10
a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and...to assess the reliability of NDE and SHM characterization capability. Best practices of using models are presented for both an eddy current NDE... EDDY CURRENT NDE CASE STUDY An eddy current crack sizing case study is presented to highlight examples of some of these complex characteristics of
Re-evaluating the link between brain size and behavioural ecology in primates.
Powell, Lauren E; Isler, Karin; Barton, Robert A
2017-10-25
Comparative studies have identified a wide range of behavioural and ecological correlates of relative brain size, with results differing between taxonomic groups, and even within them. In primates for example, recent studies contradict one another over whether social or ecological factors are critical. A basic assumption of such studies is that with sufficiently large samples and appropriate analysis, robust correlations indicative of selection pressures on cognition will emerge. We carried out a comprehensive re-examination of correlates of primate brain size using two large comparative datasets and phylogenetic comparative methods. We found evidence in both datasets for associations between brain size and ecological variables (home range size, diet and activity period), but little evidence for an effect of social group size, a correlation which has previously formed the empirical basis of the Social Brain Hypothesis. However, reflecting divergent results in the literature, our results exhibited instability across datasets, even when they were matched for species composition and predictor variables. We identify several potential empirical and theoretical difficulties underlying this instability and suggest that these issues raise doubts about inferring cognitive selection pressures from behavioural correlates of brain size. © 2017 The Author(s).
200 kj copper foil fuses. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClenahan, C.R.; Goforth, J.H.; Degnan, J.H.
1980-04-01
A 200-kJ, 50-kV capacitor bank has been discharged into 1-mil-thick copper foils immersed in fine glass beads. These foils ranged in length from 27 to 71 cm and in width from 15 to 40 cm. Voltage spikes of over 250 kV were produced by the resulting fuse behavior of the foil. Moreover, the current turned off at a rate that was over 6 times the initial bank dI/dt. Full widths at half maxima for the voltage and dI/dt spikes were about 0.5 microsec, with some as short as 300 nanosec. Electrical breakdown was prevented in all but one size fuzemore » with maximum applied fields of 7 kV/cm. Fuses that were split into two parallel sections have been tested, and the effects relative to one-piece fuses are much larger than would be expected on the basis of inductance differences alone. A resistivity model for copper foil fuses, which differs from previous work in that it includes a current density dependence, has been devised. Fuse behavior is predicted with reasonable accuracy over a wide range of foil sizes by a quasi-two-dimensional fuse code that incorporates this resistivity model. A variation of Maisonnier's method for predicting optimum fuze size has been derived. This method is valid if the risetime of the bank exceeds 3 microsec, in which case it can be expected to be applicable over a wide range of peak current densities.« less
Urzúa, Ángel; Urbina, Mauricio A
2017-08-01
The estuarine crab Hemigrapsus crenulatus is a key benthic species of estuarine and intertidal ecosystems of the South Pacific, habitats that experience wide fluctuations in salinity. The physiological strategies that allow this crab to thrive under variable salinities, and how they change during the benthic stages of their life cycle, were evaluated under laboratory conditions. Oxygen consumption, ammonia excretion and the regulatory capacity of Na + through the normal range of environmental salinities (i.e. 5, 10, 15, 20, 25, 30) were evaluated in three size classes, ranging from juveniles to adults. In all sizes, the oxygen consumption, ammonia excretion and regulatory capacity of Na + decreased as salinity increased, with the highest values at 5 and the lowest values at 30 salinity. Bigger crabs showed a higher capacity to regulate Na + , as well as higher respiration and excretion rates compared to smaller crabs, suggesting that they are better equipped to exploit areas of the estuary with low salinity. Regardless of its size, H. crenulatus is a strong hyper regulator in diluted media (i.e. 5-20) while a conformer at salinities higher than 20. The regulatory capacity of Na + was positively related with oxygen consumption and ammonia excretion rates. These relationships between sodium regulation, respiration and excretion are interpreted as adaptive physiological mechanisms that allow H. crenulatus to maintain the osmotic and bioenergetic balance over a wide range of environmental salinities. Copyright © 2017 Elsevier Inc. All rights reserved.
On the Nature of Disorder in Solid 4He
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2010-02-01
We apply a modified Debye approach to calculate the Gibbs free energy for different structural phases and crystallite sizes in 4He. Atoms are assumed to interact via the Aziz potential. We have found that some intermediate (between hcp and bcc) phase predicted previously is more favorable than hcp at low temperatures and for small sizes. We show that it can exist in a wide pressure range up to 60 bar in 4He for crystallite sizes about 3,000 atoms. For larger sizes (10,000 atoms or more) this phase becomes unfavorable. In multidomain structures the intermediate phase competes with hcp and metastable fcc that can be a reason for disorder in solid 4He.
Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig
2012-01-01
The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721
Li, Haitao; Boling, C Sam; Mason, Andrew J
2016-08-01
Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.
NASA Astrophysics Data System (ADS)
Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss
2018-01-01
TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.
Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.
2017-02-01
Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.
Ultra-compact MEMS FTIR spectrometer
NASA Astrophysics Data System (ADS)
Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa
2017-05-01
Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.
Characterizing temporal changes of agricultural particulate matter number concentrations
NASA Astrophysics Data System (ADS)
Docekal, G. P.; Mahmood, R.; Larkin, G. P.; Silva, P. J.
2017-12-01
It is widely accepted among literature that particulate matter (PM) are of detriment to human health and the environment as a whole. These effects can vary depending on the particle size. This study examines PM size distributions and number concentrations at a poultry house. Despite much literature on PM concentrations at agricultural facilities, few studies have looked at the size distribution of particles at such facilities from the nucleation up through the coarse mode. Two optical particle counters (OPCs) were placed, one inside of a chicken house, and one on the outside of an exhaust fan to determine particle size distributions. In addition, a scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) sampled poultry house particles to give sizing information from a full size range of 10 nm - 20 mm. The data collected show several different types of events where observed size distributions changed. While some of these are due to expected dust generation events producing coarse mode particles, others suggest particle nucleation and accumulation events at the smaller size ranges that also occurred. The data suggest that agricultural facilities have an impact one the presence of PM in the environment beyond just generation of coarse mode dust. Data for different types of size distribution changes observed will be discussed.
Economics of PPP-insulated pipe-type cable: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, A.
1987-10-01
This study has been designed to establish the economic range of application and the potential cost advantage of PPP-insulated pipe-type cable compared with presently utilized paper-insulated designs. The study is in two parts. In the first part the electrical and thermal characteristics of a range of cable sizes are tabulated. This data can be utilized for planning and economic comparison purposes. In the second part 12 transmission load scenarios are studied to determine the relative cost of various designs considering materials, installation and the losses over a wide range of assumptions.
Correlation among extinction efficiency and other parameters in an aggregate dust model
NASA Astrophysics Data System (ADS)
Dhar, Tanuj Kumar; Sekhar Das, Himadri
2017-10-01
We study the extinction properties of highly porous Ballistic Cluster-Cluster Aggregate dust aggregates in a wide range of complex refractive indices (1.4≤ n≤ 2.0, 0.001≤ k≤ 1.0) and wavelengths (0.11 {{μ }}{{m}}≤ {{λ }}≤ 3.4 {{μ }} m). An attempt has been made for the first time to investigate the correlation among extinction efficiency ({Q}{ext}), composition of dust aggregates (n,k), wavelength of radiation (λ) and size parameter of the monomers (x). If k is fixed at any value between 0.001 and 1.0, {Q}{ext} increases with increase of n from 1.4 to 2.0. {Q}{ext} and n are correlated via linear regression when the cluster size is small, whereas the correlation is quadratic at moderate and higher sizes of the cluster. This feature is observed at all wavelengths (ultraviolet to optical to infrared). We also find that the variation of {Q}{ext} with n is very small when λ is high. When n is fixed at any value between 1.4 and 2.0, it is observed that {Q}{ext} and k are correlated via a polynomial regression equation (of degree 1, 2, 3 or 4), where the degree of the equation depends on the cluster size, n and λ. The correlation is linear for small size and quadratic/cubic/quartic for moderate and higher sizes. We have also found that {Q}{ext} and x are correlated via a polynomial regression (of degree 3, 4 or 5) for all values of n. The degree of regression is found to be n and k-dependent. The set of relations obtained from our work can be used to model interstellar extinction for dust aggregates in a wide range of wavelengths and complex refractive indices.
Sun, Mingyun; Lin, Jennifer S.
2012-01-01
Double-stranded (ds) DNA fragments over a wide size range were successfully separated in blended polymer matrices by microfluidic chip electrophoresis. Novel blended polymer matrices composed of two types of polymers with three different molar masses were developed to provide improved separations of large dsDNA without negatively impacting the separation of small dsDNA. Hydroxyethyl celluloses (HECs) with average molar masses of ~27 kDa and ~1 MDa were blended with a second class of polymer, high-molar mass (~7 MDa) linear polyacrylamide (LPA). Fast and highly efficient separations of commercially available DNA ladders were achieved on a borosilicate glass microchip. A distinct separation of a 1 Kb DNA extension ladder (200 bp to 40,000 bp) was completed in 2 minutes. An orthogonal Design of Experiments (DOE) was used to optimize experimental parameters for DNA separations over a wide size range. We find that the two dominant factors are the applied electric field strength and the inclusion of a high concentration of low-molar mass polymer in the matrix solution. These two factors exerted different effects on the separations of small dsDNA fragments below 1 kbp, medium dsDNA fragments between 1 kbp and 10 kbp, and large dsDNA fragments above 10 kbp. PMID:22009451
Devastating decline of forest elephants in central Africa.
Maisels, Fiona; Strindberg, Samantha; Blake, Stephen; Wittemyer, George; Hart, John; Williamson, Elizabeth A; Aba'a, Rostand; Abitsi, Gaspard; Ambahe, Ruffin D; Amsini, Fidèl; Bakabana, Parfait C; Hicks, Thurston Cleveland; Bayogo, Rosine E; Bechem, Martha; Beyers, Rene L; Bezangoye, Anicet N; Boundja, Patrick; Bout, Nicolas; Akou, Marc Ella; Bene, Lambert Bene; Fosso, Bernard; Greengrass, Elizabeth; Grossmann, Falk; Ikamba-Nkulu, Clement; Ilambu, Omari; Inogwabini, Bila-Isia; Iyenguet, Fortune; Kiminou, Franck; Kokangoye, Max; Kujirakwinja, Deo; Latour, Stephanie; Liengola, Innocent; Mackaya, Quevain; Madidi, Jacob; Madzoke, Bola; Makoumbou, Calixte; Malanda, Guy-Aimé; Malonga, Richard; Mbani, Olivier; Mbendzo, Valentin A; Ambassa, Edgar; Ekinde, Albert; Mihindou, Yves; Morgan, Bethan J; Motsaba, Prosper; Moukala, Gabin; Mounguengui, Anselme; Mowawa, Brice S; Ndzai, Christian; Nixon, Stuart; Nkumu, Pele; Nzolani, Fabian; Pintea, Lilian; Plumptre, Andrew; Rainey, Hugo; de Semboli, Bruno Bokoto; Serckx, Adeline; Stokes, Emma; Turkalo, Andrea; Vanleeuwe, Hilde; Vosper, Ashley; Warren, Ymke
2013-01-01
African forest elephants- taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002-2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced.
NASA Astrophysics Data System (ADS)
Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.
2015-05-01
Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.
Molecular size and molecular size distribution affecting traditional balsamic vinegar aging.
Falcone, Pasquale Massimiliano; Giudici, Paolo
2008-08-27
A first attempt at a semiquantitative study of molecular weight (MW) and molecular weight distribution (MWD) in cooked grape must and traditional balsamic vinegar (TBV) with increasing well-defined age was performed by high-performance liquid size exclusion chromatography (SEC) using dual detection, that is, differential refractive index (DRI) and absorbance (UV-vis) based detectors. With this aim, MW and MWD, including number- and weight-average MW and polydispersity, were determined with respect to a secondary standard and then analyzed. All investigated vinegar samples were recognized as compositionally and structurally heterogeneous blends of copolymers (melanoidins) spreading over a wide range of molecular sizes: the relative MW ranged from 2 to >2000 kDa. The extent of the polymerization reactions was in agreement with the TBV browning kinetics. MWD parameters varied asymptotically toward either upper or lower limits during aging, reflecting a nonequilibrium status of the balance between polymerization and depolymerization reactions in TBV. MWD parameters were proposed as potential aging markers of TBV.
Throttle pneumatic impact mechanism equipped with afterburner idle-stroke chamber
NASA Astrophysics Data System (ADS)
Dedov, Alexey; Frantseva, Eleanor; Dmitriev, Mikhail
2017-01-01
Pneumatic impact mechanisms are widely used in construction, mining and other economic sectors of a country. Such mechanisms are a base for a wide range of machines of various types and dimensions from hand-held tools to mounted piling hammers with impact energy up to 10 000 J. This paper is aimed at creation of pneumatic impact mechanism with the improved characteristics, including operation, energy use, weight and size which is especially important in space-limited working conditions. The research methods include development of computer mathematical model that can solve equations system and test a prototype model at the experimental stand. As a result of conducted research the pneumatic impact mechanism with the improved characteristics was developed. An engineering method for calculating throttle pneumatic impact mechanisms with a preset value of impact energy from 1 to 20 000 was investigated. This method allows creating percussive machines of a wide range of application.
Newton, M; Barry, J; Dodd, J A; Lucas, M C; Boylan, P; Adams, C E
2016-09-01
Mortality rates of wild Atlantic salmon Salmo salar smolts implanted with acoustic transmitters were assessed to determine if mortality was size dependent. The routinely accepted, but widely debated, '2% transmitter mass: body mass' rule in biotelemetry was tested by extending the transmitter burden up to 12·7% of body mass in small [mean fork length (LF ) 138·3 mm, range 115-168 mm] downstream migrating S. salar smolts. Over the short timescale of emigration (range 11·9-44·5 days) through the lower river and estuary, mortality was not related to S. salar size, nor was a relationship found between mortality probability and transmitter mass: body mass or transmitter length: LF ratios. This study provides further evidence that smolt migration studies can deviate from the '2% rule' of thumb, to more appropriate study-specific measures, which enables the use of fishes representative of the body size in natural populations without undue effects. © 2016 The Fisheries Society of the British Isles.
Wattles, David W.; DeStefano, Stephen
2013-01-01
Moose (Alces alces) have recently re-occupied a portion of their range in the temperate deciduous forest of the northeastern United States after a >200 year absence. In southern New England, moose encounter different forest types, more human development, and higher temperatures than in other parts of their geographic range in North America. We analyzed seasonal minimum convex polygon home ranges, utilization distributions, movement rates, and home range composition of GPS-collared moose in Massachusetts. Seasonal home range sizes were not different for males and females and were within the range reported for low latitudes elsewhere in North America. Seasonal movement patterns reflected the seasonal changes in metabolic rate and the influence of the species’ reproductive cycle and weather. Home ranges consisted almost entirely of forested habitat, included large amounts of conservation land, and had lower road densities as compared to the landscape as a whole, indicating that human development may be a limiting factor for moose in the region. The size and configuration of home ranges, seasonal movement patterns, and use relative to human development have implications for conservation of moose and other wide-ranging species in more highly developed portions of their ranges.
1980-05-01
102 17. A Feasibility Study: Application of Lidar Transmission Measurement in the Slant Visual Range Problem - Ronald H. Kohl 108 18. Multiwavelength ...discrete filters gives greater spectral resolution over the whole band. The success of the Model 14-703 System led to the development of a more advanced...REQUIREMENTS Success in a wide range of atmospheric transmission measurement applications has led to the reqi,-st for more advanced capabilities which are listed
Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang
2017-01-01
In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli. PMID:28546313
Particle size distribution: A key factor in estimating powder dustiness.
López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo
2017-12-01
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.
Chemically etched ultrahigh-Q wedge-resonator on a silicon chip
NASA Astrophysics Data System (ADS)
Lee, Hansuek; Chen, Tong; Li, Jiang; Yang, Ki Youl; Jeon, Seokmin; Painter, Oskar; Vahala, Kerry J.
2012-06-01
Ultrahigh-Q optical resonators are being studied across a wide range of fields, including quantum information, nonlinear optics, cavity optomechanics and telecommunications. Here, we demonstrate a new resonator with a record Q-factor of 875 million for on-chip devices. The fabrication of our device avoids the requirement for a specialized processing step, which in microtoroid resonators has made it difficult to control their size and achieve millimetre- and centimetre-scale diameters. Attaining these sizes is important in applications such as microcombs and potentially also in rotation sensing. As an application of size control, stimulated Brillouin lasers incorporating our device are demonstrated. The resonators not only set a new benchmark for the Q-factor on a chip, but also provide, for the first time, full compatibility of this important device class with conventional semiconductor processing. This feature will greatly expand the range of possible `system on a chip' functions enabled by ultrahigh-Q devices.
Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun
2015-10-19
Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.
Quist, M.C.; Hubert, W.A.; Rahel, F.J.
2004-01-01
This study was conducted to assess the influence of elevation and stream width on the occurrence of 28 native and six exotic fish species using data collected (1954-2003) from 1,114 stream reaches in Wyoming. Medians and ranges of elevation and stream width were used to assess how elevation and stream width influenced the occurrence of individual species and to indicate which species had large and small ranges of distribution. Twenty-four species were common at elevations below 1,550 m and 31 species occurred in streams less than 20 m wide. The six exotic species had the potential to overlap all of the native species with regard to both elevation and stream width. In general, species that were collected over a wide range of elevations were also collected over a wide range of stream widths. Red shiner (Cyprinella lutrensis) and river carpsucker (Carpiodes carpio) occurred over the smallest elevation ranges ( 2,500 m). Longnose sucker and white sucker (Catostomus commersoni) occurred over the greatest ranges in stream widths (> 90 m), and brook stickleback (Culaea inconstans), black bullhead (Ameiurus melas), and quillback (Carpiodes cyprinus) were found over the lowest ranges in stream widths (< 12 m). The distributions of native and exotic species in streams that transition from the Rocky Mountains to the Great Plains were largely explained by elevation and stream width.
Structure of the mouthparts of Frankliniella bispinosa (Morgan) (Thysanoptera: Thripidae)
Carl C. Childers; Diann S. Achor
1991-01-01
Thrips are increasingly recognized as potentially serious pests in a number of different agricultural, ornamental and sylvan commodities worldwide as indicated by the papers presented at this conference. The small size of thrips, their large numbers, capacity for flight and wind dispersal, wide host ranges, poorly understood life histories and probable potential for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunkin, N F; Shkirin, A V; Burkhanov, I S
Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)
Management Practices: A Major Cause of Stress among Teachers.
ERIC Educational Resources Information Center
Mersky, Ronald
This research studies task-based stress among teachers in a rural setting. A 51-item instrument was administered to teachers in 12 schools to determine (1) the extent of differential reactions to a wide range of task-based teaching events, as correlated with situational characteristics (sex, age, elementary or secondary affiliation, school size);…
A facile solvothermal synthesis of octahedral Fe 3O 4 nanoparticles
DuChene, Joseph S.; Qiu, Jingjing; Graham, Jeremy O.; ...
2015-01-26
Anisotropic Fe 3O 4 octahedrons are obtained via a simple solvothermal synthesis with appropriate sizes for various technological applications. Here, a complete suite of materials characterization methods confirms the magnetite phase for these structures, which exhibit substantial saturation magnetization and intriguing morphologies for a wide range of applications.
Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry
USDA-ARS?s Scientific Manuscript database
The genus Daucus (Apiaceae) comprises species from around the world, covering a wide climatic range, and showing great morphological plasticity. Both cultivated and wild forms are described within the genus. The aim of the present study was to estimate the genome size variability in the collection o...
Mont, Michael A; Ragland, Phillip S; Etienne, Gracia
2004-12-01
Osteonecrosis is a disease with a wide ranging etiology and poorly understood pathogenesis seen commonly in young patients. Core decompression has historically been used in patients with small-sized or medium-sized precollapse lesions in an attempt to forestall disease progression. Typically, an 8-10 mm wide cannula trephine is used to do this procedure. The authors report on a new technique using multiple small drillings with a 3-mm Steinman pin to effectuate the core decompression. In this report, there were 32 of 45 hips (71%; 35 patients) with a successful clinical result at a mean followup of 2 years (range, 20-39 months). Twenty four of 30 Stage I hips (80%; 23 patients) had successful outcomes compared with 8 of 15 Stage II hips (57%; 12 patients) with no surgical complications occurring with this technique. This procedure is technically straightforward and led to minimal morbidity with no surgical complications. It may be effective in delaying the need for total hip arthroplasty in young patients with early (precollapse) stages of femoral head osteonecrosis.
Zhang, Kai; Cao, Libo; Fanta, Abeselom; Reed, Matthew P; Neal, Mark; Wang, Jenne-Tai; Lin, Chin-Hsu; Hu, Jingwen
2017-07-26
Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skeletal muscle design to meet functional demands
Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118
NASA Astrophysics Data System (ADS)
Rodríguez-López, J. L.; Montejano-Carrizales, J. M.; José-Yacamán, M.
Modern nanoparticle research in the field of small metallic systems has confirmed that many nanoparticles take on some Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A very clear example is the icosahedral (Ih) particle that only shows {111} faces that contribute to produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this review, we report on the structure and shape of mono- and bimetallic nanoparticles in the wide size range from 1-300 nm. First, we present AuPd nanoparticles in the 1-2 nm size range that show dodecahedral atomic growth packing, one of the Platonic solid shapes that have not been identified before in this small size range for metallic particles. Next, with particles in the size range of 2-5 nm, we present an energetic surface reconstruction phenomenon observed also on bimetallic nanoparticle systems of AuPd and AuCu, similar to a re-solidification effect observed during cooling process in lead clusters. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next nanostructure we review is a monometallic system in the size range of ≈5 nm that we termed the decmon. We present here some detailed geometrical analysis and experimental evidence that supports our models. Finally, in the size range of 100-300 nm, we present icosahedrally derived star gold nanocrystals which resembles the great stellated dodechaedron, which is a Kepler-Poisont solid. We conclude then that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids, and with a slightly greater particle's size, they tend to adopt Archimedean related shapes. If the particle's size is still greater, they tend to adopt shapes beyond the Archimedean (Kepler-Poisont) solids, reaching at the very end the bulk structure of solids. We demonstrate both experimentally and by means of computational simulations for each case that this structural atomic growth sequence is followed in such mono- and bimetallic nanoparticles.
What is the optimum sample size for the study of peatland testate amoeba assemblages?
Mazei, Yuri A; Tsyganov, Andrey N; Esaulov, Anton S; Tychkov, Alexander Yu; Payne, Richard J
2017-10-01
Testate amoebae are widely used in ecological and palaeoecological studies of peatlands, particularly as indicators of surface wetness. To ensure data are robust and comparable it is important to consider methodological factors which may affect results. One significant question which has not been directly addressed in previous studies is how sample size (expressed here as number of Sphagnum stems) affects data quality. In three contrasting locations in a Russian peatland we extracted samples of differing size, analysed testate amoebae and calculated a number of widely-used indices: species richness, Simpson diversity, compositional dissimilarity from the largest sample and transfer function predictions of water table depth. We found that there was a trend for larger samples to contain more species across the range of commonly-used sample sizes in ecological studies. Smaller samples sometimes failed to produce counts of testate amoebae often considered minimally adequate. It seems likely that analyses based on samples of different sizes may not produce consistent data. Decisions about sample size need to reflect trade-offs between logistics, data quality, spatial resolution and the disturbance involved in sample extraction. For most common ecological applications we suggest that samples of more than eight Sphagnum stems are likely to be desirable. Copyright © 2017 Elsevier GmbH. All rights reserved.
The role of membrane fluidization in the gel-assisted formation of giant polymersomes
Greene, Adrienne C.; Henderson, Ian M.; Gomez, Andrew; ...
2016-07-13
Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.). Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol)-poly(butadiene) (PEO-PBD) polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased bymore » increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm). This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Altogether the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.« less
Evaluation of exposure to airborne heavy metals at gun shooting ranges.
Lach, Karel; Steer, Brian; Gorbunov, Boris; Mička, Vladimír; Muir, Robert B
2015-04-01
Aerosols formed during shooting events were studied with various techniques including the wide range size resolving sampling system Nano-ID(®) Select, followed by inductively coupled plasma mass spectrometry chemical analysis, scanning electron microscopy, and fast mobility particle sizing. The total lead mass aerosol concentration ranged from 2.2 to 72 µg m(-3). It was shown that the mass concentration of the most toxic compound lead is much lower than the total mass concentration. The deposition fraction in various compartments of the respiratory system was calculated using the ICRP lung deposition model. It was found that the deposition fraction in the alveolar range varies by a factor >3 for the various aerosols collected, depending on the aerosol size distribution and total aerosol concentration, demonstrating the importance of size resolved sampling in health risk evaluation. The proportion of the total mass of airborne particles deposited in the respiratory tract varies from 34 to 70%, with a median of 55.9%, suggesting the health risk based upon total mass significantly overestimates the accumulated dose and therefore the health risk. A comparison between conventional and so called 'green' ammunition confirmed significant lowering of concentrations of lead and other toxic metals like antimony in the atmosphere of indoor shooting ranges using 'green' ammunition, although higher concentrations of manganese and boron were measured. These metals are likely to be the constituents of new types of primers. They occur predominantly in the size fraction <250 nm of aerosols. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Swanson, William H.; Horner, Douglas G.; Dul, Mitchell W.; Malinovsky, Victor E.
2014-01-01
Purpose To develop guidelines for engineering perimetric stimuli to reduce test-retest variability in glaucomatous defects. Methods Perimetric testing was performed on one eye for 62 patients with glaucoma and 41 age-similar controls on size III and frequency-doubling perimetry and three custom tests with Gaussian blob and Gabor sinusoid stimuli. Stimulus range was controlled by values for ceiling (maximum sensitivity) and floor (minimum sensitivity). Bland-Altman analysis was used to derive 95% limits of agreement on test and retest, and bootstrap analysis was used to test the hypotheses about peak variability. Results Limits of agreement for the three custom stimuli were similar in width (0.72 to 0.79 log units) and peak variability (0.22 to 0.29 log units) for a stimulus range of 1.7 log units. The width of the limits of agreement for size III decreased from 1.78 to 1.37 to 0.99 log units for stimulus ranges of 3.9, 2.7, and 1.7 log units, respectively (F = 3.23, P < 0.001); peak variability was 0.99, 0.54, and 0.34 log units, respectively (P < 0.01). For a stimulus range of 1.3 log units, limits of agreement were narrowest with Gabor and widest with size III stimuli, and peak variability was lower (P < 0.01) with Gabor (0.18 log units) and frequency-doubling perimetry (0.24 log units) than with size III stimuli (0.38 log units). Conclusions Test-retest variability in glaucomatous visual field defects was substantially reduced by engineering the stimuli. Translational Relevance The guidelines should allow developers to choose from a wide range of stimuli. PMID:25371855
Swanson, William H; Horner, Douglas G; Dul, Mitchell W; Malinovsky, Victor E
2014-09-01
To develop guidelines for engineering perimetric stimuli to reduce test-retest variability in glaucomatous defects. Perimetric testing was performed on one eye for 62 patients with glaucoma and 41 age-similar controls on size III and frequency-doubling perimetry and three custom tests with Gaussian blob and Gabor sinusoid stimuli. Stimulus range was controlled by values for ceiling (maximum sensitivity) and floor (minimum sensitivity). Bland-Altman analysis was used to derive 95% limits of agreement on test and retest, and bootstrap analysis was used to test the hypotheses about peak variability. Limits of agreement for the three custom stimuli were similar in width (0.72 to 0.79 log units) and peak variability (0.22 to 0.29 log units) for a stimulus range of 1.7 log units. The width of the limits of agreement for size III decreased from 1.78 to 1.37 to 0.99 log units for stimulus ranges of 3.9, 2.7, and 1.7 log units, respectively ( F = 3.23, P < 0.001); peak variability was 0.99, 0.54, and 0.34 log units, respectively ( P < 0.01). For a stimulus range of 1.3 log units, limits of agreement were narrowest with Gabor and widest with size III stimuli, and peak variability was lower ( P < 0.01) with Gabor (0.18 log units) and frequency-doubling perimetry (0.24 log units) than with size III stimuli (0.38 log units). Test-retest variability in glaucomatous visual field defects was substantially reduced by engineering the stimuli. The guidelines should allow developers to choose from a wide range of stimuli.
Bowers, Janice E.
2006-01-01
The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.
Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki
2016-01-01
Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339
High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time
NASA Astrophysics Data System (ADS)
Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven
2017-04-01
As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with <=1 nm resolution. With this system, nanoparticles ranging from 1 to 3000 nm diameters can be studied. The nanoparticles are typically suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.
Micromechanics of pressure-induced grain crushing in porous rocks
NASA Astrophysics Data System (ADS)
Davis, Daniel M.
1990-01-01
The hydrostatic compaction behavior of a suite of porous sandstones was investigated at confining pressures up to 600 MPa and constant pore pressures ranging up to 50 MPa. These five sandstones (Boise, Kayenta, St. Peter, Berea, and Weber) were selected because of their wide range of porosity (5-35%) and grain size (60-460 μm). We tested the law of effective stress for the porosity change as a function of pressure. Except for Weber sandstone (which has the lowest porosity and smallest grain size), the hydrostat of each sandstone shows an inflection point corresponding to a critical effective pressure beyond which an accelerated, irrecoverable compaction occurs. Our microstructural observations show that brittle grain crushing initiates at this critical pressure. We also observed distributed cleavage cracking in calcite and intensive kinking in mica. The critical pressures for grain crushing in our sandstones range from 75 to 380 MPa. In general, a sandstone with higher porosity and larger grain size has a critical pressure which is lower than that of a sandstone with lower porosity and smaller grain size. We formulate a Hertzian fracture model to analyze the micromechanics of grain crushing. Assuming that the solid grains have preexisting microcracks with dimensions which scale with grain size, we derive an expression for the critical pressure which depends on the porosity, grain size, and fracture toughness of the solid matrix. The theoretical prediction is in reasonable agreement with our experimental data as well as other data from soil and rock mechanics studies for which the critical pressures range over 3 orders of magnitude.
Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang
2018-03-01
MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.
NASA Astrophysics Data System (ADS)
Torres-Romero, Erik Joaquín; Varela, Sara; Fisher, Jason T.; Olalla-Tárraga, Miguel Á.
2017-07-01
Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions - defined on the basis of climatic change velocity since the Last Glacial Maximum - in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on particular life-history traits.
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Balasubramanian, N.
2017-08-01
It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (< ˜20 nm) measurements exhibiting grain size weakening behavior that extends to larger grain size when tested at very low imposed strain rates.
Preliminary weight and costs of sandwich panels to distribute concentrated loads
NASA Technical Reports Server (NTRS)
Belleman, G.; Mccarty, J. E.
1976-01-01
Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.
Comparisons between geometrical optics and Lorenz-Mie theory
NASA Technical Reports Server (NTRS)
Ungut, A.; Grehan, G.; Gouesbet, G.
1981-01-01
Both the Lorenz-Mie and geometrical optics theories are used in calculating the scattered light patterns produced by transparent spherical particles over a wide range of diameters, between 1.0 and 100 microns, and for the range of forward scattering angles from zero to 20 deg. A detailed comparison of the results shows the greater accuracy of the geometrical optics theory in the forward direction. Emphasis is given to the simultaneous sizing and velocimetry of particles by means of pedestal calibration methods.
Engineered magnetic nanoparticles for biomedical applications.
Canfarotta, Francesco; Piletsky, Sergey A
2014-02-01
In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shi, Wei; Yun, Han; Lin, Charlie; Greenberg, Mark; Wang, Xu; Wang, Yun; Fard, Sahba Talebi; Flueckiger, Jonas; Jaeger, Nicolas A F; Chrostowski, Lukas
2013-03-25
Wavelength-division-multiplexing (WDM) networks with wide channel grids and bandwidths are promising for low-cost, low-power optical interconnects. Wide-bandwidth, single-band (i.e., no free-spectral range) add-drop filters have been developed on silicon using anti-reflection contra-directional couplers with out-of-phase Bragg gratings. Using such filter components, we demonstrate a 4-channel, coarse-WDM demultiplexer with flat passbands of up to 13 nm and an ultra-compact size of 1.2 × 10(-3) mm(2).
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.
2018-03-01
Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.
Design Reference Missions for Deep-Space Optical Communication
NASA Astrophysics Data System (ADS)
Breidenthal, J.; Abraham, D.
2016-05-01
We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.
Devastating Decline of Forest Elephants in Central Africa
Blake, Stephen; Wittemyer, George; Hart, John; Williamson, Elizabeth A.; Aba’a, Rostand; Abitsi, Gaspard; Ambahe, Ruffin D.; Amsini, Fidèl; Bakabana, Parfait C.; Hicks, Thurston Cleveland; Bayogo, Rosine E.; Bechem, Martha; Beyers, Rene L.; Bezangoye, Anicet N.; Boundja, Patrick; Bout, Nicolas; Akou, Marc Ella; Bene, Lambert Bene; Fosso, Bernard; Greengrass, Elizabeth; Grossmann, Falk; Ikamba-Nkulu, Clement; Ilambu, Omari; Inogwabini, Bila-Isia; Iyenguet, Fortune; Kiminou, Franck; Kokangoye, Max; Kujirakwinja, Deo; Latour, Stephanie; Liengola, Innocent; Mackaya, Quevain; Madidi, Jacob; Madzoke, Bola; Makoumbou, Calixte; Malanda, Guy-Aimé; Malonga, Richard; Mbani, Olivier; Mbendzo, Valentin A.; Ambassa, Edgar; Ekinde, Albert; Mihindou, Yves; Morgan, Bethan J.; Motsaba, Prosper; Moukala, Gabin; Mounguengui, Anselme; Mowawa, Brice S.; Ndzai, Christian; Nixon, Stuart; Nkumu, Pele; Nzolani, Fabian; Pintea, Lilian; Plumptre, Andrew; Rainey, Hugo; de Semboli, Bruno Bokoto; Serckx, Adeline; Stokes, Emma; Turkalo, Andrea; Vanleeuwe, Hilde; Vosper, Ashley; Warren, Ymke
2013-01-01
African forest elephants– taxonomically and functionally unique–are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002–2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced. PMID:23469289
Development of a preprototype Sabatier CO2 reduction subsystem
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Birbara, P.
1981-01-01
A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.
Evaluating the potential for stock size to limit recruitment in largemouth bass
Allen, Michael S.; Rogers, Mark W.; Catalano, Mathew J.; Gwinn, Daniel G.; Walsh, Stephen J.
2011-01-01
Compensatory changes in juvenile survival allow fish stocks to maintain relatively constant recruitment across a wide range of stock sizes (and levels of fishing), but few studies have experimentally explored recruitment compensation in fish populations. We evaluated the potential for recruitment compensation in largemouth bass Micropterus salmoides by stocking six 0.4-ha hatchery ponds with adult densities ranging from 6 to 40 fish over 2 years. Ponds were drained in October each year, and the age-0 fish densities were used as a measure of recruitment. We found no relationship between stock abundance and recruitment; ponds with low adult densities produced nearly as many recruits as the higher-density ponds in some cases. Both prey abundance and the growth of age-0 largemouth bass declined with age-0 fish density. Recruit abundance was highly variable both within and among the adult density groups, and thus we were unable to identify a clear stock–recruit relationship for largemouth bass. Our results indicate that reducing the number of effective spawners via angling practices would not reduce recruitment over a relatively large range in stock size.
The absorption Ångström exponent of black carbon: from numerical aspects
NASA Astrophysics Data System (ADS)
Liu, Chao; Eddy Chung, Chul; Yin, Yan; Schnaiter, Martin
2018-05-01
The absorption Ångström exponent (AAE) is an important aerosol optical parameter used for aerosol characterization and apportionment studies. The AAE of black carbon (BC) particles is widely accepted to be 1.0, although observational estimates give quite a wide range of 0.6-1.3. With considerable uncertainties related to observations, a numerical study is a powerful method, if not the only one, to provide a better and more accurate understanding on BC AAE. This study calculates BC AAE using realistic particle geometries based on fractal aggregate and an accurate numerical optical model (namely the multiple-sphere T-matrix method), and considers bulk properties of an ensemble of BC particles following lognormal size distributions. At odds with the expectations, BC AAE is not 1.0, even when BC is assumed to have small sizes and a wavelength-independent refractive index. With a wavelength-independent refractive index, the AAE of fresh BC is approximately 1.05 and relatively insensitive to particle size. For BC with geometric mean diameters larger than 0.12 µm, BC AAE becomes smaller when BC particles are aged (compact structures or coated by other non-absorptive materials). For coated BC, we prescribe the coating fraction variation based on a laboratory study, where smaller BC cores are shown to develop larger coating fractions than those of bigger BC cores. For both compact and coated BC, the AAE is highly sensitive to particle size distribution, ranging from approximately 0.8 to even over 1.4 with wavelength-independent refractive index. When the refractive index is allowed to vary with wavelength, a feature with observational backing, the BC AAE may show an even wider range. For different BC morphologies, we derive simple empirical equations on BC AAE based on our numerical results, which can serve as a guide for the response of BC AAE to BC size and refractive index. Due to its complex influences, the effects of BC geometry is better to be discussed at certain BC properties, i.e., known size and refractive index.
VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shu; Jiang, B. W.; Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu
The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ themore » ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.« less
Cuesta, José A; Delius, Gustav W; Law, Richard
2018-01-01
The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species.
Sharma, Prabhakar; Poulsen, Tjalfe G
2010-07-01
Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.
Prediction of anthropometric accommodation in aircraft cockpits
NASA Astrophysics Data System (ADS)
Zehner, Gregory Franklin
Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uin, Janek
The Brechtel Manufacturing Inc. (BMI) Humidified Tandem Differential Mobility Analyzer (HT-DMA Model 3002) (Brechtel and Kreidenweis 2000a,b, Henning et al. 2005, Xerxes et al. 2014) measures how aerosol particles of different initial dry sizes grow or shrink when exposed to changing relative humidity (RH) conditions. It uses two different mobility analyzers (DMA) and a humidification system to make the measurements. One DMA selects a narrow size range of dry aerosol particles, which are exposed to varying RH conditions in the humidification system. The second (humidified) DMA scans the particle size distribution output from the humidification system. Scanning a wide rangemore » of particle sizes enables the second DMA to measure changes in size or growth factor (growth factor = humidified size/dry size), due to water uptake by the particles. A Condensation Particle Counter (CPC) downstream of the second DMA counts particles as a function of selected size in order to obtain the number size distribution of particles exposed to different RH conditions.« less
Historical changes in pool habitats in the Columbia River basin
Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler
2000-01-01
An historical stream survey (1934-1945) was compared with current surveys (1987-1997) to assess changes in pool frequencies in the Columbia River Basin. We surveyed 2267 km of 122 streams across the basin, representing a wide range of lithologies, stream sizes, land use histories, ownerships, and ecoregions. Based on pool classes inherited from the historical surveys,...
Overview: Channel morphology and sediment transport in steepland streams
T. E. Lisle
1987-01-01
Abstract - New understanding of how steepland channels formed is being pursued over a large range of scales, from entrainment of bed particles to the transfer of stored sediment down channel systems. Low submergence of bed particles during transport and wide heterogeneity in particle sizes strongly affect bedload transport. At the scale of a reach, scour-lobes are...
An Investigation into University Extra-Curricular Enterprise Support Provision
ERIC Educational Resources Information Center
Preedy, Sarah; Jones, Paul
2015-01-01
Purpose: The employment market means students need to be equipped with wide-ranging enterprising skills and experience. With small- and medium-sized enterprises crucial to the health of the UK economy providing graduates with the skills to start-up their own business is also of increasing pertinence. The purpose of this paper is to analyse…
Len Gen: The international lentil genome sequencing project
USDA-ARS?s Scientific Manuscript database
We have been sequencing CDC Redberry using NGS of paired-end and mate-pair libraries over a wide range of sizes and technologies. The most recent draft (v0.7) of approximately 150x coverage produced scaffolds covering over half the genome (2.7 Gb of the expected 4.3 Gb). Long reads from PacBio sequ...
Patterns and controls on historical channel change in the Willamette River, Oregon, USA
Jennifer Rose Wallick; Gordon E. Grant; Stephen T. Lancaster; John P. Bolte; Roger P. Denlinger
2007-01-01
Distinguishing human impacts on channel morphology from the natural behaviour of fluvial systems is problematic for large river basins. Large river basins, by virtue of their size, typically encompass wide ranges of geology and landforms resulting in diverse controls on channel form. They also inevitably incorporate long and complex histories of overlapping human and...
A mathematical model for predicting fire spread in wildland fuels
Richard C. Rothermel
1972-01-01
A mathematical fire model for predicting rate of spread and intensity that is applicable to a wide range of wildland fuels and environment is presented. Methods of incorporating mixtures of fuel sizes are introduced by weighting input parameters by surface area. The input parameters do not require a prior knowledge of the burning characteristics of the fuel.
Susan C. Loeb; Lynn D. Wike; John J. Mayer; Brent J. Danielson
2005-01-01
Fifty-four species of mammals inhabit (or have recently inhabited) the Savannah River Site (SRS; Cothran et al. 1991; table 4.24). Although far fewer in number than other taxa (see the previous five sections of this chapter), the mammals of SRS represent a wide diversity of body sizez, life histories, habitat affinities, and food habits. They range in body size from...
Xu, Yi-Hua; Pitot, Henry C
2003-09-01
Single enzyme-altered hepatocytes; altered hepatic foci (AHF); and nodular lesions have been implicated, respectively in the processes of initiation, promotion, and progression in rodent hepatocarcinogenesis. Qualitative and quantitative analyses of such lesions have been utilized both to identify and to determine the potency of initiating, promoting, and progressor agents in rodent liver. Of a number of possible parameters determined in the study of such lesions, estimation of the number of foci or nodules in the liver is very important. The method of Saltykov has been used for estimating the number of AHF in rat liver. However, in practice, the Saltykov calculation has at least two weak points: (a) the size class range is limited to 12, which in many instances is too narrow to cover the range of AHF data obtained; and (b) under some conditions, the Saltykov equation generates negative values in several size classes, an obvious impossibility in the real world. In order to overcome these limitations in the Saltykov calculations, a study of the particle size distribution in a wide-range, polydispersed sphere system was performed. A stereologic method, termed the 25F Association method, was developed from this study. This method offers 25 association factors that are derived from the frequency of different-sized transections obtained from transecting a spherical particle, thus expanding the size class range to be analyzed up to 25, which is sufficiently wide to encompass all rat AHF found in most cases. This method exhibits greater flexibility, which allows adjustments to be made within the calculation process when NA((k,k)), the net number of transections from the same size spheres, was found to be a negative value, which is not possible in real situations. The reliability of the 25F Association method was tested thoroughly by computer simulation in both monodispersed and polydispersed sphere systems. The test results were compared with the original Saltykov method. We found that the 25F Association method yielded a better estimate of the total number of spheres in the three-dimensional tissue sample as well as the detailed size distribution information. Although the 25F Association method was derived from the study of a polydispersed sphere system, it can be used for continuous size distribution sphere systems. Application of this method to the estimation of parameters of preneoplastic foci in rodent liver is presented as an example of its utility. An application software program, 3D_estimation.exe, which uses the 25F Association method to estimate the number of AHF in rodent liver, has been developed and is now available at the website of this laboratory.
Markle, Tricia M; Kozak, Kenneth H
2018-05-01
Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.
Penetration experiments in aluminum and Teflon targets of widely variable thickness
NASA Technical Reports Server (NTRS)
Hoerz, F.; Cintala, Mark J.; Bernhard, R. P.; See, T. H.
1994-01-01
The morphologies and detailed dimensions of hypervelocity craters and penetration holes on space-exposed surfaces faithfully reflect the initial impact conditions. However, current understanding of this postmortem evidence and its relation to such first-order parameters as impact velocity or projectile size and mass is incomplete. While considerable progress is being made in the numerical simulation of impact events, continued impact simulations in the laboratory are needed to obtain empirical constraints and insights. This contribution summarizes such experiments with Al and Teflon targets that were carried out in order to provide a better understanding of the crater and penetration holes reported from the Solar Maximum Mission (SMM) and the Long Duration Exposure Facility (LDEF) satellites. A 5-mm light gas gun was used to fire spherical soda-lime glass projectiles from 50 to 3175 microns in diameter (D(sub P)), at a nominal 6 km/s, into Al (1100 series; annealed) and Teflon (Teflon(sup TFE)) targets. Targets ranged in thickness (T) from infinite halfspace targets (T approx. equals cm) to ultrathin foils (T approx. equals micron), yielding up to 3 degrees of magnitude variation in absolute and relative (D(sub P)/T) target thickness. This experimental matrix simulates the wide range in D(sub P)/T experienced by a space-exposed membrane of constant T that is being impacted by projectiles of widely varying sizes.
Development of a Multiple-Stage Differential Mobility Analyzer (MDMA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Da-Ren; Cheng, Mengdawn
2007-01-01
A new DMA column has been designed with the capability of simultaneously extracting monodisperse particles of different sizes in multiple stages. We call this design a multistage DMA, or MDMA. A prototype MDMA has been constructed and experimentally evaluated in this study. The new column enables the fast measurement of particles in a wide size range, while preserving the powerful particle classification function of a DMA. The prototype MDMA has three sampling stages, capable of classifying monodisperse particles of three different sizes simultaneously. The scanning voltage operation of a DMA can be applied to this new column. Each stage ofmore » MDMA column covers a fraction of the entire particle size range to be measured. The covered size fractions of two adjacent stages of the MDMA are designed somewhat overlapped. The arrangement leads to the reduction of scanning voltage range and thus the cycling time of the measurement. The modular sampling stage design of the MDMA allows the flexible configuration of desired particle classification lengths and variable number of stages in the MDMA. The design of our MDMA also permits operation at high sheath flow, enabling high-resolution particle size measurement and/or reduction of the lower sizing limit. Using the tandem DMA technique, the performance of the MDMA, i.e., sizing accuracy, resolution, and transmission efficiency, was evaluated at different ratios of aerosol and sheath flowrates. Two aerosol sampling schemes were investigated. One was to extract aerosol flows at an evenly partitioned flowrate at each stage, and the other was to extract aerosol at a rate the same as the polydisperse aerosol flowrate at each stage. We detail the prototype design of the MDMA and the evaluation result on the transfer functions of the MDMA at different particle sizes and operational conditions.« less
NASA Astrophysics Data System (ADS)
Reveil, Mardochee; Sorg, Victoria C.; Cheng, Emily R.; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O.
2017-09-01
This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Reveil, Mardochee; Sorg, Victoria C; Cheng, Emily R; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O
2017-09-01
This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.
Avilés, Leticia; Abbot, Patrick; Cutter, Asher D
2002-02-01
Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.
Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H
2015-12-29
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
Identification of the condition of crops based on geospatial data embedded in graph databases
NASA Astrophysics Data System (ADS)
Idziaszek, P.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Koszela, K.; Fojud, A.
2017-07-01
The Web application presented here supports plant production and works with the graph database Neo4j shell to support the assessment of the condition of crops on the basis of geospatial data, including raster and vector data. The adoption of a graph database as a tool to store and manage the data, including geospatial data, is completely justified in the case of those agricultural holdings that have a wide range of types and sizes of crops. In addition, the authors tested the option of using the technology of Microsoft Cognitive Services at the level of produced application that enables an image analysis using the services provided. The presented application was designed using ASP.NET MVC technology and a wide range of leading IT tools.
A universal preconditioner for simulating condensed phase materials.
Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor
2016-04-28
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.
A universal preconditioner for simulating condensed phase materials
NASA Astrophysics Data System (ADS)
Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor
2016-04-01
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.
Home range characteristics of Mexican Spotted Owls in the Rincon Mountains, Arizona
Willey, David W.; van Riper, Charles
2014-01-01
We studied a small isolated population of Mexican Spotted Owls (Strix occidentalis lucida) from 1996–1997 in the Rincon Mountains of Saguaro National Park, southeastern Arizona, USA. All mixed-conifer and pine-oak forest patches in the park were surveyed for Spotted Owls, and we located, captured, and radio-tagged 10 adult birds representing five mated pairs. Using radio-telemetry, we examined owl home range characteristics, roost habitat, and monitored reproduction within these five territories. Breeding season (Mar–Sep) home range size for 10 adult owls (95% adaptive kernel isopleths) averaged 267 ha (±207 SD), and varied widely among owls (range 34–652 ha). Mean home range size for owl pairs was 478 ha (±417 ha SD), and ranged from 70–1,160 ha. Owls that produced young used smaller home ranges than owls that had no young. Six habitat variables differed significantly between roost and random sites, including: percent canopy cover, number of trees, number of vegetation layers, average height of trees, average diameter of trees, and tree basal area. Radio-marked owls remained in their territories following small prescribed management fires within those territories, exhibiting no proximate effects to the presence of prescribed fire.
David, Victoria; Giese-Davis, Janine
2015-01-01
This scoping review was conducted to understand the extent, range, and nature of current research on adolescents and young adults (AYA) with cancer and distress, depression, and anxiety (DDA). This information is necessary to find and aggregate valuable data on the AYA population embedded in generalized studies of DDA. Keyword searches of six relevant electronic databases identified 2156 articles, with 316 selected for abstract review and 40 for full text review. Full-text reviews and data extraction resulted in 34 studies being included, which ranged widely in design, sample size, age-range categorization, analysis methods, DDA measurement tool, overall study rigor, and quality of evidence. Studies very seldom reported using theory to guide their age categorization, with only four studies giving any rationale for their age-group definitions. All 34 studies found a significant association between at least one DDA construct and the younger age group relative to the older age groups at some point along the cancer trajectory. However, age as an independent risk factor for DDA is still unclear, as the relationship could be confounded by other age-related factors. Despite the wide range of definitions and effect sizes in the studies included in this review, one thing is clear: adolescents and young adults, however defined, are a distinct group within the cancer population with an elevated risk of DDA. Widespread adoption of a standard AYA age-range definition will be essential to any future meta-analytical psycho-oncology research in this population. PMID:26697266
Lang, Michael J; David, Victoria; Giese-Davis, Janine
2015-12-01
This scoping review was conducted to understand the extent, range, and nature of current research on adolescents and young adults (AYA) with cancer and distress, depression, and anxiety (DDA). This information is necessary to find and aggregate valuable data on the AYA population embedded in generalized studies of DDA. Keyword searches of six relevant electronic databases identified 2156 articles, with 316 selected for abstract review and 40 for full text review. Full-text reviews and data extraction resulted in 34 studies being included, which ranged widely in design, sample size, age-range categorization, analysis methods, DDA measurement tool, overall study rigor, and quality of evidence. Studies very seldom reported using theory to guide their age categorization, with only four studies giving any rationale for their age-group definitions. All 34 studies found a significant association between at least one DDA construct and the younger age group relative to the older age groups at some point along the cancer trajectory. However, age as an independent risk factor for DDA is still unclear, as the relationship could be confounded by other age-related factors. Despite the wide range of definitions and effect sizes in the studies included in this review, one thing is clear: adolescents and young adults, however defined, are a distinct group within the cancer population with an elevated risk of DDA. Widespread adoption of a standard AYA age-range definition will be essential to any future meta-analytical psycho-oncology research in this population.
The rDNA Internal Transcribed Spacer Region as a Taxonomic Marker for Nematodes
Powers, T. O.; Todd, T. C.; Burnell, A. M.; Murray, P. C. B.; Fleming, C. C.; Szalanski, A. L.; Adams, B. A.; Harris, T. S.
1997-01-01
The ITS region from a wide taxonomic range of nematodes, including secernentean and adenophorean taxa, and free-living, entomopathogenic, and plant-parasitic species, was evaluated as a taxonomic marker. Size of the amplified product aided in the initial determination of group membership, and also suggested groups that may require taxonomic reevaluation. Congeneric species often displayed identically sized ITS regions, but genera such as Pratylenchus and Tylenchorhynchus had species with large differences in size. ITS heterogeneity in individuals and populations was identified in several nematode taxa. PCR-RFLP of ITS1 is advocated as a method of taxonomic analysis in genera such as Helicotylenchus that contain numerous species with few diagnostic morphological characteristics. PMID:19274180
NASA Astrophysics Data System (ADS)
Bauer, Rita A.; Kelemen, Lóránd; Nakano, Masami; Totsuka, Atsushi; Zrínyi, Miklós
2015-10-01
We have presented the first direct observation of electric field induced rotation of epoxy based polymer rotors. Polymer disks, hollow cylinders and gears were prepared in few micrometer dimensions as rotors. Electrorotation of these sub-millimeter sized tools was studied under uniform dc electric field. The effects of shape, size and thickness were investigated. The novel epoxy based micro devices show intensive spinning in a uniform dc electric field. The rotational speed of micron-sized polymer rotors can be conveniently tuned in a wide range (between 300 and 3000 rpm) by the electric field intensity, opening new perspectives for their use in several MEMS applications.
Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer
Yu, Fa-Xing; Zhao, Bin; Guan, Kun-Liang
2015-01-01
Two decades of studies in multiple model organisms have established the Hippo pathway as a key regulator of organ size and tissue homeostasis. By inhibiting YAP and TAZ transcription co-activators, the Hippo pathway regulates cell proliferation, apoptosis, and stemness in response to a wide range of extracellular and intracellular signals, including cell-cell contact, cell polarity, mechanical cues, ligands of G-protein coupled receptors, and cellular energy status. Dysregulation of the Hippo pathway exerts a significant impact on cancer development. Further investigation of the functions and regulatory mechanisms of this pathway will help uncovering the mystery of organ size control and identify new targets for cancer treatment. PMID:26544935
Efflorescence relative humidity for ammonium sulfate particles.
Gao, Yonggang; Chen, Shing Bor; Yu, Liya E
2006-06-22
The classical homogeneous nucleation theory was employed to calculate the efflorescence relative humidity (ERH) of airborne ammonium sulfate particles with a wide size range (8 nm to 17 microm) at room temperature. The theoretical predictions are in good agreement with the experimentally measured values. When the ammonium sulfate particle is decreased in size, the ERH first decreases, reaches a minimum around 30% for particle diameter equal to about 30 nm, and then increases. It is for the first time that the Kelvin effect is theoretically verified to substantially affect the ERH of ammonium sulfate particles smaller than 30 nm, while the aerosol size is the dominant factor affecting the efflorescent behavior of ammonium sulfate particles larger than 50 nm.
Size fractionation of double-stranded DNA by precipitation with polyethylene glycol
Lis, John T.; Schleif, Robert
1975-01-01
We show that DNA molecules of differing molecular mass are separable by selective precipitation with polyethylene glycol (PEG†). Higher molecular mass DNA precipitates at lower PEG concentrations than lower molecular mass DNA. Double-stranded DNA can be fractionated at least in the range of 3 × 107 to 1 × 105 daltons. The effects of PEG concentration, sodium chloride concentration, DNA concentration, pH, divalent ions, precipitation time, and centrifugal force have been determined. These studies show PEG precipitation offers a size fractionation method for DNA which is convenient, of high capacity, and applicable over a wide range of conditions. However, resolution is not high and separation of two species approaches 100% only if they differ in molecular mass by at least a factor of two. Images PMID:236548
Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting
Jang, Ho-Su; Cho, Myeong-Woo; Park, Dong-Sam
2008-01-01
In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed. PMID:27879730
A reference aerosol for a radon reference chamber
NASA Astrophysics Data System (ADS)
Paul, Annette; Keyser, Uwe
1996-02-01
The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.
A Genome-Wide Association Study Identifies Multiple Regions Associated with Head Size in Catfish
Geng, Xin; Liu, Shikai; Yao, Jun; Bao, Lisui; Zhang, Jiaren; Li, Chao; Wang, Ruijia; Sha, Jin; Zeng, Peng; Zhi, Degui; Liu, Zhanjiang
2016-01-01
Skull morphology is fundamental to evolution and the biological adaptation of species to their environments. With aquaculture fish species, head size is also important for economic reasons because it has a direct impact on fillet yield. However, little is known about the underlying genetic basis of head size. Catfish is the primary aquaculture species in the United States. In this study, we performed a genome-wide association study using the catfish 250K SNP array with backcross hybrid catfish to map the QTL for head size (head length, head width, and head depth). One significantly associated region on linkage group (LG) 7 was identified for head length. In addition, LGs 7, 9, and 16 contain suggestively associated regions for head length. For head width, significantly associated regions were found on LG9, and additional suggestively associated regions were identified on LGs 5 and 7. No region was found associated with head depth. Head size genetic loci were mapped in catfish to genomic regions with candidate genes involved in bone development. Comparative analysis indicated that homologs of several candidate genes are also involved in skull morphology in various other species ranging from amphibian to mammalian species, suggesting possible evolutionary conservation of those genes in the control of skull morphologies. PMID:27558670
Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris
2011-06-08
The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.
NASA Astrophysics Data System (ADS)
He, Chao; Hörst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.-R.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.; Vuitton, Véronique
2018-03-01
Super-Earths and mini-Neptunes are the most abundant types of planets among the ∼3500 confirmed exoplanets, and are expected to exhibit a wide variety of atmospheric compositions. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. However, the compositions, size distributions, and optical properties of these particles in exoplanet atmospheres are poorly understood. Here, we present the results of experimental laboratory investigations of photochemical haze formation within a range of planetary atmospheric conditions, as well as observations of the color and size of produced haze particles. We find that atmospheric temperature and metallicity strongly affect particle color and size, thus altering the particles’ optical properties (e.g., absorptivity, scattering, etc.); on a larger scale, this affects the atmospheric and surface temperature of the exoplanets, and their potential habitability. Our results provide constraints on haze formation and particle properties that can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of super-Earths and mini-Neptunes with the Transiting Exoplanet Survey Satellite, the James Webb Space Telescope, and the Wide-Field Infrared Survey Telescope.
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
NASA Astrophysics Data System (ADS)
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
Particle Transport and Size Sorting in Bubble Microstreaming Flow
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha
2014-11-01
Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.
Hansen, Michael J.; Nate, Nancy A.
2014-01-01
We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.
The MUSE-Wide survey: detection of a clustering signal from Lyman α emitters in the range 3 < z < 6
NASA Astrophysics Data System (ADS)
Diener, C.; Wisotzki, L.; Schmidt, K. B.; Herenz, E. C.; Urrutia, T.; Garel, T.; Kerutt, J.; Saust, R. L.; Bacon, R.; Cantalupo, S.; Contini, T.; Guiderdoni, B.; Marino, R. A.; Richard, J.; Schaye, J.; Soucail, G.; Weilbacher, P. M.
2017-11-01
We present a clustering analysis of a sample of 238 Ly α emitters at redshift 3 ≲ z ≲ 6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line galaxies. We analysed the first year observations from MUSE-Wide making use of the clustering signal in the line-of-sight direction. This method relies on comparing pair-counts at close redshifts for a fixed transverse distance and thus exploits the full potential of the redshift range covered by our sample. A clear clustering signal with a correlation length of r0=2.9^{+1.0}_{-1.1} Mpc (comoving) is detected. Whilst this result is based on only about a quarter of the full survey size, it already shows the immense potential of MUSE for efficiently observing and studying the clustering of Ly α emitters.
Technology achievements and projections for communication satellites of the future
NASA Technical Reports Server (NTRS)
Bagwell, J. W.
1986-01-01
Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satelllite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.
Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects
NASA Astrophysics Data System (ADS)
Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.
2013-08-01
In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.
Ziajahromi, Shima; Kumar, Anupama; Neale, Peta A; Leusch, Frederic D L
2018-05-01
Microplastics are a widespread environmental pollutant in aquatic ecosystems and have the potential to eventually sink to the sediment, where they may pose a risk to sediment-dwelling organisms. While the impacts of exposure to microplastics have been widely reported for marine biota, the effects of microplastics on freshwater organisms at environmentally realistic concentrations are largely unknown, especially for benthic organisms. Here we examined the effects of a realistic concentration of polyethylene microplastics in sediment on the growth and emergence of a freshwater organism Chironomus tepperi. We also assessed the influence of microplastic size by exposing C. tepperi larvae to four different size ranges of polyethylene microplastics (1-4, 10-27, 43-54 and 100-126 μm). Exposure to an environmentally relevant concentration of microplastics, 500 particles/kg sediment , negatively affected the survival, growth (i.e. body length and head capsule) and emergence of C. tepperi. The observed effects were strongly dependent on microplastic size with exposure to particles in the size range of 10-27 μm inducing more pronounced effects. While growth and survival of C. tepperi were not affected by the larger microplastics (100-126 μm), a significant reduction in the number of emerged adults was observed after exposure to the largest microplastics, with the delayed emergence attributed to exposure to a stressor. While scanning electron microscopy showed a significant reduction in the size of the head capsule and antenna of C. tepperi exposed to microplastics in the 10-27 μm size range, no deformities to the external structure of the antenna and mouth parts in organisms exposed to the same size range of microplastics were observed. These results indicate that environmentally relevant concentrations of microplastics in sediment induce harmful effects on the development and emergence of C. tepperi, with effects greatly dependent on particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.
He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang
2017-01-01
Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514
Sookpeng, S; Martin, C J; Gentle, D J; Lopez-Gonzalez, M R
2014-03-01
Automatic tube current modulation (ATCM) systems are now used for the majority of CT scans. The principles of ATCM operation are different in CT scanners from different manufacturers. Toshiba and GE scanners base the current modulation on a target noise setting, while Philips and Siemens scanners use reference image and reference mAs concepts respectively. Knowledge of the relationships between patient size, dose and image noise are important for CT patient dose optimisation. In this study, the CT patient doses were surveyed for 14 CT scanners from four different CT scanner manufacturers. The patient cross sectional area, the tube current modulation and the image noise from the CT images were analysed using in-house software. The Toshiba and GE scanner results showed that noise levels are relatively constant but tube currents are dependent on patient size. As a result of this there is a wide range in tube current values across different patient sizes, and doses for large patients are significantly higher in these scanners. In contrast, in the Philips and Siemens scanners, tube currents are less dependent on patient size, the range in tube current is narrower, and the doses for larger patients are not as high. Image noise is more dependent on the patient size.
Freshwater resources in the insular Caribbean: an environmental perspective
T. Heartsill Scalley
2012-01-01
From islands with no permanent flowing streams to those with navigable inland waters, the insular Caribbean contains a great range of conditions regarding the access to freshwater resources. Because of the variation in topography and size, the ability of islands to retain freshwater also varies widely. The usage of freshwater in this region is being led by two major...
Historical changes in pool habitats in the Columbia River basin
Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler
1995-01-01
Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...
Gary W. Witmer; Sandra K. Martin; Rodney D. Sayler
1998-01-01
Forest carnivores in the Pacific Northwest include 11 medium to large-sized mammalian species of canids, felids, mustelids, and ursids. These carnivores have widely differing status in the region, with some harvested in regulated furbearer seasons, some taken for depredations, and some protected because of rarity. Most large carnivores have declined in numbers or range...
Modeling Louisiana pine snake (Pituophis ruthveni) habitat use in relation to soils
Robert O. Wagner; Josh B. Pierce; D. Craig Rudolph; Richard R. Schaefer; Dwayne A. Hightower
2014-01-01
Ongoing surveys suggest that Pituophis ruthveni (Louisiana Pine Snake) has declined range-wide and that known extant populations have continued to decline. Seven known populations remain and occupy small, isolated blocks of habitat. Population sizes are unknown, but all of them are believed to be critically small. Management for the speciesâ recovery requires an...
Multiple laser pulse ignition method and apparatus
Early, James W.
1998-01-01
Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.
NASA Astrophysics Data System (ADS)
Pathak, Arup Kumar
2014-12-01
An explicit analytical expression has been obtained for vertical detachment energy (VDE) that can be used to calculate the same over a wide range (both stable and unstable regions) of cluster sizes including the bulk from the knowledge of VDE for a finite number of stable clusters (n = 16-23). The calculated VDE for the bulk is found to be very good in agreement (within 1%) with the available experimental result and the domain of instability lies between n = 0 and n = 15 for the hydrated clusters, PO3 -4 . nH2O. The minimum number (n0) of water molecules needed to stabilise the phosphate anion is 16. We are able to explain the origin of solvent-berg model and anomalous conductivity from the knowledge of first stable cluster. We have also provided a scheme to calculate the radius of the solvent-berg for phosphate anion. The calculated conductivity using Stokes-Einstein relation and the radius of solvent-berg is found to be very good in agreement (within 4%) with the available experimental results.
Arrieta-Montiel, Maria P; Shedge, Vikas; Davila, Jaime; Christensen, Alan C; Mackenzie, Sally A
2009-12-01
The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.
Transient Characterization of Type B Particles in a Transport Riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Monazam, E.R.; Mei, J.S.
2007-01-01
Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less
Rouillard, J; García-Ruiz, J-M; Gong, J; van Zuilen, M A
2018-05-01
Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl 2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can be differentiated by their continuous gradient in size, spatial density, and morphology along the direction of diffusion. © 2018 The Authors. Geobiology Published by John Wiley & Sons Ltd.
Photo-patterning of porous hydrogels for tissue engineering.
Bryant, Stephanie J; Cuy, Janet L; Hauch, Kip D; Ratner, Buddy D
2007-07-01
Since pore size and geometry strongly impact cell behavior and in vivo reaction, the ability to create scaffolds with a wide range of pore geometries that can be tailored to suit a particular cell type addresses a key need in tissue engineering. In this contribution, we describe a novel and simple technique to design porous, degradable poly(2-hydroxyethyl methacrylate) hydrogel scaffolds with well-defined architectures using a unique photolithography process and optimized polymer chemistry. A sphere-template was used to produce a highly uniform, monodisperse porous structure. To create a patterned and porous hydrogel scaffold, a photomask and initiating light were employed. Open, vertical channels ranging in size from 360+/-25 to 730+/-70 microm were patterned into approximately 700 microm thick hydrogels with pore diameters of 62+/-8 or 147+/-15 microm. Collagen type I was immobilized onto the scaffolds to facilitate cell adhesion. To assess the potential of these novel scaffolds for tissue engineering, a skeletal myoblast cell line (C2C12) was seeded onto scaffolds with 147 microm pores and 730 microm diameter channels, and analyzed by histology and digital volumetric imaging. Cell elongation, cell spreading and fibrillar formation were observed on these novel scaffolds. In summary, 3D architectures can be patterned into porous hydrogels in one step to create a wide range of tissue engineering scaffolds that may be tailored for specific applications.
Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun
2017-10-24
Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.
2013-06-12
Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz
Experiment Pointing Subsystems (EPS) requirements for Spacelab missions
NASA Technical Reports Server (NTRS)
Nein, M. E.; Nicaise, P. D.
1975-01-01
The goal of the experiment pointing subsystems (EPS) is to accommodate a broad spectrum of instrument types by providing a number of stability and control functions that greatly exceed the capability of the shuttle. These functions include target acquisition, target tracking through wide gimbal ranges, stabilization, simultaneous pointing to one or more targets, instrument rastering, and on-orbit calibration. The experiments will vary widely in size, weight, geometry, and instrument types, and many have not been completely defined. This great diversity of requirements reflects the long term plans of the user community and establishes challenging performance requirements for the EPS.
Closed ecological systems: From test tubes to Earth's biosphere
NASA Technical Reports Server (NTRS)
Frye, Robert J.; Mignon, George
1992-01-01
Artificially constructed closed ecological systems (CES) have been researched both experimentally and theoretically for over 25 years. The size of these systems have varied from less than one liter to many thousands of cubic meters in volume. The diversity of the included components has a similarly wide range from purely aquatic systems to soil based systems that incorporate many aspects of Earth's biosphere. While much has been learned about the functioning of these closed systems, much remains to be learned. In this paper, we compare and contrast the behavior of closed ecological systems of widely different sizes through an analysis of their atmospheric composition. In addition, we will compare the performance of relatively small CES with the behavior of Earth's biosphere. We address the applicability of small CES as replicable analogs for planetary biospheres and discuss the use of small CES as an experimental milieu for an examination of the evolution of extra-terrestrial colonies.
A low-cost and portable realization on fringe projection three-dimensional measurement
NASA Astrophysics Data System (ADS)
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2015-12-01
Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.
Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations
NASA Astrophysics Data System (ADS)
Hofer, Matthias; Soeller, Christian; Brasselet, Sophie; Bertolotti, Jacopo
2018-04-01
Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.
van Eeden, Rowen; Whitfield, D. Philip; Botha, Andre; Amar, Arjun
2017-01-01
Understanding the ranging behaviours of species can be helpful in effective conservation planning. However, for many species that are rare, occur at low densities, or occupy challenging environments, this information is often lacking. The Martial Eagle (Polemaetus bellicosus) is a low density apex predator declining in both non-protected and protected areas in southern Africa, and little is known about its ranging behaviour. We use GPS tags fitted to Martial Eagles (n = 8) in Kruger National Park (KNP), South Africa to describe their ranging behaviour and habitat preference. This represents the first time that such movements have been quantified in adult Martial Eagles. Territorial eagles (n = 6) held home ranges averaging ca. 108 km2. Home range estimates were similar to expectations based on inter-nest distances, and these large home range sizes could constrain the carrying capacity of even the largest conservation areas. Two tagged individuals classed as adults on plumage apparently did not hold a territory, and accordingly ranged more widely (ca. 44,000 km2), and beyond KNP boundaries as floaters. Another two territorial individuals abandoned their territories and joined the ‘floater’ population, and so ranged widely after leaving their territories. These unexpected movements after territory abandonment could indicate underlying environmental degradation. Relatively high mortality of these wide-ranging ‘floaters’ due to anthropogenic causes (three of four) raises further concerns for the species’ persistence. Habitat preference models suggested Martial Eagles used areas preferentially that were closer to rivers, had higher tree cover, and were classed as dense bush rather than open bush or grassland. These results can be used by conservation managers to help guide actions to preserve breeding Martial Eagles at an appropriate spatial scale. PMID:28306744
TESS NASA’s Next Planet Hunter
2018-04-16
The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey of the solar neighborhood, TESS will monitor more than 200,000 stars for temporary drops in brightness caused by planetary transits. This first-ever space-borne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. To learn more, go to https://www.nasa.gov/tess
Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.
1985-01-01
Dynamic dielectric analysis (DDA) is used to study curing polymer systems and thermoplastics. Measurements are made over a frequency range of six decades. This wide range of frequencies increases the amount of information which can be obtained. The data is analyzed in terms of the frequency dependence of the complex permittivity epsilon sup *, specific conductivity sigma (ohm/cm) and the relaxation time tau, parameters which are characteristic of the cure state of the material and independent of the size of the sample.
VizieR Online Data Catalog: Galaxies and QSOs FIR size and surface brightness (Lutz+, 2016)
NASA Astrophysics Data System (ADS)
Lutz, D.; Berta, S.; Contursi, A.; Forster Schreiber, N. M.; Genzel, R.; Gracia-Carpio, J.; Herrera-Camus, R.; Netzer, H.; Sturm, E.; Tacconi, L. J.; Tadaki, K.; Veilleux, S.
2016-08-01
We use 70, 100, and 160um images from scan maps obtained with PACS on board Herschel, collecting archival data from various projects. In order to cover a wide range of galaxy properties, we first obtain an IR-selected local sample ranging from normal galaxies up to (ultra)luminous infrared galaxies. For that purpose, we searched the Herschel archive for all cz>=2000km/s objects from the IRAS Revised Bright Galaxy Sample (RBGS, Sanders et al., 2003, Cat. J/AJ/126/1607). (1 data file).
From Archive to Evidence: Historians and Natural Resource Litigation.
Stevens, Jennifer A
2015-02-01
Within the field of natural resource law are several specific areas that are well suited for the historian's skillset and knowledge. The deployment of the historian's tool box when conducting research in the legal world, however, can result in deliverables which vary significantly from those found in the academy, as they range widely in both size and scope and do not always use the full range of a historian's skills. New technological platforms provide consulting historians with creative opportunities to disseminate valuable information and sources and enhance important scholarly debates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Peter
2014-01-24
This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.
Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian
2016-01-01
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575
Testing Mercury Porosimetry with 3D Printed Porosity Models
NASA Astrophysics Data System (ADS)
Hasiuk, F.; Ewing, R. P.; Hu, Q.
2014-12-01
Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.
Gebler, J.B.
2004-01-01
The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.
Thermal modeling of cogging process using finite element method
NASA Astrophysics Data System (ADS)
Khaled, Mahmoud; Ramadan, Mohamad; Fourment, Lionel
2016-10-01
Among forging processes, incremental processes are those where the work piece undergoes several thermal and deformation steps with small increment of deformation. They offer high flexibility in terms of the work piece size since they allow shaping wide range of parts from small to large size. Since thermal treatment is essential to obtain the required shape and quality, this paper presents the thermal modeling of incremental processes. The finite element discretization, spatial and temporal, is exposed. Simulation is performed using commercial software Forge 3. Results show the thermal behavior at the beginning and at the end of the process.
NASA Technical Reports Server (NTRS)
Schoen, A. H.; Rosenstein, H.; Stanzione, K.; Wisniewski, J. S.
1980-01-01
This report describes the use of the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). The program is useful in performing aircraft parametric studies in a quick and cost efficient manner. Problem formulation and data development were performed by the Boeing Vertol Company and reflects the present preliminary design technology. The computer program, written in FORTRAN IV, has a broad range of input parameters, to enable investigation of a wide variety of aircraft. User oriented features of the program include minimized input requirements, diagnostic capabilities, and various options for program flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yang; Pinterich, Tamara; Wang, Jian
We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less
Wang, Yang; Pinterich, Tamara; Wang, Jian
2018-03-30
We present rapid measurement of submicron particle size distributions enables the characterization of aerosols with fast changing properties, and is often necessary for measurements onboard mobile platforms (e.g., research aircraft). Aerosol mobility size distribution is commonly measured by a scanning mobility particle sizer (SMPS), which relies on voltage scanning or stepping to classify particles of different sizes, and may take up to several minutes to obtain a complete size spectrum of aerosol particles. The recently developed fast integrated mobility spectrometer (FIMS) with enhanced dynamic size range classifies and detects particles from 10 to ~600 nm simultaneously, allowing submicron aerosol mobilitymore » size distributions to be captured at a time resolution of 1 second. In this study, we present a detailed data inversion routine for deriving aerosol size distribution from FIMS measurements. The inversion routine takes into consideration the FIMS transfer function, particle penetration efficiency in the FIMS, and multiple charging of aerosols. The accuracy of the FIMS measurement is demonstrated by comparing parallel FIMS and SMPS measurements of stable aerosols with a wide range of size spectrum shapes, including ambient aerosols and aerosols classified by a differential mobility analyzer (DMA). The FIMS and SMPS-derived size distributions show excellent agreements for all aerosols tested. In addition, total number concentrations of ambient aerosols were integrated from 1 Hz FIMS size distributions, and compared with those directly measured by a condensation particle counter (CPC) operated in parallel. Finally, the integrated and measured total particle concentrations agree well within 5%.« less
A comparative appraisal of two equivalence tests for multiple standardized effects.
Shieh, Gwowen
2016-04-01
Equivalence testing is recommended as a better alternative to the traditional difference-based methods for demonstrating the comparability of two or more treatment effects. Although equivalent tests of two groups are widely discussed, the natural extensions for assessing equivalence between several groups have not been well examined. This article provides a detailed and schematic comparison of the ANOVA F and the studentized range tests for evaluating the comparability of several standardized effects. Power and sample size appraisals of the two grossly distinct approaches are conducted in terms of a constraint on the range of the standardized means when the standard deviation of the standardized means is fixed. Although neither method is uniformly more powerful, the studentized range test has a clear advantage in sample size requirements necessary to achieve a given power when the underlying effect configurations are close to the priori minimum difference for determining equivalence. For actual application of equivalence tests and advance planning of equivalence studies, both SAS and R computer codes are available as supplementary files to implement the calculations of critical values, p-values, power levels, and sample sizes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Average properties of bidisperse bubbly flows
NASA Astrophysics Data System (ADS)
Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.
2018-03-01
Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.
A universal preconditioner for simulating condensed phase materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Packwood, David; Ortner, Christoph, E-mail: c.ortner@warwick.ac.uk; Kermode, James, E-mail: j.r.kermode@warwick.ac.uk
2016-04-28
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor ofmore » two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.« less
A PARMELA model of the CEBAF injector valid over a wide range of beam parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhong Zhang; Kevin Beard; Jay Benesch
A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used formore » simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.« less
Complex Fluids and Hydraulic Fracturing.
Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H
2016-06-07
Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.
Testing the 'island rule' for a tenebrionid beetle (Coleoptera, Tenebrionidae)
NASA Astrophysics Data System (ADS)
Palmer, Miquel
2002-05-01
Insular populations and their closest mainland counterparts commonly display body size differences that are considered to fit the island rule, a theoretical framework to explain both dwarfism and gigantism in isolated animal populations. The island rule is used to explain the pattern of change of body size at the inter-specific level. But the model implicitly makes also a prediction for the body size of isolated populations of a single species. It suggests that, for a hypothetical species covering a wide range of island sizes, there exists a specific island size where this species reaches the largest body size. Body size would be small (in relative terms) in the smallest islets of the species range. It would increase with island size, and reach a maximum at some specific island size. However, additional increases from such a specific island size would instead promote body size reduction, and small (in relative terms) body sizes would be found again on the largest islands. The biogeographical patterns predicted by the island rule have been described and analysed for vertebrates only (mainly mammals), but remain largely untested for insects or other invertebrates. I analyse here the pattern of body size variation between seven isolated insular populations of a flightless beetle, Asida planipennis (Coleoptera, Tenebrionidae). This is an endemic species of Mallorca, Menorca and a number of islands and islets in the Balearic archipelago (western Mediterranean). The study covers seven of the 15 known populations (i.e., there are only 15 islands or islets inhabited by the species). The populations studied fit the pattern advanced above and we could, therefore, extrapolate the island rule to a very different kind of organism. However, the small sample size of some of the populations invites some caution at this early stage.
Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate
NASA Astrophysics Data System (ADS)
Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth
2013-11-01
We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).
Modal density of rectangular structures in a wide frequency range
NASA Astrophysics Data System (ADS)
Parrinello, A.; Ghiringhelli, G. L.
2018-04-01
A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.
Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups.
Marcone, C; Neimark, H; Ragozzino, A; Lauer, U; Seemüller, E
1999-09-01
ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.
Acoustic-assisted fluidic hourglasses
NASA Astrophysics Data System (ADS)
Guimaraes, Tamara; Marin, Alvaro; Kaehler, Christian J.; Barnkob, Rune
2017-11-01
Microfluidic devices are prone to get clogged when suspensions are forced through narrow passages. Such clogging events occur when particles form arches that block the channel. In this work we study the clogging probabilities in a microfluidic hourglass when subject to ultrasound. We measure the clogging probabilities for certain ranges of sound amplitudes and particle-to-neck size ratios in which clogging events are more likely to occur. The ultrasound induces acoustic radiation forces on the suspended particles, leading to particle migration perpendicular to the channel flow direction. The transverse particle rearrangement can significantly reduce the clogging probability by decreasing the chances of arching in the narrowing of the passage. We show that by choosing proper sound actuation conditions, the method is reliable, non-intrusive, preventive, and allows to increase the life of fluidic devices (microfluidic or larger) with particles in a wide range of sizes.
Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T
2012-06-01
Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.
The Kepler Mission: A Search for Terrestrial Planets - Development Status
NASA Technical Reports Server (NTRS)
Koch, David; Borucki, W.; Mayer, D.; Caldwell, D.; Jenkens, J.; Dunham, E.; Geary, J.; Bachtell, E.; Deininger, W.; Philbrick, R.
2003-01-01
We have embarked on a mission to detect terrestrial planets. The space mission has been optimized to search for earth-size planets (0.5 to 10 earth masses) in the habitable zone (HZ) of solar-like stars. Given this design, the mission will necessarily be capable of not only detecting Earth analogs, but a wide range of planetary types and characteristics ranging from Mercury-size objects with orbital periods of days to gas-giants in decade long orbits that have undeniable signatures even with only one transit detected. The mission is designed to survey the full range of spectral-type dwarf stars. The approach is to detect the periodic signal of transiting planets. Three or more transits of a star exceeding a combined threshold of eight sigma with a statistically consistent period, brightness change and duration provide a rigorous method of detection. From the relative brightness change the planet size can be calculated. From the period the orbital size can be calculated and its location relative to the HZ determined. Presented here are: the mission goals, the top level system design requirements derived from these goals that drive the flight system design, a number of the trades that have lead to the mission concept, expected photometric performance dependence on stellar brightness and spectral type based on the system 'noise tree' analysis. Updated estimates are presented of the numbers of detectable planets versus size, orbit, stellar spectral type and distances based on a planet frequency hypothesis. The current project schedule and organization are given.
Understanding the direction of evolution in Burkholderia glumae through comparative genomics.
Lee, Hyun-Hee; Park, Jungwook; Kim, Jinnyun; Park, Inmyoung; Seo, Young-Su
2016-02-01
Members of the genus Burkholderia occupy remarkably diverse niches, with genome sizes ranging from ~3.75 to 11.29 Mbp. The genome of Burkholderia glumae ranges in size from ~5.81 to 7.89 Mbp. Unlike other plant pathogenic bacteria, B. glumae can infect a wide range of monocot and dicot plants. Comparative genome analysis of B. glumae strains can provide insight into genome variation as well as differential features of whole metabolism or pathways between multiple strains of B. glumae infecting the same host. Comparative analysis of complete genomes among B. glumae BGR1, B. glumae LMG 2196, and B. glumae PG1 revealed the largest departmentalization of genes onto separate replicons in B. glumae BGR1 and considerable downsizing of the genome in B. glumae LMG 2196. In addition, the presence of large-scale evolutionary events such as rearrangement and inversion and the development of highly specialized systems were found to be related to virulence-associated features in the three B. glumae strains. This connection may explain why this bacterium broadens its host range and reinforces its interaction with hosts.
A 0.7 V 6.66-9.36 GHz wide tuning range CMOS LC VCO with small chip size
NASA Astrophysics Data System (ADS)
Chen, Jun-Da; Zhang, Jie
2017-10-01
The circuit designs are based on TSMC 0.18 μm CMOS standard technology model. The designed circuit uses transformer coupling technology in order to decrease chip area and increase the Q value. The switched-capacitor topology array enables the voltage-controlled oscillator (VCO) to be tuned between 6.66 and 9.36 GHz with 4.9 mW power consumption at supply voltage of 0.7 V, and the tuning range of the circuit can reach 33.7%. The measured phase noise is -110.5 dBc/Hz at 1 MHz offset from the carrier frequency of 7.113 GHz. The output power level is about -1.22 dBm. The figure-of-merit and figure-of-merit-with-tuning range of the VCO are about -180.7 and -191.25 dBc/Hz, respectively. The chip area is 0.429 mm2 excluding the pads. The presented ultra-wideband VCO leads to a better performance in terms of power consumption, tuning range, chip size and output power level for low supply voltage.
Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.
Su, Yanyan; Lundholm, Nina; Ellegaard, Marianne
2018-05-26
The intricate patterning of diatom silica frustules at nanometer-to-micrometer scales makes them of interest for a wide range of industrial applications. For some of these applications, a specific size range in nanostructure is required and may be achieved by selecting species with the desired properties. However, as all biological materials, diatom frustules exhibit variability in their morphological parameters and this variability can to some extent be affected and controlled by environmental conditions. In this review, we explore the effects of different environmental factors including salinity, heavy metals, temperature, pH, extracellular Si(OH) 4 or Ge(OH) 4 concentration, light regime, UV irradiance, long-term cultivation, and biotic factors on the nanostructure of diatom frustules. This compilation of studies illustrates that it is possible to affect the nanostructure of diatom frustules in vivo by controlling different environmental factors as well as by direct chemical modification of frustules. We compare these methods and present examples of how these changes affect the range of variability as well as comparing the magnitude of size changes of the most promising methods.
Brosch, Tom; Tang, Lisa Y W; Youngjin Yoo; Li, David K B; Traboulsee, Anthony; Tam, Roger
2016-05-01
We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.
Kimura, Keisaku; Sato, Seiichi
2014-05-01
A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.
Fan, Yi; Boukerkour, Youcef; Blanc, Thibault; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M
2012-11-01
Segregation and mixing of granular mixtures during heap formation has important consequences in industry and agriculture. This research investigates three different final particle configurations of bidisperse granular mixtures--stratified, segregated and mixed--during filling of quasi-two-dimensional silos. We consider a large number and wide range of control parameters, including particle size ratio, flow rate, system size, and heap rise velocity. The boundary between stratified and unstratified states is primarily controlled by the two-dimensional flow rate, with the critical flow rate for the transition depending weakly on particle size ratio and flowing layer length. In contrast, the transition from segregated to mixed states is controlled by the rise velocity of the heap, a control parameter not previously considered. The critical rise velocity for the transition depends strongly on the particle size ratio.
Brittle-to-Ductile Transition in Metallic Glass Nanowires.
Şopu, D; Foroughi, A; Stoica, M; Eckert, J
2016-07-13
When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.
SAD5 Stereo Correlation Line-Striping in an FPGA
NASA Technical Reports Server (NTRS)
Villalpando, Carlos Y.; Morfopoulos, Arin C.
2011-01-01
High precision SAD5 stereo computations can be performed in an FPGA (field-programmable gate array) at much higher speeds than possible in a conventional CPU (central processing unit), but this uses large amounts of FPGA resources that scale with image size. Of the two key resources in an FPGA, Slices and BRAM (block RAM), Slices scale linearly in the new algorithm with image size, and BRAM scales quadratically with image size. An approach was developed to trade latency for BRAM by sub-windowing the image vertically into overlapping strips and stitching the outputs together to create a single continuous disparity output. In stereo, the general rule of thumb is that the disparity search range must be 1/10 the image size. In the new algorithm, BRAM usage scales linearly with disparity search range and scales again linearly with line width. So a doubling of image size, say from 640 to 1,280, would in the previous design be an effective 4 of BRAM usage: 2 for line width, 2 again for disparity search range. The minimum strip size is twice the search range, and will produce an output strip width equal to the disparity search range. So assuming a disparity search range of 1/10 image width, 10 sequential runs of the minimum strip size would produce a full output image. This approach allowed the innovators to fit 1280 960 wide SAD5 stereo disparity in less than 80 BRAM, 52k Slices on a Virtex 5LX330T, 25% and 24% of resources, respectively. Using a 100-MHz clock, this build would perform stereo at 39 Hz. Of particular interest to JPL is that there is a flight qualified version of the Virtex 5: this could produce stereo results even for very large image sizes at 3 orders of magnitude faster than could be computed on the PowerPC 750 flight computer. The work covered in the report allows the stereo algorithm to run on much larger images than before, and using much less BRAM. This opens up choices for a smaller flight FPGA (which saves power and space), or for other algorithms in addition to SAD5 to be run on the same FPGA.
Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.
2012-01-01
Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.
Evaluating success of curettage in the surgical treatment of endometrial polyps.
Hafizi, Leili; Mousavifar, Nezhat; Zirak, Nahid; Khadem, Nayereh; Davarpanah, Sousan; Akhondi, Mohsen
2015-02-01
To determine treatment efficacy of curettage on endometrial polyp. The quasi-experimental pre-and-post study was conducted in 2011-12 at the gynaecology department of Imam Reza Hospital, Mashhad, Iran, and comprised patients who underwent hysteroscopy for endometrial polyp. Location, size, number and base condition of the polyps were recorded before the patient underwent curettage. Hysteroscopy was then performed and the condition of the remaining polyps was compared with initial findings. Also, the remaining polyps were resected. SPSS 13 was used for statistical analysis. There were 51 patients in the study with a mean age of 33.14 ± 8.19 years (range: 23-59 years)Besides, there were 82 polyps; 38(46.3%) having a narrow base, and 44(53.7%) having a wide base. The mean polyp size was 2.39 ± 2.63cm.After performing curettage, 23 (28.0%) polyps were removed completely, 39(47.6%) had size reduction, and 20(24.4%) had no change in size. Curettage could not significantly remove polyps (p < 0.001). Polyps smaller than 2cm were more likely to have been removed compared to the bigger ones (p = 0.003).Polyps with wide base were more significantly removed than those with narrow base (p < 0.001).Further, those with wide base and also smaller than 2 cm were removed more significantly than others (p < 0.001).The location of polyps had no effect on removal probability by curettage (p = 0.114). Curettage was not found to be a reliable method for endometrial polyp removal. If hysteroscopy is not accessible, the size of the polyp should be determined by vaginal sonograghy to estimate the probability of its removal by curettage.
A New Optical Aerosol Spectrometer
NASA Technical Reports Server (NTRS)
Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)
1998-01-01
An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.
Geometric k-nearest neighbor estimation of entropy and mutual information
NASA Astrophysics Data System (ADS)
Lord, Warren M.; Sun, Jie; Bollt, Erik M.
2018-03-01
Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical system attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-Stögbauer-Grassberger estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but the data size is limited.
Precision of measurement and body size in whole-body air-displacement plethysmography.
Wells, J C; Fuller, N J
2001-08-01
To investigate methodological and biological precision for air-displacement plethysmography (ADP) across a wide range of body size. Repeated measurements of body volume (BV) and body weight (WT), and derived estimates of density (BD) and indices of fat mass (FM) and fat-free mass (FFM). Sixteen men, aged 22--48 y; 12 women, aged 24--42 y; 13 boys, aged 5--14 y; 17 girls, aged 5--16 y. BV and WT were measured using the Bodpod ADP system from which estimates of BD, FM and FFM were derived. FM and FFM were further adjusted for height to give fat mass index (FMI) and fat-free mass index (FFMI). ADP is very precise for measuring both BV and BD (between 0.16 and 0.44% of the mean). After removing two outliers from the database, and converting BD to body composition, precision of FMI was <6% in adults and within 8% in children, while precision of FFMI was within 1.5% for both age groups. ADP shows good precision for BV and BD across a wide range of body size, subject to biological artefacts. If aberrant values can be identified and rejected, precision of body composition is also good. Aberrant values can be identified by using pairs of ADP procedures, allowing the rejection of data where successive BD values differed by >0.007 kg/l. Precision of FMI obtained using pairs of procedures improves to <4.5% in adults and <5.5% in children.
Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.
2015-01-01
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359
Sensing human hand motions for controlling dexterous robots
NASA Technical Reports Server (NTRS)
Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.
1988-01-01
The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.
Soil heating during burning of forest slash piles and wood piles
Matt D. Busse; Carol J. Shestak; Ken R. Hubbert
2013-01-01
Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...
Age-size relationships in all-aged northern hardwoods
Barton M. Blum
1961-01-01
During the summer of 1960, a series of clearcuttings in small patches were made in an old-growth stand of northern hardwoods on the Bartlett Experimental Forest, Bartlett, New Hampshire. This provided an opportunity to observe the variation in ages of a wide range of trees of different sites and species. The annual rings of over 100 stumps were counted in this stand of...
ERIC Educational Resources Information Center
Shieh, Gwowen; Jan, Show-Li
2015-01-01
The general formulation of a linear combination of population means permits a wide range of research questions to be tested within the context of ANOVA. However, it has been stressed in many research areas that the homogeneous variances assumption is frequently violated. To accommodate the heterogeneity of variance structure, the…
Fletcher, Mary H.; Warner, E. Ray
1953-01-01
description of and complete drawings for the construction of a fluorimeter for the measurement of fluorescence of solutions are given. The instrument is sturdy and versatile. It may be used with various phototubes and measuring devices. It is constructed so that phototubes and filters may be changed readily. Sensitivity is controlled easily over a wide range by limiting the size of either the ultraviolet or fluorescent light beam with standard apertures.
Energy conservation with automatic flow control valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, D.
Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.
DOE R&D Accomplishments Database
Hansche, B. D.
1983-01-01
Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.
ERIC Educational Resources Information Center
Williams, Donjanea F.
2012-01-01
College students on probation are generally considered at-risk for dropping out, as indicated by a wide range of literature. This article focuses on an action research study that explored the impact of a career workshop series on freshman students in a probation course at a medium-sized university located in the southeastern United States. The…
Multiple laser pulse ignition method and apparatus
Early, J.W.
1998-05-26
Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.
ERIC Educational Resources Information Center
Lancaster, F. Wilfrid, Ed.
In planning this ninth annual clinic an attempt was made to include papers on a wide range of library applications of on-line computers, as well as to include libraries of various types and various sizes. Two papers deal with on-line circulation control (the Ohio State University system, described by Hugh C. Atkinson, and the Northwestern…
Nanoantenna couplers for metal-insulator-metal waveguide interconnects
NASA Astrophysics Data System (ADS)
Onbasli, M. Cengiz; Okyay, Ali K.
2010-08-01
State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.
Immersion Gratings for Infrared High-resolution Spectroscopy
NASA Astrophysics Data System (ADS)
Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo
2016-10-01
High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion gratings, including the development of a long-NIR (2-5um) high-resolution (R=80,000) spectrograph with Ge-immersion grating, VINROUGE, which is a prototype for the TMT MIR instrument.
Wesselowski, S; Saunders, A B; Gordon, S G
2017-09-01
Deployment of the Amplatz Canine Duct Occluder (ACDO) is the preferred method for minimally invasive occlusion of patent ductus arteriosus (PDA) in dogs, with appropriate device sizing crucial to successful closure. Dogs of any body weight can be affected by PDA. To describe the range of ACDO sizes deployed in dogs of various body weights for improved procedural planning and inventory selection and to investigate for correlation between minimal ductal diameter (MDD) and body weight. A total of 152 dogs undergoing ACDO deployment between 2008 and 2016. Body weight, age, breed, sex, and MDD obtained by angiography (MDD-A), MDD obtained by transesophageal echocardiography (MDD-TEE), and ACDO size deployed were retrospectively evaluated. Correlation between body weight and ACDO size, MDD-A and MDD-TEE was poor, with R-squared values of 0.4, 0.36, and 0.3, respectively. Femoral artery diameter in the smallest population of dogs placed inherent limitations on the use of larger device sizes, with no limitations on the wide range of device sizes required as patient size increased. The most commonly used ACDO devices were size 3 through 6, representing 57% of the devices deployed within the entire study population. Patent ductus arteriosus anatomy varies on an individual basis, with poor correlation between MDD and body weight. Weight-based assumptions about expected ACDO device size for a given patient are not recommended. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Pallotti, Francesco; Binelli, Giorgio; Fabbri, Raffaella; Valentino, Maria L.; Vicenti, Rossella; Macciocca, Maria; Cevoli, Sabina; Baruzzi, Agostino; DiMauro, Salvatore; Carelli, Valerio
2014-01-01
Segregation of mutant mtDNA in human tissues and through the germline is debated, with no consensus about the nature and size of the bottleneck hypothesized to explain rapid generational shifts in mutant loads. We investigated two maternal lineages with an apparently different inheritance pattern of the same pathogenic mtDNA 3243A>G/tRNALeu(UUR) (MELAS) mutation. We collected blood cells, muscle biopsies, urinary epithelium and hair follicles from 20 individuals, as well as oocytes and an ovarian biopsy from one female mutation carrier, all belonging to the two maternal lineages to assess mutant mtDNA load, and calculated the theoretical germline bottleneck size (number of segregating units). We also evaluated “mother-to-offspring” segregations from the literature, for which heteroplasmy assessment was available in at least three siblings besides the proband. Our results showed that mutation load was prevalent in skeletal muscle and urinary epithelium, whereas in blood cells there was an inverse correlation with age, as previously reported. The histoenzymatic staining of the ovarian biopsy failed to show any cytochrome-c-oxidase defective oocyte. Analysis of four oocytes and one offspring from the same unaffected mother of the first family showed intermediate heteroplasmic mutant loads (10% to 75%), whereas very skewed loads of mutant mtDNA (0% or 81%) were detected in five offspring of another unaffected mother from the second family. Bottleneck size was 89 segregating units for the first mother and 84 for the second. This was remarkably close to 88, the number of “segregating units” in the “mother-to-offspring” segregations retrieved from literature. In conclusion, a wide range of mutant loads may be found in offspring tissues and oocytes, resulting from a similar theoretical bottleneck size. PMID:24805791
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
de Haan, Hendrick W; Paquet, Chantal
2011-12-01
The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate. Copyright © 2011 Wiley Periodicals, Inc.
Perspective Space as a Model for Distance and Size Perception.
Erkelens, Casper J
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.
Perspective Space as a Model for Distance and Size Perception
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765
Unravelling the physics of size-dependent dislocation-mediated plasticity
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar A.
2015-01-01
Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.
2017-01-01
Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485
NASA Astrophysics Data System (ADS)
Frangoulis, Constantin; Grigoratou, Maria; Zoulias, Theodore; Hannides, Cecelia C. S.; Pantazi, Maria; Psarra, Stella; Siokou, Ioanna
2017-10-01
Although metazooplankton includes a wide size range of organisms, our knowledge is essentially based on mesozooplankton. A first estimation of the metazooplankton standing stock in a Mediterranean area, and of its size fractions and functional groups are provided by combining data out of three nets with different mesh sizes (45, 200 and 500 μm). Data were collected along a gradient of oligotrophy in the frontal area created, where the waters of Black Sea origin meet those of Levantine Sea origin (Northeast Aegean Sea, Eastern Mediterranean). Metazooplankton biomass was dominated by mesozooplankton (0.2-2 mm), while meso- and microzooplankton (<0.2 mm) shared dominance of abundance. Copepods dominated both in abundance and biomass and were followed by nauplii in abundance and gelatinous carnivores or decapod-euphausiid larvae in biomass. The spatiotemporal variability of metazoans stock, biomass-size spectra linearity, carnivorous group contribution and copepod diversity, supported that metazooplankton tends to recede from steady-state when approaching less oligotrophic dynamic areas (such as fronts) or dynamic periods (such as the spring bloom). The need and the difficulties of obtaining a larger picture from a wider size range of metazoans for understanding the role of zooplankton are stressed.
Pimiento, Catalina; Balk, Meghan A
2015-06-01
The extinct shark Carcharocles megalodon is one of the largest marine apex predators ever to exist. Nonetheless, little is known about its body-size variations through time and space. Here, we studied the body-size trends of C. megalodon through its temporal and geographic range to better understand its ecology and evolution. Given that this species was the last of the megatooth lineage, a group of species that shows a purported size increase through time, we hypothesized that C. megalodon also displayed this trend, increasing in size over time and reaching its largest size prior to extinction. We found that C. megalodon body-size distribution was left-skewed (suggesting a long-term selective pressure favoring larger individuals), and presented significant geographic variation (possibly as a result of the heterogeneous ecological constraints of this cosmopolitan species) over geologic time. Finally, we found that stasis was the general mode of size evolution of C. megalodon (i.e., no net changes over time), contrasting with the trends of the megatooth lineage and our hypothesis. Given that C. megalodon is a relatively long-lived species with a widely distributed fossil record, we further used this study system to provide a deep-time perspective to the understanding of the body-size trends of marine apex predators. For instance, our results suggest that (1) a selective pressure in predatory sharks for consuming a broader range of prey may favor larger individuals and produce left-skewed distributions on a geologic time scale; (2) body-size variations in cosmopolitan apex marine predators may depend on their interactions with geographically discrete communities; and (3) the inherent characteristics of shark species can produce stable sizes over geologic time, regardless of the size trends of their lineages.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya
2013-06-01
Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.
A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry.
Damodar, Joshita; Odgers, David; Pope, Dane; Hill, Robin
2018-05-01
Kilovoltage x-ray beams are widely used in treating skin cancers and in biological irradiators. In this work, we have evaluated four dosimeters (ionization chambers and solid state detectors) in their suitability for relative dosimetry of kilovoltage x-ray beams in the energy range of 50 - 280kVp. The solid state detectors, which have not been investigated with low energy x-rays, were the PTW 60019 microDiamond synthetic diamond detector and the PTW 60012 diode. The two ionization chambers used were the PTW Advanced Markus parallel plate chamber and the PTW PinPoint small volume chamber. For each of the dosimeters, percentage depth doses were measured in water over the full range of x-ray beams and for field sizes ranging from 2cm diameter to 12 × 12cm. In addition, depth doses were measured for a narrow aperture (7mm diameter) using the PTW microDiamond detector. For comparison, the measured data was compared with Monte Carlo calculated doses using the EGSnrc Monte Carlo package. The depth dose results indicate that the Advanced Markus parallel plate and PinPoint ionization chambers were suitable for depth dose measurements in the beam quality range with an uncertainty of less than 3%, including in the regions closer to the surface of the water as compared with Monte Carlo depth dose data for all six energy beams. The response of the PTW Diode E detector was accurate to within 4% for all field sizes in the energy range of 50-125kVp but showed larger variations for higher energies of up to 12% with the 12 × 12cm field size. In comparison, the microDiamond detector had good agreement over all energies for both smaller and larger field sizes generally within 1% as compared to the Advanced Markus chamber field and Monte Carlo calculations. The only exceptions were in measuring the dose at the surface of the water phantom where larger differences were found. For the 7mm diameter field, the agreement between the microDiamond detector and Monte Carlo calculations was good being better than 1% except at the surface. Based on these results, the PTW microDiamond detector has shown to be a suitable detector for relative dosimetry of low energy x-ray beams over a wide range of x-ray beam energies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa
2017-11-01
This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Colson, R. O.; Mckay, G. A.; Taylor, L. A.
1988-01-01
This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.
High-power Broadband Organic THz Generator
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-01-01
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234
Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project
NASA Astrophysics Data System (ADS)
Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.
2018-07-01
The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
2016-07-06
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)
NASA Astrophysics Data System (ADS)
Berumen, M. L.; Pratchett, M. S.; Goodman, B. A.
2011-12-01
Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors.
High-power broadband organic THz generator.
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-11-13
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.
Manipulating crystallization with molecular additives.
Shtukenberg, Alexander G; Lee, Stephanie S; Kahr, Bart; Ward, Michael D
2014-01-01
Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications.
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-07
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Niu, Qifei; Zhang, Chi
2018-02-01
The empirical Archie's law has been widely used in geosciences and engineering to explain the measured electrical resistivity of many geological materials, but its physical basis has not been fully understood yet. In this study, we use a pore-scale numerical approach combining discrete element-finite difference methods to study Archie's porosity exponent m of granular materials over a wide porosity range. Numerical results reveal that at dilute states (e.g., porosity ϕ > 65%), m is exclusively related to the particle shape and orientation. As the porosity decreases, the electric flow in pore space concentrates progressively near particle contacts and m increases continuously in response to the intensified nonuniformity of the local electrical field. It is also found that the increase in m is universally correlated with the volume fraction of pore throats for all the samples regardless of their particle shapes, particle size range, and porosities.
Optical design and simulation of a new coherence beamline at NSLS-II
NASA Astrophysics Data System (ADS)
Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.
2017-08-01
We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.
van Rhee, Henk; Hak, Tony
2017-01-01
We present a new tool for meta‐analysis, Meta‐Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta‐analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta‐Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta‐analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp‐Hartung adjustment of the DerSimonian‐Laird estimator. However, more advanced meta‐analysis methods such as meta‐analytical structural equation modelling and meta‐regression with multiple covariates are not available. In summary, Meta‐Essentials may prove a valuable resource for meta‐analysts, including researchers, teachers, and students. PMID:28801932
Effect of Habitat Conditions and Plant Traits on Leaf Damage in the Carduoideae Subfamily
Münzbergová, Zuzana; Skuhrovec, Jiří
2013-01-01
Plant traits are the key factors that determine herbivore foraging selection. The traits serving as defense traits against herbivores represent a wide range of traits, such as chemical, physiological, morphological and life-history traits. While many studies considered plant defense traits at the within-species scale, much less is known from comparisons of a wide range of closely related species. The aim of this study was to identify factors responsible for the intensity of leaf damage in the Carduoideae subfamily of Asteraceae, which hosts many invasive species and thus is potential candidate plant species that could be controlled by biological control. Specifically, we wanted to see the relative importance of habitat characteristics, plant size and plants traits in determining the degree of folivory. The study identified several defense traits able to explain differences in herbivory between species after accounting for differences in the habitats in which the species occur and the plant size. Specifically, the most important traits were traits related to the quality of the leaf tissue expressed as the content of phosphorus, water and specific leaf area, which suggests that the leaf quality had a more important effect on the degree of herbivory than the presence of specific defense mechanisms such as spines and hair. Leaf quality is thus a candidate factor that drives herbivore choice when selecting which plant to feed on and should be considered when assessing the danger that a herbivore will switch hosts when introduced to a new range. PMID:23717643
Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition
NASA Astrophysics Data System (ADS)
Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.
2015-06-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1999-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Martin, Mikulas M., Jr.; Sumpter, Rod
2000-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1997-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
Overview and Status of the Kepler Mission
NASA Technical Reports Server (NTRS)
Koch, D.; Borucki, W.; Dunham, E.; Geary, J.; Gilliland, R.; Jenkins, J.; Latham, D.; Mayer, D.; Sobeck, C.; Duren, R.
2003-01-01
The Kepler Mission is a search for terrestrial planets with the design optimized for detecting Earth-size planets in the habitable zone (HZ) of solar-like stars. In addition, the mission has a broad detection capability for a wide range of planetary sizes, planetary orbits and spectral types of stars. The mission is in the midst of the development phase with good progress leading to the preliminary design review later this year. Long lead procurements are well under way. An overview in all areas is presented including both the flight system (photometer and spacecraft) and the ground system. Launch is on target for 2007 on a Delta II.
Wide size range fast integrated mobility spectrometer
Wang, Jian
2013-10-29
A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.
NASA Technical Reports Server (NTRS)
Heinrich, J.
1980-01-01
The microstructure of reaction sintered silicon nitride (RSSN) was changed over a wide range by varying the grain density, grain size of the silicon starting powder, nitriding conditions, and by introducing artificial pores. The influence of single microstructural parameters on mechanical properties like room temperature strength, creep behavior, and resistance to thermal shock was investigated. The essential factors influencing these properties were found to be total porosity, pore size distribution, and the fractions of alpha and beta Si3N4. In view of high temperature engineering applications of RSSN, potentials for optimizing the material's properties by controlled processing are discussed.
Photogrammetry and Its Potential Application in Medical Science on the Basis of Selected Literature.
Ey-Chmielewska, Halina; Chruściel-Nogalska, Małgorzata; Frączak, Bogumiła
2015-01-01
Photogrammetry is a science and technology which allows quantitative traits to be determined, i.e. the reproduction of object shapes, sizes and positions on the basis of their photographs. Images can be recorded in a wide range of wavelengths of electromagnetic radiation. The most common is the visible range, but near- and medium-infrared, thermal infrared, microwaves and X-rays are also used. The importance of photogrammetry has increased with the development of computer software. Digital image processing and real-time measurement have allowed the automation of many complex manufacturing processes. Photogrammetry has been widely used in many areas, especially in geodesy and cartography. In medicine, this method is used for measuring the widely understood human body for the planning and monitoring of therapeutic treatment and its results. Digital images obtained from optical-electronic sensors combined with computer technology have the potential of objective measurement thanks to the remote nature of the data acquisition, with no contact with the measured object and with high accuracy. Photogrammetry also allows the adoption of common standards for archiving and processing patient data.
Peel, Alison J; Baker, Kate S; Hayman, David T S; Suu-Ire, Richard; Breed, Andrew C; Gembu, Guy-Crispin; Lembo, Tiziana; Fernández-Loras, Andrés; Sargan, David R; Fooks, Anthony R; Cunningham, Andrew A; Wood, James L N
2016-08-01
Bats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.
A Monte Carlo model for 3D grain evolution during welding
NASA Astrophysics Data System (ADS)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-09-01
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.
Rashel, Rakib H; Patiño, Reynaldo
2017-06-01
Salinity (5-30) effects on golden alga growth were determined at a standard laboratory temperature (22°C) and one associated with natural blooms (13°C). Inoculum-size effects were determined over a wide size range (100-100,000cellsml -1 ). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100cellsml -1 ), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10-15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25-30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity - they remained stable at salinity of 5-10 and 5-15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml -1 ). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797's superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10-15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density - whether artificially manipulated or naturally attained - can influence UTEX-2797 bloom potential. Published by Elsevier B.V.
Surface enhanced Raman spectroscopy: A review of recent applications in forensic science
NASA Astrophysics Data System (ADS)
Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.
2018-05-01
Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.
The design and assembly of aluminum mirrors of a three-mirror-anastigmat telescope
NASA Astrophysics Data System (ADS)
Chang, Shenq-Tsong; Lin, Yu-Chuan; Wu, Kun-Huan; Lien, Chun-Chieh; Huang, Ting-Ming; Tsay, Ho-Lin; Chan, Chia-Yen
2017-09-01
Better ground sampling distance (GSD) has been a trend for earth observation satellites. A long-focal-length telescope is required accordingly in systematic point of view. On the other hand, there is size constraint for such long-focal-length telescope especially in space projects. Three-mirror-anastigmat (TMA) was proven to have excellent features of correcting aberrations, wide spectral range and shorter physical requirement [1-3].
Microwave intersatellite links for communications satellites
NASA Technical Reports Server (NTRS)
Welti, G. R.
1982-01-01
Applications and interface requirements for intersatellite links (ISLs) between commercial communications satellites are reviewed, ranging from ISLs between widely separated satellites to ISLs between clustered satellites. On-board processing architectures for ISLs employing a variety of modulation schemes are described. These schemes include FM remodulation and QPSK regeneration in combination with switching and buffering. The various architectures are compared in terms of complexity, required performance, antenna size, mass, and power.
Design of Spur Gears for Improved Efficiency
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1981-01-01
A method to calculate spur gear system loss for a wide range of gear geometries and operating conditions was used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch line velocity and load on efficiency were determined. Peak efficiencies were found to be greater for large diameter and fine pitched gears and tare (no-load) losses were found to be significant.
CONTINUOUS ROTATION SCATTERING CHAMBER
Verba, J.W.; Hawrylak, R.A.
1963-08-01
An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)
Jeffrey R. Waters; Cynthia J. Zabel; Kevin S. McKelvey; Hartwell H. Welsh
2001-01-01
Our goal was to describe and evaluate patterns of association between stream size and abundances of amphibians and small mammals in a northwestern California watershed. We sampled populations at 42 stream sites and eight upland sites within a 100- watershed in 1995 and 1996. Stream reaches sampled ranged from poorly defined channels that rarely flowed to 10-m-wide...
A simple rule for the evolution of contingent cooperation in large groups
Schonmann, Roberto H.; Boyd, Robert
2016-01-01
Humans cooperate in large groups of unrelated individuals, and many authors have argued that such cooperation is sustained by contingent reward and punishment. However, such sanctioning systems can also stabilize a wide range of behaviours, including mutually deleterious behaviours. Moreover, it is very likely that large-scale cooperation is derived in the human lineage. Thus, understanding the evolution of mutually beneficial cooperative behaviour requires knowledge of when strategies that support such behaviour can increase when rare. Here, we derive a simple formula that gives the relatedness necessary for contingent cooperation in n-person iterated games to increase when rare. This rule applies to a wide range of pay-off functions and assumes that the strategies supporting cooperation are based on the presence of a threshold fraction of cooperators. This rule suggests that modest levels of relatedness are sufficient for invasion by strategies that make cooperation contingent on previous cooperation by a small fraction of group members. In contrast, only high levels of relatedness allow the invasion by strategies that require near universal cooperation. In order to derive this formula, we introduce a novel methodology for studying evolution in group structured populations including local and global group-size regulation and fluctuations in group size. PMID:26729938
OLED microdisplay design and materials
NASA Astrophysics Data System (ADS)
Wacyk, Ihor; Prache, Olivier; Ali, Tariq; Khayrullin, Ilyas; Ghosh, Amalkumar
2010-04-01
AMOLED microdisplays from eMagin Corporation are finding growing acceptance within the military display market as a result of their excellent power efficiency, wide operating temperature range, small size and weight, good system flexibility, and ease of use. The latest designs have also demonstrated improved optical performance including better uniformity, contrast, MTF, and color gamut. eMagin's largest format display is currently the SXGA design, which includes features such as a 30-bit wide RGB digital interface, automatic luminance regulation from -45 to +70°C, variable gamma control, and a dynamic range exceeding 50:000 to 1. This paper will highlight the benefits of eMagin's latest microdisplay designs and review the roadmap for next generation devices. The ongoing development of reduced size pixels and larger format displays (up to WUXGA) as well as new OLED device architecture (e.g. high-brightness yellow) will be discussed. Approaches being explored for improved performance in next generation designs such as lowpower serial interfaces, high frame rate operation, and new operational modes for reduction of motion artifacts will also be described. These developments should continue to enhance the appeal of AMOLED microdisplays for a broad spectrum of near-to-the-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming.
Transiting Exoplanet Survey Satellite (TESS)
NASA Technical Reports Server (NTRS)
Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.
2012-01-01
The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.
HPAC info-dex 1 -- Locating a manufacturer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
Information in the index includes manufacturer name, address, and telephone and FAX numbers. In this section are more than 200 pages of detailed product information from manufacturers of a wide variety of mechanical systems products. The information details ranges of capacities, sizes, and other data that will assist in the selection and application of these products for mechanical systems in large plants and buildings. Throughout the year, use this section for assistance on current engineering projects. The information details ranges of capacities, sizes, and other data that will assist in the selection and application of these products for mechanical systemsmore » in large plants and buildings. Throughout the year, use this section for assistance on current engineering projects. The manufacturers appearing in HPAC Info-dex 6 are boldface listed in HPAC Info-dex 1, HPAC Info-dex 2, and HPAC Info-dex 3.« less
Near-bed turbulence and sediment flux measurements in tidal channels
Wright, S.A.; Whealdon-Haught, D.R.
2012-01-01
Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.
Anomalous dynamics of intruders in a crowded environment of mobile obstacles
Sentjabrskaja, Tatjana; Zaccarelli, Emanuela; De Michele, Cristiano; Sciortino, Francesco; Tartaglia, Piero; Voigtmann, Thomas; Egelhaaf, Stefan U.; Laurati, Marco
2016-01-01
Many natural and industrial processes rely on constrained transport, such as proteins moving through cells, particles confined in nanocomposite materials or gels, individuals in highly dense collectives and vehicular traffic conditions. These are examples of motion through crowded environments, in which the host matrix may retain some glass-like dynamics. Here we investigate constrained transport in a colloidal model system, in which dilute small spheres move in a slowly rearranging, glassy matrix of large spheres. Using confocal differential dynamic microscopy and simulations, here we discover a critical size asymmetry, at which anomalous collective transport of the small particles appears, manifested as a logarithmic decay of the density autocorrelation functions. We demonstrate that the matrix mobility is central for the observed anomalous behaviour. These results, crucially depending on size-induced dynamic asymmetry, are of relevance for a wide range of phenomena ranging from glassy systems to cell biology. PMID:27041068
Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots
NASA Astrophysics Data System (ADS)
Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.
2018-01-01
We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.
Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions
NASA Astrophysics Data System (ADS)
Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg
We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.
Shigeta, Masaya; Watanabe, Takayuki
2016-03-07
A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size-composition distribution for a metal-silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal-silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder.
DNA-Templated Molecular Silver Fluorophores
Petty, Jeffrey T.; Story, Sandra P.; Hsiang, Jung-Cheng; Dickson, Robert M.
2013-01-01
Conductive and plasmon-supporting noble metals exhibit an especially wide range of size-dependent properties, with discrete electronic levels, strong optical absorption, and efficient radiative relaxation dominating optical behavior at the ~10-atom cluster scale. In this Perspective, we describe the formation and stabilization of silver clusters using DNA templates and highlight the distinct spectroscopic and photophysical properties of the resulting hybrid fluorophores. Strong visible to near-IR emission from DNA-encapsulated silver clusters ranging in size from 5–11 atoms has been produced and characterized. Importantly, this strong Ag cluster fluorescence can be directly modulated and selectively recovered by optically controlling the dark state residence, even when faced with an overwhelming background. The strength and sequence sensitivity of the oligonucleotide-Ag interaction suggests strategies for fine tuning and stabilizing cluster-based emitters in a host of sensing and biolabeling applications that would benefit from brighter, more photostable, and quantifiable emitters in high background environments. PMID:23745165
Optimal sample sizes for the design of reliability studies: power consideration.
Shieh, Gwowen
2014-09-01
Intraclass correlation coefficients are used extensively to measure the reliability or degree of resemblance among group members in multilevel research. This study concerns the problem of the necessary sample size to ensure adequate statistical power for hypothesis tests concerning the intraclass correlation coefficient in the one-way random-effects model. In view of the incomplete and problematic numerical results in the literature, the approximate sample size formula constructed from Fisher's transformation is reevaluated and compared with an exact approach across a wide range of model configurations. These comprehensive examinations showed that the Fisher transformation method is appropriate only under limited circumstances, and therefore it is not recommended as a general method in practice. For advance design planning of reliability studies, the exact sample size procedures are fully described and illustrated for various allocation and cost schemes. Corresponding computer programs are also developed to implement the suggested algorithms.
Measurements in liquid fuel sprays
NASA Technical Reports Server (NTRS)
Chigier, N.; Mao, C. P.
1985-01-01
A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.
Understanding asteroid collisional history through experimental and numerical studies
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.
1991-01-01
Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.
Understanding asteroid collisional history through experimental and numerical studies
NASA Astrophysics Data System (ADS)
Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.
1991-06-01
Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.
Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven
We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.
The strength-of-weak-ties perspective on creativity: a comprehensive examination and extension.
Baer, Markus
2010-05-01
Disentangling the effects of weak ties on creativity, the present study separated, both theoretically and empirically, the effects of the size and strength of actors' idea networks and examined their joint impact while simultaneously considering the separate, moderating role of network diversity. I hypothesized that idea networks of optimal size and weak strength were more likely to boost creativity when they afforded actors access to a wide range of different social circles. In addition, I examined whether the joint effects of network size, strength, and diversity on creativity were further qualified by the openness to experience personality dimension. As expected, results indicated that actors were most creative when they maintained idea networks of optimal size, weak strength, and high diversity and when they scored high on the openness dimension. The implications of these results are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar
2011-04-07
We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.
Size-tailored synthesis of silver quasi-nanospheres by kinetically controlled seeded growth.
Liu, Xiaxia; Yin, Yadong; Gao, Chuanbo
2013-08-20
This paper describes a simple and convenient procedure to synthesize monodisperse silver (Ag) quasi-nanospheres with size tunable in a range of 19-140 nm through a one-step seeded growth strategy. Acetonitrile was employed as a coordinating ligand of a Ag(I) salt in order to achieve a low concentration of elemental Ag after reduction and thus suppression of new nucleation events. Since the addition of the seeds significantly accelerates the reduction reaction of Ag(I) by ascorbic acid, the reaction kinetics was further delicately balanced by tuning the reaction temperature, which proved to be critical in producing Ag quasi-nanospheres with uniform size and shape. This synthesis is highly scalable, so that it provides a simple yet very robust process for producing Ag quasi-nanospheres for many biological, analytical, and catalytic applications which often demand samples in large quantity and widely tunable particle sizes.
Percolation in three-dimensional fracture networks for arbitrary size and shape distributions
NASA Astrophysics Data System (ADS)
Thovert, J.-F.; Mourzenko, V. V.; Adler, P. M.
2017-04-01
The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular, and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions.
Acoustic bubble sorting for ultrasound contrast agent enrichment.
Segers, Tim; Versluis, Michel
2014-05-21
An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.
NASA Astrophysics Data System (ADS)
Pathak, Arup Kumar
2012-01-01
Microhydration of SeO42-·nH2O (n = 1-5) clusters are reported at B3LYP/Aug-cc-pvtz level of theory. Lower size hydrated clusters are stabilized by only double-hydrogen-bonding arrangements and the most stable conformer for higher size cluster (n > 3) contains a cyclic water ring. It is observed that at least one water molecule is necessary to stabilize the dianion in the gas phase against spontaneous electron loss. The microscopic theory based expression provides a route to predict the instability of bare SeO42- and to obtain the VDE for a wide range of cluster sizes including the bulk from the knowledge of the same for a few stable hydrated clusters.
McCreery, Ryan W.; Venediktov, Rebecca A.; Coleman, Jaumeiko J.; Leech, Hillary M.
2013-01-01
Purpose Two clinical questions were developed: one addressing the comparison of linear amplification with compression limiting to linear amplification with peak clipping, and the second comparing wide dynamic range compression with linear amplification for outcomes of audibility, speech recognition, speech and language, and self- or parent report in children with hearing loss. Method Twenty-six databases were systematically searched for studies addressing a clinical question and meeting all inclusion criteria. Studies were evaluated for methodological quality, and effect sizes were reported or calculated when possible. Results The literature search resulted in the inclusion of 8 studies. All 8 studies included comparisons of wide dynamic range compression to linear amplification, and 2 of the 8 studies provided comparisons of compression limiting versus peak clipping. Conclusions Moderate evidence from the included studies demonstrated that audibility was improved and speech recognition was either maintained or improved with wide dynamic range compression as compared with linear amplification. No significant differences were observed between compression limiting and peak clipping on outcomes (i.e., speech recognition and self-/parent report) reported across the 2 studies. Preference ratings appear to be influenced by participant characteristics and environmental factors. Further research is needed before conclusions can confidently be drawn. PMID:22858616
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin
2013-01-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803
Kanick, Stephen Chad; McClatchy, David M; Krishnaswamy, Venkataramanan; Elliott, Jonathan T; Paulsen, Keith D; Pogue, Brian W
2014-10-01
This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.
NASA Technical Reports Server (NTRS)
Dunder, T.; Miller, R. E.
1990-01-01
A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.
Finite length-scale anti-gravity and observations of mass discrepancies in galaxies
NASA Astrophysics Data System (ADS)
Sanders, R. H.
1986-01-01
The modification of Newtonian attraction suggested by Sanders (1984) contains a repulsive Yukawa component which is characterised by two physical parameters: a coupling constant, α, and a length scale, r0. Although this form of the gravitational potential can result in flat rotation curves for a galaxy (or a point mass) it is not obvious that any modification of gravity associated with a definite length scale can reproduce the observed rotation curves of galaxies covering a wide range of mass and size. Here it is shown that the rotation curves of galaxies ranging in size from 5 to 40 kpc can be reproduced by this modified potential. Moreover, the implied mass-to-light ratios for a larger sample of galaxies are reasonable (one to three) and show no systematic trend with the size of the galaxy. The observed infrared Tully-Fisher law is shown to be consistent with the prediction of this revised gravity. The modified potential permits the X-ray emitting halos observed around elliptical galaxies to be bound without the addition of dark matter.
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
Abrams, Peter A
2009-09-01
Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalak, Gregory; Grimes, Joshua; Fletcher, Joel
2016-01-15
Purpose: The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Methods: Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kVmore » beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Results: Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. Conclusions: The authors’ report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.« less
Michalak, Gregory; Grimes, Joshua; Fletcher, Joel; Halaweish, Ahmed; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia
2016-01-01
The purpose of this study was to evaluate, over a wide range of phantom sizes, CT number stability achieved using two techniques for generating dual-energy computed tomography (DECT) virtual monoenergetic images. Water phantoms ranging in lateral diameter from 15 to 50 cm and containing a CT number test object were scanned on a DSCT scanner using both single-energy (SE) and dual-energy (DE) techniques. The SE tube potentials were 70, 80, 90, 100, 110, 120, 130, 140, and 150 kV; the DE tube potential pairs were 80/140, 70/150Sn, 80/150Sn, 90/150Sn, and 100/150Sn kV (Sn denotes that the 150 kV beam was filtered with a 0.6 mm tin filter). Virtual monoenergetic images at energies ranging from 40 to 140 keV were produced from the DECT data using two algorithms, monoenergetic (mono) and monoenergetic plus (mono+). Particularly in large phantoms, water CT number errors and/or artifacts were observed; thus, datasets with water CT numbers outside ±10 HU or with noticeable artifacts were excluded from the study. CT numbers were measured to determine CT number stability across all phantom sizes. Data exclusions were generally limited to cases when a SE or DE technique with a tube potential of less than 90 kV was used to scan a phantom larger than 30 cm. The 90/150Sn DE technique provided the most accurate water background over the large range of phantom sizes evaluated. Mono and mono+ provided equally improved CT number stability as a function of phantom size compared to SE; the average deviation in CT number was only 1.4% using 40 keV and 1.8% using 70 keV, while SE had an average deviation of 11.8%. The authors' report demonstrates, across all phantom sizes, the improvement in CT number stability achieved with mono and mono+ relative to SE.
Accretion rates of protoplanets
NASA Astrophysics Data System (ADS)
Greenzweig, Yuval
The giant planets' solid cores must have formed prior to the dispersal of the primordial solar nebula, to allow the capture of their massive, gaseous envelopes from the nebula. Recent observations of disks of dust surrounding nearby solar-like stars lead to estimates of nebula lifetimes at 106 to 107 years. Thus, theories of solid particle accretion must explain how the solid cores of the giant planets may have formed within comparable timescales. Calculations are presented which support the sole currently hypothesized mechanism of planetary accretion in which the duration of the stage of growth from planetesimals (1 to 10 km size bodies) to moon- or planet-size bodies lies within the widely accepted time constraint mentioned above. It has been shown that under certain conditions a growth advantage is given to the larger bodies of a swarm of Sun-orbiting planetesimals, resulting in runaway growth of the largest body (or bodies) in the swarm. The gravitational cross section of the protoplanet (the largest body in the swarm) increases with its size, eventually requiring the inclusion of the effect of the solar tidal force on the interaction between it and a passing planetesimal. Thus, numerical integrations of the three-body problem (Sun, protoplanet and planetesimal) are needed to determine the accretion rates of protoplanets. Existing analytical formulas are refined for the two-body (no solar tidal force) accretion rates of planetesimals or small protoplanets, and numerically derives the three-body accretion rates of large protoplanets. The three-body accretion rates calculated span a wide range of protoplanetary orbital radii, masses, and densities, and a wide range of planetesimal orbital eccentricities and inclinations. The most useful numerical results are approximated by algebraic expressions, to facilitate their use in accretion calculations, particularly by numerical codes. Since planetary accretion rates depend strongly on planetesimal random velocities, the effect of the three body encounter on the velocity dispersion was also studied. It was found that protoplanets are more effective perturbers of planetesimal eccentricities than previously noted.
Yu, P.; Sun, J.; Wolz, R.; Stephenson, D.; Brewer, J.; Fox, N.C.; Cole, P.E.; Jack, C.R.; Hill, D.L.G.; Schwarz, A.J.
2014-01-01
Objective To evaluate the effect of computational algorithm, measurement variability and cut-point on hippocampal volume (HCV)-based patient selection for clinical trials in mild cognitive impairment (MCI). Methods We used normal control and amnestic MCI subjects from ADNI-1 as normative reference and screening cohorts. We evaluated the enrichment performance of four widely-used hippocampal segmentation algorithms (FreeSurfer, HMAPS, LEAP and NeuroQuant) in terms of two-year changes in MMSE, ADAS-Cog and CDR-SB. We modeled the effect of algorithm, test-retest variability and cut-point on sample size, screen fail rates and trial cost and duration. Results HCV-based patient selection yielded not only reduced sample sizes (by ~40–60%) but also lower trial costs (by ~30–40%) across a wide range of cut-points. Overall, the dependence on the cut-point value was similar for the three clinical instruments considered. Conclusion These results provide a guide to the choice of HCV cut-point for aMCI clinical trials, allowing an informed trade-off between statistical and practical considerations. PMID:24211008
NASA Astrophysics Data System (ADS)
Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel
Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.
Large format geiger-mode avalanche photodiode LADAR camera
NASA Astrophysics Data System (ADS)
Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison
2013-05-01
Recently Spectrolab has successfully demonstrated a compact 32x32 Laser Detection and Range (LADAR) camera with single photo-level sensitivity with small size, weight, and power (SWAP) budget for threedimensional (3D) topographic imaging at 1064 nm on various platforms. With 20-kHz frame rate and 500- ps timing uncertainty, this LADAR system provides coverage down to inch-level fidelity and allows for effective wide-area terrain mapping. At a 10 mph forward speed and 1000 feet above ground level (AGL), it covers 0.5 square-mile per hour with a resolution of 25 in2/pixel after data averaging. In order to increase the forward speed to fit for more platforms and survey a large area more effectively, Spectrolab is developing 32x128 Geiger-mode LADAR camera with 43 frame rate. With the increase in both frame rate and array size, the data collection rate is improved by 10 times. With a programmable bin size from 0.3 ps to 0.5 ns and 14-bit timing dynamic range, LADAR developers will have more freedom in system integration for various applications. Most of the special features of Spectrolab 32x32 LADAR camera, such as non-uniform bias correction, variable range gate width, windowing for smaller arrays, and short pixel protection, are implemented in this camera.
Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig
2016-01-01
It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm−3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2003-01-01
The matrix cracking of a variety of SiC/SiC composites has been characterized for a wide range of constituent variation. These composites were fabricated by the 2-dimensional lay-up of 0/90 five-harness satin fabric consisting of Sylramic fiber tows that were then chemical vapor infiltrated (CVI) with BN, CVI with SiC, slurry infiltrated with SiC particles followed by molten infiltration of Si. The composites varied in number of plies, the number of tows per length, thickness, and the size of the tows. This resulted in composites with a fiber volume fraction in the loading direction that ranged from 0.12 to 0.20. Matrix cracking was monitored with modal acoustic emission in order to estimate the stress-dependent distribution of matrix cracks. It was found that the general matrix crack properties of this system could be fairly well characterized by assuming that no matrix cracks originated in the load-bearing fiber, interphase, chemical vapor infiltrated Sic tow-minicomposites, i.e., all matrix cracks originate in the 90 degree tow-minicomposites or the large unreinforced Sic-Si matrix regions. Also, it was determined that the larger tow size composites had a much narrower stress range for matrix cracking compared to the standard tow size composites.
Lin, Jing; Yuan, Xiaohai; Li, Gen; Huang, Yang; Wang, Weijia; He, Xin; Yu, Chao; Fang, Yi; Liu, Zhenya; Tang, Chengchun
2017-12-27
As a kind of macroscopic boron nitride (BN) architectures, ultralight BN cellular materials with high porosity and great resilience would have a broad range of applications in energy and environment areas. However, creating such BN cellular materials in large sizes has still been proven challenging. Here, we report on the unique self-assembly of one-dimensional porous BN microfibers into an integral three-dimensional BN foam with open-cell cellular architectures. An ultrasonic-assisted self-assembly, freeze-drying, and high-temperature pyrolysis process has been developed for the preparation of cellular BN foam with a large size and desired shape. The developed BN foam has low density, high porosity (∼99.3%), great resilience, and excellent hydrophobic-lipophilic nature. The foam also exhibits excellent absorption capacities for a wide range of organic solvents and oils (wt % of ∼5130-7820%), as well as a high recovery efficiency (∼94%). Moreover, the unique hierarchical porous structure enables the foam to demonstrate a very low thermal conductivity (∼0.035 W/K/m). The excellent thermal insulation performance, superior mechanical property, and superb chemical and thermal stability enable the developed BN foam as an integrating multifunctional material in a broad range of high-end applications.
NASA Astrophysics Data System (ADS)
Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig
2015-10-01
It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm-3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown.
Tuning the sensing range of silicon pressure sensor by trench etching technology
NASA Astrophysics Data System (ADS)
Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua
2006-01-01
The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.
Space Launch System Upper Stage Technology Assessment
NASA Technical Reports Server (NTRS)
Holladay, Jon; Hampton, Bryan; Monk, Timothy
2014-01-01
The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and discussed in light of the various missions. For each mission there are several trajectory options and each will be discussed in terms of delta-v required and transit duration. Each propulsion system will be modeled, sized, and judged based on their applicability to the whole range of beyond LEO missions. Criteria for scoring will include the resulting dry mass of the stage, resulting propellant required, time to destination, and an assessment of key enabling technologies. In addition to the larger metrics, this paper will present the results of several coupled sensitivity studies. The ultimate goals of these tools and studies are to provide NASA with the most mass-, technology-, and cost-effective in-space stage for its future exploration missions.
Size-based separation methods of circulating tumor cells.
Hao, Si-Jie; Wan, Yuan; Xia, Yi-Qiu; Zou, Xin; Zheng, Si-Yang
2018-02-01
Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. Compared to other "liquid biopsy" portfolios such as exosome, circulating tumor DNA/RNA (ctDNA/RNA), CTCs have incomparable advantages in analyses of transcriptomics, proteomics, and signal colocalization. Hence, CTCs hold the key to understanding the biology of metastasis and play a vital role in cancer diagnosis, treatment monitoring, and prognosis. Size-based enrichment features are prominent in CTC isolation. It is a label-free, simple and fast method. Enriched CTCs remain unmodified and viable for a wide range of subsequent analyses. In this review, we comprehensively summarize the differences of size and deformability between CTCs and blood cells, which would facilitate the development of technologies of size-based CTC isolation. Then we review representative size-/deformability-based technologies available for CTC isolation and highlight the recent achievements in molecular analysis of isolated CTCs. To wrap up, we discuss the substantial challenges facing the field, and elaborate on prospects. Copyright © 2018 Elsevier B.V. All rights reserved.
Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics
Goldbogen, Jeremy A.
2017-01-01
Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr, reaching their extreme in today's baleen whales (Mysticeti). Hypotheses for the evolution of exceptionally large size in mysticetes range from niche partitioning to predator avoidance, but there has been no quantitative examination of body size evolutionary dynamics in this clade and it remains unclear when, why or how gigantism evolved. By fitting phylogenetic macroevolutionary models to a dataset consisting of living and extinct species, we show that mysticetes underwent a clade-wide shift in their mode of body size evolution during the Plio-Pleistocene. This transition, from Brownian motion-like dynamics to a trended random walk towards larger size, is temporally linked to the onset of seasonally intensified upwelling along coastal ecosystems. High prey densities resulting from wind-driven upwelling, rather than abundant resources alone, are the primary determinant of efficient foraging in extant mysticetes and Late Pliocene changes in ocean dynamics may have provided an ecological pathway to gigantism in multiple independent lineages. PMID:28539520
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.
Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less
Campos, Michael P.; Hendricks, Mark P.; Beecher, Alexander N.; ...
2017-01-19
Here, we report a tunable library of N,N,N'-trisubstituted selenourea precursors and their reaction with lead oleate at 60–150 °C to form carboxylate-terminated PbSe nanocrystals in quantitative yields. Single exponential conversion kinetics can be tailored over 4 orders of magnitude by adjusting the selenourea structure. The wide range of conversion reactivity allows the extent of nucleation ([nanocrystal] = 4.6–56.7 μM) and the size following complete precursor conversion (d = 1.7–6.6 nm) to be controlled. Narrow size distributions (σ = 0.5–2%) are obtained whose spectral line widths are dominated (73–83%) by the intrinsic single particle spectral broadening, as observed using spectral holemore » burning measurements. Here, the intrinsic broadening decreases with increasing size (fwhm = 320–65 meV, d = 1.6–4.4 nm) that derives from exciton fine structure and exciton–phonon coupling rather than broadening caused by the size distribution.« less
Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics.
Slater, Graham J; Goldbogen, Jeremy A; Pyenson, Nicholas D
2017-05-31
Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr, reaching their extreme in today's baleen whales (Mysticeti). Hypotheses for the evolution of exceptionally large size in mysticetes range from niche partitioning to predator avoidance, but there has been no quantitative examination of body size evolutionary dynamics in this clade and it remains unclear when, why or how gigantism evolved. By fitting phylogenetic macroevolutionary models to a dataset consisting of living and extinct species, we show that mysticetes underwent a clade-wide shift in their mode of body size evolution during the Plio-Pleistocene. This transition, from Brownian motion-like dynamics to a trended random walk towards larger size, is temporally linked to the onset of seasonally intensified upwelling along coastal ecosystems. High prey densities resulting from wind-driven upwelling, rather than abundant resources alone, are the primary determinant of efficient foraging in extant mysticetes and Late Pliocene changes in ocean dynamics may have provided an ecological pathway to gigantism in multiple independent lineages. © 2017 The Author(s).
Word recognition using a lexicon constrained by first/last character decisions
NASA Astrophysics Data System (ADS)
Zhao, Sheila X.; Srihari, Sargur N.
1995-03-01
In lexicon based recognition of machine-printed word images, the size of the lexicon can be quite extensive. The recognition performance is closely related to the size of the lexicon. Recognition performance drops quickly when lexicon size increases. Here, we present an algorithm to improve the word recognition performance by reducing the size of the given lexicon. The algorithm utilizes the information provided by the first and last characters of a word to reduce the size of the given lexicon. Given a word image and a lexicon that contains the word in the image, the first and last characters are segmented and then recognized by a character classifier. The possible candidates based on the results given by the classifier are selected, which give us the sub-lexicon. Then a word shape analysis algorithm is applied to produce the final ranking of the given lexicon. The algorithm was tested on a set of machine- printed gray-scale word images which includes a wide range of print types and qualities.
NASA Astrophysics Data System (ADS)
Xiong, Ranhua; Vandenbroucke, Roosmarijn E.; Broos, Katleen; Brans, Toon; van Wonterghem, Elien; Libert, Claude; Demeester, Jo; de Smedt, Stefaan C.; Braeckmans, Kevin
2016-09-01
Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids.
NASA Astrophysics Data System (ADS)
Kang, Jongeun; Lee, Hyunseung; Kim, Young-Nam; Yeom, Areum; Jeong, Heejeong; Lim, Yong Taik; Hong, Kwan Soo
2013-09-01
Magnetic nanoparticle (MNP)-based magnetic resonance imaging (MRI) contrast agents (CAs) have been the subject of extensive research over recent decades. The particle size of MNPs varies widely and is known to influence their physicochemical and pharmacokinetic properties. There are two commonly used methods for synthesizing MNPs, organometallic and aqueous solution coprecipitation. The former has the advantage of being able to control the particle size more effectively; however, the resulting particles require a hydrophilic coating in order to be rendered water soluble. The MNPs produced using the latter method are intrinsically water soluble, but they have a relatively wide particle size distribution. Size-controlled water-soluble MNPs have great potential as MRI CAs and in cell sorting and labeling applications. In the present study, we synthesized CoFe2O4 MNPs using an aqueous solution coprecipitation method. The MNPs were subsequently separated into four groups depending on size, by the use of centrifugation at different speeds. The crystal shapes and size distributions of the particles in the four groups were measured and confirmed by transmission electron microscopy and dynamic light scattering. Using X-ray diffraction analysis, the MNPs were found to have an inverse spinel structure. Four MNP groups with well-selected semi-Gaussian-like diameter distributions were obtained, with measured T2 relaxivities ( r 2) at 4.7 T and room temperature in the range of 60 to 300 mM-1s-1, depending on the particle size. This size regulation method has great promise for applications that require homogeneous-sized MNPs made by an aqueous solution coprecipitation method. Any group of the CoFe2O4 MNPs could be used as initial base cores of MRI T2 CAs, with almost unique T2 relaxivity owing to size regulation. The methodology reported here opens up many possibilities for biosensing applications and disease diagnosis.
Bao, Wei; Hu, Frank B.; Rong, Shuang; Rong, Ying; Bowers, Katherine; Schisterman, Enrique F.; Liu, Liegang; Zhang, Cuilin
2013-01-01
This study aimed to evaluate the predictive performance of genetic risk models based on risk loci identified and/or confirmed in genome-wide association studies for type 2 diabetes mellitus. A systematic literature search was conducted in the PubMed/MEDLINE and EMBASE databases through April 13, 2012, and published data relevant to the prediction of type 2 diabetes based on genome-wide association marker–based risk models (GRMs) were included. Of the 1,234 potentially relevant articles, 21 articles representing 23 studies were eligible for inclusion. The median area under the receiver operating characteristic curve (AUC) among eligible studies was 0.60 (range, 0.55–0.68), which did not differ appreciably by study design, sample size, participants’ race/ethnicity, or the number of genetic markers included in the GRMs. In addition, the AUCs for type 2 diabetes did not improve appreciably with the addition of genetic markers into conventional risk factor–based models (median AUC, 0.79 (range, 0.63–0.91) vs. median AUC, 0.78 (range, 0.63–0.90), respectively). A limited number of included studies used reclassification measures and yielded inconsistent results. In conclusion, GRMs showed a low predictive performance for risk of type 2 diabetes, irrespective of study design, participants’ race/ethnicity, and the number of genetic markers included. Moreover, the addition of genome-wide association markers into conventional risk models produced little improvement in predictive performance. PMID:24008910
Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size
Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; ...
2015-05-19
We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less
Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong
We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less
Stickel, L.F.; King, John A.
1968-01-01
The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels. Peromyscus generally used and maintained several or many different home sites and refuges in various parts of their home ranges, and frequently shifted about so that their principal activities centered on different sets of holes at different times. Once established, many Peromyscus remained in the same general area for a long time, perhaps for the duration of their lives. Extent of their travels in different directions and intensity of use of different portions of their home ranges varied within a general area in response to habitat changes, loss of neighbors, or other factors. Various authors have obtained both direct and indirect evidence of territoriality, in some degree, among certain species of Peromyscus. Young mice dispersed from their birth sites to establish home ranges of their own. Adults also sometimes left their home areas; some re-established elsewhere; others returned after exploratory travels. Most populations contained a certain proportion of transients; these may have been wanderers or individuals exploring out from established home ranges or seeking new ones. When areas were depopulated by removal trapping, other Peromyscus invaded. Invasion rates generally followed seasonal trends of reproduction and population density. Peromyscus removed from their home areas and released elsewhere returned home from various distances, but fewer returned from greater distances than from nearby; speed of return increased with successive trials. The consensus from present evidence is that ho-ming is made possible by a combination of random wandering and familiarity with a larger area than the day-to-day range. Records of juvenile wanderings during the dispersal phase and of adult explorations very nearly encompassed the distances over which any substantial amount of successful homing occurred. Methods of measuring sizes of home ranges and the limitations of these measurements were discussed in brief synopsis. It was co
NASA Astrophysics Data System (ADS)
Jerousek, Richard Gregory; Colwell, Josh; Hedman, Matthew M.; French, Richard G.; Marouf, Essam A.; Esposito, Larry; Nicholson, Philip D.
2017-10-01
The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured ring optical depths over a wide range of viewing geometries at effective wavelengths of 0.15 μm and 2.9 μm respectively. Using Voyager S and X band radio occultations and the direct inversion of the forward scattered S band signal, Marouf et al. (1982), (1983), and Zebker et al. (1985) determined the power-law size distribution parameters assuming a minimum particle radius of 1 mm. Many further studies have also constrained aspects of the particle size distribution throughout the main rings. Marouf et al. (2008a) determined the smallest ring particles to have radii of 4-5 mm using Cassini RSS data. Harbison et al. (2013) used VIMS solar occultations and also found minimum particle sizes of 4-5 mm in the C ring with q ~ 3.1, where n(a)da=Ca^(-q)da is the assumed differential power-law size distribution for particles of radius a. Recent studies of excess variance in stellar signal by Colwell et al. (2017, submitted) constrain the cross-section-weighted effective particle radius to 1 m to several meters. Using the wide range of viewing geometries available to VIMS and UVIS stellar occultations we find that normal optical depth does not strongly depend on viewing geometry at 10km resolution (which would be the case if self-gravity wakes were present). Throughout the C ring, we fit power-law derived optical depths to those measured by UVIS, VIMS, and by the Cassini Radio Science Subsystem (RSS) at 0.94 and 3.6 cm wavelengths to constrain the four parameters of the size distribution at 10km radial resolution. We find significant amounts of particle size sorting throughout the region with a positive correlation between maximum particles size (amax) and normal optical depth with a mean value of amax ~ 3 m in the background C ring. This correlation is negative in the C ring plateaus. We find an inverse correlation in minimum particle radius with normal optical depth and a mean value of amin ~ 4 mm in the background C ring with slightly larger smallest particles in the C ring plateaus.
Luo, Dehui; Wan, Xiang; Liu, Jiming; Tong, Tiejun
2018-06-01
The era of big data is coming, and evidence-based medicine is attracting increasing attention to improve decision making in medical practice via integrating evidence from well designed and conducted clinical research. Meta-analysis is a statistical technique widely used in evidence-based medicine for analytically combining the findings from independent clinical trials to provide an overall estimation of a treatment effectiveness. The sample mean and standard deviation are two commonly used statistics in meta-analysis but some trials use the median, the minimum and maximum values, or sometimes the first and third quartiles to report the results. Thus, to pool results in a consistent format, researchers need to transform those information back to the sample mean and standard deviation. In this article, we investigate the optimal estimation of the sample mean for meta-analysis from both theoretical and empirical perspectives. A major drawback in the literature is that the sample size, needless to say its importance, is either ignored or used in a stepwise but somewhat arbitrary manner, e.g. the famous method proposed by Hozo et al. We solve this issue by incorporating the sample size in a smoothly changing weight in the estimators to reach the optimal estimation. Our proposed estimators not only improve the existing ones significantly but also share the same virtue of the simplicity. The real data application indicates that our proposed estimators are capable to serve as "rules of thumb" and will be widely applied in evidence-based medicine.
Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J
2013-09-01
A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Ecological consequences of invasion across the freshwater-marine transition in a warming world.
Crespo, Daniel; Solan, Martin; Leston, Sara; Pardal, Miguel A; Dolbeth, Marina
2018-02-01
The freshwater-marine transition that characterizes an estuarine system can provide multiple entry options for invading species, yet the relative importance of this gradient in determining the functional contribution of invading species has received little attention. The ecological consequences of species invasion are routinely evaluated within a freshwater versus marine context, even though many invasive species can inhabit a wide range of salinities. We investigate the functional consequences of different sizes of Corbicula fluminea -an invasive species able to adapt to a wide range of temperatures and salinity-across the freshwater-marine transition in the presence versus absence of warming. Specifically, we characterize how C. fluminea affect fluid and particle transport, important processes in mediating nutrient cycling (NH 4 -N, NO 3 -N, PO 4 -P). Results showed that sediment particle reworking (bioturbation) tends to be influenced by size and to a lesser extent, temperature and salinity; nutrient concentrations are influenced by different interactions between all variables (salinity, temperature, and size class). Our findings demonstrate the highly context-dependent nature of the ecosystem consequences of invasion and highlight the potential for species to simultaneously occupy multiple components of an ecosystem. Recognizing of this aspect of invasibility is fundamental to management and conservation efforts, particularly as freshwater and marine systems tend to be compartmentalized rather than be treated as a contiguous unit. We conclude that more comprehensive appreciation of the distribution of invasive species across adjacent habitats and different seasons is urgently needed to allow the true extent of biological introductions, and their ecological consequences, to be fully realized.
NASA Astrophysics Data System (ADS)
Fauchais, P.; Montavon, G.; Lima, R. S.; Marple, B. R.
2011-03-01
From the pioneering works of McPherson in 1973 who identified nanometre-sized features in thermal spray conventional alumina coatings (using sprayed particles in the tens of micrometres size range) to the most recent and most advanced work aimed at manufacturing nanostructured coatings from nanometre-sized feedstock particles, the thermal spray community has been involved with nanometre-sized features and feedstock for more than 30 years. Both the development of feedstock (especially through cryo-milling, and processes able to manufacture coatings structured at the sub-micrometre or nanometre sizes, such as micrometre-sized agglomerates made of nanometre-sized particles for feedstock) and the emergence of thermal spray processes such as suspension and liquid precursor thermal spray techniques have been driven by the need to manufacture coatings with enhanced properties. These techniques result in two different types of coatings: on the one hand, those with a so-called bimodal structure having nanometre-sized zones embedded within micrometre ones, for which the spray process is similar to that of conventional coatings and on the other hand, sub-micrometre or nanostructured coatings achieved by suspension or solution spraying. Compared with suspension spraying, solution precursor spraying uses molecularly mixed precursors as liquids, avoiding a separate processing route for the preparation of powders and enabling the synthesis of a wide range of oxide powders and coatings. Such coatings are intended for use in various applications ranging from improved thermal barrier layers and wear-resistant surfaces to thin solid electrolytes for solid oxide fuel cell systems, among other numerous applications. Meanwhile these processes are more complex to operate since they are more sensitive to parameter variations compared with conventional thermal spray processes. Progress in this area has resulted from the unique combination of modelling activities, the evolution of diagnostic tools and strategies, and experimental advances that have enabled the development of a wide range of coating structures exhibiting in numerous cases unique properties. Several examples are detailed. In this paper the following aspects are presented successively (i) the two spray techniques used for manufacturing such coatings: thermal plasma and HVOF, (ii) sensors developed for in-flight diagnostics of micrometre-sized particles and the interaction of a liquid and hot gas flow, (iii) three spray processes: conventional spraying using micrometre-sized agglomerates of nanometre-sized particles, suspension spraying and solution spraying and (iv) the emerging issues resulting from the specific structures of these materials, particularly the characterization of these coatings and (v) the potential industrial applications. Further advances require the scientific and industrial communities to undertake new research and development activities to address, understand and control the complex mechanisms occurring, in particular, thermal flow—liquid drops or stream interactions when considering suspension and liquid precursor thermal spray techniques. Work is still needed to develop new measurement devices to diagnose in-flight droplets or particles below 2 µm average diameter and to validate that the assumptions made for liquid-hot gas interactions. Efforts are also required to further develop some of the characterization protocols suitable to address the specificities of such nanostructured coatings, as some existing 'conventional' protocols usually implemented on thermal spray coatings are not suitable anymore, in particular to address the void network architectures from which numerous coatings properties are derived.
NASA Astrophysics Data System (ADS)
Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han
2016-12-01
In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.
Climate and local abundance in freshwater fishes
Knouft, Jason H.; Anthony, Melissa M.
2016-01-01
Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alarez, Erika; Thornton, Randall J.; Forbes, John C.
2008-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Variable-Speed Power-Turbine Research at Glenn Research Center
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; McVetta, Ashlie B.; Stevens, Mark A.; Howard, Samuel A.; Giel, Paul W.; Ameri, Ali, A.; To, Waiming; Skoch, Gary J.; Thurman, Douglas R.
2012-01-01
The main rotors of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle operate over a wide speed-range, from 100 percent at takeoff to 54 percent at cruise. The variable-speed power turbine (VSPT) offers one approach by which to effect this speed variation. VSPT aerodynamics challenges include high work factors at cruise, wide (40 to 60 ) incidence-angle variations in blade and vane rows over the speed range, and operation at low Reynolds numbers. Rotordynamics challenges include potential responsiveness to shaft modes within the 50 percent VSPT speed-range. A research effort underway at NASA Glenn Research Center, intended to address these key aerodynamic and rotordynamic challenges, is described. Conceptual design and 3-D multistage RANS and URANS analyses, conducted internally and under contract, provide expected VSPT sizing, stage-count, performance and operability information, and maps for system studies. Initial steps toward experimental testing of incidence-tolerant blading in a transonic linear cascade are described, and progress toward development/improvement of a simulation capability for multistage turbines with low Reynolds number transitional flow is summarized. Preliminary rotordynamics analyses indicate that viable concept engines with 50 percent VSPT shaft-speed range. Assessments of potential paths toward VSPT component-level testing are summarized.
NASA Astrophysics Data System (ADS)
Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.
2018-03-01
We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.
De Palo, Giovanna; Yi, Darvin; Endres, Robert G.
2017-01-01
The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores. PMID:28422986
Resonant efficiency improvement design of piezoelectric biosensor for bacteria gravimetric sensing.
Tsai, Jang-Zern; Chen, Ching-Jung; Shie, Dung-Ting; Liu, Jen-Tsai
2014-01-01
The piezoelectric biosensor have been widely used in ultra-small mass detection of biomolecular, based on PZT piezoelectric material can create a variety of compositions geometrically; it could widely develop a high-frequency resonator and measure the change of the slightest mass while improve the limited detection simultaneously. Therefore, the piezoelectric biosensor of this study was fabricated by a spin-coating method and backside etching process for improving the characteristic of piezoelectric biosensor. The result exhibited that the 250 μm × 250 μm working size has the most favorable piezoelectric characteristic. The tunability was approximately 38.56 % and it showed that reducing the substrate thickness could obtain a clear resonance signal in a range of 60 to 380 MHz. In theory calculated for gravimetric sensing, it could achieve 0.1 ng sensing sensitivity. In gravimetric sensing, the sensing range was between 50,000~100,000 CFU/ml. Sensing range was lower in clinical urinary tract infection (100,000 CFU/ml), thus demonstrating its usefulness for preventive medicine. It can understand the piezoelectric sensor of this study has potential application in the future for biomedical gravimetric sensing.
Red-tailed Hawk movements and use of habitat in the Luquillo Mountains of Puerto Rico
Vilella, Francisco; Nimitz, Wyatt F.
2012-01-01
The Red-tailed Hawk (Buteo jamaicensis) is a top predator of upland ecosystems in the Greater Antilles. Little information exists on the ecology of the insular forms of this widely distributed species. We studied movements and resource use of the Red-tailed Hawk from 2000 to 2002 in the montane forests of northeastern Puerto Rico. We captured 32 and used 21 radio-marked Red-tailed Hawks to delineate home range, core area shifts, and macrohabitat use in the Luquillo Mountains. Red-tailed Hawks in the Luquillo Mountains frequently perched near the top of canopy emergent trees and were characterized by wide-ranging capabilities and extensive spatial overlap. Home range size averaged 5,022.6 6 832.1 ha (305–11,288 ha) and core areas averaged 564.8 6 90.7 ha (150–1,230 ha). This species had large mean weekly movements (3,286.2 6 348.5 m) and a preference for roadside habitats. Our findings suggest fragmentation of contiguous forest outside protected areas in Puerto Rico may benefit the Red-tailed Hawk
Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies
Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar
2014-01-01
Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232
Resolving the Origin of Pseudo-Single Domain Magnetic Behavior
NASA Astrophysics Data System (ADS)
Roberts, Andrew P.; Almeida, Trevor P.; Church, Nathan S.; Harrison, Richard J.; Heslop, David; Li, Yiliang; Li, Jinhua; Muxworthy, Adrian R.; Williams, Wyn; Zhao, Xiang
2017-12-01
The term "pseudo-single domain" (PSD) has been used to describe the transitional state in rock magnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states. The particle size range for the stable SD state in the most commonly occurring terrestrial magnetic mineral, magnetite, is so narrow ( 20-75 nm) that it is widely considered that much of the paleomagnetic record of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become the dominant explanation for the magnetization associated with a major fraction of particles that record paleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MD states, the term PSD does not describe the relevant physical processes, which have been documented extensively using three-dimensional micromagnetic modeling and by parallel research in material science and solid-state physics. We also argue that features attributed to PSD behavior can be explained by nucleation of a single magnetic vortex immediately above the maximum stable SD transition size. With increasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which produce variable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the term PSD describes a well-known transitional state, it fails to describe adequately the physics of the relevant processes. We recommend that use of this term should be discontinued in favor of "vortex state," which spans a range of behaviors associated with magnetic vortices.
Size segregation in bedload sediment transport at the particle scale
NASA Astrophysics Data System (ADS)
Frey, P.; Martin, T.
2011-12-01
Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. After a certain time, a quasi-continuous area of smaller beads developed under moving and above quasi-immobile coarser beads (see figure). Results include the time evolution of segregating smaller beads, assessment of percolation velocity and streamwise and vertical velocity depth profiles.
Microwave Plasma Propulsion Systems for Defensive Counter-Space
2007-09-01
microwave/ECR-based propulsion system. No electron cathode or neutralizer is needed. There are no electrodes to erode, sputter or damage. Measurement of...without the need for a cathode neutralizer, a wide range of performance parameters can be achieved by selecting the size and length of the resonance...EC • Earth Coverage Antenna NCA • Narrow coverege Antenna LNA • Low Noise Amplifier Rx • Receive Tx =Transmit IV IV TI.IO CMOI Figure 53
Divergence Measures Tool:An Introduction with Brief Tutorial
2014-03-01
in detecting differences across a wide range of Arabic -language text files (they varied by genre, domain, spelling variation, size, etc.), our...other. 2 These measures have been put to many uses in natural language processing ( NLP ). In the evaluation of machine translation (MT...files uploaded into the tool must be .txt files in ASCII or UTF-8 format. • This tool has been tested on English and Arabic script**, but should
Design and demonstration of an acoustic right-angle bend.
Lu, Wenjia; Jia, Han; Bi, Yafeng; Yang, Yuzhen; Yang, Jun
2017-07-01
In this paper, a broadband acoustic right-angle bend device in air is designed, fabricated and experimentally characterized. Perforated panels with various hole-sizes are used to construct the bend structure. Both the simulated and experimental results verify that the acoustic beam can be rotated effectively through the acoustic bend in a wide frequency range. This model may have potential applications in some areas such as sound absorption and acoustic detection in elbow pipes.
Advanced Computed-Tomography Inspection System
NASA Technical Reports Server (NTRS)
Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa
1993-01-01
Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.
Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores
NASA Astrophysics Data System (ADS)
Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.
2008-08-01
Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.
McNamara, John M; Higginson, Andrew D; Verhulst, Simon
2016-04-01
The tendency for animals at higher latitudes to be larger (Bergmann's rule) is generally explained by recourse to latitudinal effects on ambient temperature and the food supply, but these receive only mixed support and do not explain observations of the inverse to Bergmann's rule. Our aim was to better understand how ecological variables might influence body size and thereby explain this mixed support. World-wide. Previous explanations do not allow for the selective pressure exerted by the trade-off between predation and starvation, which we incorporate in a model of optimal body size and energy storage of a generalized homeotherm. In contrast to existing arguments, we concentrate on survival over winter when the food supply is poor and can be interrupted for short periods. We use our model to assess the logical validity of the heat conservation hypothesis and show that it must allow for the roles of both food availability and predation risk. We find that whether the effect of temperature on body size is positive or negative depends on temperature range, predator density, and the likelihood of long interruptions to foraging. Furthermore, changing day length explains differing effects of altitude and latitude on body size, leading to opposite predictions for nocturnal and diurnal endotherms. Food availability and ambient temperature can have counteracting selective pressures on body mass, and can lead to a non-monotonic relationship between latitude and size, as observed in several studies. Our work provides a theoretical framework for understanding the relationships between the costs and benefits of large body size and eco-geographical patterns among endotherms world-wide.
The superiority of L3-CCDs in the high-flux and wide dynamic range regimes
NASA Astrophysics Data System (ADS)
Butler, Raymond F.; Sheehan, Brendan J.
2008-02-01
Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.
Jeon, Pyoung; Kim, Byung Moon; Kim, Dong Joon; Kim, Dong I K; Park, Keun Young
2014-09-01
This study aimed to evaluate clinical and angiographic outcomes of Y-configuration double-stent-assisted (Y-stent) coiling using two closed-cell stents for wide-necked basilar tip aneurysm (BTA). A total of 25 patients underwent Y-stent coiling using two closed-cell stents as a first-time treatment in 18 (3 ruptured) BTAs, retreatment in 2 BTAs and as a third treatment in 5 wide-necked BTAs. Clinical and angiographic outcomes were evaluated retrospectively. Treatment-related complications were three (12.0 %) thromboembolic infarctions due to two acute in-stent thromboses and one embolism. Twenty-two (88 %) patients had favorable outcomes (modified Rankin scale score [mRS], 0-2) during the follow-up period (mean, 30 months; range, 6-54 months). Two patients died: one from initial subarachnoid hemorrhage and the other from intracerebral hemorrhage due to underlying Moyamoya disease. Post-treatment angiograms showed complete occlusion in nine aneurysms, residual neck in 11 aneurysms and residual sac in five aneurysms. Follow-up angiograms were available at least once between 5 to 34 months (mean, 16 months) in 21 patients. Nineteen patients showed improved or stable states (complete occlusion, n = 17; residual neck, n = 2). Major recurrences occurred in two BTAs (9.5 %). Those two major recurrent aneurysms had been large-sized aneurysms at the initial coiling procedure. Both showed not only coil compaction but also progressive growth to giant-sized aneurysms and intra-aneurysmal thrombus formation at the Y-stent coiling as a third-time treatment. Y-stent coiling using two closed-cell stents is a safe and durable treatment option for wide-necked BTA, but may have limited efficacy for large/giant sized and thrombosed aneurysms.
CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc
2011-12-10
The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely separated binaries. These systems are similar to other trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH{sub 69}, e{sub m} = 0.9) and the most widely separated, weakly bound (2001 QW{sub 322}, a/R{sub H} {approx_equal} 0.22) binary minor planets known, and alsomore » contains the system with lowest-measured mass of any TNB (2000 CF{sub 105}, M{sub sys} {approx_equal} 1.85 Multiplication-Sign 10{sup 17} kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.« less
Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.
Liu, Changran; Camacho, Joaquin; Wang, Hai
2018-01-19
Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Delineation of gravel-bed clusters via factorial kriging
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Wang, Chi-Kuei; Huang, Guo-Hao
2018-05-01
Gravel-bed clusters are the most prevalent microforms that affect local flows and sediment transport. A growing consensus is that the practice of cluster delineation should be based primarily on bed topography rather than grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-scale bedforms, making the contour percentile levels of the long-range DEM a useful tool for cluster identification. Individual clusters are delineated using the segmented grains and identified clusters via a range of contour percentile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest particle in a cluster) increase with the contour percentile level. These results support the interpretation that larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineated with different contour percentile levels exhibit similar planform morphologies. Comparisons with a compilation of existing field data show consistency with the cluster properties documented in a wide variety of settings. This study thus points toward a promising, alternative DEM-based approach to characterizing sediment structures in gravel-bed rivers.
Food web structure shaped by habitat size and climate across a latitudinal gradient.
Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago
2016-10-01
Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Gusman, A. R.; Satake, K.; Goto, T.; Takahashi, T.
2016-12-01
Estimating tsunami amplitude from tsunami sand deposit has been a challenge. The grain size distribution of tsunami sand deposit may have correlation with tsunami inundation process, and further with its source characteristics. In order to test this hypothesis, we need a tsunami sediment transport model that can accurately estimate grain size distribution of tsunami deposit. Here, we built and validate a tsunami sediment transport model that can simulate grain size distribution. Our numerical model has three layers which are suspended load layer, active bed layer, and parent bed layer. The two bed layers contain information about the grain size distribution. This numerical model can handle a wide range of grain sizes from 0.063 (4 ϕ) to 5.657 mm (-2.5 ϕ). We apply the numerical model to simulate the sedimentation process during the 2011 Tohoku earthquake in Numanohama, Iwate prefecture, Japan. The grain size distributions at 15 sample points along a 900 m transect from the beach are used to validate the tsunami sediment transport model. The tsunami deposits are dominated by coarse sand with diameter of 0.5 - 1 mm and their thickness are up to 25 cm. Our tsunami model can well reproduce the observed tsunami run-ups that are ranged from 16 to 34 m along the steep valley in Numanohama. The shapes of the simulated grain size distributions at many sample points located within 300 m from the shoreline are similar to the observations. The differences between observed and simulated peak of grain size distributions are less than 1 ϕ. Our result also shows that the simulated sand thickness distribution along the transect is consistent with the observation.
Ellison, A M
2001-03-01
Seed size and germination requirements of eight (of nine) Sarracenia species, and 13 populations of S. purpurea were studied. All species except for S. purpurea are restricted to the southeastern United States, whereas S. purpurea ranges across Canada, southward along the eastern United States into Maryland and Virginia (S. purpurea ssp. purpurea), and from New Jersey southward into northern Florida and the coast of the Gulf of Mexico (S. purpurea ssp. venosa). I tested the hypotheses that dormancy-breaking requirements vary predictably among species across a latitudinal gradient. I also sought to determine whether seed size and germination requirements were useful characters for resolving systematic and phylogenetic questions within this genus. Seed size varied significantly among species, but variability in seed size within S. purpurea exceeded the variability in seed size observed across all eight species studied. Seeds of all species are morphophysiologically dormant upon dispersal. Length of required cool, moist pretreatment varied among species, and germination in higher latitude populations is enhanced with longer pretreatment. In contrast, variability in germination requirements of subspecies, varieties, and populations of the geographically wide-ranging S. purpurea was not related clearly to geographic location (latitude or elevation). Germination requirements do not map onto a proposed phylogeny of Sarracenia, but observed differences in germination requirements of S. purpurea ssp. venosa var. burkii relative to other populations of S. purpurea support the recent proposal to elevate this variety to species status.
Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics
Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur
2016-01-01
Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956
Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size
NASA Technical Reports Server (NTRS)
Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.
2008-01-01
Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.
2012-01-01
Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.
Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, Charith, E-mail: charith.jayasekara@monash.edu; Premaratne, Malin; Stockman, Mark I.
2015-11-07
We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing ofmore » ultracompact and ultrafast devices, nanoscopy and biomedical applications.« less
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel
2017-07-26
Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.
How To Identify Plasmons from the Optical Response of Nanostructures
2017-01-01
A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light–matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics. PMID:28651057
Are men better than women at acoustic size judgements?
Charlton, Benjamin D; Taylor, Anna M; Reby, David
2013-08-23
Formants are important phonetic elements of human speech that are also used by humans and non-human mammals to assess the body size of potential mates and rivals. As a consequence, it has been suggested that formant perception, which is crucial for speech perception, may have evolved through sexual selection. Somewhat surprisingly, though, no previous studies have examined whether sexes differ in their ability to use formants for size evaluation. Here, we investigated whether men and women differ in their ability to use the formant frequency spacing of synthetic vocal stimuli to make auditory size judgements over a wide range of fundamental frequencies (the main determinant of vocal pitch). Our results reveal that men are significantly better than women at comparing the apparent size of stimuli, and that lower pitch improves the ability of both men and women to perform these acoustic size judgements. These findings constitute the first demonstration of a sex difference in formant perception, and lend support to the idea that acoustic size normalization, a crucial prerequisite for speech perception, may have been sexually selected through male competition. We also provide the first evidence that vocalizations with relatively low pitch improve the perception of size-related formant information.
Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia
2017-05-01
In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Size effects on negative thermal expansion in cubic ScF{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Guo, X. G.; Zhang, K.
2016-07-11
Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead,more » the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.« less
Kusaba, Kiseki; Otaki, Joji M
2009-02-01
Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue "background" is organized by a long-range signal from an unidentified organizing center in J. orithya.
Becker, Jacob; Hald, Peter; Bremholm, Martin; Pedersen, Jan S; Chevallier, Jacques; Iversen, Steen B; Iversen, Bo B
2008-05-01
Nanocrystalline ZrO(2) samples with narrow size distributions and mean particle sizes below 10 nm have been synthesized in a continuous flow reactor in near and supercritical water as well as supercritical isopropyl alcohol using a wide range of temperatures, pressures, concentrations and precursors. The samples were comprehensively characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), and the influence of the synthesis parameters on the particle size, particle size distribution, shape, aggregation and crystallinity was studied. On the basis of the choice of synthesis parameters either monoclinic or tetragonal zirconia phases can be obtained. The results suggest a critical particle size of 5-6 nm for nanocrystalline monoclinic ZrO(2) under the present conditions, which is smaller than estimates reported in the literature. Thus, very small monoclinic ZrO(2) particles can be obtained using a continuous flow reactor. This is an important result with respect to improvement of the catalytic properties of nanocrystalline ZrO(2).
Mitchell, Clinton J; Shulruf, Boaz; Poole, Phillippa J
2010-09-01
New Zealand is facing a general practice workforce crisis, especially in rural communities. Medical school entrants from low decile schools or rural locations may be more likely to choose rural general practice as their career path. To determine whether a relationship exists between secondary school decile rating, the size of the town of origin of medical students and their subsequent medical career intentions. University of Auckland medical students from 2006 to 2008 completed an entry questionnaire on a range of variables thought important in workforce determination. Analyses were performed on data from the 346 students who had attended a high school in New Zealand. There was a close relationship between size of town of origin and decile of secondary school. Most students expressed interests in a wide range of careers, with students from outside major cities making slightly fewer choices on average. There is no strong signal from these data that career specialty choices will be determined by decile of secondary school or size of town of origin. An increase in the proportion of rural students in medical programmes may increase the number of students from lower decile schools, without adding another affirmative action pathway.
Conklin, Jesse R.; Battley, Phil F.; Potter, Murray A.; Ruthrauff, Daniel R.
2011-01-01
Among scolopacid shorebirds, Bar-tailed Godwits (Limosa lapponica) have unusually high intra- and intersexual differences in size and breeding plumage. Despite historical evidence for population structure among Alaska-breeding Bar-tailed Godwits (L. l. baueri), no thorough analysis, or comparison with the population's nonbreeding distribution, has been undertaken. We used live captures, field photography, museum specimens, and individuals tracked from New Zealand to describe geographic variation in size and plumage within the Alaska breeding range. We found a north-south cline in body size in Alaska, in which the smallest individuals of each sex occurred at the highest latitudes. Extent of male breeding plumage (proportion of nonbreeding contour feathers replaced) also increased with latitude, but female breeding plumage was most extensive at mid-latitudes. This population structure was not maintained in the nonbreeding season: morphometrics of captured birds and timing of migratory departures indicated that individuals from a wide range of breeding latitudes occur in each region and site in New Zealand. Links among morphology, phenology, and breeding location suggest the possibility of distinct Alaska breeding populations that mix freely in the nonbreeding season, and also imply that the strongest selection for size occurs in the breeding season.
Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment
NASA Astrophysics Data System (ADS)
Aivazoglou, E.; Metaxa, E.; Hristoforou, E.
2018-04-01
The development of magnetite and maghemite particles in uniform nanometer size has triggered the interest of the research community due to their many interesting properties leading to a wide range of applications, such as catalysis, nanomedicine-nanobiology and other engineering applications. In this study, a simple, time-saving and low energy-consuming, microwave-assisted synthesis of iron oxide nanoparticles, is presented. The nanoparticles were prepared by microwave-assisted synthesis using polyethylene glycol (PEG) or PEG and β-cyclodextrin (β-CD)/water solutions of chloride salts of iron in the presence of ammonia solution. The prepared nano-powders were characterized using X-Ray Diffraction (XRD), Transition Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Vibrating Sample Magnetometer (VSM), X-Ray Photoelectron Spectroscopy (XPS) and Thermal analysis (TG/DSC). The produced nanoparticles are crystallized mostly in the magnetite and maghemite lattice exhibiting very similar shape and size, with indications of partial PEG coating. Heating time, microwave power and presence of PEG, are the key factors shaping the size properties of nanoparticles. The average size of particles ranges from 10.3 to 19.2 nm. The nanoparticles exhibit a faceted morphology, with zero contamination levels. The magnetic measurements indicate that the powders are soft magnetic materials with negligible coercivity and remanence, illustrating super-paramagnetic behavior.
Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro
2003-09-01
We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by simple two-wave interference models.
Imanishi, K.; Takeo, M.; Ellsworth, W.L.; Ito, H.; Matsuzawa, T.; Kuwahara, Y.; Iio, Y.; Horiuchi, S.; Ohmi, S.
2004-01-01
We use an inversion method based on stopping phases (Imanishi and Takeo, 2002) to estimate the source dimension, ellipticity, and rupture velocity of microearthquakes and investigate the scaling relationships between source parameters. We studied 25 earthquakes, ranging in size from M 1.3 to M 2.7, that occurred between May and August 1999 at the western Nagano prefecture, Japan, which is characterized by a high rate of shallow earthquakes. The data consist of seismograms recorded in an 800-m borehole and at 46 surface and 2 shallow borehole seismic stations whose spacing is a few kilometers. These data were recorded with a sampling frequency of 10 kHz. In particular, the 800-m-borehole data provide a wide frequency bandwidth with greatly reduced ground noise and coda wave amplitudes compared with surface recordings. High-frequency stopping phases appear in the body waves in Hilbert transform pairs and are readily detected on seismograms recorded in the 800-m borehole. After correcting both borehole and surface data for attenuation, we also measure the rise time, which is defined as the interval from the arrival time of the direct wave to the timing of the maximum amplitude in the displacement pulse. The differential time of the stopping phases and the rise times were used to obtain source parameters. We found that several microearthquakes propagated unilaterally, suggesting that all microearthquakes cannot be modeled as a simple circular crack model. Static stress drops range from approximately 0.1 to 2 MPa and do not vary with seismic moment. It seems that the breakdown in stress drop scaling seen in previous studies using surface data is simply an artifact of attenuation in the crust. The average value of rupture velocity does not depend on earthquake size and is similar to those reported for moderate and large earthquakes. It is likely that earthquakes are self-similar over a wide range of earthquake size and that the dynamics of small and large earthquakes are similar.
Small-size biofuel cell on paper.
Zhang, Lingling; Zhou, Ming; Wen, Dan; Bai, Lu; Lou, Baohua; Dong, Shaojun
2012-05-15
In this work, we demonstrated a novel paper-based mediator-less and compartment-less biofuel cell (BFC) with small size (1.5 cm × 1.5 cm). Ionic liquid functionalized carbon nanotubes (CNTs-IL) nanocomposite was used as support for both stably confining the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose electrooxidation and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., bilirubin oxidase, BOD) for O(2) electroreduction. Such BFC provided a simple approach to fabricate low-cost and portable power devices on small-size paper, which can harvest energy from a wide range of commercial beverages containing glucose (e.g., Nescafe instant coffee, Maidong vitamin water, Watermelon fresh juice, and Minute Maid grape juice). These made the low-cost paper-based biodevice potential for broad energy applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Enzyme-mediated self-assembly of highly ordered structures from disordered proteins
NASA Astrophysics Data System (ADS)
Athamneh, Ahmad I.; Barone, Justin R.
2009-10-01
Wheat gluten is an amorphous storage protein. Trypsin hydrolysis of wheat gluten produced glutamine-rich peptides. Some peptides were able to self-assemble into fibrous structures extrinsic to native wheat gluten. The final material was an in situ formed peptide composite of highly ordered nanometer-sized fibrils and micron-sized fibers embedded in an unassembled peptide matrix. Fourier transform infrared spectroscopic and x-ray diffraction data suggested that the new structures resembled that of cross- β fibrils found in some insect silk and implicated in prion diseases. The largest self-assembled fibers were about 10 µm in diameter with right-handed helicity and appeared to be bundles of smaller nanometer-sized fibrils. Results demonstrated the potential for utilizing natural mechanisms of protein self-assembly to design advanced materials that can provide a wide range of structural and chemical functionality.
Growth Control and Disease Mechanisms in Computational Embryogeny
NASA Technical Reports Server (NTRS)
Shapiro, Andrew A.; Yogev, Or; Antonsson, Erik K.
2008-01-01
This paper presents novel approach to applying growth control and diseases mechanisms in computational embryogeny. Our method, which mimics fundamental processes from biology, enables individuals to reach maturity in a controlled process through a stochastic environment. Three different mechanisms were implemented; disease mechanisms, gene suppression, and thermodynamic balancing. This approach was integrated as part of a structural evolutionary model. The model evolved continuum 3-D structures which support an external load. By using these mechanisms we were able to evolve individuals that reached a fixed size limit through the growth process. The growth process was an integral part of the complete development process. The size of the individuals was determined purely by the evolutionary process where different individuals matured to different sizes. Individuals which evolved with these characteristics have been found to be very robust for supporting a wide range of external loads.
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
Morphological characteristics of mechanochemically synthesized Fe/Ti composites
NASA Astrophysics Data System (ADS)
Grigor'eva, T. F.; Kovaleva, S. A.; Kiseleva, T. Yu.; Vosmerikov, S. V.; Devyatkina, E. T.; Pastukhov, E. A.; Lyakhov, N. Z.
2016-08-01
The joint mechanical activation of chemically interacting iron and titanium has been studied by X-ray diffraction and atomic force microscopy. It is shown that chemically interacting metals Fe and Ti do not form any intermetallic compounds or solid solutions upon intense mechanical activation in a high-energy planetary mill. The products of mechanical activation are Fe/Ti mechanocomposites, in which titanium is distributed over the iron grain surface. An increase in the mechanical activation time leads to the agglomeration of powders and the formation of particles with a wide size range (5-25 μm). The iron crystallite sizes and the level of microstresses are reduced, indicating a decrease in the particle strength.
An overview on the characterization and mechanical behavior of nanoporous Gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, A M; Hayes, J R; Caro, J A
2005-09-13
In this paper we present what we believe are the most pressing issues in understanding the mechanical behavior of nanoporous foams. We have postulated that a gold foam presents the best candidate for a systematic study of nanoporous foams since it can be synthesized with a wide range of ligaments sizes and densities. We have also conducted preliminary tests that demonstrate (a) Au foams have a fracture behavior dictated by the ligament size, and (b) nanoporous Au is a high yield strength material. Thus, we have demonstrated the potential in developing nanoporous foams as a new class of high yieldmore » strength/low density materials.« less
Limited Resources Induce Bistability in Microtubule Length Regulation
NASA Astrophysics Data System (ADS)
Rank, Matthias; Mitra, Aniruddha; Reese, Louis; Diez, Stefan; Frey, Erwin
2018-04-01
The availability of protein is an important factor for the determination of the size of the mitotic spindle. Involved in spindle-size regulation is kinesin-8, a molecular motor and microtubule (MT) depolymerase, which is known to tightly control MT length. Here, we propose and analyze a theoretical model in which kinesin-induced MT depolymerization competes with spontaneous polymerization while supplies of both tubulin and kinesin are limited. In contrast to previous studies where resources were unconstrained, we find that, for a wide range of concentrations, MT length regulation is bistable. We test our predictions by conducting in vitro experiments and find that the bistable behavior manifests in a bimodal MT length distribution.
Selective carnivory by Euphausia lucens
NASA Astrophysics Data System (ADS)
Gibbons, M. J.; Pillar, S. C.; Stuart, V.
1991-07-01
Stomach contents of adult Euphausia lucens were analysed to determine what criteria this euphausiid uses to select copepod prey. The results indicate that although E. lucens of all sizes ingest a wide range of prey sizes at apparently ambient proportions, small copepods (e.g. Oithona) are consistently consumed in greater than ambient amounts. Small copepods (especially Oithona) are known to move slowly, and have been shown to be more susceptible to predation via negative pressure than larger copepods. In the presence of an abundant phytoplankton food supply and in an otherwise generally non-selective diet, we conclude that such copepod selection by E. lucens is passive. This is in line with the idea of a non-hunting, preferentially herbivorous zooplankter.
Predator-prey size relationships in an African large-mammal food web.
Owen-Smith, Norman; Mills, M G L
2008-01-01
1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.
Holographic studies of the vapor explosion of vaporizing water-in-fuel emulsion droplets
NASA Technical Reports Server (NTRS)
Sheffield, S. A.; Hess, C. F.; Trolinger, J. D.
1982-01-01
Holographic studies were performed which examined the fragmentation process during vapor explosion of a water-in-fuel (hexadecane/water) emulsion droplet. Holograms were taken at 700 to 1000 microseconds after the vapor explosion. Photographs of the reconstructed holograms reveal a wide range of fragment droplet sizes created during the explosion process. Fragment droplet diameters range from below 10 microns to over 100 microns. It is estimated that between ten thousand and a million fragment droplets can result from this extremely violent vapor explosion process. This enhanced atomization is thus expected to have a pronounced effect on vaporization processes which are present during combustion of emulsified fuels.
NASA Technical Reports Server (NTRS)
Pazmany, Andrew L.
2014-01-01
In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.
The growth of radiative filamentation modes in sheared magnetic fields
NASA Technical Reports Server (NTRS)
Vanhoven, Gerard
1986-01-01
Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.
Propulsion of the Water Flea, Daphnia magna: Experiments, Scaling, and Modelling
NASA Astrophysics Data System (ADS)
Skipper, A. N.; Murphy, D.; Webster, D. R.; Yen, J.
2016-02-01
The freshwater crustacean Daphnia magna is a widely studied zooplankton in relation to food webs, predator-prey interactions, and other biological/ecological considerations; however, their locomotion is poorly quantified and understood. These water fleas utilize a hop-and-sink mechanism that consists of making quick, impulsive jumps by beating their antennae to propel themselves forward ( 1 body length). The animals then sink for a period, during which they stretch out their antennae to increase drag and thereby reduce their sinking velocity. Time-resolved three-dimensional flow fields surrounding the animals were quantified with a unique infrared tomographic particle image velocity (tomo-PIV) system. Three-dimensional kinematics data were also extracted from the image sequences. In the current work, we compared body kinematics and flow disturbance among organisms of size in the range of 1.3 to 2.8 mm. The stroke cycle averaged 150 ms in duration, ranging from 100 to 180 ms; this period is generally evenly split between the power and recovery strokes. The range of peak hop velocity was 27.2 to 32.5 mm/s, and peak acceleration was in the range of 0.68 to 1.8 m/s2. The results showed a distinct relationship between peak hop speed (Vmax 14 BL/s) and body size; these data collapsed onto a single time-record curve during the power stroke when properly non-dimensionalized. The fluid flow induced by each antennae consisted of a viscous vortex ring that demonstrated a slow decay in the wake. The strength, size, and decay of the induced viscous vortex rings were compared as a function of organism size. Finally, the viscous vortex rings were analyzed in the context of a double Stokeslet model that consisted of two impulsively applied point forces separated by the animal width.
Correlation analysis of fracture arrangement in space
NASA Astrophysics Data System (ADS)
Marrett, Randall; Gale, Julia F. W.; Gómez, Leonel A.; Laubach, Stephen E.
2018-03-01
We present new techniques that overcome limitations of standard approaches to documenting spatial arrangement. The new techniques directly quantify spatial arrangement by normalizing to expected values for randomly arranged fractures. The techniques differ in terms of computational intensity, robustness of results, ability to detect anti-correlation, and use of fracture size data. Variation of spatial arrangement across a broad range of length scales facilitates distinguishing clustered and periodic arrangements-opposite forms of organization-from random arrangements. Moreover, self-organized arrangements can be distinguished from arrangements due to extrinsic organization. Traditional techniques for analysis of fracture spacing are hamstrung because they account neither for the sequence of fracture spacings nor for possible coordination between fracture size and position, attributes accounted for by our methods. All of the new techniques reveal fractal clustering in a test case of veins, or cement-filled opening-mode fractures, in Pennsylvanian Marble Falls Limestone. The observed arrangement is readily distinguishable from random and periodic arrangements. Comparison of results that account for fracture size with results that ignore fracture size demonstrates that spatial arrangement is dominated by the sequence of fracture spacings, rather than coordination of fracture size with position. Fracture size and position are not completely independent in this example, however, because large fractures are more clustered than small fractures. Both spatial and size organization of veins here probably emerged from fracture interaction during growth. The new approaches described here, along with freely available software to implement the techniques, can be applied with effect to a wide range of structures, or indeed many other phenomena such as drilling response, where spatial heterogeneity is an issue.
Hunter, Susan B.; Vauterin, Paul; Lambert-Fair, Mary Ann; Van Duyne, M. Susan; Kubota, Kristy; Graves, Lewis; Wrigley, Donna; Barrett, Timothy; Ribot, Efrain
2005-01-01
The PulseNet National Database, established by the Centers for Disease Control and Prevention in 1996, consists of pulsed-field gel electrophoresis (PFGE) patterns obtained from isolates of food-borne pathogens (currently Escherichia coli O157:H7, Salmonella, Shigella, and Listeria) and textual information about the isolates. Electronic images and accompanying text are submitted from over 60 U.S. public health and food regulatory agency laboratories. The PFGE patterns are generated according to highly standardized PFGE protocols. Normalization and accurate comparison of gel images require the use of a well-characterized size standard in at least three lanes of each gel. Originally, a well-characterized strain of each organism was chosen as the reference standard for that particular database. The increasing number of databases, difficulty in identifying an organism-specific standard for each database, the increased range of band sizes generated by the use of additional restriction endonucleases, and the maintenance of many different organism-specific strains encouraged us to search for a more versatile and universal DNA size marker. A Salmonella serotype Braenderup strain (H9812) was chosen as the universal size standard. This strain was subjected to rigorous testing in our laboratories to ensure that it met the desired criteria, including coverage of a wide range of DNA fragment sizes, even distribution of bands, and stability of the PFGE pattern. The strategy used to convert and compare data generated by the new and old reference standards is described. PMID:15750058
NASA Astrophysics Data System (ADS)
Rinderknecht, Derek
Microfluidics offers an effective means to carry out a wide range of transport processes within a controlled microenvironment by drawing on the benefits imparted by increasing surface area to volume ratio at the microscale. Critical to the impact of microfluidics on integrated devices in the fields of bioengineering and biomedicine is the ability to transport fluids and biomolecules effectively particularly at the size scales involved. In this context a bio-inspired pumping mechanism, the valveless impedance pump, was explored for applications in microfluidics ranging from micro total analysis systems to microchannel cooling. Adhering to the basic principles of the impedance pump mechanism, pumps have been constructed at a variety of size scales from a few centimeters to a few hundred microns. The micro impedance pump is valveless, bidirectional, and can be constructed simply from a wide range of materials. Depending on the size of the pump flow rates range from nL/min to mL/min and pressures can be generated that exceed 20 kPa. Another benefit of the impedance pump is the pulsatile flow output which can be used in the context of microfluidic applications to enhance transport at low Reynolds numbers as well as metering in drug delivery. Pulsatile flow was therefore investigated as a method of augmenting transport in microfluidic systems. Micro PIV was used to study the affect of both steady and pulsatile flows on transport at low Reynolds number was examined in microscale rectangular cavities. Ventilation of the cavity contents was examined in terms of the residence time or average time a particle remains in the cavity region. Lagrangian coherent structures (LCS) were applied to empirical velocity fields to determine the impact of unsteadiness on time dependent boundaries to fluid transport present in the flow. Experimental results show that there are both frequencies which are beneficial and detrimental to cavity ventilation as well as certain frequencies which more evenly distribute particles originating in the cavity throughout the freestream.
Selberherr, Andreas; Hörmann, Marcus; Prager, Gerhard; Riss, Philipp; Scheuba, Christian; Niederle, Bruno
2017-03-01
The purpose of this study was to demonstrate the high number of kidney stones in primary hyperparathyroidism (PHPT) and the low number of in fact "asymptomatic" patients. Forty patients with PHPT (28 female, 12 male; median age 58 (range 33-80) years; interquartile range 17 years [51-68]) without known symptoms of kidney stones prospectively underwent multidetector computed tomography (MDCT) and ultrasound (US) examinations of the urinary tract prior to parathyroid surgery. Images were evaluated for the presence and absence of stones, as well as for the number of stones and sizes in the long axis. The MDCT and US examinations were interpreted by two experienced radiologists who were blinded to all clinical and biochemical data. Statistical analysis was performed using the Wilcoxon signed-rank test. US revealed a total of 4 kidney stones in 4 (10 %) of 40 patients (median size 6.5 mm, interquartile range 11.5 mm). MDCT showed a total of 41 stones (median size was 3 mm, interquartile range 2.25 mm) in 15 (38 %) of 40 patients. The number of kidney stones detected with MDCT was significantly higher compared to US (p = 0.00124). MDCT is a highly sensitive method for the detection of "silent" kidney stones in patients with PHPT. By widely applying this method, the number of asymptomatic courses of PHPT may be substantially reduced. MDCT should be used primarily to detect kidney stones in PHPT and to exclude asymptomatic PHPT.
Ortega-Mayagoitia, Elizabeth; Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge
2018-01-01
According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the response is more intense compared to temperate populations.
The Influence of pH on Prokaryotic Cell Size and Temperature
NASA Astrophysics Data System (ADS)
Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.
2015-12-01
The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.
Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge
2018-01-01
According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the response is more intense compared to temperate populations. PMID:29708999
NASA Astrophysics Data System (ADS)
Teh, Shia-Yen
This body of work presents my approaches to the design and development of microfluidic platforms for synthesizing monodisperse polymer particles and phospholipid vesicles. There is interest in both of these particles for use in a variety of biomedical applications. Poly(D,L-lactide-co-glycolic acid) (PLGA) particles in particular have been sought out as vehicles for drug delivery due to their biocompatibility and because the rate of degradation -- hence cargo release - can be controlled. On the other hand, liposomes possess membrane structures resembling that of cells, an ability to adopt both hydrophilic and hydrophobic molecules, and are easily functionalized, which make lipid vesicles the ideal candidate for applications ranging from targeted therapeutic delivery to formation of artificial cells. However, current methods of production for both of these particles result in a wide range of sizes and poor cargo uptake efficiency. We address these challenges by utilizing a flow focusing droplet generation design, which allows for fine control over droplet size and improves encapsulation efficiencies. The size of these droplets can be determined by channel geometry and the ratio of fluid flow rates. I will discuss the work I have done to improve upon current technologies to form nano- to micrometer sized PLGA particles and cell-sized lipid vesicles. Solvent evaporation and solvent extraction methods were implemented and tested in several device designs to optimize the formation process. The particles produced were characterized for their stability, size variation, and ability to encapsulate a model drug. The release profiles of PLGA particles were also measured to determine the length of delivery. In addition, I worked on the generation of monodisperse lipid vesicles to investigate the application of liposomes as an artificial cell. As a proof of principle, expression of green fluorescent protein (GFP) was successfully carried out in the lipid vesicles. This demonstrates the versatility of the microfluidic device for generating a range of particles of controlled size for therapeutic agent delivery and artificial cell applications.
The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography
NASA Astrophysics Data System (ADS)
Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias
2017-01-01
New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.
NASA Astrophysics Data System (ADS)
Yoon, Ilsang; Weinberg, Martin D.; Katz, Neal
2011-06-01
We introduce a new galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes), which is a front-end application of the Bayesian Inference Engine (BIE), a parallel Markov chain Monte Carlo package, to provide full posterior probability distributions and reliable confidence intervals for all model parameters. The BIE relies on GALPHAT to compute the likelihood function. GALPHAT generates scale-free cumulative image tables for the desired model family with precise error control. Interpolation of this table yields accurate pixellated images with any centre, scale and inclination angle. GALPHAT then rotates the image by position angle using a Fourier shift theorem, yielding high-speed, accurate likelihood computation. We benchmark this approach using an ensemble of simulated Sérsic model galaxies over a wide range of observational conditions: the signal-to-noise ratio S/N, the ratio of galaxy size to the point spread function (PSF) and the image size, and errors in the assumed PSF; and a range of structural parameters: the half-light radius re and the Sérsic index n. We characterize the strength of parameter covariance in the Sérsic model, which increases with S/N and n, and the results strongly motivate the need for the full posterior probability distribution in galaxy morphology analyses and later inferences. The test results for simulated galaxies successfully demonstrate that, with a careful choice of Markov chain Monte Carlo algorithms and fast model image generation, GALPHAT is a powerful analysis tool for reliably inferring morphological parameters from a large ensemble of galaxies over a wide range of different observational conditions.
Nie, Bingbing; Forman, Jason L; Joodaki, Hamed; Wu, Taotao; Kent, Richard W
2016-09-01
Occupants with extreme body size and shape, such as the small female or the obese, were reported to sustain high risk of injury in motor vehicle crashes (MVCs). Dimensional scaling approaches are widely used in injury biomechanics research based on the assumption of geometrical similarity. However, its application scope has not been quantified ever since. The objective of this study is to demonstrate the valid range of scaling approaches in predicting the impact response of the occupants with focus on the vulnerable populations. The present analysis was based on a data set consisting of 60 previously reported frontal crash tests in the same sled buck representing a typical mid-size passenger car. The tests included two categories of human surrogates: 9 postmortem human surrogates (PMHS) of different anthropometries (stature range: 147-189 cm; weight range: 27-151 kg) and 5 anthropomorphic test devices (ATDs). The impact response was considered including the restraint loads and the kinematics of multiple body segments. For each category of the human surrogates, a mid-size occupant was selected as a baseline and the impact response was scaled specifically to another subject based on either the body mass (body shape) or stature (the overall body size). To identify the valid range of the scaling approach, the scaled response was compared to the experimental results using assessment scores on the peak value, peak timing (the time when the peak value occurred), and the overall curve shape ranging from 0 (extremely poor) to 1 (perfect match). Scores of 0.7 to 0.8 and 0.8 to 1.0 indicate fair and acceptable prediction. For both ATDs and PMHS, the scaling factor derived from body mass proved an overall good predictor of the peak timing for the shoulder belt (0.868, 0.829) and the lap belt (0.858, 0.774) and for the peak value of the lap belt force (0.796, 0.869). Scaled kinematics based on body stature provided fair or acceptable prediction on the overall head/shoulder kinematics (0.741, 0.822 for the head; 0.817, 0.728 for the shoulder) regardless of the anthropometry. The scaling approach exhibited poor prediction capability on the curve shape for the restraint force (0.494 and 0.546 for the shoulder belt; 0.585 and 0.530 for the lap belt). It also cannot well predict the excursion of the pelvis and the knee. The results revealed that for the peak lap belt force and the forward motion of the head and shoulder, the underlying linear relationship with body size and shape is valid over a wide anthropometric range. The chaotic nature of the dynamic response cannot be fully recovered by the assumption of the whole-body geometrical similarity, especially for the curve shape. The valid range of the scaling approach established in this study can be reasonably referenced in predicting the impact response of a given specific population with expected deviation. Application of this knowledge also includes proposing strategies for restraint configuration and providing reference for ATD and/or human body model (HBM) development for vulnerable occupants.
Morelli, Federico; Benedetti, Yanina; Møller, Anders Pape; Liang, Wei; Carrascal, Luis M
2018-05-01
The evolutionary distinctiveness (ED) score is a measure of phylogenetic isolation that quantifies the evolutionary uniqueness of a species. Here, we compared the ED score of parasitic and non-parasitic cuckoo species world-wide, to understand whether parental care or parasitism represents the largest amount of phylogenetic uniqueness. Next, we focused only on 46 cuckoo species characterized by brood parasitism with a known number of host species, and we explored the associations among ED score, number of host species and breeding range size for these species. We assessed these associations using phylogenetic generalized least squares (PGLS) models, taking into account the phylogenetic signal. Parasitic cuckoo species were not more unique in terms of ED than non-parasitic species. However, we found a significant negative association between the evolutionary uniqueness and host range and a positive correlation between the number of host species and range size of parasitic cuckoos, probably suggesting a passive sampling of hosts by parasitic species as the breeding range broadens. The findings of this study showed that more generalist brood parasites occupied very different positions in a phylogenetic tree, suggesting that they have evolved independently within the Cuculiformes order. Finally, we demonstrated that specialist cuckoo species also represent the most evolutionarily unique species in the order of Cuculiformes. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers
NASA Astrophysics Data System (ADS)
Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.
2008-05-01
The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.
NASA Astrophysics Data System (ADS)
Kontny, A.
Low-field magnetic susceptibility measurements in the temperature range U192 to 700 C (k(T)) are a widely applied method used for the identification of magnetic phases and characteristic magnetic phase transitions. One of the advantages of this method is the precise determination of titanomagnetite composition independently from grain size. However, the interpretations of k(T)-curves often are discussed controversially because other effects like grain size or the occurrence of more than one magnetic phase complicate the courses. Case studies from the titanomagnetite and titanohe- matite solid solution series including pure magnetite and hematite will be presented and variations in chemical composition, alteration and grain size will be discussed in relation to their geological significance. (1) In subaerially extruded basaltic lava differences in the low-temperature legs of the k(T) curves indicate variations in the degree of high-temperature (deuteric) oxidation of titanomagnetite. This alteration to magnetite-rich titanomagnetite is accompanied by a grain size reduction, which can be correlated with the development of a susceptibility peak at about U160 C. Fur- ther oxidation transforms the titanomagnetite into titanohematite which again results in a characteristic k(T) behavior at low temperatures with a decrease in k with in- creasing temperature (2) Hydrothermal alteration from magnetite to hematite creates a hematite phase that cannot be seen in k(T)-curves. However, hematite that is grown in sediments, can be identified by its Tc. Therefore it is assumed that crystallinity of magnetic phases seems to play a significant role to explain a different behaviour. (3) Submarine basalts rapidly quenched from high temperatures often show wide anti- clines in the k(T)-curves which can be correlated with a range of chemical composition and grain sizes, including small amounts of pure magnetite. This feature is commonly attributed to low-temperature alteration of single domain grains of titanomagnetite and is described for ocean floor basalts. An alternative interpretation is given by composi- tional and grain size variations due to small scale fractionation of melt related to the cooling of the lava. Generally, the high-temperature leg of k(T) curves mostly indi- cates the chemical composition (Tc) and degree of alteration, the low-temperature leg seems to be more sensible for grain size variations.
NASA Astrophysics Data System (ADS)
Hill, R.; Calvin, W. M.; Harpold, A. A.
2016-12-01
Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.
NASA Astrophysics Data System (ADS)
Pajola, M.; Lucchetti, A.; Fulle, M.; Mottola, S.; Hamm, M.; Da Deppo, V.; Penasa, L.; Kovacs, G.; Massironi, M.; Shi, X.; Tubiana, C.; Güttler, C.; Oklay, N.; Vincent, J. B.; Toth, I.; Davidsson, B.; Naletto, G.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Debei, S.; De Cecco, M.; Deller, J.; El Maarry, M. R.; Fornasier, S.; Frattin, E.; Gicquel, A.; Groussin, O.; Gutierrez, P. J.; Höfner, S.; Hofmann, M.; Hviid, S. F.; Ip, W. H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Moreno, J. J. Lopez; Marzari, F.; Michalik, H.; Preusker, F.; Scholten, F.; Thomas, N.
2017-07-01
By using the imagery acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System Wide-Angle Camera (OSIRIS WAC), we prepare a high-resolution morphological map of the Rosetta Sais final landing site, characterized by an outcropping consolidated terrain unit, a coarse boulder deposit and a fine particle deposit. Thanks to the 0.014 m resolution images, we derive the pebbles/boulders size-frequency distribution (SFD) of the area in the size range of 0.07-0.70 m. Sais' SFD is best fitted with a two-segment differential power law: the first segment is in the range 0.07-0.26 m, with an index of -1.7 ± 0.1, while the second is in the range 0.26-0.50 m, with an index of -4.2 +0.4/-0.8. The `knee' of the SFD, located at 0.26 m, is evident both in the coarse and fine deposits. When compared to the Agilkia Rosetta Lander Imaging System images, Sais surface is almost entirely free of the ubiquitous, cm-sized debris blanket observed by Philae. None the less, a similar SFD behaviour of Agilkia, with a steeper distribution above ˜0.3 m, and a flatter trend below that, is observed. The activity evolution of 67P along its orbit provides a coherent scenario of how these deposits were formed. Indeed, different lift pressure values occurring on the two locations and at different heliocentric distances explain the presence of the cm-sized debris blanket on Agilkia observed at 3.0 au inbound. Contrarily, Sais activity after 2.1 au outbound has almost completely eroded the fine deposits fallen during perihelion, resulting in an almost dust-free surface observed at 3.8 au.
Use of released pigs as sentinels for Mycobacterium bovis.
Nugent, Graham; Whitford, Jackie; Young, Nigel
2002-10-01
Identifying the presence of bovine tuberculosis (TB; Mycobacterium bovis) in wildlife is crucial in guiding management aimed at eradicating the disease from New Zealand. Unfortunately, surveys of the principal wildlife host, the introduced brushtail possum (Trichosurus vulpecula), require large samples (> 95% of the population) before they can provide reasonable confidence that the disease is absent. In this study, we tested the feasibility of using a more wide-ranging species, feral pig (Sus scrofa), as an alternative sentinel capable of indicating TB presence. In January 2000, 17 pigs in four groups were released into a forested area with a low density of possums in which TB was known to be present. The pigs were radiotracked at 2 wk intervals from February to October 2000, and some of them were killed and necropsied at various intervals after release. Of the 15 pigs successfully recovered and necropsied, one killed 2 mo after release had no gross lesions typical of TB, and the only other pig killed at that time had greatly enlarged mandibular lymph nodes. The remainder were killed at longer intervals after release and all had gross lesions typical of TB. Mycobacterium bovis was isolated from all 15 pigs by mycobacterial culture. Home range sizes of pigs varied widely and increased with the length of time the pigs were in the forest, with minimum convex polygon range-size estimates averaging 10.7 km2 (range 4.7-20.3 km2) for the pigs killed after 6 mo. A 6 km radius around the kill site of each pig would have encompassed 95% of all of their previous locations at which they could have become infected. However, one pig shifted 35 km, highlighting the main limitation of using unmarked feral pigs as sentinels. This trial indicates use of resident and/or released free-ranging pigs is a feasible alternative to direct prevalence surveys of possums for detecting TB presence.
Jones, Hayley B C; Lim, Ka S; Bell, James R; Hill, Jane K; Chapman, Jason W
2016-01-01
Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.
Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S
2016-03-01
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - <0.09 mm, 0.09-0.355 mm, and >0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.
1978-01-01
Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.
Samuel A. Cushman; Bradley W. Compton; Kevin McGarigal
2010-01-01
Habitat loss and fragmentation are widely believed to be the most important drivers of extinction (Leakey and Lewin 1995). The habitats in which organisms live are spatially structured at a number of scales, and these patterns interact with organism perception and behavior to drive population dynamics and community structure (Johnson et al. 1992). Anthropogenic habitat...