Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong
2016-01-01
This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475
Carolyn B. Meyer; Sherri L. Miller; C. John Ralph
2004-01-01
The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...
Spatial-temporal distortion metric for in-service quality monitoring of any digital video system
NASA Astrophysics Data System (ADS)
Wolf, Stephen; Pinson, Margaret H.
1999-11-01
Many organizations have focused on developing digital video quality metrics which produce results that accurately emulate subjective responses. However, to be widely applicable a metric must also work over a wide range of quality, and be useful for in-service quality monitoring. The Institute for Telecommunication Sciences (ITS) has developed spatial-temporal distortion metrics that meet all of these requirements. These objective metrics are described in detail and have a number of interesting properties, including utilization of (1) spatial activity filters which emphasize long edges on the order of 10 arc min while simultaneously performing large amounts of noise suppression, (2) the angular direction of the spatial gradient, (3) spatial-temporal compression factors of at least 384:1 (spatial compression of at least 64:1 and temporal compression of at least 6:1, and 4) simple perceptibility thresholds and spatial-temporal masking functions. Results are presented that compare the objective metric values with mean opinion scores from a wide range of subjective data bases spanning many different scenes, systems, bit-rates, and applications.
Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.
Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D
2017-09-01
We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.
Temporally increasing spatial synchrony of North American temperature and bird populations
NASA Astrophysics Data System (ADS)
Koenig, Walter D.; Liebhold, Andrew M.
2016-06-01
The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchrony--the coincident change in abundance or value across the landscape--despite the importance of environmental synchrony as a driver of population trends and the central role of environmental variability in population rescue and extinction. Here we demonstrate that across North America, spatial synchrony of a significant proportion of 49 widespread North American wintering bird species has increased over the past 50 years--the period encompassing particularly intense anthropogenic effects in climate--paralleling significant increases in spatial synchrony of mean maximum air temperature. These results suggest the potential for increased spatial synchrony in environmental factors to be affecting a wide range of ecological phenomena. These effects are likely to vary, but for North American wildlife species, increased spatial synchrony driven by environmental factors may be the basis for a previously unrecognized threat to their long-term persistence in the form of more synchronized population dynamics reducing the potential for demographic rescue among interacting subpopulations.
Range-wide wetland associations of the King Rail: A multi-scale approach
Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.; Laxson, Thomas A.
2015-01-01
King Rail populations have declined and identifying wetland features that influence King Rail occupancy can help prevent further population declines. We integrated continent-wide marsh bird survey data with spatial wetland data from the National Wetland Inventory (NWI) to examine wetland features that influenced King Rail occupancy throughout the species’ range. We analyzed wetland data at 7 spatial scales to examine the scale(s) at which 68 wetland features were most strongly related to King Rail occupancy. Occupancy was most strongly associated with estuarine features and brackish and tidal saltwater regimes. King Rail occupancy was positively associated with emergent and scrub-shrub wetlands and negatively associated with forested wetlands. The best spatial scale for assessing King Rail occupancy differed among wetland features; we could not identify one spatial scale (among all wetland features) that best explained variation in occupancy. Future research on King Rail habitat that includes multiple spatial scales is more likely to identify the suite of features that influence occupancy. Our results indicate that NWI data may be useful for predicting occupancy based on broad habitat features across the King Rail’s range, which may help inform management decisions for this and other wetland-dependent birds.
2007-09-27
the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets
Temporally increasing spatial synchrony of North American temperature and bird populations
Walter D. Koenig; Andrew M. Liebhold
2016-01-01
The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchronyâthe coincident change in abundance or value across the landscapeâdespite the...
Wide-Field Imaging Using Nitrogen Vacancies
NASA Technical Reports Server (NTRS)
Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)
2017-01-01
Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
Organism and population-level ecological models for ...
Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquatic and terrestrial invertebrates, fish, amphibians, and birds, and employ a wide range of methods, from matrix-based projection models to mechanistic bioenergetics models and spatially explicit population models. not applicable
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
Optical design and simulation of a new coherence beamline at NSLS-II
NASA Astrophysics Data System (ADS)
Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.
2017-08-01
We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.
ERIC Educational Resources Information Center
Waller, David, Ed.; Nadel, Lynn, Ed.
2012-01-01
Spatial cognition is a branch of cognitive psychology that studies how people acquire and use knowledge about their environment to determine where they are, how to obtain resources, and how to find their way home. Researchers from a wide range of disciplines, including neuroscience, cognition, and sociology, have discovered a great deal about how…
Inferring geographic isolation of wolverines in California using historical DNA
Michael K. Schwartz; Keith B. Aubry; Kevin S. McKelvey; Kristine L. Pilgrim; Jeffrey P. Copeland; John R. Squires; Robert M. Inman; Samantha M. Wisely; Leonard F. Ruggiero
2007-01-01
Delineating a species' geographic range using the spatial distribution of museum specimens or even contemporary detection-non-detection data can be difficult. This is particularly true at the periphery of a species range where species' distributions are often disjunct. Wolverines (Gulo gulo) are wide-ranging mammals with discontinuous and...
Fourier Plane Image Combination by Feathering
NASA Astrophysics Data System (ADS)
Cotton, W. D.
2017-09-01
Astronomical objects frequently exhibit structure over a wide range of scales whereas many telescopes, especially interferometer arrays, only sample a limited range of spatial scales. To properly image these objects, images from a set of instruments covering the range of scales may be needed. These images then must be combined in a manner to recover all spatial scales. This paper describes the feathering technique for image combination in the Fourier transform plane. Implementations in several packages are discussed and example combinations of single dish and interferometric observations of both simulated and celestial radio emission are given.
USDA-ARS?s Scientific Manuscript database
Hyperspectral imaging technology is increasingly regarded as a powerful tool for the classification and spatial quantification of a wide range of agrofood product properties. Taking into account the difficulties involved in validating hyperspectral calibrations, the models constructed here proved mo...
Memory-based snowdrift game on a square lattice
NASA Astrophysics Data System (ADS)
Shu, Feng; Liu, Xingwen; Fang, Kai; Chen, Hao
2018-04-01
Spatial reciprocity is an effective way widely accepted to facilitate cooperation. In the case of snowdrift game, some researches showed that spatial reciprocity inhibits cooperation for a very wide range of cost-to-benefit ratio r. However, some other researches found that based on the spatial reciprocity, a wider range of r is helpful to achieve a high cooperation level. Thus, how to enlarge the range of r for the purpose of promoting cooperation becomes a hot topic recently. This paper proposes a new memory-based method, in which each individual compares with its own previous payoffs to find out the maximal one as virtual payoff and then randomly compares with one of its neighbours to obtain the optimal strategy according to the given updating rules. It shows the positive effect of spatial reciprocity in the context of memory. Specifically, in this situation, not only the lower ratio can appear a high cooperation level, but also the larger ratio r can emerge a high cooperation level. That is, an expected cooperation level can be achieved simultaneously for small and large r. Furthermore, the scenarios of both constant-size memory and size-varying memory are investigated. An interesting phenomenon is discovered that the cooperation level drops down gradually as the memory size increases.
Holt, Amanda L.; Sweeney, Alison M.; Johnsen, Sönke; Morse, Daniel E.
2011-01-01
Cephalopods possess a sophisticated array of mechanisms to achieve camouflage in dynamic underwater environments. While active mechanisms such as chromatophore patterning and body posturing are well known, passive mechanisms such as manipulating light with highly evolved reflectors may also play an important role. To explore the contribution of passive mechanisms to cephalopod camouflage, we investigated the optical and biochemical properties of the silver layer covering the eye of the California fishery squid, Loligo opalescens. We discovered a novel nested-spindle geometry whose correlated structure effectively emulates a randomly distributed Bragg reflector (DBR), with a range of spatial frequencies resulting in broadband visible reflectance, making it a nearly ideal passive camouflage material for the depth at which these animals live. We used the transfer-matrix method of optical modelling to investigate specular reflection from the spindle structures, demonstrating that a DBR with widely distributed thickness variations of high refractive index elements is sufficient to yield broadband reflectance over visible wavelengths, and that unlike DBRs with one or a few spatial frequencies, this broadband reflectance occurs from a wide range of viewing angles. The spindle shape of the cells may facilitate self-assembly of a random DBR to achieve smooth spatial distributions in refractive indices. This design lends itself to technological imitation to achieve a DBR with wide range of smoothly varying layer thicknesses in a facile, inexpensive manner. PMID:21325315
Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns
Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis
2014-01-01
A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137
Teachers as Learners Examine Land-Use Change in the Local Environment Using Remote Sensing Imagery
ERIC Educational Resources Information Center
Klagges, Hope; Harbor, Jon; Shepardson, Daniel; Bell, Cheryl; Meyer, Jason; Burgess, Willie; Leuenberger, Ted
2002-01-01
In environmental science education, learners are exposed to earth phenomena that occur across a wide range of spatial and temporal scales. However, it is challenging for learners to grasp the significance of spatial and temporal change because they have limited perspectives of the Earth. Within the scientific community, remotely sensed imagery is…
Dual-energy micro-CT with a dual-layer, dual-color, single-crystal scintillator.
Maier, Daniel Simon; Schock, Jonathan; Pfeiffer, Franz
2017-03-20
A wide range of X-ray imaging applications demand micrometer spatial resolution. In material science and biology especially, there is a great interest in material determination and material separation methods. Here we present a new detector design that allows the recording of a low- and a high-energy radiography image simultaneously with micrometer spatial resolution. The detector system is composed of a layered scintillator stack, two CCDs and an optical system to image the scintillator responses onto the CCDs. We used the detector system with a standard laboratory microfocus X-ray tube to prove the working principle of the system and derive important design characteristics. With the recorded and registered dual-energy data set, the material separation and determination could be shown at an X-ray tube peak energy of up to 160 keV with a spatial resolution of 12 μm. The detector design shows a great potential for further development and a wide range of possible applications.
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-01-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp–166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules. PMID:24918865
Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires
NASA Astrophysics Data System (ADS)
Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Klamchuen, Annop; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu
2014-06-01
Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.
Uncomfortable images in art and nature.
Fernandez, Dominic; Wilkins, Arnold J
2008-01-01
The ratings of discomfort from a wide variety of images can be predicted from the energy at different spatial scales in the image, as measured by the Fourier amplitude spectrum of the luminance. Whereas comfortable images show the regression of Fourier amplitude against spatial frequency common in natural scenes, uncomfortable images show a regression with disproportionately greater amplitude at spatial frequencies within two octaves of 3 cycles deg(-1). In six studies, the amplitude in this spatial frequency range relative to that elsewhere in the spectrum explains variance in judgments of discomfort from art, from images constructed from filtered noise, and from art in which the phase or amplitude spectra have been altered. Striped patterns with spatial frequency within the above range are known to be uncomfortable and capable of provoking headaches and seizures in susceptible persons. The present findings show for the first time that, even in more complex images, the energy in this spatial-frequency range is associated with aversion. We propose a simple measurement that can predict aversion to those works of art that have reached the national media because of negative public reaction.
Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth
2013-01-01
Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.
NASA Astrophysics Data System (ADS)
Nackoney, J.; Hickey, J.; Williams, D.; Facheux, C.; Dupain, J.
2014-12-01
The bonobo (Pan paniscus), a great ape that is endemic to the Democratic Republic of the Congo (DRC), has been listed as Endangered on the IUCN Red List since 2007. Hunting and habitat loss are primary threats. Two recent wars and ongoing conflicts in the DRC have resulted in political and economic instability that hampers on-the-ground work, thereby accentuating the importance of spatial data and maps as tools for monitoring threats remotely and prioritizing locations for safeguarding bonobo habitat. Several regional and rangewide efforts have leveraged the utility of existing spatial data to help focus limited resources for effective broad-scale conservation of these great apes. At local scales, we developed spatial models to identify locations of highest hunting pressure, predict future human settlement and agricultural expansion, map areas of highest conservation value to bonobos, and identify the connective corridors linking them. We identified 42 least-disturbed wildland blocks meeting the minimum home range size needed for bonobos, and 32 potential corridors. At the range-wide scale, we developed a first range-wide spatial model of suitable conditions for the bonobo; this was a major contribution to the development of a Bonobo Conservation Strategy for 2012-2022, recently published by IUCN. The model used a forest edge density metric and other biotic and abiotic variables in conjunction with bonobo nest data collected during 2003-2010 by over 40 bonobo researchers. Approximately 28% of the range was predicted suitable; of that, about 27.5% was located in official protected areas. Highlighting these examples, this presentation will discuss the conservation status of bonobos and how spatial data and models are being utilized for the formation of strategic conservation plans.
NASA Astrophysics Data System (ADS)
Koenig, W.
2016-12-01
The ecological impacts of modern global climate change are detectable in a wide variety of phenomena ranging from shifts in species ranges to changes in community composition and human disease dynamics. Thus far, however, little attention has been given to temporal changes in environmental spatial synchrony-the coincident change in abundance or value across the landscape-or environmental variability, despite the importance of these factors as drivers of population rescue and extinction and reproductive dynamics of both animal and plant populations. We quantified spatial synchrony of widespread North American wintering birds species using Audubon Christmas Bird Counts over the past 50 years and seed set variability (mast fruiting) among trees over the past century and found that both spatial synchrony of the birds and seed set variability have significantly increased over these time periods. The first of these results was mirrored by significant increases in spatial synchrony of mean maximum air temperature across North America, primarily during the summer, while the second is consistent with the hypothesis that climate change is resulting in greater seed set variability. These findings suggest the potential for temporal changes in envioronmental synchrony and variability to be affecting a wide range of ecological phenomena by influencing the probability of population rescue and extinction and by affecting ecosystem processes that rely on the resource pulses provided by mast fruiting plants.
Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera
NASA Astrophysics Data System (ADS)
Bellin, N.; Vanacker, V.; Kubik, P. W.
2014-03-01
The tectonic control on landscape morphology and long-term denudation is largely documented for settings with high uplift rates. Relatively little is known about the rates of geomorphic response in areas of low tectonic uplift. Here, we evaluate spatial variations in denudation of the Spanish Betic Cordillera based on cosmogenic 10Be-derived denudation rates. Denudation rates are compared to published data on rock uplift and exhumation of the Betic Cordillera to evaluate steady-state topography. The spatial patterns of catchment-wide denudation rates (n=20) are then analysed together with topographic metrics of hillslope and channel morphology. Catchments draining the Betic ranges have relatively low denudation rates (64±54 mm kyr), but also show large variation as they range from 14 to 246 mm kyr-1. Catchment-wide denudation is linearly proportional to the mean hillslope gradient and local relief. Despite large spatial variation in denudation, the magnitude and spatial pattern of denudation rates are generally consistent with longer-term local uplift rates derived from elevated marine deposits, fission-track measurements and vertical fault slip rates. This might be indicative of a steady-state topography where rock uplift is balanced by denudation.
Kappa, Jan; Schmitt, Klemens M; Rahm, Marco
2017-08-21
Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.
Widely tunable chaotic fiber laser for WDM-PON detection
NASA Astrophysics Data System (ADS)
Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian
2014-05-01
A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.
A number of existing and new remote sensing data provide images of areas ranging from small communities to continents. These images provide views on a wide range of physical features in the landscape, including vegetation, road infrastructure, urban areas, geology, soils, and wa...
Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)
NASA Astrophysics Data System (ADS)
Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.
2017-11-01
Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.
Chromospheric Activity in Cool Luminous Stars
NASA Astrophysics Data System (ADS)
Dupree, Andrea
2018-04-01
Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.
Cronin, Adam L; Loeuille, Nicolas; Monnin, Thibaud
2016-02-05
Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition-colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism-spatial structuring of the environment-remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments.
Habitat use of the Louisiana Waterthrush during the non-breeding season in Puerto Rico
M.T. Hallworth; L.R. Reitsma; K. Parent
2011-01-01
We used radiotelemetry to quantify habitat and spatial use patterns of neighboring Louisiana Waterthrush (Parkesia motacilla) along two streams in the Caribbean National Forest in Puerto Rico during 2005â2007. Home range sizes varied with younger birds having larger home ranges and core areas than older birds. All birds occupied some length of stream but a wide range...
Adapting populations in space: clonal interference and genetic diversity
NASA Astrophysics Data System (ADS)
Weissman, Daniel; Barton, Nick
Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.
Nonlinear dynamic range transformation in visual communication channels.
Alter-Gartenberg, R
1996-01-01
The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.
Stochastic Modeling of Empirical Storm Loss in Germany
NASA Astrophysics Data System (ADS)
Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.
2012-04-01
Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.
Auditory and visual spatial impression: Recent studies of three auditoria
NASA Astrophysics Data System (ADS)
Nguyen, Andy; Cabrera, Densil
2004-10-01
Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.
Electroinduction disk sensor of electric field strength
NASA Astrophysics Data System (ADS)
Biryukov, S. V.; Korolyova, M. A.
2018-01-01
Measurement of the level of electric fields exposure to the technical and biological objects for a long time is an urgent task. To solve this problem, the required electric field sensors with specified metrological characteristics. The aim of the study is the establishment of theoretical assumptions for the calculation of the flat electric field sensors. It is proved that the accuracy of the sensor does not exceed 3% in the spatial range 0
Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration
Chen, Shoubin; Liu, Jingbin; Huang, Wenchao
2018-01-01
The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540
Peel, Alison J; Baker, Kate S; Hayman, David T S; Suu-Ire, Richard; Breed, Andrew C; Gembu, Guy-Crispin; Lembo, Tiziana; Fernández-Loras, Andrés; Sargan, David R; Fooks, Anthony R; Cunningham, Andrew A; Wood, James L N
2016-08-01
Bats, including African straw-coloured fruit bats (Eidolon helvum), have been highlighted as reservoirs of many recently emerged zoonotic viruses. This common, widespread and ecologically important species was the focus of longitudinal and continent-wide studies of the epidemiological and ecology of Lagos bat virus, henipaviruses and Achimota viruses. Here we present a spatial, morphological, demographic, genetic and serological dataset encompassing 2827 bats from nine countries over an 8-year period. Genetic data comprises cytochrome b mitochondrial sequences (n=608) and microsatellite genotypes from 18 loci (n=544). Tooth-cementum analyses (n=316) allowed derivation of rare age-specific serologic data for a lyssavirus, a henipavirus and two rubulaviruses. This dataset contributes a substantial volume of data on the ecology of E. helvum and its viruses and will be valuable for a wide range of studies, including viral transmission dynamic modelling in age-structured populations, investigation of seasonal reproductive asynchrony in wide-ranging species, ecological niche modelling, inference of island colonisation history, exploration of relationships between island and body size, and various spatial analyses of demographic, morphometric or serological data.
Gebler, J.B.
2004-01-01
The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.
An improved snow scheme for the ECMWF land surface model: Description and offline validation
Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder
2010-01-01
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...
Potential effects of forest policies on terrestrial biodiversity in a multiownership province.
T.A. Spies; B.C. McComb; R. Kennedy; M.T. McGrath; K. Olsen; R.J. Pabst
2007-01-01
We used spatial simulation models to evaluate how current and two alternative policies might affect potential biodiversity over 100 years in the Coast Ranges Physiographic Province of Oregon. This 2.3-million-ha province is characterized by a diversity of public and private forest owners, and a wide range of forest policy and management objectives. We evaluated habitat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe; Camilla, S.
The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the referencemore » material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.« less
Agricultural geophysics: Past/present accomplishments and future advancements
USDA-ARS?s Scientific Manuscript database
Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...
Uncomfortable images in art and nature
Fernandez, Dominic; Wilkins, Arnold J.
2008-01-01
We find that the ratings of discomfort from a wide variety of images can be predicted from the energy at different spatial scales in the image, as measured by the Fourier amplitude spectrum of the luminance. Whereas comfortable images show the regression of Fourier amplitude against spatial frequency common in natural scenes, uncomfortable images show a regression with disproportionately greater amplitude at spatial frequencies within two octaves of 3 cycles per degree. In six studies, the amplitude at this spatial frequency relative to that 3 octaves below explains variance in judgments of discomfort from art, from images constructed from filtered noise and from art in which the phase or amplitude spectra have been altered. Striped patterns with spatial frequency within the above range are known to be uncomfortable and capable of provoking headaches and seizures in susceptible persons. The present findings show for the first time that even in more complex images the energy in this spatial frequency range is associated with aversion. We propose a simple measurement that can predict aversion to those works of art that have reached the national media because of negative public reaction. PMID:18773732
Integration of fisheries into marine spatial planning: Quo vadis?
NASA Astrophysics Data System (ADS)
Janßen, Holger; Bastardie, Francois; Eero, Margit; Hamon, Katell G.; Hinrichsen, Hans-Harald; Marchal, Paul; Nielsen, J. Rasmus; Le Pape, Olivier; Schulze, Torsten; Simons, Sarah; Teal, Lorna R.; Tidd, Alex
2018-02-01
The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries and projections on those spaces that might become important fishing areas in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but that an integration of fisheries is already possible today.
State-and-transition simulation models: a framework for forecasting landscape change
Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée
2016-01-01
SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of landscape dynamics.
Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.; ...
2018-02-15
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.
Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences
NASA Technical Reports Server (NTRS)
Lawton, T. B.
1985-01-01
It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.
Editorial: Spatial arrangement of faults and opening-mode fractures
NASA Astrophysics Data System (ADS)
Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.
2018-03-01
This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.
Multiscale Study of Currents Affected by Topography
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the
Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D
2017-01-01
Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.
2017-01-01
Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs’ resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations. PMID:28472113
Acoustic metamaterials with broadband and wide-angle impedance matching
NASA Astrophysics Data System (ADS)
Liu, Chenkai; Luo, Jie; Lai, Yun
2018-04-01
We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.
Long, Xi; Parks, Joseph W; Stone, Michael D
2016-08-01
Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
Puller, Christian; Rieke, Fred; Neitz, Jay; Neitz, Maureen
2015-01-01
At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell—the wiry cell—in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5–10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception. PMID:26133804
Long, Xi; Parks, Joseph W.; Stone, Michael D.
2017-01-01
Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203
NASA Technical Reports Server (NTRS)
Woo, R.; Habbal, S. R.
1998-01-01
Radio occultation measurements, which probe electron density over a wide dynamic range with high sensitivity and high spatial and temporal resolution reveal a solar corona permeated by a hierarchy of filamentary structures.
Derivation of Sky-View Factors from LIDAR Data
NASA Technical Reports Server (NTRS)
Kidd, Christopher; Chapman, Lee
2013-01-01
The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.
Verrot, Lucile; Destouni, Georgia
2015-01-01
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.
Optimal configurations of spatial scale for grid cell firing under noise and uncertainty
Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil
2014-01-01
We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144
Trinity Phase 2 Open Science: CTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggirello, Kevin Patrick; Vogler, Tracy
CTH is an Eulerian hydrocode developed by Sandia National Laboratories (SNL) to solve a wide range of shock wave propagation and material deformation problems. Adaptive mesh refinement is also used to improve efficiency for problems with a wide range of spatial scales. The code has a history of running on a variety of computing platforms ranging from desktops to massively parallel distributed-data systems. For the Trinity Phase 2 Open Science campaign, CTH was used to study mesoscale simulations of the hypervelocity penetration of granular SiC powders. The simulations were compared to experimental data. A scaling study of CTH up tomore » 8192 KNL nodes was also performed, and several improvements were made to the code to improve the scalability.« less
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Bedform dynamics in a large sand-bedded river using multibeam echo sounding
NASA Astrophysics Data System (ADS)
Elliott, C. M.; Jacobson, R. B.; Erwin, S.; Eric, A. B.; DeLonay, A. J.
2014-12-01
High-resolution repeat multibeam Echo Sounder (MBES) surveys of the Lower Missouri River in Missouri, USA demonstrate sand bedform movement at a variety of scales over a range of discharges. Understanding dune transport rates and the temporal and spatial variability in sizes across the channel has implications for how sediment transport measurements are made and for understanding the dynamics of habitats utilized by benthic organisms over a range of life stages. Nearly 800 miles of the Lower Missouri River has been altered through channelization and bank stabilization that began in the early 1900's for navigation purposes. Channelization of the Lower Missouri River has created a self-scouring navigation channel with large dunes that migrate downstream over a wide range of discharges. Until the use of MBES surveys on the Missouri River the spatial variability of dune forms in the Missouri River navigation channel was poorly understood. MBES surveys allow for visualization of a range of sand bedforms and repeat measurements demonstrate that dunes are moving over a wide range of discharges on the river. Understanding the spatial variability of dunes and dune movement across the channel and in different channel settings (bends, channel cross-overs, near channel structures) will inform emerging methods in sediment transport measurement that use bedform differencing calculations and provide context for physical bedload sediment sampling on large sand-bedded rivers. Multiple benthic fish species of interest including the endangered pallid sturgeon utilize Missouri River dune fields and adjacent regions for migration, feeding, spawning, early development and dispersal. Surveys using MBES and other hydroacoustic tools provide fisheries biologists with broad new insights into the functionality of bedforms as habitat for critical life stages of large river fish species in the Missouri River, and similar sand-bedded systems.
Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo; Lin, Timothy; Zhou, Jianyang; Ye, Longfang; Cai, Zhiping
2015-12-14
Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.
Spatial wavefield gradient-based seismic wavefield separation
NASA Astrophysics Data System (ADS)
Van Renterghem, C.; Schmelzbach, C.; Sollberger, D.; Robertsson, J. OA
2018-03-01
Measurements of the horizontal and vertical components of particle motion combined with estimates of the spatial gradients of the seismic wavefield enable seismic data to be acquired and processed using single dedicated multicomponent stations (e.g. rotational sensors) and/or small receiver groups instead of large receiver arrays. Here, we present seismic wavefield decomposition techniques that use spatial wavefield gradient data to separate land and ocean bottom data into their upgoing/downgoing and P/S constituents. Our method is based on the elastodynamic representation theorem with the derived filters requiring local measurements of the wavefield and its spatial gradients only. We demonstrate with synthetic data and a land seismic field data example that combining translational measurements with spatial wavefield gradient estimates allows separating seismic data recorded either at the Earth's free-surface or at the sea bottom into upgoing/downgoing and P/S wavefield constituents for typical incidence angle ranges of body waves. A key finding is that the filter application only requires knowledge of the elastic properties exactly at the recording locations and is valid for a wide elastic property range.
Asynchrony among local communities stabilises ecosystem function of metacommunities.
Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai
2017-12-01
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Coevolution of Cooperation and Partner Rewiring Range in Spatial Social Networks
NASA Astrophysics Data System (ADS)
Khoo, Tommy; Fu, Feng; Pauls, Scott
2016-11-01
In recent years, there has been growing interest in the study of coevolutionary games on networks. Despite much progress, little attention has been paid to spatially embedded networks, where the underlying geographic distance, rather than the graph distance, is an important and relevant aspect of the partner rewiring process. It thus remains largely unclear how individual partner rewiring range preference, local vs. global, emerges and affects cooperation. Here we explicitly address this issue using a coevolutionary model of cooperation and partner rewiring range preference in spatially embedded social networks. In contrast to local rewiring, global rewiring has no distance restriction but incurs a one-time cost upon establishing any long range link. We find that under a wide range of model parameters, global partner switching preference can coevolve with cooperation. Moreover, the resulting partner network is highly degree-heterogeneous with small average shortest path length while maintaining high clustering, thereby possessing small-world properties. We also discover an optimum availability of reputation information for the emergence of global cooperators, who form distant partnerships at a cost to themselves. From the coevolutionary perspective, our work may help explain the ubiquity of small-world topologies arising alongside cooperation in the real world.
Spatial versus sequential correlations for random access coding
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed
2016-03-01
Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.
Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon
2012-01-01
We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.
Beta Testing of Persistent Passive Acoustic Monitors
2012-10-01
three platforms provide the capability to work over a wide range of spatial and temporal scales. Hardware and software integration of the DMONs in...closely with Richard M. Ead (Sensors and Sonar Systems Department, Naval Undersea Warfare Center, NUWC Code 1535), Ted Ioannides (PS 4013) and Dave
ISO Key Project: Exploring the Full Range of Quasar/AGN Properties
NASA Technical Reports Server (NTRS)
Wilkes, B.
2001-01-01
The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultra-violet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution, remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.
Application of spatial technology in malaria research & control: some new insights.
Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P
2009-08-01
Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.
Visualization and Quality Control Web Tools for CERES Products
NASA Astrophysics Data System (ADS)
Mitrescu, C.; Doelling, D.; Chu, C.; Mlynczak, P.
2014-12-01
The CERES project continues to provide the scientific community a wide variety of satellite-derived data products. The flagship products TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. These datasets encompass a wide range of temporal and spatial resolutions, suited to specific applications. We thus offer time resolutions that range from instantaneous to monthly means, with spatial resolutions that range from 20-km footprint to global scales. The 14-year record is mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. CERES products are also used by the remote sensing community for their climatological studies. In the last years however, our CERES products had been used by an even broader audience, like the green energy, health and environmental research communities, and others. Because of that, the CERES project has implemented a now well-established web-oriented Ordering and Visualization Tool (OVT), which is well into its fifth year of development. In order to help facilitate a comprehensive quality control of CERES products, the OVT Team began introducing a series of specialized functions. These include the 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and other specialized scientific application capabilities. Over time increasingly higher order temporal and spatial resolution products are being made available to the public through the CERES OVT. These high-resolution products require accessing the existing long-term archive - thus the reading of many very large netCDF or HDF files that pose a real challenge to the task of near instantaneous visualization. An overview of the CERES OVT basic functions and QC capabilities as well as future steps in expanding its capabilities will be presented at the meeting.
The Far-Infrared Spectral Energy Distributions of Quasars
NASA Technical Reports Server (NTRS)
Wilkes, Belinda J.; West, Donald K. (Technical Monitor)
2001-01-01
The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultraviolet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO's contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.
Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos
2018-03-08
Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.
Bessel beams with spatial oscillating polarization
Fu, Shiyao; Zhang, Shikun; Gao, Chunqing
2016-01-01
Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174
An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor
NASA Astrophysics Data System (ADS)
Liscombe, Michael
3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.
The Surinamese Ministry of Physical Planning, Land and Forest Management (De minister van Ruimtelijke ordening, Grond- en Bosbeheer (Ministry RGB)) is tasked with a wide range of critical environmental duties. This ministry is responsible for monitoring and protecting federally ...
Spatially oriented plasmonic ‘nanograter’ structures
Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi
2016-01-01
One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610
Stratification Modelling of Key Bacterial Taxa Driven by Metabolic Dynamics in Meromictic Lakes.
Zhu, Kaicheng; Lauro, Federico M; Su, Haibin
2018-06-22
In meromictic lakes, the water column is stratified into distinguishable steady layers with different physico-chemical properties. The bottom portion, known as monimolimnion, has been studied for the functional stratification of microbial populations. Recent experiments have reported the profiles of bacterial and nutrient spatial distributions, but quantitative understanding is invoked to unravel the underlying mechanism of maintaining the discrete spatial organization. Here a reaction-diffusion model is developed to highlight the spatial pattern coupled with the light-driven metabolism of bacteria, which is resilient to a wide range of dynamical correlation between bacterial and nutrient species at the molecular level. Particularly, exact analytical solutions of the system are presented together with numerical results, in a good agreement with measurements in Ace lake and Rogoznica lake. Furthermore, one quantitative prediction is reported here on the dynamics of the seasonal stratification patterns in Ace lake. The active role played by the bacterial metabolism at microscale clearly shapes the biogeochemistry landscape of lake-wide ecology at macroscale.
Fundamental procedures of geographic information analysis
NASA Technical Reports Server (NTRS)
Berry, J. K.; Tomlin, C. D.
1981-01-01
Analytical procedures common to most computer-oriented geographic information systems are composed of fundamental map processing operations. A conceptual framework for such procedures is developed and basic operations common to a broad range of applications are described. Among the major classes of primitive operations identified are those associated with: reclassifying map categories as a function of the initial classification, the shape, the position, or the size of the spatial configuration associated with each category; overlaying maps on a point-by-point, a category-wide, or a map-wide basis; measuring distance; establishing visual or optimal path connectivity; and characterizing cartographic neighborhoods based on the thematic or spatial attributes of the data values within each neighborhood. By organizing such operations in a coherent manner, the basis for a generalized cartographic modeling structure can be developed which accommodates a variety of needs in a common, flexible and intuitive manner. The use of each is limited only by the general thematic and spatial nature of the data to which it is applied.
Genes mirror geography in Daphnia magna.
Fields, Peter D; Reisser, Céline; Dukić, Marinela; Haag, Christoph R; Ebert, Dieter
2015-09-01
Identifying the presence and magnitude of population genetic structure remains a major consideration in evolutionary biology as doing so allows one to understand the demographic history of a species as well as make predictions of how the evolutionary process will proceed. Next-generation sequencing methods allow us to reconsider previous ideas and conclusions concerning the distribution of genetic variation, and what this distribution implies about a given species evolutionary history. A previous phylogeographic study of the crustacean Daphnia magna suggested that, despite strong genetic differentiation among populations at a local scale, the species shows only moderate genetic structure across its European range, with a spatially patchy occurrence of individual lineages. We apply RAD sequencing to a sample of D. magna collected across a wide swath of the species' Eurasian range and analyse the data using principle component analysis (PCA) of genetic variation and Procrustes analytical approaches, to quantify spatial genetic structure. We find remarkable consistency between the first two PCA axes and the geographic coordinates of individual sampling points, suggesting that, on a continent-wide scale, genetic differentiation is driven to a large extent by geographic distance. The observed pattern is consistent with unimpeded (i.e. no barriers, landscape or otherwise) migration at large spatial scales, despite the fragmented and patchy nature of favourable habitats at local scales. With high-resolution genetic data similar patterns may be uncovered for other species with wide geographic distributions, allowing an increased understanding of how genetic drift and selection have shaped their evolutionary history. © 2015 John Wiley & Sons Ltd.
Future VIIRS enhancements for the integrated polar-orbiting environmental satellite system
NASA Astrophysics Data System (ADS)
Puschell, Jeffery J.; Silny, John; Cook, Lacy; Kim, Eugene
2010-08-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) is the next-generation imaging spectroradiometer for the future operational polar-orbiting environmental satellite system. A successful Flight Unit 1 has been delivered and integrated onto the NPP spacecraft. The flexible VIIRS architecture can be adapted and enhanced to respond to a wide range of requirements and to incorporate new technology as it becomes available. This paper reports on recent design studies to evaluate building a MW-VLWIR dispersive hyperspectral module with active cooling into the existing VIIRS architecture. Performance of a two-grating VIIRS hyperspectral module was studied across a broad trade space defined primarily by spatial sampling, spectral range, spectral sampling interval, along-track field of view and integration time. The hyperspectral module studied here provides contiguous coverage across 3.9 - 15.5 μm with a spectral sampling interval of 10 nm or better, thereby extending VIIRS spectral range to the shortwave side of the 15.5 μm CO2 band and encompassing the 6.7 μm H2O band. Spatial sampling occurs at VIIRS I-band (~0.4 km at nadir) spatial resolution with aggregation to M-band (~0.8 km) and larger pixel sizes to improve sensitivity. Radiometric sensitivity (NEdT) at a spatial resolution of ~4 km is ~0.1 K or better for a 250 K scene across a wavelength range of 4.5 μm to 15.5 μm. The large number of high spectral and spatial resolution FOVs in this instrument improves chances for retrievals of information on the physical state and composition of the atmosphere all the way to the surface in cloudy regions relative to current systems. Spectral aggregation of spatial resolution measurements to MODIS and VIIRS multispectral bands would continue legacy measurements with better sensitivity in nearly all bands. Additional work is needed to optimize spatial sampling, spectral range and spectral sampling approaches for the hyperspectral module and to further refine this powerful imager concept.
Low spatial frequency characterization of holographic recording materials applied to correlation
NASA Astrophysics Data System (ADS)
Márquez, A.; Neipp, C.; Beléndez, A.; Campos, J.; Pascual, I.; Yzuel, M. J.; Fimia, A.
2003-09-01
Accurate recording of computer-generated holograms (CGH) on a phase material is not a trivial task. The range of available phase materials is large, and their suitability depends on the fabrication technique chosen to produce the hologram. We are particularly interested in low-cost fabrication techniques, easily available for any lab. In this work we present the results obtained with a wide variety of phase holographic recording materials, characterized at low spatial frequencies (leq32 lp mm-1) which is the range associated with the technique we use to produce the CGHs. We have considered bleached emulsion, silver halide sensitized gelatin (SHSG) and dichromated gelatin. Some interesting differences arise between the behaviour of these materials in the usual holographic range (>1000 lp mm-1), and the low-frequency range intended for digital holography. The ultimate goal of this paper is to establish the suitability of different phase materials as the media to generate correlation filters for optical pattern recognition. In all the materials considered, the phase filters generated ensure the discrimination of the target in the recognition process. Taking into account all the experimental results, we can say that SHSG is the best material to generate phase CGHs with low spatial frequencies.
A general modeling framework for describing spatially structured population dynamics
Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan
2017-01-01
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles
NASA Astrophysics Data System (ADS)
Yudono, Adipandang
2017-06-01
Recently, crowd-sourced information is used to produce and improve collective knowledge and community capacity building. Triggered by broadening and expanding access to the Internet and cellular telephones, the utilisation of crowd-sourcing for policy advocacy, e-government and e-participation has increased globally [1]. Crowd-sourced information can conceivably support government’s or general social initiatives to inform, counsel, and cooperate, by engaging subjects and empowering decentralisation and democratization [2]. Crowd-sourcing has turned into a major technique for interactive mapping initiatives by urban or rural community because of its capability to incorporate a wide range of data. Continuously accumulated spatial data can be sorted, layered, and envisioned in ways that even beginners can comprehend with ease. Interactive spatial visualization has the possibility to be a useful democratic planning tool to empower citizens participating in spatial data provision and sharing in government programmes. Since the global emergence of World Wide Web (WWW) technology, the interaction between information providers and users has increased. Local communities are able to produce and share spatial data to produce web interfaces with territorial information in mapping application programming interfaces (APIs) public, such as Google maps, OSM and Wikimapia [3][4][5]. In terms of the democratic spatial planning action, Volunteered Geographic Information (VGI) is considered an effective voluntary method of helping people feel comfortable with the technology and other co-participants in order to shape coalitions of local knowledge. This paper has aim to investigate ‘How is spatial data created by citizens used in Indonesia?’ by discussing the characteristics of spatial data usage by citizens to support spatial policy formulation, starting with the history of participatory mapping to current VGI development in Indonesia.
Dynamic granularity of imaging systems
Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...
2015-11-04
Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” G dyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environmentmore » rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Spielman, Steven R.
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...
2017-06-01
This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less
Jianguo Wu; Harbin Li
2006-01-01
The relationship between pattern and process is of great interest in all natural and social sciences, and scale is an integral part of this relationship. It is now well documented that biophysical and socioeconomic patterns and processes operate on a wide range of spatial and temporal scales. In particular, the scale multiplicity and scale dependence of pattern,...
Star formation in the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Leichenauer, Stefan
2009-03-15
We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.
Freshwater reservoirs are an important source of the greenhouse gas methane (CH4) to the atmosphere, but there is a wide range of estimates of global emissions, due in part to variability of methane emissions rates within reservoirs. While morphological characteristics, including...
PRISM Climate Group, Oregon State U
FAQ PRISM Climate Data The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, X.; Liu, G.; Huang, C.; Li, H.; Guan, X.
2018-04-01
The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI) onboard the Tiangong-II has 14 visible and near-infrared (VNIR) spectral bands covering the range from 403-990 nm and two shortwave infrared (SWIR) bands covering the range from 1230-1250 nm and 1628-1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS) sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.
The computational worm: spatial orientation and its neuronal basis in C. elegans.
Lockery, Shawn R
2011-10-01
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial Relation Predicates in Topographic Feature Semantics
Varanka, Dalia E.; Caro, Holly K.
2013-01-01
Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)
1991-01-01
A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations
NASA Technical Reports Server (NTRS)
Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).
Properties and Frequency Conversion of High-Brightness Diode-Laser Systems
NASA Astrophysics Data System (ADS)
Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard
An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.
Analysis of AIRS and IASI System Performance Under Clear and Cloudy Conditions
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Strow, L. Larrabee
2010-01-01
The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 micrometers window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data.
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
Characterization of the spatial variability of channel morphology
Moody, J.A.; Troutman, B.M.
2002-01-01
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0.13-0.42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional morphological variables can be scaled such that the channel width-depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley and Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rosales-Ortega, F. F.; Castillo, E.; Sánchez, S. F.; Iglesias-Páramo, J.; Mollá, J. I. M.; Chávez, M.
2016-10-01
In order to extend the current suite of instruments offered in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE), and to explore a second-generation instrument for the future 6.5 m Telescopio San Pedro Martir (TSPM), we propose a prototype instrument that will provide un-biased wide-field (few arcmin) spectroscopic information, with the flexibility of operating at different spectral resolutions (R˜1-104), with a spatial resolution limited by seeing, and therefore to be used in a wide range of astronomical problems. This instrument will make use of the Fourier Transform Spectroscopy technique, which has been proved to be feasible in the optical wavelength range. Here we give the basic technical description of a Fourier transform spectrograph, as well as the technical advantages and weaknesses, and the science cases in which this instrument can be implemented.
Pomara, Lars Y; LeDee, Olivia E; Martin, Karl J; Zuckerberg, Benjamin
2014-07-01
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management. © 2013 John Wiley & Sons Ltd.
Impact of spatially correlated pore-scale heterogeneity on drying porous media
NASA Astrophysics Data System (ADS)
Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran
2017-07-01
We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.
Enabling Geotechnical Data for Broader Use by the Spatial Data Infrastructures
ERIC Educational Resources Information Center
Zand, Amir Ghasem
2011-01-01
Geotechnical data are one of the most prevalent data types in civil engineering projects. The majority of the civil engineering projects that are in use today are designed using site-specific geotechnical data. The usage of geotechnical data is not limited to construction projects. This data is used in a wide range of applications, including…
Jorge A. Ramirez; Michael T. Hobbins; Thomas C. Brown
2005-01-01
Using independent observations of actual and potential evapotranspiration at a wide range of spatial scales, we provide direct observational evidence of the complementary relationship in regional evapotranspiration hypothesized by Bouchet in 1963. Bouchet proposed that, for large homogeneous surfaces with minimal advection of heat and moisture, potential and actual...
Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)
Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline
2008-01-01
The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...
2009-09-16
dispersing a plurality of relatively small, supercavitating projectiles in the water over a wide spatial field at long ranges from an underwater gun...or surface gun. (2) Description of the Prior Art [0004] One major technical challenge related to employing supercavitating projectiles against...accordingly is more limited. [0005] A second problem common to supercavitating projectiles is the configuration of the projectile itself. The primary
ERIC Educational Resources Information Center
Kolata, Stefan; Light, Kenneth; Matzel, Louis D.
2008-01-01
It has been established that both domain-specific (e.g. spatial) as well as domain-general (general intelligence) factors influence human cognition. However, the separation of these processes has rarely been attempted in studies using laboratory animals. Previously, we have found that the performances of outbred mice across a wide range of…
Climate change and watershed mercury export in a Coastal Plain watershed
Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley
2016-01-01
Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.
Disparities in the Geography of Mental Health: Implications for Social Work
ERIC Educational Resources Information Center
Hudson, Christopher G.
2012-01-01
This article reviews recent theory and research on geographic disparities in mental health and their implications for social work. It focuses on work emerging from the fields of mental health geography, psychiatric epidemiology, and social work, arguing that a wide range of spatial disparities in mental health are important to understand but that…
Modeled historical land use and land cover for the conterminous United States
Sohl, Terry L.; Reker, Ryan R.; Bouchard, Michelle A.; Sayler, Kristi L.; Dornbierer, Jordan; Wika, Steve; Quenzer, Robert; Friesz, Aaron M.
2016-01-01
The landscape of the conterminous United States has changed dramatically over the last 200 years, with agricultural land use, urban expansion, forestry, and other anthropogenic activities altering land cover across vast swaths of the country. While land use and land cover (LULC) models have been developed to model potential future LULC change, few efforts have focused on recreating historical landscapes. Researchers at the US Geological Survey have used a wide range of historical data sources and a spatially explicit modeling framework to model spatially explicit historical LULC change in the conterminous United States from 1992 back to 1938. Annual LULC maps were produced at 250-m resolution, with 14 LULC classes. Assessment of model results showed good agreement with trends and spatial patterns in historical data sources such as the Census of Agriculture and historical housing density data, although comparison with historical data is complicated by definitional and methodological differences. The completion of this dataset allows researchers to assess historical LULC impacts on a range of ecological processes.
NASA Astrophysics Data System (ADS)
Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.
2018-04-01
Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.
NASA Astrophysics Data System (ADS)
Byerly, K.; Ohodnicki, P. R.; Moon, S. R.; Leary, A. M.; Keylin, V.; McHenry, M. E.; Simizu, S.; Beddingfield, R.; Yu, Y.; Feichter, G.; Noebe, R.; Bowman, R.; Bhattacharya, S.
2018-06-01
Metal amorphous nanocomposite (MANC) alloys are an emerging class of soft magnetic materials showing promise for a range of inductive components targeted for higher power density and higher efficiency power conversion applications including inductors, transformers, and rotating electrical machinery. Magnetization reversal mechanisms within these alloys are typically determined by composition optimization as well as controlled annealing treatments to generate a nanocomposite structure composed of nanocrystals embedded in an amorphous precursor. Here we demonstrate the concept of spatially varying the permeability within a given component for optimization of performance by using the strain annealing process. The concept is realized experimentally through the smoothing of the flux profile from the inner to outer core radius achieved by a monotonic variation in tension during the strain annealing process. Great potential exists for an extension of this concept to a wide range of other power magnetic components and more complex spatially varying permeability profiles through advances in strain annealing techniques and controls.
NASA Astrophysics Data System (ADS)
Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, Lalit C.; Asay, James R.
2000-04-01
Relatively straightforward changes in the design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging instrument that allows adjustment of spatial resolution over a wide range. As a result, line-imaging ORVIS can be tailored to various specific applications involving dynamic deformation of heterogeneous materials as required by their characteristic length scales (ranging from a few μm for ferroelectric ceramics to a few mm for concrete). A line-imaging system has been successfully interfaced to a compressed gas gun driver and fielded on numerous tests in combination with simultaneous dual delay-leg, "push-pull" VISAR measurements. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Results are presented that illustrate the capability for recording detailed spatially resolved material response.
Yasaitis, Laura C; Arcaya, Mariana C; Subramanian, S V
2015-09-01
Creating local population health measures from administrative data would be useful for health policy and public health monitoring purposes. While a wide range of options--from simple spatial smoothers to model-based methods--for estimating such rates exists, there are relatively few side-by-side comparisons, especially not with real-world data. In this paper, we compare methods for creating local estimates of acute myocardial infarction rates from Medicare claims data. A Bayesian Monte Carlo Markov Chain estimator that incorporated spatial and local random effects performed best, followed by a method-of-moments spatial Empirical Bayes estimator. As the former is more complicated and time-consuming, spatial linear Empirical Bayes methods may represent a good alternative for non-specialist investigators. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolution of density-dependent movement during experimental range expansions.
Fronhofer, E A; Gut, S; Altermatt, F
2017-12-01
Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Shearlet-based measures of entropy and complexity for two-dimensional patterns
NASA Astrophysics Data System (ADS)
Brazhe, Alexey
2018-06-01
New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an understanding of the level of order or randomness is desired.
Spatial memory and navigation by honeybees on the scale of the foraging range
Dyer
1996-01-01
Honeybees and other nesting animals face the problem of finding their way between their nest and distant feeding sites. Many studies have shown that insects can learn foraging routes in reference to both landmarks and celestial cues, but it is a major puzzle how spatial information obtained from these environmental features is encoded in memory. This paper reviews recent progress by my colleagues and me towards understanding three specific aspects of this problem in honeybees: (1) how bees learn the spatial relationships among widely separated locations in a familiar terrain; (2) how bees learn the pattern of movement of the sun over the day; and (3) whether, and if so how, bees learn the relationships between celestial cues and landmarks.
A spatial light modulator that uses scattering in a cholesteric liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Mitsunori, E-mail: msaito@rins.ryukoku.ac.jp; Uemi, Hiroto
2016-03-15
When a cholesteric liquid crystal (helical pitch: 5 μm) was sandwiched between two glass plates with no alignment coating (gap: 20 μm), a random-domain texture appeared and a strong light scattering took place. This translucent texture turned to a transparent homeotropic phase when an electric voltage of 20 V was applied to the liquid crystal layer. This phase transition was used for constructing a spatial light modulator that needed no polarizers. Indium-tin-oxide electrodes (0.8 mm square) were arranged on a glass substrate to create a 20 × 20 pixel array (20 mm square). The liquid crystal was injected into amore » gap (20 μm thickness) between this substrate and another glass plate with a uniform electrode (ground). The transmittance of the pixels was originally below 10% and decreased to 0% by 7 V application because of increase in the scattering loss. As the voltage was raised, the transmittance increased gradually in the 7–17 V range and then rapidly in the 17–20 V range, attaining 40% at 27 V. Various transmittance distributions or gray-scale images were attainable by applying a suitable voltage (7–27 V) to each pixel. The transmission range of this spatial light modulator extended from ultraviolet (350 nm) to infrared wavelengths (>800 nm). Owing to this wide transmission range as well as capability of the polarizer-free operation, this spatial light modulator is useful to control a lamp spectrum in spectroscopic measurements.« less
Hayes, Mark A.; Ozenberger, Katharine; Cryan, Paul M.; Wunder, Michael B.
2015-01-01
Bat specimens held in natural history museum collections can provide insights into the distribution of species. However, there are several important sources of spatial error associated with natural history specimens that may influence the analysis and mapping of bat species distributions. We analyzed the importance of geographic referencing and error correction in species distribution modeling (SDM) using occurrence records of hoary bats (Lasiurus cinereus). This species is known to migrate long distances and is a species of increasing concern due to fatalities documented at wind energy facilities in North America. We used 3,215 museum occurrence records collected from 1950–2000 for hoary bats in North America. We compared SDM performance using five approaches: generalized linear models, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy models. We evaluated results using three SDM performance metrics (AUC, sensitivity, and specificity) and two data sets: one comprised of the original occurrence data, and a second data set consisting of these same records after the locations were adjusted to correct for identifiable spatial errors. The increase in precision improved the mean estimated spatial error associated with hoary bat records from 5.11 km to 1.58 km, and this reduction in error resulted in a slight increase in all three SDM performance metrics. These results provide insights into the importance of geographic referencing and the value of correcting spatial errors in modeling the distribution of a wide-ranging bat species. We conclude that the considerable time and effort invested in carefully increasing the precision of the occurrence locations in this data set was not worth the marginal gains in improved SDM performance, and it seems likely that gains would be similar for other bat species that range across large areas of the continent, migrate, and are habitat generalists.
Towards massively parallelized all-optical magnetic recording
NASA Astrophysics Data System (ADS)
Davies, C. S.; Janušonis, J.; Kimel, A. V.; Kirilyuk, A.; Tsukamoto, A.; Rasing, Th.; Tobey, R. I.
2018-06-01
We demonstrate an approach to parallel all-optical writing of magnetic domains using spatial and temporal interference of two ultrashort light pulses. We explore how the fluence and grating periodicity of the optical transient grating influence the size and uniformity of the written bits. Using a total incident optical energy of 3.5 μJ, we demonstrate the capability of simultaneously writing 102 spatially separated bits, each featuring a relevant lateral width of ˜1 μm. We discuss viable routes to extend this technique to write individually addressable, sub-diffraction-limited magnetic domains in a wide range of materials.
NASA Astrophysics Data System (ADS)
Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike
2015-04-01
For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.
Reconstructing spatial organizations of chromosomes through manifold learning
Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-01-01
Abstract Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data. PMID:29408992
Reconstructing spatial organizations of chromosomes through manifold learning.
Zhu, Guangxiang; Deng, Wenxuan; Hu, Hailin; Ma, Rui; Zhang, Sai; Yang, Jinglin; Peng, Jian; Kaplan, Tommy; Zeng, Jianyang
2018-05-04
Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D) genome structure. In this paper, we develop a novel manifold learning based framework, called GEM (Genomic organization reconstructor based on conformational Energy and Manifold learning), to reconstruct the three-dimensional organizations of chromosomes by integrating Hi-C data with biophysical feasibility. Unlike previous methods, which explicitly assume specific relationships between Hi-C interaction frequencies and spatial distances, our model directly embeds the neighboring affinities from Hi-C space into 3D Euclidean space. Extensive validations demonstrated that GEM not only greatly outperformed other state-of-art modeling methods but also provided a physically and physiologically valid 3D representations of the organizations of chromosomes. Furthermore, we for the first time apply the modeled chromatin structures to recover long-range genomic interactions missing from original Hi-C data.
Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A
2014-08-01
Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions. © 2014 John Wiley & Sons Ltd.
Molina, David; Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M
2017-01-01
Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.
Digital processing techniques and film density calibration for printing image data
Chavez, Pat S.; McSweeney, Joseph A.; Binnie, Douglas R.
1987-01-01
Satellite image data that cover a wide range of environments are being used to make prints that represent a map type product. If a wide distribution of these products is desired, they are printed using lithographic rather than photographic procedures to reduce the cost per print. Problems are encountered in the photo lab if the film products to be used for lithographic printing have the same density range and density curve characteristics as the film used for photographic printing. A method is presented that keeps the film densities within the 1.1 range required for lithographic printing, but generates film products with contrast similar to that in photographic film for the majority of data (80 percent). Also, spatial filters can be used to enhance local detail in dark and bright regions, as well as to sharpen the final image product using edge enhancement techniques.
Indoor Spatial Updating With Impaired Vision
Legge, Gordon E.; Granquist, Christina; Baek, Yihwa; Gage, Rachel
2016-01-01
Purpose Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Methods Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. Results The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. Conclusions People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient. PMID:27978556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Swati, F. N. U.; Stein, Michael L.
Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model’s ability to capture spatio-temporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and non-seasonal precipitation components used to assess the spatial variations of precipitation; and (2) spatio-temporal correlation for a wide range of distances, directions, andmore » time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatio-temporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP II reanalysis data (NCEP-R2), which provides initial and lateral boundary conditions for the RCM. The RCM performs better than NCEP-R2 in capturing both the spatial variations of total and non-seasonal precipitation components and the spatio-temporal correlations of daily precipitation occurrences, which are related to dynamic behaviors of precipitating systems. The improvements are apparent not just at resolutions finer than that of NCEP-R2, but also when the RCM and observational data are aggregated to the resolution of NCEP-R2.« less
Indoor Spatial Updating With Impaired Vision.
Legge, Gordon E; Granquist, Christina; Baek, Yihwa; Gage, Rachel
2016-12-01
Spatial updating is the ability to keep track of position and orientation while moving through an environment. We asked how normally sighted and visually impaired subjects compare in spatial updating and in estimating room dimensions. Groups of 32 normally sighted, 16 low-vision, and 16 blind subjects estimated the dimensions of six rectangular rooms. Updating was assessed by guiding the subjects along three-segment paths in the rooms. At the end of each path, they estimated the distance and direction to the starting location, and to a designated target. Spatial updating was tested in five conditions ranging from free viewing to full auditory and visual deprivation. The normally sighted and low-vision groups did not differ in their accuracy for judging room dimensions. Correlations between estimated size and physical size were high. Accuracy of low-vision performance was not correlated with acuity, contrast sensitivity, or field status. Accuracy was lower for the blind subjects. The three groups were very similar in spatial-updating performance, and exhibited only weak dependence on the nature of the viewing conditions. People with a wide range of low-vision conditions are able to judge room dimensions as accurately as people with normal vision. Blind subjects have difficulty in judging the dimensions of quiet rooms, but some information is available from echolocation. Vision status has little impact on performance in simple spatial updating; proprioceptive and vestibular cues are sufficient.
NASA Astrophysics Data System (ADS)
Brown, I.; Wennbom, M.
2013-12-01
Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors derived are evaluated using independent high spatial resolution datasets that reveal the pattern and health of vegetation at metre scales. We also use climate variables to support the interpretation of these data. We conclude that the spatio-temporal patterns in Darfur vegetation and climate datasets suggest that labelling the conflict a climate-change conflict is inaccurate and premature.
CheckDen, a program to compute quantum molecular properties on spatial grids.
Pacios, Luis F; Fernandez, Alberto
2009-09-01
CheckDen, a program to compute quantum molecular properties on a variety of spatial grids is presented. The program reads as unique input wavefunction files written by standard quantum packages and calculates the electron density rho(r), promolecule and density difference function, gradient of rho(r), Laplacian of rho(r), information entropy, electrostatic potential, kinetic energy densities G(r) and K(r), electron localization function (ELF), and localized orbital locator (LOL) function. These properties can be calculated on a wide range of one-, two-, and three-dimensional grids that can be processed by widely used graphics programs to render high-resolution images. CheckDen offers also other options as extracting separate atom contributions to the property computed, converting grid output data into CUBE and OpenDX volumetric data formats, and perform arithmetic combinations with grid files in all the recognized formats.
Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.; Weng, Qihao
2014-01-01
This chapter describes emerging methods for using satellite imagery across temporal and spatial scales using a case study approach to illustrate some of the opportunities now available for combining observations across scales. It explores the use of multiplatform sensor systems to characterize ecological change, as exemplified by efforts to scale the effects of a biocontrol insect (the leaf beetle Diorhabda carinulata) on the phenology and water use of Tamarix shrubs (Tamarix ramosissima and related species and hybrids) targeted for removal on western U.S. rivers, from the level of individual leaves to the regional level of measurement. Finally, the chapter summarizes the lessons learned and emphasize the need for ground data to calibrate and validate remote sensing data and the types of errors inherent in scaling point data over wide areas, illustrated with research on evapotranspiration (ET) of Tamarix using a wide range of ground measurement and remote sensing methods.
Unger, Shem D.; Rhodes, Olin E.; Sutton, Trent M.; Williams, Rod N.
2013-01-01
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species. PMID:24204565
SpIOMM and SITELLE: Wide-field Imaging FTS for the Study of Galaxy Evolution
NASA Astrophysics Data System (ADS)
Drissen, Laurent; Bernier, Anne-Pier; Robert, Carmelle; Robert
2011-12-01
SpIOMM, a wide-field Imaging Fourier Transform Spectrometer attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in 1.7 million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We present a short description of these instruments and illustrate their capabilities to study nearby galaxies with the results of a data cube of M51.
Wildland fire emissions, carbon, and climate: U.S. emissions inventories
Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand
2014-01-01
Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...
USDA-ARS?s Scientific Manuscript database
Armyworm, as a destructive insect for maize, causes wide range of damage in both China and U.S. in recent years. To obtain the spatial distribution of damage area and assess the damage severity, a fast and accurate loss assessment method is of great importance for effective management. This study, t...
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii counts among the most consequential food-borne parasites, and although the parasite occurs in a wide range of wild and domesticated animals, farms may constitute a specific and important locus of transmission. If so, parasites in animals that inhabit agricultural landscapes might b...
ERIC Educational Resources Information Center
Burke, Ken
1998-01-01
Detailed analyses are made of the concepts of window (seemingly deep spatial renderings) and frame (flatter, more technique-conscious structures) as they apply to a wide variety of visual media and communicative purposes. Special cases of each of these are detailed, along with their applications in cinema history to a range of realist, formalist,…
Matthew B. Dickinson; Andrew T. Hudak; Thomas Zajkowski; E. Louise Loudermilk; Wilfrid Schroeder; Luke Ellison; Robert L. Kremens; William Holley; Otto Martinez; Alexander Paxton; Benjamin C. Bright; Joseph O' Brien; Ben Hornsby; Charles Ichoku; Jason Faulring; Aaron Gerace; David Peterson; Joseph Mauceri
2016-01-01
Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE)...
Jeffrey D. Kline; Alissa Moses; Theresa Burcsu
2010-01-01
Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide...
Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions
NASA Astrophysics Data System (ADS)
Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; Irwin, Patrick; Jennings, Donald E.; Kessler, Ernst; Lakew, Brook; Loeffler, Mark; Mellon, Michael; Nicoletti, Anthony; Nixon, Conor A.; Putzig, Nathaniel; Quilligan, Gerard; Rathbun, Julie; Segura, Marcia; Spencer, John; Spitale, Joseph; West, Garrett
2016-11-01
The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 μm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.
A suite of engineered GFP molecules for oligomeric scaffolding
Leibly, David J.; Arbing, Mark A.; Pashkov, Inna; ...
2015-08-13
Applications ranging from synthetic biology to protein crystallization could be advanced by facile systems for connecting multiple proteins together in predefined spatial relationships. One approach to this goal is to engineer many distinct assembly forms of a single carrier protein or scaffold, to which other proteins of interest can then be readily attached. In this work we chose GFP as a scaffold and engineered many alternative oligomeric forms, driven by either specific disulfide bond formation or metal ion addition. We generated a wide range of spatial arrangements of GFP subunits from 11 different oligomeric variants, and determined their X-ray structuresmore » in a total of 33 distinct crystal forms. Furthermore, some of the oligomeric GFP variants show geometric polymorphism depending on conditions, while others show considerable geometric rigidity. Potential future applications of this system are discussed.« less
Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane;
2016-01-01
The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.
Frontotemporal Dementia Selectively Impairs Transitive Reasoning About Familiar Spatial Environments
Vartanian, Oshin; Goel, Vinod; Tierney, Michael; Huey, Edward D.; Grafman, Jordan
2010-01-01
Although patients with frontotemporal dementia (FTD) are known to exhibit a wide range of cognitive and personality difficulties, some evidence suggests that there may be a degree of selectivity in their reasoning impairments. Based on a recent review of the neuroimaging literature on reasoning, the authors hypothesized that the presence or absence of familiar content may have a selective impact on the reasoning abilities of patients with FTD. Specifically, the authors predicted that patients with frontalvariant FTD would be more impaired when reasoning about transitive arguments involving familiar spatial environments than when reasoning about identical logical arguments involving unfamiliar spatial environments. As predicted, patients with FTD were less accurate than normal controls only when the content of arguments involved familiar spatial environments. These results indicate a degree of selectivity in the cognitive deficits of this patient population and suggest that the frontal-temporal lobe system may play a necessary role in reasoning about familiar material. PMID:19702415
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
Intelligent automated surface grid generation
NASA Technical Reports Server (NTRS)
Yao, Ke-Thia; Gelsey, Andrew
1995-01-01
The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.
Asynchronous spatial evolutionary games.
Newth, David; Cornforth, David
2009-02-01
Over the past 50 years, much attention has been given to the Prisoner's Dilemma as a metaphor for problems surrounding the evolution and maintenance of cooperative and altruistic behavior. The bulk of this work has dealt with the successfulness and robustness of various strategies. Nowak and May (1992) considered an alternative approach to studying evolutionary games. They assumed that players were distributed across a two-dimensional (2D) lattice, interactions between players occurred locally, rather than at long range as in the well mixed situation. The resulting spatial evolutionary games display dynamics not seen in their well-mixed counterparts. An assumption underlying much of the work on spatial evolutionary games is that the state of all players is updated in unison or in synchrony. Using the framework outlined in Nowak and May (1992), we examine the effect of various asynchronous updating schemes on the dynamics of spatial evolutionary games. There are potential implications for the dynamics of a wide variety of spatially extended systems in biology, physics and chemistry.
Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.
2018-01-01
p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369
Large-scale cortical correlation structure of spontaneous oscillatory activity
Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.
2013-01-01
Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454
NASA Astrophysics Data System (ADS)
Lin, Jia-De; Lin, Hong-Lin; Lin, Hsin-Yu; Wei, Guan-Jhong; Lee, Chia-Rong
2017-02-01
The scientists in the field of liquid crystal (LC) have paid significant attention in the exploration of novel cholesteric LC (CLC) polymer template (simply called template) in recent years. The self-assembling nanostructural template with chirality can effectively overcome the limitation in the optical features of traditional CLCs, such as enhancement of reflectivity over 50%, multiple photonic bandgaps (PBGs), and changeable optical characteristics by flexibly replacing the refilling LC materials, and so on. This work fabricates two gradient-pitched CLC templates with two opposite handednesses, which are then merged as a spatially tunable and highly reflective CLC template sample. This sample can simultaneously reflect right- and left-circularly polarized lights and the tunable spectral range includes the entire visible region. By increasing the temperature of the template sample exceeding the clearing point of the refilling LC, the light scattering significantly decreases and the reflectance effectively increase to exceed 50% in the entire visible region. This device has a maximum reflectance over 85% and a wide-band spatial tunability in PBG between 400 nm and 800 nm which covers the entire visible region. Not only the sample can be employed as a wide-band spatially tunable filter, but also the system doping with two suitable laser dyes which emitted fluorescence can cover entire visible region can develop a low-threshold, mirror-less laser with a spatial tunability at spectral regions including blue to red region (from 484 nm to 634 nm) and simultaneous lasing emission of left- and right-circular polarizations.
NASA Astrophysics Data System (ADS)
Hanson, A.; Fu, C.-W.; Li, Y.; Frisch, P. C.
2006-06-01
Beginning with the familiar constellations of the night sky, we present a multispectral zoom into the core of the Milky Way Galaxy. After traveling over seven orders of magnitude in spatial scale, we discover the violent phenomena occurring within one light year of the Black Hole at the Galactic Core. This animated zoom includes data with wavelengths from radio to X-ray, and is based entirely on data or models that have been aligned at all spatial scales in order to provide a single continuous visual trip into the Center of the Milky Way Galaxy. The visualization challenge has been to align and choreograph data acquired over a wide range of wavelength and spatial scales, and obtain a new scientific as well as educational perspective of the dense core of our Galaxy.
Virtual reality: teaching tool of the twenty-first century?
Hoffman, H; Vu, D
1997-12-01
Virtual reality (VR) is gaining recognition for its enormous educational potential. While not yet in the mainstream of academic medical training, many prototype and first-generation VR applications are emerging, with target audiences ranging from first- and second-year medical students to residents in advanced clinical training. Visualization tools that take advantage of VR technologies are being designed to provide engaging and intuitive environments for learning visually and spatially complex topics such as human anatomy, biochemistry, and molecular biology. These applications present dynamic, three-dimensional views of structures and their spatial relationships, enabling users to move beyond "real-world" experiences by interacting with or altering virtual objects in ways that would otherwise be difficult or impossible. VR-based procedural and surgical simulations, often compared with flight simulators in aviation, hold significant promise for revolutionizing medical training. Already a wide range of simulations, representing diverse content areas and utilizing a variety of implementation strategies, are either under development or in their early implementation stages. These new systems promise to make broad-based training experiences available for students at all levels, without the risks and ethical concerns typically associated with using animal and human subjects. Medical students could acquire proficiency and gain confidence in the ability to perform a wide variety of techniques long before they need to use them clinically. Surgical residents could rehearse and refine operative procedures, using an unlimited pool of virtual patients manifesting a wide range of anatomic variations, traumatic wounds, and disease states. Those simulated encounters, in combination with existing opportunities to work with real patients, could increase the depth and breadth of learners' exposure to medical problems, ensure uniformity of training experiences, and enhance the acquisition of clinical skills.
Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen
2014-11-01
The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.
2018-03-01
Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.
In situ two-dimensional imaging quick-scanning XAFS with pixel array detector.
Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi
2011-11-01
Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya
2016-05-15
We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.
Modeling spatially localized photonic nanojets from phase diffraction gratings
NASA Astrophysics Data System (ADS)
Geints, Yu. E.; Zemlyanov, A. A.
2016-04-01
We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffraction grating rulings.
Wide size range fast integrated mobility spectrometer
Wang, Jian
2013-10-29
A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.
Spatially Resolved Spectroscopy of the PMS Quadruple GG Tau: Evidence for a Substellar Companion
NASA Astrophysics Data System (ADS)
White, R. J.; Ghez, A. M.; Schultz, G.; Reid, I. N.
1998-05-01
We present spatially resolved optical spectra from HST (FOS) and the Keck Telescope (HIRES & LRIS) of the components of the quadruple PMS system GG Tau. According to the latest PMS evolutionary models, the coldest component of this system, GG Tau/c B, appears to be substellar with a preliminary mass of only 50 M_J. This putative brown dwarf is especially intriguing as it shows clear signatures of accretion. The components of this quadruple, which span a wide range in mass, are used to test theoretical low mass PMS evolutionary models under the assumption that the components should be coeval.
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki
2003-10-01
We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, D S; Yakovlev, E B
The heating of metals (silver and aluminium) by ultrashort laser pulses is analysed proceeding from a spatially nonuniform kinetic equation for the electron distribution function. The electron subsystem thermalisation is estimated in a wide range of absorbed pulse energy density. The limits of applicability are determined for the two-temperature model. (interaction of laser radiation with matter)
Edward B. Butler
2005-01-01
The fires of 2000 and 2002 catalyzed a national mandate for fuel treatment programs to facilitate wildfire mitigation, yet the issues that need to be considered when planning large landscape projects are daunting, often ending in gridlock due to planning conflicts. Hazardous fuels maps help little when planning for integrated, system-wide ecological objectives and fail...
NASA Astrophysics Data System (ADS)
Vorob'ev, V. V.; Krasil'Nikova, T. G.; Tikhonova, N. S.
1989-09-01
The spectra and structure functions of log-amplitude and phase fluctuations of laser radiation under thermal blooming are calculated on the basis of a smooth perturbation method. The spectrum dynamics is investigated in a wide range of spatial frequencies. The applicability of geometrical-optics and diffraction asymptotics to the calculation of the fluctuations is studied.
New insights on multiplicity and clustering in Taurus.
NASA Astrophysics Data System (ADS)
Joncour, Isabelle; Duchene, Gaspard; Moraux, Estelle; Mundy, Lee
2018-01-01
Multiplicity and clustering of young stars are critical clues to constraint star formation process. The Taurus molecular complex is the archetype of a quiescent star forming region that may retain primeval signature of star formation.Using statistical and clustering tools such as nearest neighbor statistics, correlation functions and the density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, this work reveals new spatial substructures in Taurus.We have identified unexpected ultra wide pairs (UWPs) candidates of high order multiplicity in Taurus in the 5-60 kAU separation range (Joncour et al 2017), beyond the separation assessed for wide pairs (Kraus & Hillenbrand 2009).Our work reveals 20 local stellar substructures, the Nested Elementary Structures (NESTs). These NESTs contain nearly half the stars of Taurus and 75% of the Class 0/I objects probing that they are the preferred sites of star formation (Joncour et al, sub.). The NESTs size ranges from few kAU up to 80 kAU making a length scale bridge between wide pairs and loose group (few hundreds kAU, Kirk & Myers, 2011). The NESTs mass ranges from 0.5-10 solar mass. The balance between Class I, II and III in NESTs suggests that they may be ordered as an evolutionary temporal scheme, some of them got infertile, while other shelter stars in infancy.The UWPs and the NESTs may be pristine imprints of their spatial configuration at birth. The UWPs population may result from a cascade fragmentation scenario of the natal molecular core. They could be the older counterparts, to the 0.5 Myr prestellar cores/Class 0 multiple objects observed at radio/millimeter wavelengths (Tobin et al 2010, 2016) and the precursors of the large number of UWPs (10–100 kAU) recently identified in older moving groups (Floriano-Alonso et al, 2015 ; Elliot et al 2016). The NESTs may result from the gravitational collapse of a gas clump that fragments to give a tight collection of stars within few millions years.This project has been partly supported by the StarFormMapper project funded by the European Union's Horizon 2020 Research and Innovation Action (RIA) program under grant agreement number 687528.
Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations
Nogeire, Theresa M.; Lawler, Joshua J.; Schumaker, Nathan H.; Cypher, Brian L.; Phillips, Scott E.
2015-01-01
Although rodenticides are increasingly regulated, they nonetheless cause poisonings in many non-target wildlife species. Second-generation anticoagulant rodenticide use is common in agricultural and residential landscapes. Here, we use an individual-based population model to assess potential population-wide effects of rodenticide exposures on the endangered San Joaquin kit fox (Vulpes macrotis mutica). We estimate likelihood of rodenticide exposure across the species range for each land cover type based on a database of reported pesticide use and literature. Using a spatially-explicit population model, we find that 36% of modeled kit foxes are likely exposed, resulting in a 7-18% decline in the range-wide modeled kit fox population that can be linked to rodenticide use. Exposures of kit foxes in low-density developed areas accounted for 70% of the population-wide exposures to rodenticides. We conclude that exposures of non-target kit foxes could be greatly mitigated by reducing the use of second-generation anticoagulant rodenticides in low-density developed areas near vulnerable populations. PMID:26244655
Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian
2016-12-01
Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M.
2017-01-01
Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images. PMID:28586353
Modeling the radiation pattern of LEDs.
Moreno, Ivan; Sun, Ching-Cherng
2008-02-04
Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.
Constructing Rigorous and Broad Biosurveillance Networks for Detecting Emerging Zoonotic Outbreaks
Brown, Mac; Moore, Leslie; McMahon, Benjamin; Powell, Dennis; LaBute, Montiago; Hyman, James M.; Rivas, Ariel; Jankowski, Mark; Berendzen, Joel; Loeppky, Jason; Manore, Carrie; Fair, Jeanne
2015-01-01
Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities of potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic. PMID:25946164
Advancing the integration of spatial data to map human and natural drivers on coral reefs
Gove, Jamison M.; Walecka, Hilary R.; Donovan, Mary K.; Williams, Gareth J.; Jouffray, Jean-Baptiste; Crowder, Larry B.; Erickson, Ashley; Falinski, Kim; Friedlander, Alan M.; Kappel, Carrie V.; Kittinger, John N.; McCoy, Kaylyn; Norström, Albert; Nyström, Magnus; Oleson, Kirsten L. L.; Stamoulis, Kostantinos A.; White, Crow; Selkoe, Kimberly A.
2018-01-01
A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs. PMID:29494613
Influence of contrast on spatial perception in TV display of moving images
NASA Astrophysics Data System (ADS)
Heising, H.
1981-09-01
A low cost visual simulation system was developed which involves a hybrid computer controlled transformation of perspective on a raster scan TV display. It is applicable to a wide range of simulation tasks, including training and research, but is especially useful in facilitating detection of moving objects and reducing frame rate in RPV applications with a number of advantages, e.g., reduction of bandwidth and improved protection against jamming. Because of the perspective transformation in TV raster scan, a change of contrast can occur during the display of moving images. Therefore, it is of interest to know the effect of this contrast change on human spatial perception. The investigations undertaken led to the conclusion that the physical contrast in the ratio range of l:ll to 1:25 (by a medium illuminance of 7 cd/sqm at the white parts of the picture) does not influence human distance and height judgments.
NASA Astrophysics Data System (ADS)
Mouw, Colleen; Greb, Steven
2012-09-01
Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Nunley, Hayden; Marino, Alberto
2016-05-01
Quantum noise reduction (QNR) below the standard quantum limit (SQL) has been a subject of interest for the past two to three decades due to its wide range of applications in quantum metrology and quantum information processing. To date, most of the attention has focused on the study of QNR in the temporal domain. However, many areas in quantum optics, specifically in quantum imaging, could benefit from QNR not only in the temporal domain but also in the spatial domain. With the use of a high quantum efficiency electron multiplier charge coupled device (EMCCD) camera, we have observed spatial QNR below the SQL in bright narrowband twin light beams generated through a four-wave mixing (FWM) process in hot rubidium atoms. Owing to momentum conservation in this process, the twin beams are momentum correlated. This leads to spatial quantum correlations and spatial QNR. Our preliminary results show a spatial QNR of over 2 dB with respect to the SQL. Unlike previous results on spatial QNR with faint and broadband photon pairs from parametric down conversion (PDC), we demonstrate spatial QNR with spectrally and spatially narrowband bright light beams. The results obtained will be useful for atom light interaction based quantum protocols and quantum imaging. Work supported by the W.M. Keck Foundation.
Women match men when learning a spatial skill.
Spence, Ian; Yu, Jingjie Jessica; Feng, Jing; Marshman, Jeff
2009-07-01
Meta-analytic studies have concluded that although training improves spatial cognition in both sexes, the male advantage generally persists. However, because some studies run counter to this pattern, a closer examination of the anomaly is warranted. The authors investigated the acquisition of a basic skill (spatial selective attention) using a matched-pair two-wave longitudinal design. Participants were screened with the use of an attentional visual field task, with the objective of selecting and matching 10 male-female pairs, over a wide range (30% to 57% correct). Subsequently, 20 participants 17-23 years of age (selected from 43 screened) were trained for 10 hr (distributed over several sessions) by playing a first-person shooter video game. This genre is known to be highly effective in enhancing spatial skills. All 20 participants improved, with matched members of the male-female pairs achieving very similar gains, independent of starting level. This is consistent with the hypothesis that the learning trajectory of women is not inferior to that of men when acquiring a basic spatial skill. Training methods that develop basic spatial skills may be essential to achieve gender parity in both basic and complex spatial tasks.
NASA Astrophysics Data System (ADS)
Chaplin-Kramer, Rebecca; Hamel, Perrine; Sharp, Richard; Kowal, Virgina; Wolny, Stacie; Sim, Sarah; Mueller, Carina
2016-07-01
Corporations and other multinational institutions are increasingly looking to evaluate their innovation and procurement decisions over a range of environmental criteria, including impacts on ecosystem services according to the spatial configuration of activities on the landscape. We have developed a spatially explicit approach and modeled a hypothetical corporate supply chain decision representing contrasting patterns of land-use change in four regions of the globe. This illustrates the effect of introducing spatial considerations in the analysis of ecosystem services, specifically sediment retention. We explored a wide variety of contexts (Iowa, USA; Mato Grosso, Brazil; and Jiangxi and Heilongjiang in China) and these show that per-area representation of impacts based on the physical characterization of a region can be misleading. We found two- to five-fold differences in sediment export for the same amount of habitat conversion within regions characterized by similar physical traits. These differences were mainly determined by the distance between land use changes and streams. The influence of landscape configuration is so dramatic that it can override wide variation in erosion potential driven by physical factors like soil type, slope, and climate. To minimize damage to spatially-dependent ecosystem services like water purification, sustainable sourcing strategies should not assume a direct correlation between impact and area but rather allow for possible nonlinearity in impacts, especially in regions with little remaining habitat and highly variable hydrological connectivity.
Preliminary evidence that abscisic acid improves spatial memory in rats.
Qi, Cong-Cong; Ge, Jin-Fang; Zhou, Jiang-Ning
2015-02-01
Abscisic acid (ABA) is a crucial phytohormone that exists in a wide range of animals, including humans, and has multiple bioactivities. As direct derivatives of carotenoids, ABA and retinoic acid (RA) share similar molecular structures, and RA has been reported to improve spatial memory in rodents. To explore the potential effects of ABA on spatial learning and memory in rodents, 20mg/kg ABA was administered to young rats for 6weeks, and its effects on behaviour performance were evaluated through a series of behavioural tests. ABA pharmacokinetic analysis revealed that the exogenous ABA was distributed widely in the rat brain, characterised by rapid absorption and slow elimination. The behavioural tests showed that ABA increased both the duration spent in the target quadrant and the frequency it was entered in the probe test of the Morris water maze (MWM) and decreased the latency to locate the target quadrant. Moreover, ABA decreased the latency to enter the novel arm in the Y-maze test, accompanied by increases in the total entries and distance travelled in the three arms. However, there were no significant differences between the ABA-treated and control rats in the open field test and elevated plus-maze test. These results preliminarily indicate that ABA improves spatial memory in MWM and exploratory activity in Y-maze in young rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Nonuniformity correction of imaging systems with a spatially nonhomogeneous radiation source.
Gutschwager, Berndt; Hollandt, Jörg
2015-12-20
We present a novel method of nonuniformity correction of imaging systems in a wide optical spectral range by applying a radiation source with an unknown and spatially nonhomogeneous radiance or radiance temperature distribution. The benefit of this method is that it can be applied with radiation sources of arbitrary spatial radiance or radiance temperature distribution and only requires the sufficient temporal stability of this distribution during the measurement process. The method is based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogenous radiance distribution and a thermal imager of a predefined nonuniform focal plane array responsivity is presented.
Automated quantum operations in photonic qutrits
NASA Astrophysics Data System (ADS)
Borges, G. F.; Baldijão, R. D.; Condé, J. G. L.; Cabral, J. S.; Marques, B.; Terra Cunha, M.; Cabello, A.; Pádua, S.
2018-02-01
We report an experimental implementation of automated state transformations on spatial photonic qutrits following the theoretical proposal made by Baldijão et al. [Phys. Rev. A 96, 032329 (2017), 10.1103/PhysRevA.96.032329]. A qutrit state is simulated by using three Gaussian beams, and after some state operations, the transformed state is available in the end in terms of the basis state. The state transformation setup uses a spatial light modulator and a calcite-based interferometer. The results reveal the usefulness of the operation method. The experimental data show a good agreement with theoretical predictions, opening possibilities for explorations in higher dimensions and in a wide range of applications. This is a necessary step in qualifying spatial photonic qudits as a competitive setup for experimental research in the implementation of quantum algorithms which demand a large number of steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, S A; Trunov, V I; Pestryakov, Efim V
2013-05-31
We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberianmore » Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)« less
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song
2017-08-01
Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.
Evaluation of a novel collimator for molecular breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon
Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less
Evaluation of a novel collimator for molecular breast tomosynthesis.
Gilland, David R; Welch, Benjamin L; Lee, Seungjoon; Kross, Brian; Weisenberger, Andrew G
2017-11-01
This study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelated (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (-25° to 25°) using 99m Tc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging. © 2017 American Association of Physicists in Medicine.
Evaluation of a novel collimator for molecular breast tomosynthesis
Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon; ...
2017-09-06
Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less
Ge Sun; Catalina Segura
2013-01-01
The aim of the special issue âInteractions of Forests, Climate, Water Resources, and Humans in a Changing Environmentâ is to present case studies on the influences of natural and human disturbances on forest water resources under a changing climate. Studies in this collection of six papers cover a wide range of geographic regions from Australia to Nigeria with spatial...
Normal-incidence EXtreme-Ultraviolet imaging Spectrometer - NEXUS
NASA Astrophysics Data System (ADS)
Dere, K. P.
2003-05-01
NEXUS is the result of a breakthrough optical design that incorporates new technologies to achieve high optical throughput at high spatial (1 arcsec) and spectral (1-2 km s-1) resolution over a wide field of view in an optimal extreme-ultraviolet spectral band. This achievement was made possible primarily by two technical developments. First, a coating of boron-carbide deposited onto a layer of iridium provided a greatly enhanced reflectivity at EUV wavelengths that would enable NEXUS to observe the Sun over a wide temperature range at high cadence. The reflectivity of these coatings have been measured and demonstrated in the laboratory. The second key development was the use of a variable-line-spaced toroidal grating spectrometer. The spectrometer design allowed the Sun to be imaged at high spatial and spectral resolution along a 1 solar radius-long slit and over a wavelength range from 450 to 800 Å, nearly an entire spectral order. Because the spectrograph provided a magnification of about a factor of 6, only 2 optical elements are required to achieved the desired imaging performance. Throughput was enhanced by the use of only 2 reflections. The could all be accomodated within a total instrument length of 1.5m. We would like to acknowledge support from ONR
African hydroclimatic variability during the last 2000 years
NASA Astrophysics Data System (ADS)
Nash, David J.; De Cort, Gijs; Chase, Brian M.; Verschuren, Dirk; Nicholson, Sharon E.; Shanahan, Timothy M.; Asrat, Asfawossen; Lézine, Anne-Marie; Grab, Stefan W.
2016-12-01
The African continent is characterised by a wide range of hydroclimate regimes, ranging from humid equatorial West Africa to the arid deserts in the northern and southern subtropics. The livelihoods of much of its population are also vulnerable to future climate change, mainly through variability in rainfall affecting water resource availability. A growing number of data sources indicate that such hydroclimatic variability is an intrinsic component of Africa's natural environment. This paper, co-authored by members of the PAGES Africa 2k Working Group, presents an extensive assessment and discussion of proxy, historical and instrumental evidence for hydroclimatic variability across the African continent, spanning the last two millennia. While the African palaeoenvironmental record is characterised by spatially disjunctive datasets, with often less-than-optimal temporal resolution and chronological control, the available evidence allows the assessment of prominent spatial patterns of palaeomoisture variability through time. In this study, we focus sequentially on data for six major time windows: the first millennium CE, the Medieval Climate Anomaly (900-1250 CE), the Little Ice Age (1250-1750 CE), the end of the LIA (1750-1850 CE), the Early Modern Period (1850-1950), and the period of recent warming (1950 onwards). This results in a continent-wide synthesis of regional moisture-balance trends through history, allowing consideration of possible driving mechanisms, and suggestions for future research.
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-12-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-02-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat
Erickson, Richard A.; Thogmartin, Wayne E.; Diffendorfer, James E.; Russell, Robin E.; Szymanski, Jennifer A.
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat.
Erickson, Richard A; Thogmartin, Wayne E; Diffendorfer, Jay E; Russell, Robin E; Szymanski, Jennifer A
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat ( Myotis sodalis ), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans , disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter
NASA Astrophysics Data System (ADS)
Choi, Y. J.; Kim, S.; Kang, K. I.
2016-12-01
A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.
Wide spectral range confocal microscope based on endlessly single-mode fiber.
Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G
2010-08-30
We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.
van Eeden, Rowen; Whitfield, D. Philip; Botha, Andre; Amar, Arjun
2017-01-01
Understanding the ranging behaviours of species can be helpful in effective conservation planning. However, for many species that are rare, occur at low densities, or occupy challenging environments, this information is often lacking. The Martial Eagle (Polemaetus bellicosus) is a low density apex predator declining in both non-protected and protected areas in southern Africa, and little is known about its ranging behaviour. We use GPS tags fitted to Martial Eagles (n = 8) in Kruger National Park (KNP), South Africa to describe their ranging behaviour and habitat preference. This represents the first time that such movements have been quantified in adult Martial Eagles. Territorial eagles (n = 6) held home ranges averaging ca. 108 km2. Home range estimates were similar to expectations based on inter-nest distances, and these large home range sizes could constrain the carrying capacity of even the largest conservation areas. Two tagged individuals classed as adults on plumage apparently did not hold a territory, and accordingly ranged more widely (ca. 44,000 km2), and beyond KNP boundaries as floaters. Another two territorial individuals abandoned their territories and joined the ‘floater’ population, and so ranged widely after leaving their territories. These unexpected movements after territory abandonment could indicate underlying environmental degradation. Relatively high mortality of these wide-ranging ‘floaters’ due to anthropogenic causes (three of four) raises further concerns for the species’ persistence. Habitat preference models suggested Martial Eagles used areas preferentially that were closer to rivers, had higher tree cover, and were classed as dense bush rather than open bush or grassland. These results can be used by conservation managers to help guide actions to preserve breeding Martial Eagles at an appropriate spatial scale. PMID:28306744
Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M
2014-01-01
Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.
Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1
Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron
2005-01-01
Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593
Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher
Bakian, Amanda V.; Sullivan, Kimberly A.; Paxton, Eben H.
2012-01-01
Animal resource selection is a complex, hierarchical decision-making process, yet resource selection studies often focus on the presence and absence of an animal rather than the animal's behavior at resource use locations. In this study, we investigate foraging and vocalization resource selection in a population of Willow Flycatchers, Empidonax traillii adastus, using Bayesian spatial generalized linear models. These models produce “behavioral landscapes” in which space use and resource selection is linked through behavior. Radio telemetry locations were collected from 35 adult Willow Flycatchers (n = 14 males, n = 13 females, and n = 8 unknown sex) over the 2003 and 2004 breeding seasons at Fish Creek, Utah. Results from the 2-stage modeling approach showed that habitat type, perch position, and distance from the arithmetic mean of the home range (in males) or nest site (in females) were important factors influencing foraging and vocalization resource selection. Parameter estimates from the individual-level models indicated high intraspecific variation in the use of the various habitat types and perch heights for foraging and vocalization. On the population level, Willow Flycatchers selected riparian habitat over other habitat types for vocalizing but used multiple habitat types for foraging including mountain shrub, young riparian, and upland forest. Mapping of observed and predicted foraging and vocalization resource selection indicated that the behavior often occurred in disparate areas of the home range. This suggests that multiple core areas may exist in the home ranges of individual flycatchers, and demonstrates that the behavioral landscape modeling approach can be applied to identify spatially and behaviorally distinct core areas. The behavioral landscape approach is applicable to a wide range of animal taxa and can be used to improve our understanding of the spatial context of behavior and resource selection.
The basis function approach for modeling autocorrelation in ecological data
Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.
2017-01-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben
2016-04-11
The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.
Modeling spatially localized photonic nanojets from phase diffraction gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geints, Yu. E., E-mail: ygeints@iao.ru; Tomsk State University, 36, Lenina Avenue, Tomsk 634050; Zemlyanov, A. A.
2016-04-21
We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffractionmore » grating rulings.« less
a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries
NASA Astrophysics Data System (ADS)
Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.
2017-10-01
Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.
Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder
NASA Astrophysics Data System (ADS)
Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi
2017-05-01
Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.
Continuous-variable quantum computation with spatial degrees of freedom of photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasca, D. S.; Gomes, R. M.; Toscano, F.
2011-05-15
We discuss the use of the transverse spatial degrees of freedom of photons propagating in the paraxial approximation for continuous-variable information processing. Given the wide variety of linear optical devices available, a diverse range of operations can be performed on the spatial degrees of freedom of single photons. Here we show how to implement a set of continuous quantum logic gates which allow for universal quantum computation. In contrast with the usual quadratures of the electromagnetic field, the entire set of single-photon gates for spatial degrees of freedom does not require optical nonlinearity and, in principle, can be performed withmore » a single device: the spatial light modulator. Nevertheless, nonlinear optical processes, such as four-wave mixing, are needed in the implementation of two-photon gates. The efficiency of these gates is at present very low; however, small-scale investigations of continuous-variable quantum computation are within the reach of current technology. In this regard, we show how novel cluster states for one-way quantum computing can be produced using spontaneous parametric down-conversion.« less
Continuous and large sediment supply in a steep landslide scar, Southern Japanese Alps
NASA Astrophysics Data System (ADS)
Nishii, Ryoko; Imaizumi, Fumitoshi; Daimaru, Hiromu; Murakami, Wataru
2018-07-01
Continuous sediment supply in the Aka-kuzure landslide scar, in the tectonically active alpine Southern Japanese Alps, was investigated using airborne light detection and ranging data in 2000, 2003, 2007 and 2012. In addition, we focused on the spatial variability of denudation patterns based on topographical analyses using DEMs. Denudation volume for the past 12 years reached about 106 m3 and mean annual denudation rate ranged from 0.25 to 0.31 m/yr. Topographical analyses revealed that sediment supply in the scar consists of a combination of two denudation types, sporadic-deep and wide-thin. These denudation types have different roles in the topographical development of the landslide scar. Sporadic-deep type supplies less volume than wide-thin type but still contributes to channel development, as it mainly occurs on lower-order streams and tends to change the convex slope into a concave slope. In contrast, although denudation depth of the wide-thin type is thin, the area affected by this type extends to the whole landslide scar. Consequently, the wide-thin type accounts for most of the total volume lost, for which detachment by frost shattering is suggested as an important role.
Stone, M; Collins, A L; Silins, U; Emelko, M B; Zhang, Y S
2014-03-01
There is increasing global concern regarding the impacts of large scale land disturbance by wildfire on a wide range of water and related ecological services. This study explores the impact of the 2003 Lost Creek wildfire in the Crowsnest River basin, Alberta, Canada on regional scale sediment sources using a tracing approach. A composite geochemical fingerprinting procedure was used to apportion the sediment efflux among three key spatial sediment sources: 1) unburned (reference) 2) burned and 3) burned sub-basins that were subsequently salvage logged. Spatial sediment sources were characterized by collecting time-integrated suspended sediment samples using passive devices during the entire ice free periods in 2009 and 2010. The tracing procedure combines the Kruskal-Wallis H-test, principal component analysis and genetic-algorithm driven discriminant function analysis for source discrimination. Source apportionment was based on a numerical mass balance model deployed within a Monte Carlo framework incorporating both local optimization and global (genetic algorithm) optimization. The mean relative frequency-weighted average median inputs from the three spatial source units were estimated to be 17% (inter-quartile uncertainty range 0-32%) from the reference areas, 45% (inter-quartile uncertainty range 25-65%) from the burned areas and 38% (inter-quartile uncertainty range 14-59%) from the burned-salvage logged areas. High sediment inputs from burned and the burned-salvage logged areas, representing spatial source units 2 and 3, reflect the lasting effects of forest canopy and forest floor organic matter disturbance during the 2003 wildfire including increased runoff and sediment availability related to high terrestrial erosion, streamside mass wasting and river bank collapse. The results demonstrate the impact of wildfire and incremental pressures associated with salvage logging on catchment spatial sediment sources in higher elevation Montane regions where forest growth and vegetation recovery are relatively slow. Copyright © 2013 Elsevier B.V. All rights reserved.
A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion.
McFadyen, Jessica; Mermillod, Martial; Mattingley, Jason B; Halász, Veronika; Garrido, Marta I
2017-04-05
There is significant controversy over the existence and function of a direct subcortical visual pathway to the amygdala. It is thought that this pathway rapidly transmits low spatial frequency information to the amygdala independently of the cortex, and yet the directionality of this function has never been determined. We used magnetoencephalography to measure neural activity while human participants discriminated the gender of neutral and fearful faces filtered for low or high spatial frequencies. We applied dynamic causal modeling to demonstrate that the most likely underlying neural network consisted of a pulvinar-amygdala connection that was uninfluenced by spatial frequency or emotion, and a cortical-amygdala connection that conveyed high spatial frequencies. Crucially, data-driven neural simulations revealed a clear temporal advantage of the subcortical connection over the cortical connection in influencing amygdala activity. Thus, our findings support the existence of a rapid subcortical pathway that is nonselective in terms of the spatial frequency or emotional content of faces. We propose that that the "coarseness" of the subcortical route may be better reframed as "generalized." SIGNIFICANCE STATEMENT The human amygdala coordinates how we respond to biologically relevant stimuli, such as threat or reward. It has been postulated that the amygdala first receives visual input via a rapid subcortical route that conveys "coarse" information, namely, low spatial frequencies. For the first time, the present paper provides direction-specific evidence from computational modeling that the subcortical route plays a generalized role in visual processing by rapidly transmitting raw, unfiltered information directly to the amygdala. This calls into question a widely held assumption across human and animal research that fear responses are produced faster by low spatial frequencies. Our proposed mechanism suggests organisms quickly generate fear responses to a wide range of visual properties, heavily implicating future research on anxiety-prevention strategies. Copyright © 2017 the authors 0270-6474/17/373864-11$15.00/0.
Shi, Jidong; Wang, Liu; Dai, Zhaohe; Zhao, Lingyu; Du, Mingde; Li, Hongbian; Fang, Ying
2018-05-30
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human-machine interfaces because of their simple device structure and easy-readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low-cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray-coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa -1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ecological niche transferability using invasive species as a case study.
Fernández, Miguel; Hamilton, Healy
2015-01-01
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.
The performance of spatially offset Raman spectroscopy for liquid explosive detection
NASA Astrophysics Data System (ADS)
Loeffen, Paul W.; Maskall, Guy; Bonthron, Stuart; Bloomfield, Matthew; Tombling, Craig; Matousek, Pavel
2016-10-01
Aviation security requirements adopted in 2014 require liquids to be screened at most airports throughout Europe, North America and Australia. Cobalt's unique Spatially Offset Raman Spectroscopy (SORS™) technology has proven extremely effective at screening liquids, aerosols and gels (LAGS) with extremely low false alarm rates. SORS is compatible with a wide range of containers, including coloured, opaque or clear plastics, glass and paper, as well as duty-free bottles in STEBs (secure tamper-evident bags). Our award-winning Insight range has been specially developed for table-top screening at security checkpoints. Insight systems use our patented SORS technology for rapid and accurate chemical analysis of substances in unopened non-metallic containers. Insight100M™ and the latest member of the range - Insight200M™ - also screen metallic containers. Our unique systems screen liquids, aerosols and gels with the highest detection capability and lowest false alarm rates of any ECAC-approved scanner, with several hundred units already in use at airports including eight of the top ten European hubs. This paper presents an analysis of real performance data for these systems.
red - an R package to facilitate species red list assessments according to the IUCN criteria
2017-01-01
Abstract The International Union for the Conservation of Nature Red List is the most useful database of species that are at risk of extinction worldwide, as it relies on a number of objective criteria and is now widely adopted. The R package red – IUCN Redlisting Tools - performs a number of spatial analyses based on either observed occurrences or estimated ranges. Functions include calculating Extent of Occurrence (EOO), Area of Occupancy (AOO), mapping species ranges, species distribution modelling using climate and land cover and calculating the Red List Index for groups of species. The package allows the calculation of confidence limits for all measures. Spatial data of species occurrences, environmental or land cover variables can be either given by the user or automatically extracted from several online databases. It outputs geographical range, elevation and country values, maps in several formats and vectorial data for visualization in Google Earth. Several examples are shown demonstrating the usefulness of the different methods. The red package constitutes an open platform for further development of new tools to facilitate red list assessments. PMID:29104439
Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry
NASA Astrophysics Data System (ADS)
Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.
2016-10-01
Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.
Correlation analysis of fracture arrangement in space
NASA Astrophysics Data System (ADS)
Marrett, Randall; Gale, Julia F. W.; Gómez, Leonel A.; Laubach, Stephen E.
2018-03-01
We present new techniques that overcome limitations of standard approaches to documenting spatial arrangement. The new techniques directly quantify spatial arrangement by normalizing to expected values for randomly arranged fractures. The techniques differ in terms of computational intensity, robustness of results, ability to detect anti-correlation, and use of fracture size data. Variation of spatial arrangement across a broad range of length scales facilitates distinguishing clustered and periodic arrangements-opposite forms of organization-from random arrangements. Moreover, self-organized arrangements can be distinguished from arrangements due to extrinsic organization. Traditional techniques for analysis of fracture spacing are hamstrung because they account neither for the sequence of fracture spacings nor for possible coordination between fracture size and position, attributes accounted for by our methods. All of the new techniques reveal fractal clustering in a test case of veins, or cement-filled opening-mode fractures, in Pennsylvanian Marble Falls Limestone. The observed arrangement is readily distinguishable from random and periodic arrangements. Comparison of results that account for fracture size with results that ignore fracture size demonstrates that spatial arrangement is dominated by the sequence of fracture spacings, rather than coordination of fracture size with position. Fracture size and position are not completely independent in this example, however, because large fractures are more clustered than small fractures. Both spatial and size organization of veins here probably emerged from fracture interaction during growth. The new approaches described here, along with freely available software to implement the techniques, can be applied with effect to a wide range of structures, or indeed many other phenomena such as drilling response, where spatial heterogeneity is an issue.
Method for detection and imaging over a broad spectral range
Yefremenko, Volodymyr; Gordiyenko, Eduard; Pishko, legal representative, Olga; Novosad, Valentyn; Pishko, deceased; Vitalii
2007-09-25
A method of controlling the coordinate sensitivity in a superconducting microbolometer employs localized light, heating or magnetic field effects to form normal or mixed state regions on a superconducting film and to control the spatial location. Electron beam lithography and wet chemical etching were applied as pattern transfer processes in epitaxial Y--Ba--Cu--O films. Two different sensor designs were tested: (i) a 3 millimeter long and 40 micrometer wide stripe and (ii) a 1.25 millimeters long, and 50 micron wide meandering-like structure. Scanning the laser beam along the stripe leads to physical displacement of the sensitive area, and, therefore, may be used as a basis for imaging over a broad spectral range. Forming the superconducting film as a meandering structure provides the equivalent of a two-dimensional detector array. Advantages of this approach are simplicity of detector fabrication, and simplicity of the read-out process requiring only two electrical terminals.
NASA Astrophysics Data System (ADS)
Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru
2017-07-01
Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.
Gains following perceptual learning are closely linked to the initial visual acuity.
Yehezkel, Oren; Sterkin, Anna; Lev, Maria; Levi, Dennis M; Polat, Uri
2016-04-28
The goal of the present study was to evaluate the dependence of perceptual learning gains on initial visual acuity (VA), in a large sample of subjects with a wide range of VAs. A large sample of normally sighted and presbyopic subjects (N = 119; aged 40 to 63) with a wide range of uncorrected near visual acuities (VA, -0.12 to 0.8 LogMAR), underwent perceptual learning. Training consisted of detecting briefly presented Gabor stimuli under spatial and temporal masking conditions. Consistent with previous findings, perceptual learning induced a significant improvement in near VA and reading speed under conditions of limited exposure duration. Our results show that the improvements in VA and reading speed observed following perceptual learning are closely linked to the initial VA, with only a minor fraction of the observed improvement that may be attributed to the additional sessions performed by those with the worse VA.
Spatially resolved rest-UV spectroscopy of a prototypical quasar driven superwind at low-z
NASA Astrophysics Data System (ADS)
Johnson, Sean
2017-08-01
Powerful galaxy-wide winds launched by quasars are thought to be a common evolutionary phase of massive galaxies, but observations of this phenomena are scarce. We have conducted a multi-wavelength observational campaign for J1356+1026, a poster-child obscured quasar driving a superwind at z=0.123. J1356+1026 is driving a nuclear molecular outflow and an extended ionized outflow observed as an [OIII] emitting bubble at 10 kpc that is spatially coincident with soft X-ray emission. Quasar-driven winds carry material at a wide range of densities and temperatures making it difficult to measure their energetics and the dominant phases are unknown. Here we propose spatially resolved rest-UV spectroscopy by acquiring circum-nuclear absorption spectra of J1356+1026 and emission spectra of its off-nucleus bubble using COS+G140L. The circum-nuclear spectrum will provide measurements of the outflow velocity through blueshifted absorption while the off-nuclear spectrum of the bubble will measure the ionization state and mechanisms of the outflow through powerful UV diagnostic lines. Together, these spectra will enable a more complete mass, energy and momentum accounting of a spatially resolved quasar driven superwind for the first time. Furthermore, detection of shocked gas through OVI emission will enable us to infer properties of the enigmatic volume-filling, low density component of the wind. To our knowledge, this will be the first spatially resolved rest UV spectroscopy of a quasar wind and the proposed observations will serve as a pilot to guide future HST proposals.
Imaging Local Ca2+ Signals in Cultured Mammalian Cells
Lock, Jeffrey T.; Ellefsen, Kyle L.; Settle, Bret; Parker, Ian; Smith, Ian F.
2015-01-01
Cytosolic Ca2+ ions regulate numerous aspects of cellular activity in almost all cell types, controlling processes as wide-ranging as gene transcription, electrical excitability and cell proliferation. The diversity and specificity of Ca2+ signaling derives from mechanisms by which Ca2+ signals are generated to act over different time and spatial scales, ranging from cell-wide oscillations and waves occurring over the periods of minutes to local transient Ca2+ microdomains (Ca2+ puffs) lasting milliseconds. Recent advances in electron multiplied CCD (EMCCD) cameras now allow for imaging of local Ca2+ signals with a 128 x 128 pixel spatial resolution at rates of >500 frames sec-1 (fps). This approach is highly parallel and enables the simultaneous monitoring of hundreds of channels or puff sites in a single experiment. However, the vast amounts of data generated (ca. 1 Gb per min) render visual identification and analysis of local Ca2+ events impracticable. Here we describe and demonstrate the procedures for the acquisition, detection, and analysis of local IP3-mediated Ca2+ signals in intact mammalian cells loaded with Ca2+ indicators using both wide-field epi-fluorescence (WF) and total internal reflection fluorescence (TIRF) microscopy. Furthermore, we describe an algorithm developed within the open-source software environment Python that automates the identification and analysis of these local Ca2+ signals. The algorithm localizes sites of Ca2+ release with sub-pixel resolution; allows user review of data; and outputs time sequences of fluorescence ratio signals together with amplitude and kinetic data in an Excel-compatible table. PMID:25867132
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Veilleux, Sylvain; Zakamska, Nadia; Barrera-Ballesteros, J.; Luetzgendorf, N.; Nesvadba, N.; Rupke, D.; Sun, A.
2017-11-01
In the last few years, optical and near-IR IFU observations from the ground have revolutionized extragalactic astronomy. The unprecedented infrared sensitivity, spatial resolution, and spectral coverage of the JWST IFUs will ensure high demand from the community. For a wide range of extragalactic phenomena (e.g. quasars, starbursts, supernovae, gamma ray bursts, tidal disruption events) and beyond (e.g. nebulae, debris disks around bright stars), PSF contamination will be an issue when studying the underlying extended emission. We propose to provide the community with a PSF decomposition and spectral analysis package for high dynamic range JWST IFU observations allowing the user to create science-ready maps of relevant spectral features. Luminous quasars, with their bright central source (quasar) and extended emission (host galaxy), are excellent test cases for this software. Quasars are also of high scientific interest in their own right as they are widely considered to be the main driver in regulating massive galaxy growth. JWST will revolutionize our understanding of black hole-galaxy co-evolution by allowing us to probe the stellar, gas, and dust components of nearby and distant galaxies, spatially and spectrally. We propose to use the IFU capabilities of NIRSpec and MIRI to study the impact of three carefully selected luminous quasars on their hosts. Our program will provide (1) a scientific dataset of broad interest that will serve as a pathfinder for JWST science investigations in IFU mode and (2) a powerful new data analysis tool that will enable frontier science for a wide swath of astrophysical research.
Interocular transfer of spatial adaptation is weak at low spatial frequencies.
Baker, Daniel H; Meese, Tim S
2012-06-15
Adapting one eye to a high contrast grating reduces sensitivity to similar target gratings shown to the same eye, and also to those shown to the opposite eye. According to the textbook account, interocular transfer (IOT) of adaptation is around 60% of the within-eye effect. However, most previous studies on this were limited to using high spatial frequencies, sustained presentation, and criterion-dependent methods for assessing threshold. Here, we measure IOT across a wide range of spatiotemporal frequencies, using a criterion-free 2AFC method. We find little or no IOT at low spatial frequencies, consistent with other recent observations. At higher spatial frequencies, IOT was present, but weaker than previously reported (around 35%, on average, at 8c/deg). Across all conditions, monocular adaptation raised thresholds by around a factor of 2, and observers showed normal binocular summation, demonstrating that they were not binocularly compromised. These findings prompt a reassessment of our understanding of the binocular architecture implied by interocular adaptation. In particular, the output of monocular channels may be available to perceptual decision making at low spatial frequencies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Internal noise sources limiting contrast sensitivity.
Silvestre, Daphné; Arleo, Angelo; Allard, Rémy
2018-02-07
Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui
2015-01-01
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui
2015-02-03
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.
Spatial averaging for small molecule diffusion in condensed phase environments
NASA Astrophysics Data System (ADS)
Plattner, Nuria; Doll, J. D.; Meuwly, Markus
2010-07-01
Spatial averaging is a new approach for sampling rare-event problems. The approach modifies the importance function which improves the sampling efficiency while keeping a defined relation to the original statistical distribution. In this work, spatial averaging is applied to multidimensional systems for typical problems arising in physical chemistry. They include (I) a CO molecule diffusing on an amorphous ice surface, (II) a hydrogen molecule probing favorable positions in amorphous ice, and (III) CO migration in myoglobin. The systems encompass a wide range of energy barriers and for all of them spatial averaging is found to outperform conventional Metropolis Monte Carlo. It is also found that optimal simulation parameters are surprisingly similar for the different systems studied, in particular, the radius of the point cloud over which the potential energy function is averaged. For H2 diffusing in amorphous ice it is found that facile migration is possible which is in agreement with previous suggestions from experiment. The free energy barriers involved are typically lower than 1 kcal/mol. Spatial averaging simulations for CO in myoglobin are able to locate all currently characterized metastable states. Overall, it is found that spatial averaging considerably improves the sampling of configurational space.
Entanglement entropy of one-dimensional gases.
Calabrese, Pasquale; Mintchev, Mihail; Vicari, Ettore
2011-07-08
We introduce a systematic framework to calculate the bipartite entanglement entropy of a spatial subsystem in a one-dimensional quantum gas which can be mapped into a noninteracting fermion system. To show the wide range of applicability of the proposed formalism, we use it for the calculation of the entanglement in the eigenstates of periodic systems, in a gas confined by boundaries or external potentials, in junctions of quantum wires, and in a time-dependent parabolic potential.
Bragg x-ray optics for imaging spectroscopy of plasma microsources.
Pikuz, T A; Ya Faenov, A; Pikuz, S A; Romanova, V M; Shelkovenko, T A
1995-01-01
Bragg x-ray optics based on crystals with transmission and reflection properties bent on cylindrical or spherical surfaces are discussed. Applications of such optics for obtaining one- and two-dimensional monochromatic images of different plasma sources in the wide spectral range 1-20 Å are described. Samples of spectra obtained with spectral resolution of up to λ/Δλ ~ 10,000 and spatial resolution of up to 18 μm are presented.
Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriguez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
Towards Mapping the Ocean Surface Topography at 1 km Resolution
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriquez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
NASA Technical Reports Server (NTRS)
Carrasco, M.; Penpeci-Talgar, C.; Eckstein, M.
2000-01-01
This study is the first to report the benefits of spatial covert attention on contrast sensitivity in a wide range of spatial frequencies when a target alone was presented in the absence of a local post-mask. We used a peripheral precue (a small circle indicating the target location) to explore the effects of covert spatial attention on contrast sensitivity as assessed by orientation discrimination (Experiments 1-4), detection (Experiments 2 and 3) and localization (Experiment 3) tasks. In all four experiments the target (a Gabor patch ranging in spatial frequency from 0.5 to 10 cpd) was presented alone in one of eight possible locations equidistant from fixation. Contrast sensitivity was consistently higher for peripherally- than for neutrally-cued trials, even though we eliminated variables (distracters, global masks, local masks, and location uncertainty) that are known to contribute to an external noise reduction explanation of attention. When observers were presented with vertical and horizontal Gabor patches an external noise reduction signal detection model accounted for the cueing benefit in a discrimination task (Experiment 1). However, such a model could not account for this benefit when location uncertainty was reduced, either by: (a) Increasing overall performance level (Experiment 2); (b) increasing stimulus contrast to enable fine discriminations of slightly tilted suprathreshold stimuli (Experiment 3); and (c) presenting a local post-mask (Experiment 4). Given that attentional benefits occurred under conditions that exclude all variables predicted by the external noise reduction model, these results support the signal enhancement model of attention.
Preclinical Whole-body Fluorescence Imaging: Review of Instruments, Methods and Applications
Leblond, Frederic; Davis, Scott C.; Valdés, Pablo A.; Pogue, Brain W.
2013-01-01
Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultra-sound. PMID:20031443
McCormick, Kathryn E.; Gaertner, Bryn E.; Sottile, Matthew; Phillips, Patrick C.; Lockery, Shawn R.
2011-01-01
This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities. PMID:22022437
Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water.
Pan, Xiang; Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi
2018-04-10
A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments.
Hanson, Erik A; Lundervold, Arvid
2013-11-01
Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.
2014-03-03
We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less
Small convolution kernels for high-fidelity image restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1991-01-01
An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.
Compatible Spatial Discretizations for Partial Differential Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Douglas, N, ed.
From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less
NASA Astrophysics Data System (ADS)
Dadvand, Payam; Rushton, Stephen; Diggle, Peter J.; Goffe, Louis; Rankin, Judith; Pless-Mulloli, Tanja
2011-01-01
Whilst exposure to air pollution is linked to a wide range of adverse health outcomes, assessing levels of this exposure has remained a challenge. This study reports a modeling approach for the estimation of weekly levels of ambient black smoke (BS) at residential postcodes across Northeast England (2055 km 2) over a 12 year period (1985-1996). A two-stage modeling strategy was developed using monitoring data on BS together with a range of covariates including data on traffic, population density, industrial activity, land cover (remote sensing), and meteorology. The first stage separates the temporal trend in BS for the region as a whole from within-region spatial variation and the second stage is a linear model which predicts BS levels at all locations in the region using spatially referenced covariate data as predictors and the regional predicted temporal trend as an offset. Traffic and land cover predictors were included in the final model, which predicted 70% of the spatio-temporal variation in BS across the study region over the study period. This modeling approach appears to provide a robust way of estimating exposure to BS at an inter-urban scale.
Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, Adam; Al-Jassim, Mowafak; Diercks, David
The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10’s of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se 2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximummore » (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga) Cu and V Se, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.« less
Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries
Stokes, Adam; Al-Jassim, Mowafak; Diercks, David; ...
2017-10-26
The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10’s of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se 2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximummore » (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga) Cu and V Se, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.« less
Steuer, Jeffrey J.
2010-01-01
It is widely recognized that urbanization can affect ecological conditions in aquatic systems; numerous studies have identified impervious surface cover as an indicator of urban intensity and as an index of development at the watershed, regional, and national scale. Watershed percent imperviousness, a commonly understood urban metric was used as the basis for a generalized watershed disturbance metric that, when applied in conjunction with weighted percent agriculture and percent grassland, predicted stream biotic conditions based on Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness across a wide range of environmental settings. Data were collected in streams that encompassed a wide range of watershed area (4.4-1,714 km), precipitation (38-204 cm/yr), and elevation (31-2,024 m) conditions. Nevertheless the simple 3-landcover disturbance metric accounted for 58% of the variability in EPT richness based on the 261 nationwide sites. On the metropolitan area scale, relationship r ranged from 0.04 to 0.74. At disturbance values 15. Future work may incorporate watershed management practices within the disturbance metric, further increasing the management applicability of the relation. Such relations developed on a regional or metropolitan area scale are likely to be stronger than geographically generalized models; as found in these EPT richness relations. However, broad spatial models are able to provide much needed understanding in unmonitored areas and provide initial guidance for stream potential.
Hasselman, Daniel J; Ricard, Daniel; Bentzen, Paul
2013-03-01
Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human-mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure. © 2013 Blackwell Publishing Ltd.
Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R.
2011-01-01
There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks. PMID:22163013
Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R
2011-01-01
There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
The flow patterning capability of localized natural convection.
Huang, Ling-Ting; Chao, Ling
2016-09-14
Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.
Imaging single atoms using secondary electrons with an aberration-corrected electron microscope.
Zhu, Y; Inada, H; Nakamura, K; Wall, J
2009-10-01
Aberration correction has embarked on a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes. However, improvement of spatial resolution using aberration correction so far has been limited to the use of transmitted electrons both in scanning and stationary mode, with an improvement of 20-40% (refs 3-8). In contrast, advances in the spatial resolution of scanning electron microscopes (SEMs), which are by far the most widely used instrument for surface imaging at the micrometre-nanometre scale, have been stagnant, despite several recent efforts. Here, we report a new SEM, with aberration correction, able to image single atoms by detecting electrons emerging from its surface as a result of interaction with the small probe. The spatial resolution achieved represents a fourfold improvement over the best-reported resolution in any SEM (refs 10-12). Furthermore, we can simultaneously probe the sample through its entire thickness with transmitted electrons. This ability is significant because it permits the selective visualization of bulk atoms and surface ones, beyond a traditional two-dimensional projection in transmission electron microscopy. It has the potential to revolutionize the field of microscopy and imaging, thereby opening the door to a wide range of applications, especially when combined with simultaneous nanoprobe spectroscopy.
Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A
2015-01-06
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.
2015-01-01
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Exploring the Spatial and Temporal Organization of a Cell’s Proteome
Beck, Martin; Topf, Maya; Frazier, Zachary; Tjong, Harianto; Xu, Min; Zhang, Shihua; Alber, Frank
2013-01-01
To increase our current understanding of cellular processes, such as cell signaling and division, knowledge is needed about the spatial and temporal organization of the proteome at different organizational levels. These levels cover a wide range of length and time scales: from the atomic structures of macromolecules for inferring their molecular function, to the quantitative description of their abundance, and distribution in the cell. Emerging new experimental technologies are greatly increasing the availability of such spatial information on the molecular organization in living cells. This review addresses three fields that have significantly contributed to our understanding of the proteome’s spatial and temporal organization: first, methods for the structure determination of individual macromolecular assemblies, specifically the fitting of atomic structures into density maps generated from electron microscopy techniques; second, research that visualizes the spatial distributions of these complexes within the cellular context using cryo electron tomography techniques combined with computational image processing; and third, methods for the spatial modeling of the dynamic organization of the proteome, specifically those methods for simulating reaction and diffusion of proteins and complexes in crowded intracellular fluids. The long-term goal is to integrate the varied data about a proteome’s organization into a spatially explicit, predictive model of cellular processes. PMID:21094684
Rudolf, Volker H W; Kamo, Masashi; Boots, Mike
2010-05-01
The propensity for cannibalism varies considerably both within and between species. Currently we have little understanding of both the causes of this variation and its evolutionary consequences for other life-history traits. We examine how different levels of spatial structure affect the evolution of cannibalism and how cannibalism in turn drives the evolution of dispersal. Using pair approximations and simulations, we show that cannibalism can easily evolve in spatially structured populations as long as some dispersal exists. Furthermore, for a wide range of intermediate levels of spatial structure, we find the possibility of evolutionary branching leading to polymorphism in cannibalism. We also show that cannibalism itself can have important evolutionary consequences and select for increased dispersal rates, thus helping to determine the spatial structure of populations. The coevolution of cannibalism and dispersal results in the evolution of various alternative life-history strategies with different dispersal and cannibalism regimes. Which strategy evolves depends on the environmental conditions that determine initial cannibalism rates. Our results therefore suggest that differences in spatial structure could explain variation in the propensity for cannibalism and cannibalistic polyphenism. Furthermore, results emphasize that cannibalism can drive the evolution of other life-history traits and determine the spatial structure of natural populations.
NASA Astrophysics Data System (ADS)
Weirich, F. H.; Neumann, W.; Campbell, D.
2017-12-01
The presence of fire related hydrophobic (water repellant) soil layers in a wide range of environmental settings can result in greatly increased rates of storm runoff and erosion. In many situations this can contribute to the generation of debris and/or hyperconcentrated flows. While the role of hydrophobic soils in greatly increasing sediment production in such situations is known, the ability to predict the volume of sediment that will be generated by specific storm events has been limited, in part, by limits on the ability to assess the characteristics of hydrophobic soil layers. At present, the most widely accepted method of assessing the presence, strength, extent and persistence of hydrophobic soil layers requires the performance of an in situ water drop penetration test (WDPT). This approach, while effective on a local site, is labor and time intensive and can be difficult to employ on a watershed or even slope wide basis. As part of a wider research effort to develop more effective methods of evaluating the characteristics of hydrophobic soils a combined field and laboratory based program has been undertaken to evaluate the capability of higher frequency ground penetrating radar (HFGPR) to detect and map out the spatial extent, strength, and persistence of hydrophobic soil layers. This has involved the testing of HFGPR systems at several field site in burnt watersheds in Southern California as well as a program of laboratory tests on samples of fire impacted soils collected from the same watersheds. The field tests were undertaken on sites ranging from a location that had burnt a few weeks earlier to locations where over 5 years had passed since a burn took place. Laboratory samples of soils were taken from the same range of sites and used in the laboratory tests. In parallel with the HFGPR testing WDPT's were used to confirm the findings of the HFGPR approach. Both the field and laboratory results indicate that the use of HFGPR, under appropriate soil moisture conditions, is capable of mapping out the presence, spatial extent, and persistence of hydrophobic soil layers. Layers at depth ranging from 1-6 cm were successfully mapped. The persistence of layers on some sites 5 years after a burn were also able to be measured using this approach. Work to further refine both the approach and its limitations is ongoing.
Mismatch between marine plankton range movements and the velocity of climate change
NASA Astrophysics Data System (ADS)
Chivers, William J.; Walne, Anthony W.; Hays, Graeme C.
2017-02-01
The response of marine plankton to climate change is of critical importance to the oceanic food web and fish stocks. We use a 60-year ocean basin-wide data set comprising >148,000 samples to reveal huge differences in range changes associated with climate change across 35 plankton taxa. While the range of dinoflagellates and copepods tended to closely track the velocity of climate change (the rate of isotherm movement), the range of the diatoms moved much more slowly. Differences in range shifts were up to 900 km in a recent warming period, with average velocities of range movement between 7 km per decade northwards for taxa exhibiting niche plasticity and 99 km per decade for taxa exhibiting niche conservatism. The differing responses of taxa to global warming will cause spatial restructuring of the plankton ecosystem with likely consequences for grazing pressures on phytoplankton and hence for biogeochemical cycling, higher trophic levels and biodiversity.
Spatially explicit control of invasive species using a reaction-diffusion model
Bonneau, Mathieu; Johnson, Fred A.; Romagosa, Christina M.
2016-01-01
Invasive species, which can be responsible for severe economic and environmental damages, must often be managed over a wide area with limited resources, and the optimal allocation of effort in space and time can be challenging. If the spatial range of the invasive species is large, control actions might be applied only on some parcels of land, for example because of property type, accessibility, or limited human resources. Selecting the locations for control is critical and can significantly impact management efficiency. To help make decisions concerning the spatial allocation of control actions, we propose a simulation based approach, where the spatial distribution of the invader is approximated by a reaction–diffusion model. We extend the classic Fisher equation to incorporate the effect of control both in the diffusion and local growth of the invader. The modified reaction–diffusion model that we propose accounts for the effect of control, not only on the controlled locations, but on neighboring locations, which are based on the theoretical speed of the invasion front. Based on simulated examples, we show the superiority of our model compared to the state-of-the-art approach. We illustrate the use of this model for the management of Burmese pythons in the Everglades (Florida, USA). Thanks to the generality of the modified reaction–diffusion model, this framework is potentially suitable for a wide class of management problems and provides a tool for managers to predict the effects of different management strategies.
Kanick, Stephen Chad; McClatchy, David M; Krishnaswamy, Venkataramanan; Elliott, Jonathan T; Paulsen, Keith D; Pogue, Brian W
2014-10-01
This study investigates the hypothesis that structured light reflectance imaging with high spatial frequency patterns [Formula: see text] can be used to quantitatively map the anisotropic scattering phase function distribution [Formula: see text] in turbid media. Monte Carlo simulations were used in part to establish a semi-empirical model of demodulated reflectance ([Formula: see text]) in terms of dimensionless scattering [Formula: see text] and [Formula: see text], a metric of the first two moments of the [Formula: see text] distribution. Experiments completed in tissue-simulating phantoms showed that simultaneous analysis of [Formula: see text] spectra sampled at multiple [Formula: see text] in the frequency range [0.05-0.5] [Formula: see text] allowed accurate estimation of both [Formula: see text] in the relevant tissue range [0.4-1.8] [Formula: see text], and [Formula: see text] in the range [1.4-1.75]. Pilot measurements of a healthy volunteer exhibited [Formula: see text]-based contrast between scar tissue and surrounding normal skin, which was not as apparent in wide field diffuse imaging. These results represent the first wide-field maps to quantify sub-diffuse scattering parameters, which are sensitive to sub-microscopic tissue structures and composition, and therefore, offer potential for fast diagnostic imaging of ultrastructure on a size scale that is relevant to surgical applications.
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.
2015-12-01
Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.
Crombach, Anton; Cicin-Sain, Damjan; Wotton, Karl R; Jaeger, Johannes
2012-01-01
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
Method for multi-axis, non-contact mixing of magnetic particle suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, James E.; Solis, Kyle J.
Continuous, three-dimensional control of the vorticity vector is possible by progressively transitioning the field symmetry by applying or removing a dc bias along one of the principal axes of mutually orthogonal alternating fields. By exploiting this transition, the vorticity vector can be oriented in a wide range of directions that comprise all three spatial dimensions. Detuning one or more field components to create phase modulation causes the vorticity vector to trace out complex orbits of a wide variety, creating very robust multiaxial stirring. This multiaxial, non-contact stirring is particularly attractive for applications where the fluid volume has complex boundaries, ormore » is congested.« less
The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems
NASA Technical Reports Server (NTRS)
Abramson, Michael; Refai, Mohamad; Santiago, Confesor
2017-01-01
The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.
Crystal nucleation in metallic alloys using x-ray radiography and machine learning
Arteta, Carlos; Lempitsky, Victor
2018-01-01
The crystallization of solidifying Al-Cu alloys over a wide range of conditions was studied in situ by synchrotron x-ray radiography, and the data were analyzed using a computer vision algorithm trained using machine learning. The effect of cooling rate and solute concentration on nucleation undercooling, crystal formation rate, and crystal growth rate was measured automatically for thousands of separate crystals, which was impossible to achieve manually. Nucleation undercooling distributions confirmed the efficiency of extrinsic grain refiners and gave support to the widely assumed free growth model of heterogeneous nucleation. We show that crystallization occurred in temporal and spatial bursts associated with a solute-suppressed nucleation zone. PMID:29662954
Porous Networks Through Colloidal Templates
NASA Astrophysics Data System (ADS)
Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich
Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.
Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.
2014-01-01
Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat
Thogmartin, Wayne E.; Diffendorfer, Jay E.; Russell, Robin E.; Szymanski, Jennifer A.
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity. PMID:28028486
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.
Smith, Stephen; Grima, Ramon
2018-05-21
Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.
Yang, Limin; Huang, Chengquan; Homer, Collin G.; Wylie, Bruce K.; Coan, Michael
2003-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.
Comprehensive non-dimensional normalization of gait data.
Pinzone, Ornella; Schwartz, Michael H; Baker, Richard
2016-02-01
Normalizing clinical gait analysis data is required to remove variability due to physical characteristics such as leg length and weight. This is particularly important for children where both are associated with age. In most clinical centres conventional normalization (by mass only) is used whereas there is a stronger biomechanical argument for non-dimensional normalization. This study used data from 82 typically developing children to compare how the two schemes performed over a wide range of temporal-spatial and kinetic parameters by calculating the coefficients of determination with leg length, weight and height. 81% of the conventionally normalized parameters had a coefficient of determination above the threshold for a statistical association (p<0.05) compared to 23% of those normalized non-dimensionally. All the conventionally normalized parameters exceeding this threshold showed a reduced association with non-dimensional normalization. In conclusion, non-dimensional normalization is more effective that conventional normalization in reducing the effects of height, weight and age in a comprehensive range of temporal-spatial and kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer
2017-01-01
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine. PMID:28198384
Zhu, Peixin; Fajardo, Otto; Shum, Jennifer; Zhang Schärer, Yan-Ping; Friedrich, Rainer W
2012-06-28
Optogenetic approaches allow the manipulation of neuronal activity patterns in space and time by light, particularly in small animals such as zebrafish. However, most techniques cannot control neuronal activity independently at different locations. Here we describe equipment and provide a protocol for single-photon patterned optical stimulation of neurons using a digital micromirror device (DMD). This method can create arbitrary spatiotemporal light patterns with spatial and temporal resolutions in the micrometer and submillisecond range, respectively. Different options to integrate a DMD into a multiphoton microscope are presented and compared. We also describe an ex vivo preparation of the adult zebrafish head that greatly facilitates optogenetic and other experiments. After assembly, the initial alignment takes about one day and the zebrafish preparation takes <30 min. The method has previously been used to activate channelrhodopsin-2 and manipulate oscillatory synchrony among spatially distributed neurons in the zebrafish olfactory bulb. It can be adapted easily to a wide range of other species, optogenetic probes and scientific applications.
NASA Astrophysics Data System (ADS)
Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer
2017-02-01
Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.
Characterizing Urban Air Quality to Provide Actionable Information
NASA Astrophysics Data System (ADS)
Lary, D. J.
2017-12-01
The urbanization of national and global populations is associated with increasing challenges to creation of sustainable and livable communities. In urban environments, there is currently a lack of accurate actionable information on atmospheric composition on fine spatial and temporal scales. There is a pressing need to better characterize the complex spatial distribution of environmental features of cityscapes and improve understanding of their relationship to health and quality of life. This talk gives an overview of integrating sensing of atmospheric composition on multiple scales using a wide range of devices from distributed low cost-sensors, to aerial vehicles, to satellites. Machine learning plays a key role in providing both the cross-calibration and turning the exposure dosimetry into actionable insights for urban environments.
Parallel Multiscale Algorithms for Astrophysical Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Norman, Michael L.
1997-01-01
Our goal is to develop software libraries and applications for astrophysical fluid dynamics simulations in multidimensions that will enable us to resolve the large spatial and temporal variations that inevitably arise due to gravity, fronts and microphysical phenomena. The software must run efficiently on parallel computers and be general enough to allow the incorporation of a wide variety of physics. Cosmological structure formation with realistic gas physics is the primary application driver in this work. Accurate simulations of e.g. galaxy formation require a spatial dynamic range (i.e., ratio of system scale to smallest resolved feature) of 104 or more in three dimensions in arbitrary topologies. We take this as our technical requirement. We have achieved, and in fact, surpassed these goals.
Convective Self-Aggregation in Numerical Simulations: A Review
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
2017-11-01
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is "self-aggregation," in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
Convective Self-Aggregation in Numerical Simulations: A Review
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.
Stochastic Analysis of Reaction–Diffusion Processes
Hu, Jifeng; Kang, Hye-Won
2013-01-01
Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732
The basis function approach for modeling autocorrelation in ecological data.
Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B
2017-03-01
Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.
Samuel A. Cushman; Bradley W. Compton; Kevin McGarigal
2010-01-01
Habitat loss and fragmentation are widely believed to be the most important drivers of extinction (Leakey and Lewin 1995). The habitats in which organisms live are spatially structured at a number of scales, and these patterns interact with organism perception and behavior to drive population dynamics and community structure (Johnson et al. 1992). Anthropogenic habitat...
Interactive Particle Visualization
NASA Astrophysics Data System (ADS)
Gribble, Christiaan P.
Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.
2001-09-30
acidification with a Turner 10-000R fluorometer. For phycoerythrin and phycocyanin analysis, the sediments were extracted repeatedly with a phosphate...concentrations varied around 20-fold, phycocyanin varied approximately 70-fold. The highest levels of chlorophylls a and c, and phycocyanin were found in...reflected in the wide range of pigment ratios: 46 for chl c/chl a; 94 for phycoerythrin/chl a; and 27 for phycocyanin /chl a. First derivatives of
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Shipley, T. F.; Manduca, C. A.; Tikoff, B.
2011-12-01
Spatial thinking skills are critical to success in many subdisciplines of the geosciences (and beyond). There are many components of spatial thinking, such as mental rotation, penetrative visualization, disembedding, perspective taking, and navigation. Undergraduate students in introductory and upper-level geoscience courses bring a wide variety of spatial skill levels to the classroom, as measured by psychometric tests of many of these components of spatial thinking. Furthermore, it is not unusual for individual students to excel in some of these areas while struggling in others. Although pre- and post-test comparisons show that student skill levels typically improve over the course of an academic term, average gains are quite modest. This suggests that it may be valuable to develop interventions to help undergraduate students develop a range of spatial skills that can be used to solve geoscience problems. Cognitive science research suggests a number of strong strategies for building students' spatial skills. Practice is essential, and time on task is correlated to improvement. Progressive alignment may be used to scaffold students' successes on simpler problems, allowing them to see how more complex problems are related to those they can solve. Gesturing has proven effective in moving younger students from incorrect problem-solving strategies to correct strategies in other disciplines. These principles can be used to design instructional materials to improve undergraduate geoscience students' spatial skills; we will present some examples of such materials.
NASA Astrophysics Data System (ADS)
Capaccioni, F.; Filacchione, G.; Erard, S.; Arnold, G.; De Sanctis, M. C.; Bockelée-Morvan, D.; Leyrat, C.; Tosi, F.; Ciarniello, M.; Raponi, A.; Migliorini, A.; Quirico, E.; Rinaldi, G.; Schmitt, B.; Carlson, R. W.; Combi, M. R.; Fink, U.; Tozzi, G. P.; Palomba, E.; Longobardo, A.; Formisano, M.; Debout, V.; Drossart, P.; Piccioni, G.; Fougere, N.
2015-12-01
The paper will describe the major results obtained throughout the nominal mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta, on the surface composition and thermal properties of the nucleus of comet 67P/Churyumov-Gerasimenko and on the 2D distribution of H2O and CO2 in the coma. VIRTIS is a dual channel spectrometer; VIRTIS-M (M for Mapper) is a hyper spectral imager covering a wide spectral range from 0.25 through 5μm. VIRTIS-M uses a slit and a scan mirror to generate images with spatial resolution of 250 μrad over a FOV of 3.7°. The second channel is VIRTIS-H (H for High-resolution), a point spectrometer with high spectral resolution (λ/Δλ=3000 @3μm) in the range 2-5 μm. The nucleus observations have been performed in a wide range of conditions with best spatial resolution of 2.5m. The surface temperature has been determined since the first distant observations when the nucleus filled one single VIRTIS-M pixel and continuously monitored since. Maximum temperature determined until April 2015 are as high as 300K at the subsolar point. Modeling of the thermophysical properties allowed to derive the thermal inertia of the crust. The VIRTIS composition analysis has showed evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 μm), the spectral slopes in VIS and IR ranges (5-25 and 1.5-5 % kÅ-1) and the broad absorption feature in the 2.9-3.6 μm range present across the entire illuminated surface, are compatible with a surface crust made of a complex mixture of dark disordered poly-aromatic compounds, opaque minerals and several chemical species containing: -COOH, CH2 / CH3, -OH (in Alcohols) and possibly NH4+. Both channels are contributing to the determination of the spatial distribution of H2O and CO2 in the coma; their abundances as a function of altitude and of time of day. Authors acknowledge the support from national funding agencies.
Colloids with high-definition surface structures
Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg
2007-01-01
Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149
Red-tailed Hawk movements and use of habitat in the Luquillo Mountains of Puerto Rico
Vilella, Francisco; Nimitz, Wyatt F.
2012-01-01
The Red-tailed Hawk (Buteo jamaicensis) is a top predator of upland ecosystems in the Greater Antilles. Little information exists on the ecology of the insular forms of this widely distributed species. We studied movements and resource use of the Red-tailed Hawk from 2000 to 2002 in the montane forests of northeastern Puerto Rico. We captured 32 and used 21 radio-marked Red-tailed Hawks to delineate home range, core area shifts, and macrohabitat use in the Luquillo Mountains. Red-tailed Hawks in the Luquillo Mountains frequently perched near the top of canopy emergent trees and were characterized by wide-ranging capabilities and extensive spatial overlap. Home range size averaged 5,022.6 6 832.1 ha (305–11,288 ha) and core areas averaged 564.8 6 90.7 ha (150–1,230 ha). This species had large mean weekly movements (3,286.2 6 348.5 m) and a preference for roadside habitats. Our findings suggest fragmentation of contiguous forest outside protected areas in Puerto Rico may benefit the Red-tailed Hawk
Visualization and Quality Control Web Tools for CERES Products
NASA Astrophysics Data System (ADS)
Mitrescu, C.; Doelling, D. R.
2017-12-01
The NASA CERES project continues to provide the scientific communities a wide variety of satellite-derived data products such as observed TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. They encompass a wide range of temporal and spatial resolutions, suited to specific applications. CERES data is used mostly by climate modeling communities but also by a wide variety of educational institutions. To better serve our users, a web-based Ordering and Visualization Tool (OVT) was developed by using Opens Source Software such as Eclipse, java, javascript, OpenLayer, Flot, Google Maps, python, and others. Due to increased demand by our own scientists, we also implemented a series of specialized functions to be used in the process of CERES Data Quality Control (QC) such as 1- and 2-D histograms, anomalies and differences, temporal and spatial averaging, side-by-side parameter comparison, and others that made the process of QC far easier and faster, but more importantly far more portable. With the integration of ground site observed surface fluxes we further facilitate the CERES project to QC the CERES computed surface fluxes. An overview of the CERES OVT basic functions using Open Source Software, as well as future steps in expanding its capabilities will be presented at the meeting.
Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao
2014-01-01
Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470
Snapshot hyperspectral fovea vision system (HyperVideo)
NASA Astrophysics Data System (ADS)
Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.
2012-06-01
The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.
Bontrager, Megan; Angert, Amy L
2016-01-01
Plant mating systems and geographic range limits are conceptually linked by shared underlying drivers, including landscape-level heterogeneity in climate and in species' abundance. Studies of how geography and climate interact to affect plant traits that influence mating system and population dynamics can lend insight to ecological and evolutionary processes shaping ranges. Here, we examined how spatiotemporal variation in climate affects reproductive output of a mixed-mating annual, Clarkia pulchella. We also tested the effects of population isolation and climate on mating-system-related floral traits across the range. We measured reproductive output and floral traits on herbarium specimens collected across the range of C. pulchella. We extracted climate data associated with specimens and derived a population isolation metric from a species distribution model. We then examined how predictors of reproductive output and floral traits vary among populations of increasing distance from the range center. Finally, we tested whether reproductive output and floral traits vary with increasing distance from the center of the range. Reproductive output decreased as summer precipitation decreased, and low precipitation may contribute to limiting the southern and western range edges of C. pulchella. High spring and summer temperatures are correlated with low herkogamy, but these climatic factors show contrasting spatial patterns in different quadrants of the range. Limiting factors differ among different parts of the range. Due to the partial decoupling of geography and environment, examining relationships between climate, reproductive output, and mating-system-related floral traits reveals spatial patterns that might be missed when focusing solely on geographic position. © 2016 Botanical Society of America.
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.
Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C
2016-12-03
Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.
Turner, D.P.; Dodson, R.; Marks, D.
1996-01-01
Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.
2010-12-01
Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.
In-duct identification of fluid-borne source with high spatial resolution
NASA Astrophysics Data System (ADS)
Heo, Yong-Ho; Ih, Jeong-Guon; Bodén, Hans
2014-11-01
Source identification of acoustic characteristics of in-duct fluid machinery is required for coping with the fluid-borne noise. By knowing the acoustic pressure and particle velocity field at the source plane in detail, the sound generation mechanism of a fluid machine can be understood. The identified spatial distribution of the strength of major radiators would be useful for the low noise design. Conventional methods for measuring the source in a wide duct have not been very helpful in investigating the source properties in detail because their spatial resolution is improper for the design purpose. In this work, an inverse method to estimate the source parameters with a high spatial resolution is studied. The theoretical formulation including the evanescent modes and near-field measurement data is given for a wide duct. After validating the proposed method to a duct excited by an acoustic driver, an experiment on a duct system driven by an air blower is conducted in the presence of flow. A convergence test for the evanescent modes is performed to find the necessary number of modes to regenerate the measured pressure field precisely. By using the converged modal amplitudes, very-close near-field pressure to the source is regenerated and compared with the measured pressure, and the maximum error was -16.3 dB. The source parameters are restored from the converged modal amplitudes. Then, the distribution of source parameters on the driver and the blower is clearly revealed with a high spatial resolution for kR<1.84 in which range only plane waves can propagate to far field in a duct. Measurement using a flush mounted sensor array is discussed, and the removal of pure radial modes in the modeling is suggested.
NASA Astrophysics Data System (ADS)
Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa
2010-05-01
Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.
CALIFA, the Calar Alto Legacy Integral Field Area survey. III. Second public data release
NASA Astrophysics Data System (ADS)
García-Benito, R.; Zibetti, S.; Sánchez, S. F.; Husemann, B.; de Amorim, A. L.; Castillo-Morales, A.; Cid Fernandes, R.; Ellis, S. C.; Falcón-Barroso, J.; Galbany, L.; Gil de Paz, A.; González Delgado, R. M.; Lacerda, E. A. D.; López-Fernandez, R.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Mast, D.; Mendoza, M. A.; Pérez, E.; Vale Asari, N.; Aguerri, J. A. L.; Ascasibar, Y.; Bekeraitė, S.; Bland-Hawthorn, J.; Barrera-Ballesteros, J. K.; Bomans, D. J.; Cano-Díaz, M.; Catalán-Torrecilla, C.; Cortijo, C.; Delgado-Inglada, G.; Demleitner, M.; Dettmar, R.-J.; Díaz, A. I.; Florido, E.; Gallazzi, A.; García-Lorenzo, B.; Gomes, J. M.; Holmes, L.; Iglesias-Páramo, J.; Jahnke, K.; Kalinova, V.; Kehrig, C.; Kennicutt, R. C.; López-Sánchez, Á. R.; Márquez, I.; Masegosa, J.; Meidt, S. E.; Mendez-Abreu, J.; Mollá, M.; Monreal-Ibero, A.; Morisset, C.; del Olmo, A.; Papaderos, P.; Pérez, I.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Ruiz-Lara, T.; Sánchez-Blázquez, P.; Sánchez-Menguiano, L.; Singh, R.; Spekkens, K.; Stanishev, V.; Torres-Papaqui, J. P.; van de Ven, G.; Vilchez, J. M.; Walcher, C. J.; Wild, V.; Wisotzki, L.; Ziegler, B.; Alves, J.; Barrado, D.; Quintana, J. M.; Aceituno, J.
2015-04-01
This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 Å with a spectral resolution of 6.0 Å (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å with a spectral resolution of 2.3 Å (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improvedspectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2.̋4. In total, the second data release contains over 1.5 million spectra. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).The second data release is available at http://califa.caha.es/DR2
Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Mac; Moore, Leslie; McMahon, Benjamin
Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less
Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks
Brown, Mac; Moore, Leslie; McMahon, Benjamin; ...
2015-05-06
Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less
An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography
Yu, Chenglong; Yue, Shihong; Wang, Jianpei; Wang, Huaxiang
2014-01-01
As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes. PMID:25165735
Feasibility of a wireless gamma probe in radioguided surgery.
Park, Hye Min; Joo, Koan Sik
2016-06-21
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using (57)Co, (133)Ba, (22)Na, and (137)Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Feasibility of a wireless gamma probe in radioguided surgery
NASA Astrophysics Data System (ADS)
Park, Hye Min; Joo, Koan Sik
2016-06-01
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using 57Co, 133Ba, 22Na, and 137Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Comparison of in-situ and optical current-meter estimates of rip-current circulation
NASA Astrophysics Data System (ADS)
Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.
2016-12-01
Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.
NASA Astrophysics Data System (ADS)
Bhardwaj, Kaushal; Patra, Swarnajyoti
2018-04-01
Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.
NASA Astrophysics Data System (ADS)
Su, Qi; Li, Aming; Wang, Long
2017-02-01
Spatial reciprocity is generally regarded as a positive rule facilitating the evolution of cooperation. However, a few recent studies show that, in the snowdrift game, spatial structure still could be detrimental to cooperation. Here we propose a model of multiple interactive dynamics, where each individual can cooperate and defect simultaneously against different neighbors. We realize individuals' multiple interactions simply by endowing them with strategies relevant to probabilities, and every one decides to cooperate or defect with a probability. With multiple interactive dynamics, the cooperation level in square lattices is higher than that in the well-mixed case for a wide range of cost-to-benefit ratio r, implying that spatial structure favors cooperative behavior in the snowdrift game. Moreover, in square lattices, the most favorable strategy follows a simple relation of r, which confers theoretically the average evolutionary frequency of cooperative behavior. We further extend our study to various homogeneous and heterogeneous networks, which demonstrates the robustness of our results. Here multiple interactive dynamics stabilizes the positive role of spatial structure on the evolution of cooperation and individuals' distinct reactions to different neighbors can be a new line in understanding the emergence of cooperation.
Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements
NASA Astrophysics Data System (ADS)
Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.
2017-01-01
An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.
The Secret Life of RNA: Lessons from Emerging Methodologies.
Medioni, Caroline; Besse, Florence
2018-01-01
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Links between plant species’ spatial and temporal responses to a warming climate
Amano, Tatsuya; Freckleton, Robert P.; Queenborough, Simon A.; Doxford, Simon W.; Smithers, Richard J.; Sparks, Tim H.; Sutherland, William J.
2014-01-01
To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology. PMID:24478304
Cashdan, Elizabeth; Kramer, Karen L; Davis, Helen E; Padilla, Lace; Greaves, Russell D
2016-03-01
Sex differences in range size and navigation are widely reported, with males traveling farther than females, being less spatially anxious, and in many studies navigating more effectively. One explanation holds that these differences are the result of sexual selection, with larger ranges conferring mating benefits on males, while another explanation focuses on greater parenting costs that large ranges impose on reproductive-aged females. We evaluated these arguments with data from a community of highly monogamous Maya farmers. Maya men and women do not differ in distance traveled over the region during the mate-seeking years, suggesting that mating competition does not affect range size in this monogamous population. However, men's regional and daily travel increases after marriage, apparently in pursuit of resources that benefit families, whereas women reduce their daily travel after marriage. This suggests that parental effort is more important than mating effort in this population. Despite the relatively modest overall sex difference in mobility, Maya men were less spatially anxious than women, thought themselves to be better navigators, and pointed more accurately to distant locations. A structural equation model showed that the sex by marital status interaction had a direct effect on mobility, with a weaker indirect effect of sex on mobility mediated by navigational ability.
Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E
2017-01-01
Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.
Coexistence of fraternity and egoism for spatial social dilemmas.
Szabó, György; Szolnoki, Attila; Czakó, Lilla
2013-01-21
We have studied an evolutionary game with spatially arranged players who can choose one of the two strategies (named cooperation and defection for social dilemmas) when playing with their neighbors. In addition to the application of the usual strategies in the present model the players are also characterized by one of the two extreme personal features representing the egoist or fraternal behavior. During the evolution each player can modify both her own strategy and/or personal feature via a myopic update process in order to improve her utility. The results of numerical simulations and stability analysis are summarized in phase diagrams representing a wide scale of spatially ordered distribution of strategies and personal features when varying the payoff parameters. In most of the cases only two of the four possible options prevail and may form sublattice ordered spatial structure. The evolutionary advantage of the fraternal attitude is demonstrated within a large range of payoff parameters including the region of prisoner's dilemma where egoist defectors and fraternal cooperators form a role-separating chessboard like pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.
Combining participatory and socioeconomic approaches to map fishing effort in small-scale fisheries.
Thiault, Lauric; Collin, Antoine; Chlous, Frédérique; Gelcich, Stefan; Claudet, Joachim
2017-01-01
Mapping the spatial allocation of fishing effort while including key stakeholders in the decision making process is essential for effective fisheries management but is difficult to implement in complex small-scale fisheries that are diffuse, informal and multifaceted. Here we present a standardized but flexible approach that combines participatory mapping approaches (fishers' spatial preference for fishing grounds, or fishing suitability) with socioeconomic approaches (spatial extrapolation of social surrogates, or fishing capacity) to generate a comprehensive map of predicted fishing effort. Using a real world case study, in Moorea, French Polynesia, we showed that high predicted fishing effort is not simply located in front of, or close to, main fishing villages with high dependence on marine resources; it also occurs where resource dependency is moderate and generally in near-shore areas and reef passages. The integrated approach we developed can contribute to addressing the recurrent lack of fishing effort spatial data through key stakeholders' (i.e., resource users) participation. It can be tailored to a wide range of social, ecological and data availability contexts, and should help improve place-based management of natural resources.
Greenhouse gas emission curves for advanced biofuel supply chains
NASA Astrophysics Data System (ADS)
Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.
2017-12-01
Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, S.; Mimura, H.; Yumoto, H.
We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less
Combining participatory and socioeconomic approaches to map fishing effort in small-scale fisheries
Collin, Antoine; Chlous, Frédérique; Gelcich, Stefan; Claudet, Joachim
2017-01-01
Mapping the spatial allocation of fishing effort while including key stakeholders in the decision making process is essential for effective fisheries management but is difficult to implement in complex small-scale fisheries that are diffuse, informal and multifaceted. Here we present a standardized but flexible approach that combines participatory mapping approaches (fishers’ spatial preference for fishing grounds, or fishing suitability) with socioeconomic approaches (spatial extrapolation of social surrogates, or fishing capacity) to generate a comprehensive map of predicted fishing effort. Using a real world case study, in Moorea, French Polynesia, we showed that high predicted fishing effort is not simply located in front of, or close to, main fishing villages with high dependence on marine resources; it also occurs where resource dependency is moderate and generally in near-shore areas and reef passages. The integrated approach we developed can contribute to addressing the recurrent lack of fishing effort spatial data through key stakeholders' (i.e., resource users) participation. It can be tailored to a wide range of social, ecological and data availability contexts, and should help improve place-based management of natural resources. PMID:28486509
Single-photon three-qubit quantum logic using spatial light modulators.
Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-09-29
The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.
NASA Astrophysics Data System (ADS)
Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo
2017-11-01
In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.
Developments in the recovery of colour in fine art prints using spatial image processing
NASA Astrophysics Data System (ADS)
Rizzi, A.; Parraman, C.
2010-06-01
Printmakers have at their disposal a wide range of colour printing processes. The majority of artists will utilise high quality materials with the expectation that the best materials and pigments will ensure image permanence. However, as many artists have experienced, this is not always the case. Inks, papers and materials can deteriorate over time. For artists and conservators who need to restore colour or tone to a print could benefit from the assistance of spatial colour enhancement tools. This paper studies two collections from the same edition of fine art prints that were made in 1991. The first edition has been kept in an archive and not exposed to light. The second edition has been framed and exposed to light for about 18 years. Previous experiments using colour enhancement methods [9,10] have involved a series of photographs that had been taken under poor or extreme lighting conditions, fine art works, scanned works. There are a range of colour enhancement methods: Retinex, RSR, ACE, Histogram Equalisation, Auto Levels, which are described in this paper. In this paper we will concentrate on the ACE algorithm and use a range of parameters to process the printed images and describe these results.
NASA Astrophysics Data System (ADS)
Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.
2007-07-01
The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.
Smoke optical depths - Magnitude, variability, and wavelength dependence
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.
1988-01-01
An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.
A multiple-objective optimal exploration strategy
Christakos, G.; Olea, R.A.
1988-01-01
Exploration for natural resources is accomplished through partial sampling of extensive domains. Such imperfect knowledge is subject to sampling error. Complex systems of equations resulting from modelling based on the theory of correlated random fields are reduced to simple analytical expressions providing global indices of estimation variance. The indices are utilized by multiple objective decision criteria to find the best sampling strategies. The approach is not limited by geometric nature of the sampling, covers a wide range in spatial continuity and leads to a step-by-step procedure. ?? 1988.
Range-wide assessment of livestock grazing across the sagebrush biome
Veblen, Kari E.; Pyke, David A.; Jones, Christopher A.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.
2011-01-01
Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and synthesize recommendations from federal and university rangeland science experts about how BLM might prioritize collection of different types of livestock grazing-related natural resource data. 4. Investigate whether range-wide datasets (Objective 1) could be used in conjunction with remotely sensed imagery to identify across broad scales (a) allotments potentially not meeting BLM Land Health Standards (LHS) and (b) allotments in which unmet standards might be attributable to livestock grazing. Objective 1: We identified four datasets that potentially could be used for analyses of livestock grazing effects on sagebrush ecosystems. First, we obtained the most current spatial data (typically up to 2007, 2008, or 2009) for all BLM allotments and compiled data into a coarse, topologically enforced dataset that delineated grazing allotment boundaries. Second, we obtained LHS evaluation data (as of 2007) for all allotments across all districts and regions; these data included date of most recent evaluation, BLM determinations of whether region-specific standards were met, and whether BLM deemed livestock to have contributed to any unmet standards. Third, we examined grazing records of three types: Actual Use (permittee-reported), Billed Use (BLM-reported), and Permitted Use (legally authorized). Finally, we explored the possibility of using existing Natural Resources Conservation Service (NRCS) Ecological Site Description (ESD) data to make up-to-date estimates of production and forage availability on BLM allotments. Objective 2: We investigated the availability of BLM livestock grazing-related monitoring data and the status of LHS across 310 randomly selected allotments in 13 BLM field offices. We found that, relative to other data types, the most commonly available monitoring data were Actual Use numbers (permittee-reported livestock numbers and season-of-use), followed by Photo Point, forage Utilization, and finally, Vegetation Trend measurement data. Data availability and frequency of data collection varied across allotments and field offices. Analysis of the BLM's LHS data indicated 67 percent of allotments analyzed were meeting standards. For those not meeting standards, livestock were considered the causal factor in 45 percent of cases (about 15 percent of all allotments). Objective 3: We sought input from 42 university and federal rangeland science experts about how best to prioritize rangeland monitoring activities associated with ascertaining livestock impacts on vegetation resources. When we presented a hypothetical scenario to these scientists and asked them to prioritize monitoring activities, the most common response was to measure ground and vegetation cover, a variable that in many cases (10 of 13 field offices sampled) BLM had already identified as a monitoring priority. Experts identified several other traditional (for example, photo points) and emerging approaches (for example, high-resolution aerial photography) to monitoring. Objective 4: We used spatial allotment data (described in Objective 1) and remotely sensed vegetation data (sagebrush cover, herbaceous vegetation cover, litter and bare soil) to assess differences in allotment LHS status ("Not met" vs. "Met"; if "Not met" - livestock-caused vs. not). We then developed logistic regression models, using vegetation variables to predict LHS status of BLM allotments in sagebrush steppe habitats in Wyoming and portions of Montana and Colorado. In general, we found that more consistent data collection at the local level might improve suitability of data for broad-scale analyses of livestock impacts. As is, data collection methodologies varied across field offices and States, and we did not find any local-level monitoring data (Actual Use, Utilization, Vegetation Trend) that had been collected consistently enough over time or space for range-wide analyses. Moreover, continued and improved emphasis on monitoring also may aid local management decisions, particularly with respect to effects of livestock grazing. Rangeland science experts identified ground cover as a high monitoring priority for assessing range condition and emphasized the importance of tracking livestock numbers and grazing dates. Ultimately, the most effective monitoring program may entail both increased data collection effort and the integration of alternative monitoring approaches (for example, remote sensing or monitoring teams). In the course of our study, we identified three additional datasets that could potentially be used for range-wide analyses: spatial allotment boundary data for all BLM allotments range-wide, LHS evaluations of BLM allotments, and livestock use data (livestock numbers and grazing dates). It may be possible to use these spatial datasets to help prioritize monitoring activities over the extensive land areas managed by BLM. We present an example of how we used spatial allotment boundary data and LHS data to test whether remotely sensed vegetation characteristics could be used to predict which allotments met or did not meet LHS. This approach may be further improved by the results of current efforts by BLM to test whether more intensive (higher resolution) LHS assessments more accurately describe land health status. Standardized data collection in more ecologically meaningful land units may improve our ability to use local-level data for broad-scale analyses.
Service, Christina N.; Adams, Megan S.; Artelle, Kyle A.; Paquet, Paul; Grant, Laura V.; Darimont, Chris T.
2014-01-01
Range shifts among wildlife can occur rapidly and impose cascading ecological, economic, and cultural consequences. However, occurrence data used to define distributional limits derived from scientific approaches are often outdated for wide ranging and elusive species, especially in remote environments. Accordingly, our aim was to amalgamate indigenous and western scientific evidence of grizzly bear (Ursus arctos horribilis) records and detail a potential range shift on the central coast of British Columbia, Canada. In addition, we test the hypothesis that data from each method yield similar results, as well as illustrate the complementary nature of this coupled approach. Combining information from traditional and local ecological knowledge (TEK/LEK) interviews with remote camera, genetic, and hunting data revealed that grizzly bears are now present on 10 islands outside their current management boundary. LEK interview data suggested this expansion has accelerated over the last 10 years. Both approaches provided complementary details and primarily affirmed one another: all islands with scientific evidence for occupation had consistent TEK/LEK evidence. Moreover, our complementary methods approach enabled a more spatially and temporally detailed account than either method would have afforded alone. In many cases, knowledge already held by local indigenous people could provide timely and inexpensive data about changing ecological processes. However, verifying the accuracy of scientific and experiential knowledge by pairing sources at the same spatial scale allows for increased confidence and detail. A similarly coupled approach may be useful across taxa in many regions. PMID:25054635
Symmetry and scale orient Min protein patterns in shaped bacterial sculptures
NASA Astrophysics Data System (ADS)
Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees
2015-08-01
The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.
RatLab: an easy to use tool for place code simulations
Schönfeld, Fabian; Wiskott, Laurenz
2013-01-01
In this paper we present the RatLab toolkit, a software framework designed to set up and simulate a wide range of studies targeting the encoding of space in rats. It provides open access to our modeling approach to establish place and head direction cells within unknown environments and it offers a set of parameters to allow for the easy construction of a variety of enclosures for a virtual rat as well as controlling its movement pattern over the course of experiments. Once a spatial code is formed RatLab can be used to modify aspects of the enclosure or movement pattern and plot the effect of such modifications on the spatial representation, i.e., place and head direction cell activity. The simulation is based on a hierarchical Slow Feature Analysis (SFA) network that has been shown before to establish a spatial encoding of new environments using visual input data only. RatLab encapsulates such a network, generates the visual training data, and performs all sampling automatically—with each of these stages being further configurable by the user. RatLab was written with the intention to make our SFA model more accessible to the community and to that end features a range of elements to allow for experimentation with the model without the need for specific programming skills. PMID:23908627
Drivers of protogynous sex change differ across spatial scales.
Taylor, Brett M
2014-01-22
The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.
Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J
2016-04-01
Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prediction of Viking lander camera image quality
NASA Technical Reports Server (NTRS)
Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.
1976-01-01
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.
Hyperspectral Imagers for the Study of Massive Star Nebulae
NASA Astrophysics Data System (ADS)
Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team
2012-12-01
We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.
Quantifying Information Flow During Emergencies
NASA Astrophysics Data System (ADS)
Gao, Liang; Song, Chaoming; Gao, Ziyou; Barabási, Albert-László; Bagrow, James P.; Wang, Dashun
2014-02-01
Recent advances on human dynamics have focused on the normal patterns of human activities, with the quantitative understanding of human behavior under extreme events remaining a crucial missing chapter. This has a wide array of potential applications, ranging from emergency response and detection to traffic control and management. Previous studies have shown that human communications are both temporally and spatially localized following the onset of emergencies, indicating that social propagation is a primary means to propagate situational awareness. We study real anomalous events using country-wide mobile phone data, finding that information flow during emergencies is dominated by repeated communications. We further demonstrate that the observed communication patterns cannot be explained by inherent reciprocity in social networks, and are universal across different demographics.
Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.
Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M
2017-12-01
Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode
Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken
2013-01-01
Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932
Contrast computation methods for interferometric measurement of sensor modulation transfer function
NASA Astrophysics Data System (ADS)
Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio
2018-01-01
Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.
The 0.5 micrometer-2.2 micrometer Scattered Light Spectrum of the Disk Around TW Hya
NASA Technical Reports Server (NTRS)
Debes, John H.; Jang-Condell, Hannah; Weinberger, Alycia J.; Roberg, Aki; Schneider, Glenn
2012-01-01
We present a 0.5-2.2micron scattered light spectrum of the circumstellar disk around TW Hya from a combination of spatially resolved HST STIS spectroscopy and NICMOS coronagraphic images of the disk. \\Ve investigate the morphology at the disk at distances> 40 AU over this wide range of wavelengths. We measure the surface brightness, azimuthal symmetry, and spectral character of the disk as a function of radius. We find that the scattering efficiency of the dust is largely neutral to blue over the observed wavelengths. We find a good fit to the data over a wide range of distances from the star if we use a model disk with a partial gap of 30% depth at 80 AU and with steep disk truncation exterior to 100 AU. If the gap is caused by a planetary companion in the process of accreting disk gas, it must be less than 20 Solar mass.
The S-054 X-ray telescope experiment on Skylab
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Van Speybroeck, L.; Zombeck, M. V.; Krieger, A. S.; Silk, J. K.; Timothy, A.
1977-01-01
A description of the S-054 X-ray telescope on Skylab is presented with a discussion of the experimental objectives, observing program, data reduction and analysis. Some results from the Skylab mission are given. The telescope photographically records high-resolution images of the solar corona in several broadband regions of the soft X-ray spectrum. It includes an objective grating used to study the line spectrum. The spatial resolution, sensitivity, dynamic range and time resolution of the instrument were chosen to survey a wide variety of solar phenomena. It embodies improvements in design, fabrication, and calibration techniques which were developed over a ten-year period. The observing program was devised to optimize the use of the instrument and to provide studies on a wide range of time scales. The data analysis program includes morphological studies and quantitative analysis using digitized images. A small sample of the data obtained in the mission is presented to demonstrate the type of information that is available and the kinds of results that can be obtained from it.
Near roadway air pollution across a spatially extensive road and cycling network.
Farrell, William; Weichenthal, Scott; Goldberg, Mark; Valois, Marie-France; Shekarrizfard, Maryam; Hatzopoulou, Marianne
2016-05-01
This study investigates the variability in near-road concentrations of ultra-fine particles (UFP). Our results are based on a mobile data collection campaign conducted in 2012 in Montreal, Canada using instrumented bicycles and covering approximately 475 km of unique roadways. The spatial extent of the data collected included a diverse array of roads and land use patterns. Average concentrations of UFP per roadway segment varied greatly across the study area (1411-192,340 particles/cm(3)) as well as across the different visits to the same segment. Mixed effects linear regression models were estimated for UFP (R(2) = 43.80%), incorporating a wide range of predictors including land-use, built environment, road characteristics, and meteorology. Temperature and wind speed had a large negative effect on near-road concentrations of UFP. Both the day of the week and time of day had a significant effect with Tuesdays and afternoon periods positively associated with UFP. Since UFP are largely associated with traffic emissions and considering the wide spatial extent of our data collection campaign, it was impossible to collect traffic volume data. For this purpose, we used simulated data for traffic volumes and speeds across the region and observed a positive effect for volumes and negative effect for speed. Finally, proximity to truck routes was also associated with higher UFP concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, F.; Bohler, D.; Ding, Y.
2015-12-07
Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less
NASA Astrophysics Data System (ADS)
Piccinini, M.; Ronsivalle, C.; Ampollini, A.; Bazzano, G.; Picardi, L.; Nenzi, P.; Trinca, E.; Vadrucci, M.; Bonfigli, F.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.
2017-11-01
Solid-state radiation detectors based on the photoluminescence of stable point defects in lithium fluoride crystals have been used for advanced diagnostics during the commissioning of the segment up to 27 MeV of the TOP-IMPLART proton linear accelerator for proton therapy applications, under development at ENEA C.R. Frascati, Italy. The LiF detectors high intrinsic spatial resolution and wide dynamic range allow obtaining two-dimensional images of the beam transverse intensity distribution and also identifying the Bragg peak position with micrometric precision by using a conventional optical fluorescence microscope. Results of the proton beam characterization, among which, the estimation of beam energy components and dynamics, are reported and discussed for different operating conditions of the accelerator.
The Fossil Record of Black Hole Seeds, with Spatially Resolved Spectroscopy
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; CANDELS, 3D-HST
2016-01-01
I will present the first robust measurement of black hole occupation over a wide range of host galaxy mass (8
NASA Technical Reports Server (NTRS)
Imhof, W. L.; Gaines, E. E.; Mcglennon, J. P.; Baker, D. N.; Reeves, G. D.; Belian, R. D.
1994-01-01
Analyses are presented for the first high-time resolution multisatellite study of the spatial and temporal characteristics of a relativistic electron enhancement event with a rapid onset. Measurements of MeV electrons were made from two low-altitude polar orbiting satellites and three spacecraft at synchronous altitude. The electron fluxes observed by the low-altitude satellites include precipitating electrons in both the bounce and drift loss cones as well as electrons that are stably trapped, whereas the observations at geosynchronous altitude are dominated by the trapped population. The fluxes of greater than 1 MeV electrons at low-satellite altitude over a wide range of L shells tracked very well the fluxes greater than 0.93 MeV at synchronous altitude.
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
Hu, Rui
2016-11-19
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
NASA Astrophysics Data System (ADS)
Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.
2017-12-01
Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.
Detection of the spatial accuracy of an O-arm in the region of surgical interest
NASA Astrophysics Data System (ADS)
Koivukangas, Tapani; Katisko, Jani P. A.; Koivukangsa, John P.
2013-03-01
Medical imaging is an essential component of a wide range of surgical procedures1. For image guided surgical (IGS) procedures, medical images are the main source of information2. The IGS procedures rely largely on obtained image data, so the data needs to provide differentiation between normal and abnormal tissues, especially when other surgical guidance devices are used in the procedures. The image data also needs to provide accurate spatial representation of the patient3. This research has concentrated on the concept of accuracy assessment of IGS devices to meet the needs of quality assurance in the hospital environment. For this purpose, two precision engineered accuracy assessment phantoms have been developed as advanced materials and methods for the community. The phantoms were designed to mimic the volume of a human head as the common region of surgical interest (ROSI). This paper introduces the utilization of the phantoms in spatial accuracy assessment of a commercial surgical 3D CT scanner, the O-Arm. The study presents methods and results of image quality detection of possible geometrical distortions in the region of surgical interest. The results show that in the pre-determined ROSI there are clear image distortion and artefacts using too high imaging parameters when scanning the objects. On the other hand, when using optimal parameters, the O-Arm causes minimal error in IGS accuracy. The detected spatial inaccuracy of the O-Arm with used parameters was in the range of less than 1.00 mm.
Coherent X-ray imaging across length scales
NASA Astrophysics Data System (ADS)
Munro, P. R. T.
2017-04-01
Contemporary X-ray imaging techniques span a uniquely wide range of spatial resolutions, covering five orders of magnitude. The evolution of X-ray sources, from the earliest laboratory sources through to highly brilliant and coherent free-electron lasers, has been key to the development of these imaging techniques. This review surveys the predominant coherent X-ray imaging techniques with fields of view ranging from that of entire biological organs, down to that of biomolecules. We introduce the fundamental principles necessary to understand the image formation for each technique as well as briefly reviewing coherent X-ray source development. We present example images acquired using a selection of techniques, by leaders in the field.
Mapping the sound field of an erupting submarine volcano using an acoustic glider.
Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W
2011-03-01
An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. © 2011 Acoustical Society of America
Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-08-21
Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Kyle; Dickinson, Mark; Dey, Arjun
Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {submore » Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.« less
The time course of attentional deployment in contextual cueing.
Jiang, Yuhong V; Sigstad, Heather M; Swallow, Khena M
2013-04-01
The time course of attention is a major characteristic on which different types of attention diverge. In addition to explicit goals and salient stimuli, spatial attention is influenced by past experience. In contextual cueing, behaviorally relevant stimuli are more quickly found when they appear in a spatial context that has previously been encountered than when they appear in a new context. In this study, we investigated the time that it takes for contextual cueing to develop following the onset of search layout cues. In three experiments, participants searched for a T target in an array of Ls. Each array was consistently associated with a single target location. In a testing phase, we manipulated the stimulus onset asynchrony (SOA) between the repeated spatial layout and the search display. Contextual cueing was equivalent for a wide range of SOAs between 0 and 1,000 ms. The lack of an increase in contextual cueing with increasing cue durations suggests that as an implicit learning mechanism, contextual cueing cannot be effectively used until search begins.
Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong
NASA Astrophysics Data System (ADS)
Liu, P.; Tung, Y. K.
2017-12-01
Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.
Quantifying evenly distributed states in exclusion and nonexclusion processes
NASA Astrophysics Data System (ADS)
Binder, Benjamin J.; Landman, Kerry A.
2011-04-01
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Pólya distribution. New measures are developed which indicate whether or not a spatial data set, generated from an exclusion process, is at its most evenly distributed state, the complete spatial randomness (CSR) state. To this end, we define an index in terms of the variance between the bin counts. Limiting values of the index are determined when objects have access to the entire domain and when there are subregions of the domain that are inaccessible to objects. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and verify that our theoretical CSR limit accurately predicts the state of the system. These measures should prove useful in many biological applications.
Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water
Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi
2018-01-01
A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments. PMID:29642637
Revealing spatially heterogeneous relaxation in a model nanocomposite.
Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y; Bocharova, Vera; Sumpter, Bobby G; Schweizer, Kenneth S; Sokolov, Alexei P
2015-11-21
The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.
Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery
NASA Astrophysics Data System (ADS)
Axelsson, C.; Hanan, N. P.
2016-12-01
High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.
AP-MALDI Mass Spectrometry Imaging of Gangliosides Using 2,6-Dihydroxyacetophenone
NASA Astrophysics Data System (ADS)
Jackson, Shelley N.; Muller, Ludovic; Roux, Aurelie; Oktem, Berk; Moskovets, Eugene; Doroshenko, Vladimir M.; Woods, Amina S.
2018-03-01
Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs. To overcome the problem of sublimation, we used an atmospheric pressure (AP)-MALDI source to obtain high spatial resolution images of lipids in the brain using a high mass resolution mass spectrometer. Additionally, the advantages of atmospheric pressure and DHA for imaging gangliosides are highlighted. The imaging of [M-H]- and [M-H2O-H]- mass peaks for GD1 gangliosides showed different distribution, most likely reflecting the different spatial distribution of GD1a and GD1b species in the brain. [Figure not available: see fulltext.
Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast
NASA Astrophysics Data System (ADS)
Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.
2017-12-01
Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.
NASA Astrophysics Data System (ADS)
Cappon, Derek J.; Farrell, Thomas J.; Fang, Qiyin; Hayward, Joseph E.
2016-12-01
Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In this article, an algorithm is presented that allows for the automated processing of 2-dimensional images acquired from an imaging spectrometer. The algorithm automatically defines distinct spectrometer tracks and adaptively compensates for distortion introduced by optical components in the imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image is detected and subtracted from each signal. The algorithm's performance is demonstrated in the processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink liquid phantom and is shown to increase the range of wavelengths over which usable data can be recovered.
Acoustic methods for cavitation mapping in biomedical applications
NASA Astrophysics Data System (ADS)
Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.
2015-12-01
In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.
NASA Technical Reports Server (NTRS)
Hasegawa, H.; Kitamura, N.; Saito, Y.; Nagai, T.; Shinohara, I.; Yokota, S.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Gershman, D. J.;
2016-01-01
We present observations on 2 October 201Swhen the Geotail spacecraft, near the Earth's equatorial plane, and the Magnetospheric Multiscale (MMS) spacecraft, at mid-southem latitudes, simultaneously encountered southward jets from dayside magnetopause reconnection under southward interplanetary magnetic field conditions. The observations show that the equatorial reconnection site under modest solar wind Alfven Mach number conditions remained active almost continuously for hours and, at the same time, extended over a wide range of local times (4h). The reconnection jets expanded toward the magnetosphere with distance from the reconnection site. Geotall, closer to the reconnection site, occasionally encountered large-amplitude mesoscale flux transfer events (FTEs) with durations about or less than 1 min. However, MMS subsequently detected no or only smaller-amplitude corresponding FTE signatures. It is suggested that during quasi-continuous spatially extended reconnection, mesoscale FTEs decay as the jet spatially evolves over distances between the two spacecraft of 350 ion inertial lengths.
Revealing spatially heterogeneous relaxation in a model nanocomposite
Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y.; ...
2015-11-18
The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no glassy layer, but the -relaxation time near the nanoparticle grows with cooling faster than the -relaxation time in the bulk and is ~20 times longer at low temperatures. The interfacial layer thickness increases from ~1.8 nm at higher temperatures to ~3.5 nm upon cooling to near bulk T g. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory.more » Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. As a result, the theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.« less
Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L
2012-10-01
High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.
Zipf's law from scale-free geometry.
Lin, Henry W; Loeb, Abraham
2016-03-01
The spatial distribution of people exhibits clustering across a wide range of scales, from household (∼10(-2) km) to continental (∼10(4) km) scales. Empirical data indicate simple power-law scalings for the size distribution of cities (known as Zipf's law) and the population density fluctuations as a function of scale. Using techniques from random field theory and statistical physics, we show that these power laws are fundamentally a consequence of the scale-free spatial clustering of human populations and the fact that humans inhabit a two-dimensional surface. In this sense, the symmetries of scale invariance in two spatial dimensions are intimately connected to urban sociology. We test our theory by empirically measuring the power spectrum of population density fluctuations and show that the logarithmic slope α=2.04 ± 0.09, in excellent agreement with our theoretical prediction α=2. The model enables the analytic computation of many new predictions by importing the mathematical formalism of random fields.
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2015-11-01
One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.
The influence of interspecific interactions on species range expansion rates
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe
2014-01-01
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
The influence of interspecific interactions on species range expansion rates.
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe
2014-12-01
Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.
The influence of interspecific interactions on species range expansion rates
Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe
2014-01-01
Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537
Wide-field high spatial frequency domain imaging of tissue microstructure
NASA Astrophysics Data System (ADS)
Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.
2018-02-01
Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.
Solution of multi-element LED light sources development automation problem
NASA Astrophysics Data System (ADS)
Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.
2014-09-01
The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.
Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua
2017-03-01
Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.
Leppä, Elli; Linden, Anni-Maija; Vekovischeva, Olga Y.; Swinny, Jerome D.; Rantanen, Ville; Toppila, Esko; Höger, Harald; Sieghart, Werner; Wulff, Peer; Wisden, William; Korpi, Esa R.
2011-01-01
We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception. PMID:21912668
Reiter, Matthew E.; Andersen, David E.; Raedeke, Andrew H.; Humburg, Dale D.
2017-01-01
Inter- and intra-specific interactions are potentially important factors influencing the distribution of populations. Aerial survey data, collected during range-wide breeding population surveys for Eastern Prairie Population (EPP) Canada Geese (Branta canadensis interior), 1987–2008, were evaluated to assess factors influencing their nesting distribution. Specifically, associations between nesting Lesser Snow Geese (Chen caerulescens caerulescens) and EPP Canada Geese were quantified; and changes in the spatial distribution of EPP Canada Geese were identified. Mixed-effects Poisson regression models of EPP Canada Goose nest counts were evaluated within a cross-validation framework. The total count of EPP Canada Goose nests varied moderately among years between 1987 and 2008 with no long-term trend; however, the total count of nesting Lesser Snow Geese generally increased. Three models containing factors related to previous EPP Canada Goose nest density (representing recruitment), distance to Hudson Bay (representing brood-habitat), nesting habitat type, and Lesser Snow Goose nest density (inter-specific associations) were the most accurate, improving prediction accuracy by 45% when compared to intercept-only models. EPP Canada Goose nest density varied by habitat type, was negatively associated with distance to coastal brood-rearing areas, and suggested density-dependent intra-specific effects on recruitment. However, a non-linear relationship between Lesser Snow and EPP Canada Goose nest density suggests that as nesting Lesser Snow Geese increase, EPP Canada Geese locally decline and subsequently the spatial distribution of EPP Canada Geese on western Hudson Bay has changed.
Hoenner, Xavier; Whiting, Scott D; Hindell, Mark A; McMahon, Clive R
2012-01-01
Accurately quantifying animals' spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68(th) percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤ 0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student's t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2 ± 2.4 km; mean home range overlap and error ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes.
20th century Betula pubescens subsp. czerepanovii tree- and forest lines in Norway.
Bryn, Anders; Potthoff, Kerstin
2017-01-01
Georeferenced tree- and forest line data has a wide range of applications and are increasingly used for e.g. monitoring of climate change impacts and range shift modelling. As part of a research project, registrations of previously re-mapped tree- and forest lines have been georeferenced. The data described in this paper contains 100 re-mapped registrations of Betula pubescens subsp. czerepanovii throughout Norway. All of the re-mapped tree- and forest line localities are georeferenced, elevation and aspect are given, elevational and spatial uncertainty are provided, and the re-mapping methods are explained. The published data weremapped for the first time between 1819 and 1963. The same sites were re-mapped between 1928 and 1996, but have until now been missing spatial coordinates. The entries contain 40 x 2 tree lines and 60 x 2 forest lines, most likely presenting the regionally highest registered tree- and forest lines at the given time. The entire material is stored and available for download through the GBIF server. Previously, the entries have been published in journals or reports, partly in Norwegian or German only. Without the provision of the spatial coordinates, the specific locations have been unknown. The material is now available for modelling and monitoring of tree- and forest line range shifts: The recordings are useful for interpretation of climate change impacts on tree- and forest lines, and the locations of re-mapped tree- and forest lines can be implemented in future monitoring projects. Since the recordings most likely provide the highest registered Betula pubescens subsp. czerepanovii locations within their specific regions, they are probably representing the contemporary physiognomic range limits.
Decades of urban growth and development on the Asian megadeltas
NASA Astrophysics Data System (ADS)
Small, Christopher; Sousa, Daniel; Yetman, Gregory; Elvidge, Christopher; MacManus, Kytt
2018-06-01
The current and ongoing expansion of urban areas worldwide represents the largest mass migration in human history. It is well known that the world's coastal zones are associated with large and growing concentrations of population, urban development and economic activity. Among coastal environments, deltas have long been recognized for both benefits and hazards. This is particularly true on the Asian megadeltas, where the majority of the world's deltaic populations reside. Current trends in urban migration, combined with demographic momentum suggest that the already large populations on the Asian megadeltas will continue to grow. In this study, we combine recently released gridded population density (circa 2010) with a newly developed night light change product (1992 to 2012) and a digital elevation model to quantify the spatial distribution of population and development on the nine Asian megadeltas. Bivariate distributions of population as functions of elevation and coastal proximity quantify potential exposure of deltaic populations to flood and coastal hazards. Comparison of these distributions for the Asian megadeltas show very different patterns of habitation with peak population elevations ranging from 2 to 11 m above sea level over a wide range of coastal proximities. Over all nine megadeltas, over 174 million people reside below a peak population elevation of 7 m. Changes in the spatial extent of anthropogenic night light from 1992 to 2012 show widely varying extents and changes of lighted urban development. All of the deltas except the Indus show the greatest increases in night light brightness occurring at elevations <10 m. At global and continental scales, growth of settlements of all sizes takes the form of evolving spatial networks of development. Spatial networks of lighted urban development in Asia show power law scaling properties consistent with other continents, but much higher rates of growth. The three largest networks of development in China all occur on deltas and adjacent lowlands, and are growing faster than the rest of the urban network in China. Since 2000, the Huanghe Delta + North China Plain urban network has surpassed the Japanese urban network in size and may soon connect with the Changjiang Delta + Yangtze River urban network to form the largest conurbation in Asia.
Spatial and temporal trends in short-chain chlorinated paraffins in Lake Ontario sediments.
Marvin, C H; Painter, S; Tomy, G T; Stern, G A; Braekevelt, E; Muir, D C G
2003-10-15
Short-chain chlorinated paraffins (polychlorinated-[C10-C13]-n-alkanes) were measured in Lake Ontario sediments collected during a lake-wide survey to characterize spatial and temporal trends in contamination. The Lake Ontario average SCCP sediment concentration was 49 ng/g (dry wt), which was somewhat higher than the lake-wide average for sigmaDDT (32 ng/g). Individual stations in each of the depositional basins exhibited the highest concentrations, ranging from 147 ng/g (dry wt) to 410 ng/g at an index station in the Niagara (western) basin. Relative average contributions of the carbon chain groups to total SCCPs on a lake-wide basis were as follows: sigmaC10 = 24%, sigmaC11 = 35%, sigmaC12 = 34%, sigmaC13 = 6.6%. Assessment of core profiles and estimates of SCCP fluxes indicated that an area of the western end of Lake Ontario is heavily impacted (SCCP flux of 170 microg/m2 yr) and potentially influenced by local industrial sources of SCCPs. Maximum accumulation of SCCPs in this area of the western basin occurred in the mid-1970s. In contrast, SCCP concentrations in a core from a site in the central area of the lake (SCCP flux of 8.0 microg/m2 yr) were more similar to levels characteristic of remote locations primarily impacted by atmospheric sources.
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
NASA Astrophysics Data System (ADS)
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
WE-EF-303-08: Proton Radiography Using Pencil Beam Scanning and Novel Micromegas Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolney, D; Lustig, R; Teo, B
Purpose: While the energy of therapeutic proton beams can be adjusted to penetrate to any given depth in water, range uncertainties arise in patients due in part to imprecise knowledge of the stopping power of protons in human tissues. Proton radiography is one approach to reduce the beam range uncertainty, thereby allowing for a reduction in treatment margins and dose escalation. Methods: The authors have adapted a novel detector technology based on Micromesh Gaseous Structure (“Micromegas”) for proton therapy beams and have demonstrated fine spatial and time resolution of magnetically scanned proton pencil beams, as well as wide dynamic rangemore » for dosimetry. In this work, proton radiographs were obtained using Micromegas 2D planes positioned downstream of solid water assemblies. The position-sensitive monitor chambers in the IBA proton delivery nozzle provide the beam entrance position. Results: Radiography with Micromegas detectors and actively scanned beams provide spatial resolution of up to 300 µm and water-equivalent thickness (WET) resolution as good as 0.02% (60 µm out of 31 cm total thickness), with the dose delivered to the patient kept below 2 cGy. The spatial resolution as a function of sample rate and number of delivered protons is found to be near the theoretical Cramer-Rao lower bound. Using the CR bound, we argue that the imaging dose could be further lowered to 1 mGy, while still achieving sub-mm spatial resolution, by relatively simple instrumentation upgrades and beam delivery modifications. Conclusion: For proton radiography, high spatial and WET resolution can be achieved, with minimal additional dose to patient, by using magnetically scanned proton pencil beams and Micromegas detectors.« less
[Dosimetric aspects in studying the biological action of nonionizing electromagnetic radiation].
Karpov, V N; Galkin, A A; Davydov, B I
1984-01-01
In order to clarify mechanisms of biological reactions, it is very important to study the absorption and spatial distribution of the absorbed electromagnetic energy. The procedures and methods of calculating the electromagnetic energy absorption of biological specimens exposed to nonionizing electromagnetic irradiation in a wide frequency range (0-300 GHz) are described. Also presented are formulas and plots to be used in calculating the specific absorption of the dose rate by biological specimens, with the inclusion of resonance absorption, polarization of the incident electromagnetic wave, presence of reflecting surfaces and grounding. The extrapolation of the average energy absorption from one animal species to another and to man is discussed, assuming that spatial and energy distributions are equivalent. The notion of the irradiation quality coefficient is introduced. The magnitudes of the coefficients are given as related to the irradiation frequency and polarization type. A mathematical relation is offered to determine the safety of a complex spectrum of electromagnetic irradiation. The relation takes into consideration different dimensionality of the parameters of the electromagnetic field in the low- and high-frequency ranges.
How to use a phase-only spatial light modulator as a color display.
Harm, Walter; Jesacher, Alexander; Thalhammer, Gregor; Bernet, Stefan; Ritsch-Marte, Monika
2015-02-15
We demonstrate that a parallel aligned liquid crystal on silicon (PA-LCOS) spatial light modulator (SLM) without any attached color mask can be used as a full color display with white light illumination. The method is based on the wavelength dependence of the (voltage controlled) birefringence of the liquid crystal pixels. Modern SLMs offer a wide range over which the birefringence can be modulated, leading (in combination with a linear polarizer) to several intensity modulation periods of a reflected light wave as a function of the applied voltage. Because of dispersion, the oscillation period strongly depends on the wavelength. Thus each voltage applied to an SLM pixel corresponds to another reflected color spectrum. For SLMs with a sufficiently broad tuning range, one obtains a color palette (i.e., a "color lookup-table"), which allows one to display color images. An advantage over standard liquid crystal displays (LCDs), which use color masks in front of the individual pixels, is that the light efficiency and the display resolution are increased by a factor of three.
Spatial and Temporal Scales of Surface Water-Groundwater Interactions
NASA Astrophysics Data System (ADS)
Boano, F.
2016-12-01
The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.
Spatially offset Raman spectroscopy for explosives detection through difficult (opaque) containers
NASA Astrophysics Data System (ADS)
Maskall, Guy T.; Bonthron, Stuart; Crawford, David
2013-10-01
With the continuing threat to aviation security from homemade explosive devices, the restrictions on taking a volume of liquid greater than 100 ml onto an aircraft remain in place. From January 2014, these restrictions will gradually be reduced via a phased implementation of technological screening of Liquids, Aerosols and Gels (LAGs). Raman spectroscopy offers a highly sensitive, and specific, technique for the detection and identification of chemicals. Spatially Offset Raman Spectroscopy (SORS), in particular, offers significant advantages over conventional Raman spectroscopy for detecting and recognizing contents within optically challenging (Raman active) containers. Containers vary enormously in their composition; glass type, plastic type, thickness, reflectance, and pigmentation are all variable and cause an infinite range of absorbances, fluorescence backgrounds, Rayleigh backscattered laser light, and container Raman bands. In this paper we show that the data processing chain for Cobalt Light Systems' INSIGHT100 bottlescanner is robust to such variability. We discuss issues of model selection for the detection stage and demonstrate an overall detection rate across a wide range of threats and containers of 97% with an associated false alarm rate of 0.1% or lower.
NASA Astrophysics Data System (ADS)
Riedel, Sebastian; Janas, Joanna; Gege, Peter; Oppelt, Natascha
2017-10-01
Uncertainties of aerosol parameters are the limiting factor for atmospheric correction over inland and coastal waters. For validating remote sensing products from these optically complex and spatially inhomogeneous waters the spatial resolution of automated sun photometer networks like AERONET is too coarse and additional measurements on the test site are required. We have developed a method which allows the derivation of aerosol parameters from measurements with any spectrometer with suitable spectral range and resolution. This method uses a pair of downwelling irradiance and sky radiance measurements for the extraction of the turbidity coefficient and aerosol Ångström exponent. The data can be acquired fast and reliable at almost any place during a wide range of weather conditions. A comparison to aerosol parameters measured with a Cimel sun photometer provided by AERONET shows a reasonable agreement for the Ångström exponent. The turbidity coefficient did not agree well with AERONET values due to fit ambiguities, indicating that future research should focus on methods to handle parameter correlations within the underlying model.
NASA Astrophysics Data System (ADS)
Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.
2017-02-01
We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.
NASA Astrophysics Data System (ADS)
Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.
2014-10-01
The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.
Macrophytobenthos of the Caspian Sea: Diversity, distribution, and productivity
NASA Astrophysics Data System (ADS)
Stepanian, O. V.
2016-05-01
In the Russian sector of the northern and middle Caspian Sea, 36 species of macroalgae have been identified. The green and red algae from the mesosaprobic group are dominant. An increase in the number of green algae species is revealed. The distribution of macroalgae is inhomogeneous. It is confined to the solid substrate and epiphyton. The biomass of seaweeds reaches 1.5 kg/m2. Climate change has little influence on the appearance of new species in the northern Caspian Sea, but new invaders can appear in the Middle and Southern Caspian. The distribution of aquatic and coastal hygrophytic vegetation shows considerable spatial dynamics due to fluctuations in the level and salinity of the Caspian Sea. The biomass of aquatic vegetation varies in a wide range from 0.5 to 10.0 kg/m2. Spatially detailed mathematical models adequately reflect the changes in key species of aquatic plants in space and time. It is shown that expansion of the zone of the seagrass Zostera noltii to shallow water areas is occurring at present, as well as shrinkage of the range of the dominant littoral aquatic plant Phragmites australis.
Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian
2014-01-01
Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252
Spatial reconstruction of single-cell gene expression data.
Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv
2015-05-01
Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.
Polansky, Leo; Kilian, Werner; Wittemyer, George
2015-01-01
Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State–space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts. PMID:25808888
Neelon, Brian; Gelfand, Alan E.; Miranda, Marie Lynn
2013-01-01
Summary Researchers in the health and social sciences often wish to examine joint spatial patterns for two or more related outcomes. Examples include infant birth weight and gestational length, psychosocial and behavioral indices, and educational test scores from different cognitive domains. We propose a multivariate spatial mixture model for the joint analysis of continuous individual-level outcomes that are referenced to areal units. The responses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal response distributions and allows investigators to examine covariate effects within subpopulations of interest. The model has a hierarchical structure built at the individual level (i.e., individuals are nested within areal units), and thus incorporates both individual- and areal-level predictors as well as spatial random effects for each mixture component. Conditional autoregressive (CAR) priors on the random effects provide spatial smoothing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. We adopt a Bayesian modeling approach and develop an efficient Markov chain Monte Carlo model fitting algorithm that relies primarily on closed-form full conditionals. We use the model to explore geographic patterns in end-of-grade math and reading test scores among school-age children in North Carolina. PMID:26401059
Spatial prediction of near surface soil water retention functions using hydrogeophysics
NASA Astrophysics Data System (ADS)
Gibson, J. P.; Franz, T. E.
2017-12-01
The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.
Click-On-Diagram Questions: a New Tool to Study Conceptions Using Classroom Response Systems
NASA Astrophysics Data System (ADS)
LaDue, Nicole D.; Shipley, Thomas F.
2018-06-01
Geoscience instructors depend upon photos, diagrams, and other visualizations to depict geologic structures and processes that occur over a wide range of temporal and spatial scales. This proof-of-concept study tests click-on-diagram (COD) questions, administered using a classroom response system (CRS), as a research tool for identifying spatial misconceptions. First, we propose a categorization of spatial conceptions associated with geoscience concepts. Second, we implemented the COD questions in an undergraduate introductory geology course. Each question was implemented three times: pre-instruction, post-instruction, and at the end of the course to evaluate the stability of students' conceptual understanding. We classified each instance as (1) a false belief that was easily remediated, (2) a flawed mental model that was not fully transformed, or (3) a robust misconception that persisted despite targeted instruction. Geographic Information System (GIS) software facilitated spatial analysis of students' answers. The COD data confirmed known misconceptions about Earth's structure, geologic time, and base level and revealed a novel robust misconception about hot spot formation. Questions with complex spatial attributes were less likely to change following instruction and more likely to be classified as a robust misconception. COD questions provided efficient access to students' conceptual understanding. CRS-administered COD questions present an opportunity to gather spatial conceptions with large groups of students, immediately, building the knowledge base about students' misconceptions and providing feedback to guide instruction.
The Detection of Clusters with Spatial Heterogeneity
ERIC Educational Resources Information Center
Zhang, Zuoyi
2011-01-01
This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…
PRAIRIEMAP: A GIS database for prairie grassland management in western North America
,
2003-01-01
The USGS Forest and Rangeland Ecosystem Science Center, Snake River Field Station (SRFS) maintains a database of spatial information, called PRAIRIEMAP, which is needed to address the management of prairie grasslands in western North America. We identify and collect spatial data for the region encompassing the historical extent of prairie grasslands (Figure 1). State and federal agencies, the primary entities responsible for management of prairie grasslands, need this information to develop proactive management strategies to prevent prairie-grassland wildlife species from being listed as Endangered Species, or to develop appropriate responses if listing does occur. Spatial data are an important component in documenting current habitat and other environmental conditions, which can be used to identify areas that have undergone significant changes in land cover and to identify underlying causes. Spatial data will also be a critical component guiding the decision processes for restoration of habitat in the Great Plains. As such, the PRAIRIEMAP database will facilitate analyses of large-scale and range-wide factors that may be causing declines in grassland habitat and populations of species that depend on it for their survival. Therefore, development of a reliable spatial database carries multiple benefits for land and wildlife management. The project consists of 3 phases: (1) identify relevant spatial data, (2) assemble, document, and archive spatial data on a computer server, and (3) develop and maintain the web site (http://prairiemap.wr.usgs.gov) for query and transfer of GIS data to managers and researchers.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575
Network analysis reveals multiscale controls on streamwater chemistry.
McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W
2014-05-13
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Low-Cost Sensor Units for Measuring Urban Air Quality
NASA Astrophysics Data System (ADS)
Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.
2010-12-01
Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, C. I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel fl ow problem.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel ow problem.
Recent warming leads to a rapid borealization of fish communities in the Arctic
NASA Astrophysics Data System (ADS)
Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.
2015-07-01
Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.
Dios: The Dark Baryon Exploring Mission
NASA Technical Reports Server (NTRS)
T.Ohashi; Ishisaki, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.;
2016-01-01
DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30 diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.
Microbeam complex at TIARA: Technologies to meet a wide range of applications
NASA Astrophysics Data System (ADS)
Kamiya, T.; Takano, K.; Satoh, T.; Ishii, Y.; Nishikawa, H.; Seki, S.; Sugimoto, M.; Okumura, S.; Fukuda, M.
2011-10-01
Since 1990 R&Ds of microbeam technology has been progressed at the TIARA facility of JAEA Takasaki. In order to meet a wide variety of ion beam applications, analysis, radiation effect studies, or fabrication in regions of micro- or nano-structures, three different types of ion microbeam systems were developed. In these systems, high-spatial resolutions have been achieved and techniques of micro-PIXE, single ion hit and particle beam writing (PBW) were also developed for these applications. Microbeams, on the other hand, require the highest quality of beams from the accelerators, the cyclotron in particular, which was an important part of the microbeam technology of TIARA. In this paper, the latest progress of the ion microbeam technology and applications are summarized and a future prospect of them is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacold, J. I.; Altman, A. B.; Donald, S B
Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolutionmore » in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.« less
Sound-field measurement with moving microphones
Katzberg, Fabrice; Mazur, Radoslaw; Maass, Marco; Koch, Philipp; Mertins, Alfred
2017-01-01
Closed-room scenarios are characterized by reverberation, which decreases the performance of applications such as hands-free teleconferencing and multichannel sound reproduction. However, exact knowledge of the sound field inside a volume of interest enables the compensation of room effects and allows for a performance improvement within a wide range of applications. The sampling of sound fields involves the measurement of spatially dependent room impulse responses, where the Nyquist-Shannon sampling theorem applies in the temporal and spatial domains. The spatial measurement often requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration of a large number of microphones. In this paper, a method for measuring sound fields using moving microphones is presented. The number of microphones is customizable, allowing for a tradeoff between hardware effort and measurement time. The goal is to reconstruct room impulse responses on a regular grid from data acquired with microphones between grid positions, in general. For this, the sound field at equidistant positions is related to the measurements taken along the microphone trajectories via spatial interpolation. The benefits of using perfect sequences for excitation, a multigrid recovery, and the prospects for reconstruction by compressed sensing are presented. PMID:28599533
Distributed Lag Models: Examining Associations between the Built Environment and Health
Baek, Jonggyu; Sánchez, Brisa N.; Berrocal, Veronica J.; Sanchez-Vaznaugh, Emma V.
2016-01-01
Built environment factors constrain individual level behaviors and choices, and thus are receiving increasing attention to assess their influence on health. Traditional regression methods have been widely used to examine associations between built environment measures and health outcomes, where a fixed, pre-specified spatial scale (e.g., 1 mile buffer) is used to construct environment measures. However, the spatial scale for these associations remains largely unknown and misspecifying it introduces bias. We propose the use of distributed lag models (DLMs) to describe the association between built environment features and health as a function of distance from the locations of interest and circumvent a-priori selection of a spatial scale. Based on simulation studies, we demonstrate that traditional regression models produce associations biased away from the null when there is spatial correlation among the built environment features. Inference based on DLMs is robust under a range of scenarios of the built environment. We use this innovative application of DLMs to examine the association between the availability of convenience stores near California public schools, which may affect children’s dietary choices both through direct access to junk food and exposure to advertisement, and children’s body mass index z-scores (BMIz). PMID:26414942
Cognitive styles and mental rotation ability in map learning.
Pazzaglia, Francesca; Moè, Angelica
2013-11-01
In inspecting, learning and reproducing a map, a wide range of abilities is potentially involved. This study examined the role of mental rotation (MR) and verbal ability, together with that of cognitive styles in map learning. As regards cognitive styles, the traditional distinction between verbalizers and visualizers has been taken into account, together with a more recent distinction between two styles of visualization: spatial and object. One hundred and seven participants filled in two questionnaires on cognitive styles: the Verbalizer-Visualizer Questionnaire (Richardson in J Ment Imag 1:109-125, 1977) and the Object-Spatial Imagery Questionnaire (Blajenkova et al. in Appl Cogn Psych 20:239-263, 2006), performed MR and verbal tests, learned two maps, and were then tested for their recall. It was found that MR ability and cognitive styles played a role in predicting map learning, with some distinctions within cognitive styles: verbal style favoured learning of one of the two maps (the one rich in verbal labels), which in turn was disadvantaged by the adoption of spatial style. Conversely, spatial style predicted learning of the other map, rich in visual features. The discussion focuses on implications for cognitive psychology and everyday cognition.
Gelade, Garry A
2013-02-01
This paper examines the distribution of national personality dimensions in geographical space. The relationship between geographical location and aggregate personality in a wide range of nations is quantified using spatial autocorrelation, and it is found that the personalities of nations that are geographical neighbours are more similar than those that are far apart. The five factors of both the Revised NEO Personality Inventory (NEO-PI-R) and the Big Five Inventory (BFI), all show a significant degree of spatial organization. The personality factors most strongly associated with geographical location are NEO-PI-R extraversion and BFI conscientiousness; both vary with position around the globe about as much as the physical climate. These findings support previous research suggesting associations between aggregate personality and geography, and imply that the sources of variation in national personality are themselves geographically organized. © 2012 The British Psychological Society.
Efimov effect in D spatial dimensions in A A B systems
NASA Astrophysics Data System (ADS)
Rosa, D. S.; Frederico, T.; Krein, G.; Yamashita, M. T.
2018-05-01
The existence of the Efimov effect is drastically affected by the dimensionality of the space in which the system is embedded. The effective spatial dimension containing an atomic cloud can be continuously modified by compressing it in one or two directions. In the present Rapid Communication we determine the dimensionality D for which the Efimov effect can exist for different values of the mass ratio A =mB/mA for a general A A B system formed by two identical bosons A and a third particle B in the two-body unitary limit. In addition, we provide a prediction for the Efimov discrete scaling factor exp(π /s ) as a function of a wide range of values of A and D , which can be tested in experiments that can be realized with currently available technology.
Forma y acción de la liberación de energía en la atmósfera solar
NASA Astrophysics Data System (ADS)
Mandrini, C. H.
2016-08-01
We briefly describe the lines of work developed over more than twenty years and their relevant results. Our scope is essentially that of active events that occur in the solar atmosphere covering wide temporal and spatial scales and energy range. We present results derived from the comparative analysis of active events and their interplanetary counterparts, as well as of aspects related to the quiet solar atmosphere, such as the heating of the corona and the origin of the slow solar wind.
Topological patterns in street networks of self-organized urban settlements
NASA Astrophysics Data System (ADS)
Buhl, J.; Gautrais, J.; Reeves, N.; Solé, R. V.; Valverde, S.; Kuntz, P.; Theraulaz, G.
2006-02-01
Many urban settlements result from a spatially distributed, decentralized building process. Here we analyze the topological patterns of organization of a large collection of such settlements using the approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), robustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random failures) to meshed urban patterns. The latter are shown to be more robust and efficient.
Decerns: A framework for multi-criteria decision analysis
Yatsalo, Boris; Didenko, Vladimir; Gritsyuk, Sergey; ...
2015-02-27
A new framework, Decerns, for multicriteria decision analysis (MCDA) of a wide range of practical problems on risk management is introduced. Decerns framework contains a library of modules that are the basis for two scalable systems: DecernsMCDA for analysis of multicriteria problems, and DecernsSDSS for multicriteria analysis of spatial options. DecernsMCDA includes well known MCDA methods and original methods for uncertainty treatment based on probabilistic approaches and fuzzy numbers. As a result, these MCDA methods are described along with a case study on analysis of multicriteria location problem.
Hendershott, Taylor R; Cronin, Marie E; Langella, Stephanie; McGuinness, Patrick S; Basu, Alo C
2016-11-01
The influence of housing on cognition and emotional regulation in mice presents a problem for the study of genetic and environmental risk factors for neuropsychiatric disorders: standard laboratory housing may result in low levels of cognitive function or altered levels of anxiety that leave little room for assessment of deleterious effects of experimental manipulations. The use of enriched environment (EE) may allow for the measurement of a wider range of performance in cognitive domains. Cognitive and behavioral effects of EE in male mice have not been widely reproduced, perhaps due to variability in the application of enrichment protocols, and the effects of EE in female mice have not been widely studied. We have developed an EE protocol using common laboratory equipment that, without a running wheel for exercise, results in significant cognitive and behavioral effects relative to standard laboratory housing conditions. We compared male and female wild-type C57BL/6J mice reared from weaning age in an EE to those reared in a standard environment (SE), using common measures of anxiety-like behavior, sensory gating, sociability, and spatial learning and memory. Sex was a significant factor in relevant elevated plus maze (EPM) measures, and bordered on significance in a social interaction (SI) assay. Effects of EE on anxiety-like behavior and sociability were indicative of a general increase in exploratory activity. In male and female mice, EE resulted in reduced prepulse inhibition (PPI) of the acoustic startle response, and enhanced spatial learning and use of spatially precise strategies in a Morris water maze task. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; McManamay, Ryan A; Nagle, Nicholas N
Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may thereforemore » not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.« less
Optical magnetic imaging of living cells
Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.
2013-01-01
Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694
Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery
NASA Astrophysics Data System (ADS)
Moharana, Shreedevi; Dutta, Subashisa
2016-12-01
Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.
Developing and Delivering National-Scale Gridded Phenology Data Products
NASA Astrophysics Data System (ADS)
Marsh, L.; Crimmins, M.; Crimmins, T. M.; Gerst, K.; Rosemartin, A.; Switzer, J.; Weltzin, J. F.
2016-12-01
The USA National Phenology Network (USA-NPN; www.usanpn.org) is now producing and freely delivering daily maps and short-term forecasts of accumulated growing degree days and spring onset dates (based on the Extended Spring Indices) at fine spatial scale for the conterminous United States. These data products have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, determining planting dates, anticipating allergy outbreaks and planning agricultural harvest dates. Accumulated growing degree day (AGDD) maps were selected because accumulated temperature is a strong driver of phenological transitions in plants and animals, including leaf-out, flowering, fruit ripening and migration. The Extended Spring Indices (SI-x) are based on predictive climate models for lilac and honeysuckle leaf and bloom; they have been widely used to summarize changes in the timing of spring onset. The SI-x is used as a national indicator of climate change impacts by the US Global Change Research Program and the Environmental Protection Agency. The USA-NPN is a national-scale program that supports scientific advancement and decision-making by collecting, storing, and sharing phenology data and information. To best serve various audiences, the AGDD and SI-x gridded maps are available in various formats through a range of access tools, including the USA-NPN online visualization tool as well as industry standards compliant web services. We plan to expand the suite of gridded map products offered by the USA-NPN to include predictive maps of phenological transitions for additional plant and animal species at fine spatial and temporal resolution in the near future. USA-NPN invites you to use freely available daily and short-term forecast maps of accumulated growing degree days and spring onset dates at fine spatial scale for the conterminous United States.
Comparison of S-NPP VIIRS land surface temperature with SEVIRI
NASA Astrophysics Data System (ADS)
Ermida, Sofia L.; Trigo, Isabel F.; Liu, Yuling; Yu, Yunyue
2017-04-01
Land surface temperature (LST) is one of the key parameters in the physics of land surface processes. LST can be globally measured from space by infrared radiometers, with a wide range of spatial and temporal resolutions depending on the sensor design and orbit. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is the primary sensor onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite, which was launched in recent years. VIIRS was designed to improve upon the capabilities of the operational AVHRR and provide observation continuity with MODIS. A Split Window approach has been applied to the VIIRS moderate resolution channels M15 and M16 centered at 10.76 µm and 12.01 µm, respectively. VIIRS has a swath of 3000 km and a spatial resolution of 745m (nadir) up to about 1600 m (limb view), leading to relatively high re-visiting frequency. LST is retrieved for a wide range of viewing angles along the VIIRS path, allowing the study of the variability of LST with viewing geometry for various land cover types. Here we present a comparison of VIRS LST data with data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG). SEVIRI-based LST is available every 15-minute, but at coarser spatial resolution (3-km at nadir) when compared to VIIRS LST. The analysis is performed over 6 areas over the SEVIRI disk characterized by different surface conditions. VIIRS has generally slightly warmer night-time LST compared with SEVIRI, with differences smaller than 2K. Larger differences are found during daytime, with VIIRS presenting overall lower LST values up to 5K. These differences are also analysed taking into account the surface type, view zenith angle (VZA) and topography. As seen in previous comparison studies, high VZA and elevation values are associated to higher discrepancies of the LST products.
Spectral and spatial characterisation of laser-driven positron beams
Sarri, G.; Warwick, J.; Schumaker, W.; ...
2016-10-18
The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allowsmore » to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.« less
Grøftehauge, Morten K; Hajizadeh, Nelly R; Swann, Marcus J; Pohl, Ehmke
2015-01-01
Over the last decades, a wide range of biophysical techniques investigating protein-ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography.
Grøftehauge, Morten K.; Hajizadeh, Nelly R.; Swann, Marcus J.; Pohl, Ehmke
2015-01-01
Over the last decades, a wide range of biophysical techniques investigating protein–ligand interactions have become indispensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays (TSA) to highly accurate techniques including microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) that can provide a full thermodynamic description of binding events. Surface-based methods such as surface plasmon resonance (SPR) and dual polarization interferometry (DPI) allow real-time measurements and can provide kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, an account is presented of new developments and recent applications of TSA and DPI connected to crystallography. PMID:25615858
NASA Astrophysics Data System (ADS)
Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin
2017-06-01
We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.
Clayton, D J; Jaworski, M A; Kumar, D; Stutman, D; Finkenthal, M; Tritz, K
2012-10-01
A divertor imaging radiometer (DIR) diagnostic is being studied to measure spatially and spectrally resolved radiated power P(rad)(λ) in the tokamak divertor. A dual transmission grating design, with extreme ultraviolet (~20-200 Å) and vacuum ultraviolet (~200-2000 Å) gratings placed side-by-side, can produce coarse spectral resolution over a broad wavelength range covering emission from impurities over a wide temperature range. The DIR can thus be used to evaluate the separate P(rad) contributions from different ion species and charge states. Additionally, synthetic spectra from divertor simulations can be fit to P(rad)(λ) measurements, providing a powerful code validation tool that can also be used to estimate electron divertor temperature and impurity transport.
Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V
2014-08-25
The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.
Sokoll, Stefan; Tönnies, Klaus; Heine, Martin
2012-01-01
In this paper we present an algorithm for the detection of spontaneous activity at individual synapses in microscopy images. By employing the optical marker pHluorin, we are able to visualize synaptic vesicle release with a spatial resolution in the nm range in a non-invasive manner. We compute individual synaptic signals from automatically segmented regions of interest and detect peaks that represent synaptic activity using a continuous wavelet transform based algorithm. As opposed to standard peak detection algorithms, we employ multiple wavelets to match all relevant features of the peak. We evaluate our multiple wavelet algorithm (MWA) on real data and assess the performance on synthetic data over a wide range of signal-to-noise ratios.
A computational model for how cells choose temporal or spatial sensing during chemotaxis.
Tan, Rui Zhen; Chiam, Keng-Hwee
2018-03-01
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.
A computational model for how cells choose temporal or spatial sensing during chemotaxis
Tan, Rui Zhen; Chiam, Keng-Hwee
2018-01-01
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable. PMID:29505572
Effects of testosterone on spatial learning and memory in adult male rats
Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.
2011-01-01
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035
Sex differences in visual-spatial working memory: A meta-analysis.
Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean
2017-04-01
Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.
Wakelin, Steven; Tillard, Guyléne; van Ham, Robert; Ballard, Ross; Farquharson, Elizabeth; Gerard, Emily; Geurts, Rene; Brown, Matthew; Ridgway, Hayley; O'Callaghan, Maureen
2018-01-01
Biological nitrogen fixation through the legume-rhizobia symbiosis is important for sustainable pastoral production. In New Zealand, the most widespread and valuable symbiosis occurs between white clover (Trifolium repens L.) and Rhizobium leguminosarum bv. trifolii (Rlt). As variation in the population size (determined by most probable number assays; MPN) and effectiveness of N-fixation (symbiotic potential; SP) of Rlt in soils may affect white clover performance, the extent in variation in these properties was examined at three different spatial scales: (1) From 26 sites across New Zealand, (2) at farm-wide scale, and (3) within single fields. Overall, Rlt populations ranged from 95 to >1 x 108 per g soil, with variation similar at the three spatial scales assessed. For almost all samples, there was no relationship between rhizobia population size and ability of the population to fix N during legume symbiosis (SP). When compared with the commercial inoculant strain, the SP of soils ranged between 14 to 143% efficacy. The N-fixing ability of rhizobia populations varied more between samples collected from within a single hill country field (0.8 ha) than between 26 samples collected from diverse locations across New Zealand. Correlations between SP and calcium and aluminium content were found in all sites, except within a dairy farm field. Given the general lack of association between SP and MPN, and high spatial variability of SP at single field scale, provision of advice for treating legume seed with rhizobia based on field-average MPN counts needs to be carefully considered.
The potential of diffraction grating for spatial applications
NASA Astrophysics Data System (ADS)
Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.
2017-11-01
Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.
NASA Astrophysics Data System (ADS)
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard
2012-09-01
When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.
Tillard, Guyléne; van Ham, Robert; Ballard, Ross; Farquharson, Elizabeth; Gerard, Emily; Geurts, Rene; Brown, Matthew; Ridgway, Hayley; O’Callaghan, Maureen
2018-01-01
Biological nitrogen fixation through the legume-rhizobia symbiosis is important for sustainable pastoral production. In New Zealand, the most widespread and valuable symbiosis occurs between white clover (Trifolium repens L.) and Rhizobium leguminosarum bv. trifolii (Rlt). As variation in the population size (determined by most probable number assays; MPN) and effectiveness of N-fixation (symbiotic potential; SP) of Rlt in soils may affect white clover performance, the extent in variation in these properties was examined at three different spatial scales: (1) From 26 sites across New Zealand, (2) at farm-wide scale, and (3) within single fields. Overall, Rlt populations ranged from 95 to >1 x 108 per g soil, with variation similar at the three spatial scales assessed. For almost all samples, there was no relationship between rhizobia population size and ability of the population to fix N during legume symbiosis (SP). When compared with the commercial inoculant strain, the SP of soils ranged between 14 to 143% efficacy. The N-fixing ability of rhizobia populations varied more between samples collected from within a single hill country field (0.8 ha) than between 26 samples collected from diverse locations across New Zealand. Correlations between SP and calcium and aluminium content were found in all sites, except within a dairy farm field. Given the general lack of association between SP and MPN, and high spatial variability of SP at single field scale, provision of advice for treating legume seed with rhizobia based on field-average MPN counts needs to be carefully considered. PMID:29489845
Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C
2015-01-01
Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Anderson, Martha; Hain, Christopher; Feng, Gao; Yang, Yun; Sun, Liang; Yang, Yang; Dulaney, Wayne; Sharifi, Amir; Kustas, William; Holmes, Thomas
2017-04-01
Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water quality, water use and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.
Defining the Geographical Range of the Plasmodium knowlesi Reservoir
Moyes, Catherine L.; Henry, Andrew J.; Golding, Nick; Huang, Zhi; Singh, Balbir; Baird, J. Kevin; Newton, Paul N.; Huffman, Michael; Duda, Kirsten A.; Drakeley, Chris J.; Elyazar, Iqbal R. F.; Anstey, Nicholas M.; Chen, Qijun; Zommers, Zinta; Bhatt, Samir; Gething, Peter W.; Hay, Simon I.
2014-01-01
Background The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans. Methodology/Principal Findings After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region. Conclusions/Significance We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment. PMID:24676231
Kalwij, Jesse M; Robertson, Mark P; Ronk, Argo; Zobel, Martin; Pärtel, Meelis
2014-01-01
Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution dataset mergers, such as the one exemplified here, can serve as a baseline towards comprehensive species distribution datasets.
NASA Astrophysics Data System (ADS)
Caruso, Alice; Boano, Fulvio; Ridolfi, Luca
2015-04-01
Surface water bodies continuously interact with the subsurface and it is by now widely known that the hyporheic zone plays a key role in the mixing of river water with shallow groundwater. Hyporheic exchange occurs over a very wide range of spatial and temporal scales and the exchange processes at different scales interact and determine a complex system of nested flow cells. This intricacy results from the multiplicity of spatial scale that characterize landscape and river morphology. In the last years, many processes that regulate the surface-groundwater interactions have been elucidated and a more holistic view of groundwater and surface water has been adopted. However, despite several insights on the mechanisms of hyporheic exchange have been achieved, many important aspects remain to be clarified, i.e. how surface-groundwater interactions influence solute transport, microbial activity and biogeochemical transformations at the scale of entire watersheds. To date a deep knowledge of small-scale processes has been developed but what is lacking is a unifying overview of the role of surface water-groundwater exchange for the health of the whole water system at larger scales, i.e. the scale of the entire basin. In order to better understand the complex multiscale nature of spatial patterns of surface-subsurface exchange, we aim to assess the importance of the individual scales included in the range between watershed scale to stream reach scale. Hence, we study the large-scale subsurface flow field taking into account the surface-groundwater interactions induced by landscape topography from the basin scale to smaller scales ranging from tens of kilometers to tens of meters. The aim of this research is to analyze how individual topographic scales affect the flow field and to understand which ones are the most important and should be focused on. To study the impact of various scales of landscape topography we apply an analytical model that provides an exact solution of the underlying three dimensional groundwater flow and a numerical particle tracking routine that allows to obtain streamlines and residence time distributions from the flow field. Therefore, starting from a previously published mathematical tool we set the goal of investigating the interaction between the scales and clarifying their role. We consider real basin examples and describe subsurface flow at the landscape scale, identifying inflow patterns of groundwater to the river network, in order to obtain, in the near future, results to be used for conserving, managing and restoring of a riverine ecosystem.
Fulton, Elizabeth A.; Smith, Anthony D. M.; Smith, David C.; Johnson, Penelope
2014-01-01
An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722
Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects
ERIC Educational Resources Information Center
Qian, Minghui; Hu, Ridong; Chen, Jianwei
2016-01-01
Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…
Dynamic simulation of crime perpetration and reporting to examine community intervention strategies.
Yonas, Michael A; Burke, Jessica G; Brown, Shawn T; Borrebach, Jeffrey D; Garland, Richard; Burke, Donald S; Grefenstette, John J
2013-10-01
To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically grounded community setting. Juvenile agents are assigned initial random probabilities of perpetrating a crime and adults are assigned random probabilities of witnessing and reporting crimes. The agents' behavioral probabilities modify depending on the individual's experience with criminal behavior and punishment, and exposure to community crime interventions. Cost-effectiveness analyses assessed the impact of activating different percentages of adults to increase reporting and reduce community crime activity. Community-wide interventions were compared with spatially focused interventions, in which activated adults were focused in areas of highest crime prevalence. The ABM suggests that both community-wide and spatially focused interventions can be effective in reducing overall offenses, but their relative effectiveness may depend on the intensity and cost of the interventions. Although spatially focused intervention yielded localized reductions in crimes, such interventions were shown to move crime to nearby communities. Community-wide interventions can achieve larger reductions in overall community crime offenses than spatially focused interventions, as long as sufficient resources are available. The ABM demonstrates that community-wide and spatially focused crime strategies produce unique intervention dynamics influencing juvenile crime behaviors through the decisions and actions of community adults. It shows how such models might be used to investigate community-supported crime intervention programs by integrating community input and expertise and provides a simulated setting for assessing dimensions of cost comparison and intervention effect sustainability. ABM illustrates how intervention models might be used to investigate community-supported crime intervention programs.
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Shipley, T. F.; Tikoff, B.; Manduca, C. A.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T.; Atit, K.; Gagnier, K. M.; Resnick, I.
2013-12-01
Spatial visualization is an essential skill in many, if not all, STEM disciplines. It is a prerequisite for understanding subjects as diverse as fluid flow through 3D fault systems, magnetic and gravitational fields, atmospheric and oceanic circulation patterns, cellular and molecular structures, engineering design, topology, and much, much more. Undergraduate geoscience students, in both introductory and upper-level courses, bring a wide range of spatial skill levels to the classroom. However, spatial thinking improves with practice, and can improve more rapidly with intentional training. As a group of geoscience faculty members and cognitive psychologists, we are collaborating to apply the results of cognitive science research to the development of teaching materials to improve undergraduate geology majors' spatial thinking skills. This approach has the potential to transform undergraduate STEM education by removing one significant barrier to success in the STEM disciplines. Two promising teaching strategies have emerged from recent cognitive science research into spatial thinking: gesturing and predictive sketching. Studies show that students who gesture about spatial relationships perform better on spatial tasks than students who don't gesture, perhaps because gesture provides a mechanism for cognitive offloading. Similarly, students who sketch their predictions about the interiors of geologic block diagrams perform better on penetrative thinking tasks than students who make predictions without sketching. We are developing new teaching materials for Mineralogy, Structural Geology, and Sedimentology & Stratigraphy courses using these two strategies. Our data suggest that the research-based teaching materials we are developing may boost students' spatial thinking skills beyond the baseline gains we have measured in the same courses without the new curricular materials.
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
Yong, Emma; Barbato, Mariapaola; Penn, David L; Keefe, Richard S E; Woods, Scott W; Perkins, Diana O; Addington, Jean
2014-08-15
Neurocognition and social cognition are separate but related constructs known to be impaired in schizophrenia. The aim of this study was to extend the current knowledge of the relationship between social cognition and neurocognition in individuals at clinical high risk (CHR) of developing psychosis by examining, in a large sample, the associations between a wide range of neurocognitive tasks and social cognition. Participants included 136 young people at CHR. Specific domains within neurocognition and social cognition were compared using Spearman correlations. Results showed that poor theory of mind correlated with low ratings on a wide range of neurocognitive tasks. Facial affect was more often associated with low ratings on spatial working memory and attention. These results support a link between neurocognition and social cognition even at this early stage of potential psychosis, with indication that poorer performance on social cognition may be associated with deficits in attention and working memory. Understanding these early associations may have implications for early intervention. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mullan, Donal; Chen, Jie; Zhang, Xunchang John
2016-02-01
Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.
Angler effort and catch within a spatially complex system of small lakes.
Pope, Kevin L.; Chizinski, Christopher J.; Martin, Dustin R.; Barada, Tony J.; Schuckman, Jeffrey J.
2014-01-01
Spatial layout of waterbodies and waterbody size can affect a creel clerk’s ability to intercept anglers for interviews and to accurately count anglers, which will affect the accuracy and precision of estimates of effort and catch. This study aimed to quantify angling effort and catch across a spatially complex system of 19 small (<100 ha) lakes, the Fremont lakes. Total (±SE) angling effort (hours) on individual lakes ranged from 0 (0) to 7,137 (305). Bank anglers utilized 18 of the 19 lakes, and their mean (±SE) trip lengths (hours) ranged from 0.80 (0.31) to 7.75 (6.75), depending on the waterbody. In contrast, boat anglers utilized 14 of the 19 lakes, and their trip lengths ranged from 1.39 (0.24) to 4.25 (0.71), depending on the waterbody. The most sought fishes, as indexed by number of lakes on which effort was exerted, were anything (17 of 19 lakes), largemouth bassMicropterus salmoides (15 of 19 lakes), and channel catfish Ictalurus punctatus (13 of 19 lakes). Bluegill Lepomis machrochirus, crappie Pomoxis spp., and largemouth bass were caught most frequently across the lakes, but catch rates varied considerably by lake. Of the 1,138 parties interviewed, most parties (93%) visited a single lake but there were 77 (7%) parties that indicated that they had visited multiple lakes during a single day. The contingent of parties that visited more than one lake a day were primarily (87%) bank anglers.. The number of lake-to-lake connections made by anglers visiting more than one waterbody during a single day was related to catch rates and total angling effort. The greater resolution that was achieved with a lake specific creel survey at Fremont lakes revealed a system of lakes with a large degree of spatial variation in angler effort and catch that would be missed by a coarser, system-wide survey that did not differentiate individual lakes.
NASA Astrophysics Data System (ADS)
Gavilan, C.; Grunwald, S.; Quiroz, R.; Zhu, L.
2015-12-01
The Andes represent the largest and highest mountain range in the tropics. Geological and climatic differentiation favored landscape and soil diversity, resulting in ecosystems adapted to very different climatic patterns. Although several studies support the fact that the Andes are a vast sink of soil organic carbon (SOC) only few have quantified this variable in situ. Estimating the spatial distribution of SOC stocks in data-poor and/or poorly accessible areas, like the Andean region, is challenging due to the lack of recent soil data at high spatial resolution and the wide range of coexistent ecosystems. Thus, the sampling strategy is vital in order to ensure the whole range of environmental covariates (EC) controlling SOC dynamics is represented. This approach allows grasping the variability of the area, which leads to more efficient statistical estimates and improves the modeling process. The objectives of this study were to i) characterize and model the spatial distribution of SOC stocks in the Central Andean region using soil-landscape modeling techniques, and to ii) validate and evaluate the model for predicting SOC content in the area. For that purpose, three representative study areas were identified and a suite of variables including elevation, mean annual temperature, annual precipitation and Normalized Difference Vegetation Index (NDVI), among others, was selected as EC. A stratified random sampling (namely conditioned Latin Hypercube) was implemented and a total of 400 sampling locations were identified. At all sites, four composite topsoil samples (0-30 cm) were collected within a 2 m radius. SOC content was measured using dry combustion and SOC stocks were estimated using bulk density measurements. Regression Kriging was used to map the spatial variation of SOC stocks. The accuracy, fit and bias of SOC models was assessed using a rigorous validation assessment. This study produced the first comprehensive, geospatial SOC stock assessment in this undersampled region that serves as a baseline reference to assess potential impacts of climate and land use change.
Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF
NASA Technical Reports Server (NTRS)
Hill, Peter; Thompson, Patrick
2012-01-01
A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes
Subgrid spatial variability of soil hydraulic functions for hydrological modelling
NASA Astrophysics Data System (ADS)
Kreye, Phillip; Meon, Günter
2016-07-01
State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.
NASA Astrophysics Data System (ADS)
Gutschwager, Berndt; Hollandt, Jörg
2017-01-01
We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2018-01-01
We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.
Remodeling census population with spatial information from Landsat TM imagery
Yuan, Y.; Smith, R.M.; Limp, W.F.
1997-01-01
In geographic information systems (GIS) studies there has been some difficulty integrating socioeconomic and physiogeographic data. One important type of socioeconomic data, census data, offers a wide range of socioeconomic information, but is aggregated within arbitrary enumeration districts (EDs). Values reflect either raw counts or, when standardized, the mean densities in the EDs. On the other hand, remote sensing imagery, an important type of physiogeographic data, provides large quantities of information with more spatial details than census data. Based on the dasymetric mapping principle, this study applies multivariable regression to examine the correlation between population counts from census and land cover types. The land cover map is classified from LandSat TM imagery. The correlation is high. Census population counts are remodeled to a GIS raster layer based on the discovered correlations coupled with scaling techniques, which offset influences from other than land cover types. The GIS raster layer depicts the population distribution with much more spatial detail than census data offer. The resulting GIS raster layer is ready to be analyzed or integrated with other GIS data. ?? 1998 Elsevier Science Ltd. All rights reserved.
Racial Disparities In Geographic Access To Primary Care In Philadelphia.
Brown, Elizabeth J; Polsky, Daniel; Barbu, Corentin M; Seymour, Jane W; Grande, David
2016-08-01
Primary care is often thought of as the gateway to improved health outcomes and can lead to more efficient use of health care resources. Because of primary care's cardinal importance, adequate access is an important health policy priority. In densely populated urban areas, spatial access to primary care providers across neighborhoods is poorly understood. We examined spatial variation in primary care access in Philadelphia, Pennsylvania. We calculated ratios of adults per primary care provider for each census tract and included buffer zones based on prespecified drive times around each tract. We found that the average ratio was 1,073; the supply of primary care providers varied widely across census tracts, ranging from 105 to 10,321. We identified six areas of Philadelphia that have much lower spatial accessibility to primary care relative to the rest of the city. After adjustment for sociodemographic and insurance characteristics, the odds of being in a low-access area were twenty-eight times greater for census tracts with a high proportion of African Americans than in tracts with a low proportion of African Americans. Project HOPE—The People-to-People Health Foundation, Inc.
NASA Astrophysics Data System (ADS)
Bisht, Mahesh Singh; Rajput, Archana; Srivastava, Kumar Vaibhav
2018-04-01
A cloak based on gradient index metamaterial (GIM) is proposed. Here, the GIM is used, for conversion of propagating waves into surface waves and vice versa, to get the cloaking effect. The cloak is made of metamaterial consisting of four supercells with each supercell possessing the linear spatial variation of permittivity and permeability. The spatial variation of material parameters in supercells allows the conversion of propagating waves into surface waves and vice versa, hence results in reduction of electromagnetic signature of the object. To facilitate the practical implementation of the cloak, continuous spatial variation of permittivity and/or permeability, in each supercell, is discretized into seven segments and it is shown that there is not much deviation in cloaking performance of discretized cloak as compared to its continuous counterpart. The crucial advantage, of the proposed cloaks, is that the material parameters are isotropic and in physically realizable range. Furthermore, the proposed cloaks have been shown to possess bandwidth of the order of 190% which is a significantly improved performance compared to the recently published literature.
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
Zheng, Guang; Moskal, L. Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels. PMID:22574042
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors.
Zheng, Guang; Moskal, L Monika
2009-01-01
The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels.
Geomorphology and the Restoration Ecology of Salmon
NASA Astrophysics Data System (ADS)
Montgomery, D. R.
2005-05-01
Natural and anthropogenic influences on watershed processes affect the distribution and abundance of salmon across a wide range of spatial and temporal scales, from differences in species use and density between individual pools and riffles to regional patterns of threatened, endangered, and extinct runs. The specific impacts of human activities (e.g., mining, logging, and urbanization) vary among regions and watersheds, as well as between different channel reaches in the same watershed. Understanding of both disturbance history and key biophysical processes are important for diagnosing the nature and causes of differences between historical and contemporary fluvial and watershed conditions based on evaluation of both historical and spatial contexts. In order to be most effective, the contribution of geomorphologic insight to salmon recovery efforts requires both assessment protocols commensurate with providing adequate knowledge of historical and spatial context, and experienced practitioners well versed in adapting general theory to local settings. The historical record of salmon management in Europe, New England and the Pacific Northwest indicates that there is substantial need to incorporate geomorphic insights on the effects of changes in watershed processes on salmon habitat and salmon abundance into salmon recovery efforts.
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
NASA Astrophysics Data System (ADS)
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
Oceanic forcing of coral reefs.
Lowe, Ryan J; Falter, James L
2015-01-01
Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.
Using a spatially explicit analysis model to evaluate spatial variation of corn yield
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.
Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir
2017-02-07
Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
Automated Verification of Spatial Resolution in Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald
2011-01-01
Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data set, enabling the appropriate use of those images in a number of applications.
Using Remote Sensing to Determine the Spatial Scales of Estuaries
NASA Astrophysics Data System (ADS)
Davis, C. O.; Tufillaro, N.; Nahorniak, J.
2016-02-01
One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.
A New Tool for Exploring Climate Change Induced Range Shifts of Conifer Species in China
Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong
2014-01-01
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management. PMID:25268604
A new tool for exploring climate change induced range shifts of conifer species in China.
Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong
2014-01-01
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.
CELL5M: A geospatial database of agricultural indicators for Africa South of the Sahara.
Koo, Jawoo; Cox, Cindy M; Bacou, Melanie; Azzarri, Carlo; Guo, Zhe; Wood-Sichra, Ulrike; Gong, Queenie; You, Liangzhi
2016-01-01
Recent progress in large-scale georeferenced data collection is widening opportunities for combining multi-disciplinary datasets from biophysical to socioeconomic domains, advancing our analytical and modeling capacity. Granular spatial datasets provide critical information necessary for decision makers to identify target areas, assess baseline conditions, prioritize investment options, set goals and targets and monitor impacts. However, key challenges in reconciling data across themes, scales and borders restrict our capacity to produce global and regional maps and time series. This paper provides overview, structure and coverage of CELL5M-an open-access database of geospatial indicators at 5 arc-minute grid resolution-and introduces a range of analytical applications and case-uses. CELL5M covers a wide set of agriculture-relevant domains for all countries in Africa South of the Sahara and supports our understanding of multi-dimensional spatial variability inherent in farming landscapes throughout the region.
Avoiding pitfalls in estimating heritability with the common options approach
Danchin, Etienne; Wajnberg, Eric; Wagner, Richard H.
2014-01-01
In many circumstances, heritability estimates are subject to two potentially interacting pitfalls: the spatial and the regression to the mean (RTM) fallacies. The spatial fallacy occurs when the set of potential movement options differs among individuals according to where individuals depart. The RTM fallacy occurs when extreme measurements are followed by measurements that are closer to the mean. We simulated data from the largest published heritability study of a behavioural trait, colony size choice, to examine the operation of the two fallacies. We found that spurious heritabilities are generated under a wide range of conditions both in experimental and correlative estimates of heritability. Classically designed cross-foster experiments can actually increase the frequency of spurious heritabilities. Simulations showed that experiments providing all individuals with the identical set of options, such as by fostering all offspring in the same breeding location, are immune to the two pitfalls. PMID:24865284
Population dynamics in an intermittent refuge
NASA Astrophysics Data System (ADS)
Colombo, E. H.; Anteneodo, C.
2016-10-01
Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.
Satellite Remote Sensing of Cirrus: An Overview
NASA Technical Reports Server (NTRS)
Minnis, Patrick
1998-01-01
The determination of cirrus properties over relatively large spatial and temporal scales will, in most instances, require the use of satellite data. Global coverage, at resolutions as high as several meters are attainable with Landsat, while temporal coverage at 1-min intervals is now available with the latest Geostationary Operational Environmental Satellite (GOES) imagers. Cirrus can be analyzed via interpretation of the radiation that they reflect or emit over a wide range of the electromagnetic spectrum. Many of these spectra and high-resolution satellite data can be used to understand certain aspects of cirrus clouds in particular situations. Production of a global climatology of cirrus clouds, however, requires compromises in spatial, temporal, and spectral coverage. This paper summarizes the state of the art and the potential for future passive remote sensing systems for both understanding cirrus formation and acquiring sufficient statistics to constrain and refine weather and climate models.
Detection and identification of illicit drugs using terahertz imaging
NASA Astrophysics Data System (ADS)
Lu, Meihong; Shen, Jingling; Li, Ning; Zhang, Yan; Zhang, Cunlin; Liang, Laishun; Xu, Xiaoyu
2006-11-01
We demonstrated an advanced terahertz imaging technique for detection and identification of illicit drugs by introducing the component spatial pattern analysis. As an explanation, the characteristic fingerprint spectra and refractive index of ketamine were first measured with terahertz time-domain spectroscopy both in the air and nitrogen. The results obtained in the ambient air indicated that some absorption peaks are not obvious or probably not dependable. It is necessary and important to present a more practical technique for the detection. The spatial distributions of several illicit drugs [3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, heroin, acetylcodeine, morphine, and ketamine], widely consumed in the world, were obtained from terahertz images using absorption spectra previously measured in the range from 0.2to2.6THz in the ambient air. The different kinds of pure illicit drugs hidden in mail envelopes were inspected and identified. It could be an effective method in the field of safety inspection.
Djurović, S.; Roberts, J. R.; Sobolewski, M. A.; Olthoff, J. K.
1993-01-01
Spatially- and temporally-resolved measurements of optical emission intensities are presented from rf discharges in argon over a wide range of pressures (6.7 to 133 Pa) and applied rf voltages (75 to 200 V). Results of measurements of emission intensities are presented for both an atomic transition (Ar I, 750.4 nm) and an ionic transition (Ar II, 434.8 nm). The absolute scale of these optical emissions has been determined by comparison with the optical emission from a calibrated standard lamp. All measurements were made in a well-defined rf reactor. They provide detailed characterization of local time-resolved plasma conditions suitable for the comparison with results from other experiments and theoretical models. These measurements represent a new level of detail in diagnostic measurements of rf plasmas, and provide insight into the electron transport properties of rf discharges. PMID:28053464
Strain-engineered inverse charge-funnelling in layered semiconductors.
De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio
2018-04-25
The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.
Reconstructing Spatial Distributions from Anonymized Locations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horey, James L; Forrest, Stephanie; Groat, Michael
2012-01-01
Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstructionmore » algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.« less
NASA Astrophysics Data System (ADS)
Gad, Mohamed A.; Elshehaly, Mai H.; Gračanin, Denis; Elmongui, Hicham G.
2018-02-01
This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally variable data from multiple sources. The proposed technique uses trajectory information to determine the positions of time-enabled and spatially variable scatter data at any given time through a combination of along trajectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA enables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the TTA can be applied to a wide range of multiple-source data.
Ultrafast and versatile spectroscopy by temporal Fourier transform
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.
2014-06-01
One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.
A wavefront reconstruction method for 3-D cylindrical subsurface radar imaging.
Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen
2008-10-01
In recent years, the use of radar technology has been proposed in a wide range of subsurface imaging applications. Traditionally, linear scan trajectories are used to acquire data in most subsurface radar applications. However, novel applications, such as breast microwave imaging and wood inspection, require the use of nonlinear scan trajectories in order to adjust to the geometry of the scanned area. This paper proposes a novel reconstruction algorithm for subsurface radar data acquired along cylindrical scan trajectories. The spectrum of the collected data is processed in order to locate the spatial origin of the target reflections and remove the spreading of the target reflections which results from the different signal travel times along the scan trajectory. The proposed algorithm was successfully tested using experimental data collected from phantoms that mimic high contrast subsurface radar scenarios, yielding promising results. Practical considerations such as spatial resolution and sampling constraints are discussed and illustrated as well.
Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.
He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming
2018-06-04
Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan
2016-07-01
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.
AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.
Dazzi, Alexandre; Prater, Craig B
2016-12-13
Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.
High contrast computed tomography with synchrotron radiation
NASA Astrophysics Data System (ADS)
Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami
1995-02-01
This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.
NASA Astrophysics Data System (ADS)
Denis, E. H.; Ilhardt, P.; Tucker, A. E.; Huggett, N. L.; Rosnow, J. J.; Krogstad, E. J.; Moran, J.
2017-12-01
The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant (through various forms of rhizodeposition) into soil and the simultaneous harvesting and delivery of inorganic nutrients from the soil to the plant. This project's main goal is to better understand the spatial controls on bi-directional nutrient exchange through the rhizosphere and how they impact overall plant health and productivity. Here, we present methods being developed to 1) spatially track the release and migration of plant-derived organics into the rhizosphere and soil and 2) map the local inorganic geochemical microenvironments within and surrounding the rhizosphere. Our studies focused on switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan), which have been cropped with switchgrass for nearly a decade. We used a 13CO2 tracer to label our samples for both one and two diel cycles and tracked subsequent movement of labeled organic carbon using spatially specific δ13C analysis (with 50 µm resolution). The laser ablation-isotope ratio mass spectrometry (LA-IRMS) approach allowed us to map the extent of 13C-label migration into roots, rhizosphere, and surrounding soil. Preliminary results show the expected decrease of organic exudates with distance from a root and that finer roots (<0.1 mm) incorporated more 13C-label than thicker roots, which likely correlates to specific root growth rates. We are adapting both laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially map inorganic nutrient content in the exact same samples used for LA-IRMS analysis. Both of these methods provide rapid surface mapping of a wide range of elements (with high dynamic range) at 150 μm spatial resolution. Preliminary results show that, based on elemental content, we can distinguish between roots, rhizosphere, soil, and specific types of mineral grains within soil. Integrating spatially resolved analysis of photosynthate distribution with local geochemical microenvironments may reveal key properties of nutrient exchange hotspots that help direct overall plant health and productivity.
Deep and wide photometry of two open clusters NGC 1245 and NGC 2506: dynamical evolution and halo
NASA Astrophysics Data System (ADS)
Lee, S. H.; Kang, Y.-W.; Ann, H. B.
2013-06-01
We studied the structure of two old open clusters, NGC 1245 and NGC 2506, from a wide and deep VI photometry data acquired using the CFH12K CCD camera at Canada-France-Hawaii Telescope. We devised a new method for assigning cluster membership probability to individual stars using both spatial positions and positions in the colour-magnitude diagram. From analyses of the luminosity functions at several cluster-centric radii and the radial surface density profiles derived from stars with different luminosity ranges, we found that the two clusters are dynamically relaxed to drive significant mass segregation and evaporation of some fraction of low-mass stars. There seems to be a signature of tidal tail in NGC 1245 but the signal is too low to be confirmed.
Combined photoacoustic and magneto-acoustic imaging.
Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Ma, Li Leo; Johnston, Keith P; Sokolov, Konstantin; Emelianov, Stanislav
2009-01-01
Ultrasound is a widely used modality with excellent spatial resolution, low cost, portability, reliability and safety. In clinical practice and in the biomedical field, molecular ultrasound-based imaging techniques are desired to visualize tissue pathologies, such as cancer. In this paper, we present an advanced imaging technique - combined photoacoustic and magneto-acoustic imaging - capable of visualizing the anatomical, functional and biomechanical properties of tissues or organs. The experiments to test the combined imaging technique were performed using dual, nanoparticle-based contrast agents that exhibit the desired optical and magnetic properties. The results of our study demonstrate the feasibility of the combined photoacoustic and magneto-acoustic imaging that takes the advantages of each imaging techniques and provides high sensitivity, reliable contrast and good penetrating depth. Therefore, the developed imaging technique can be used in wide range of biomedical and clinical application.
NASA Technical Reports Server (NTRS)
1999-01-01
This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.
Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.Marschallinger, Robert; Golaszewski, Stefan M; Kunz, Alexander B; Kronbichler, Martin; Ladurner, Gunther; Hofmann, Peter; Trinka, Eugen; McCoy, Mark; Kraus, Jörg
2014-01-01
In multiple sclerosis (MS) the individual disease courses are very heterogeneous among patients and biomarkers for setting the diagnosis and the estimation of the prognosis for individual patients would be very helpful. For this purpose, we are developing a multidisciplinary method and workflow for the quantitative, spatial, and spatiotemporal analysis and characterization of MS lesion patterns from MRI with geostatistics. We worked on a small data set involving three synthetic and three real-world MS lesion patterns, covering a wide range of possible MS lesion configurations. After brain normalization, MS lesions were extracted and the resulting binary 3-dimensional models of MS lesion patterns were subject to geostatistical indicator variography in three orthogonal directions. By applying geostatistical indicator variography, we were able to describe the 3-dimensional spatial structure of MS lesion patterns in a standardized manner. Fitting a model function to the empirical variograms, spatial characteristics of the MS lesion patterns could be expressed and quantified by two parameters. An orthogonal plot of these parameters enabled a well-arranged comparison of the involved MS lesion patterns. This method in development is a promising candidate to complement standard image-based statistics by incorporating spatial quantification. The work flow is generic and not limited to analyzing MS lesion patterns. It can be completely automated for the screening of radiological archives. Copyright © 2013 by the American Society of Neuroimaging.
NASA Astrophysics Data System (ADS)
Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.
2017-02-01
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The experimental group studied chemistry using mobile tablets that had a digital instructional package with different animation and simulations. There was one tablet per student. A spatial ability test and a scientific reasoning test were administered to both groups prior and after the study, which lasted for 9 weeks. The findings showed that there were significant statistical differences between the two groups in terms of spatial ability in favour of the experimental group. However, there were no differences between the two groups in terms of reasoning ability. The authors reasoned that the types of animations and simulations used in the current study featured a wide range of three-dimensional animated illustrations at the particulate level of matter. Most probably, this decreased the level of abstractness that usually accompanies chemical entities and phenomena and helped the students to visualize the interactions between submicroscopic entities spatially. Further research is needed to decide on types of scientific animations that could help students improve their scientific reasoning.
NASA Astrophysics Data System (ADS)
Verstraete, M. M.; Hunt, L. A.; Pinty, B.; Clerici, M.; Scholes, R. J.
2009-12-01
The MISR instrument on NASA's Terra platform has been acquiring data globally and continuously for almost 10 years. A wide range of atmospheric and land products are operationally generated at the LaRC ASDC, at spatial resolutions of 1.1 km or coarser. Yet, the intrinsic spatial resolution of that sensor is 275m and 12 out of the 36 spectro-directional data channels are transmitted to the ground segment at that resolution. Recent algorithmic developments have permitted us to reconstruct reasonable estimates of the other 24 channels and to account for atmospheric effects at the full original spatial resolution. Spectro-directional reflectances have been processed to characterize the anisotropy of observed land surfaces and then optimally estimate various geophysical properties of the environment such as the fluxes of radiation in and out of plant canopies, the albedo, FAPAR, etc. These detailed products allow us to investigate ecological and environmental changes in much greater spatial and thematic detail than was previously possible. The paper outlines the various methodological steps implemented and exhibits concrete results for a region of moderate size (280 by 380 km) in South Africa. Practical downstream applications of this approach include monitoring desertification and biomass burning, documenting urbanization or characterizing the phenology of vegetation.
The case against specialized visual-spatial short-term memory.
Morey, Candice C
2018-05-24
The dominant paradigm for understanding working memory, or the combination of the perceptual, attentional, and mnemonic processes needed for thinking, subdivides short-term memory (STM) according to whether memoranda are encoded in aural-verbal or visual formats. This traditional dissociation has been supported by examples of neuropsychological patients who seem to selectively lack STM for either aural-verbal, visual, or spatial memoranda, and by experimental research using dual-task methods. Though this evidence is the foundation of assumptions of modular STM systems, the case it makes for a specialized visual STM system is surprisingly weak. I identify the key evidence supporting a distinct verbal STM system-patients with apparent selective damage to verbal STM and the resilience of verbal short-term memories to general dual-task interference-and apply these benchmarks to neuropsychological and experimental investigations of visual-spatial STM. Contrary to the evidence on verbal STM, patients with apparent visual or spatial STM deficits tend to experience a wide range of additional deficits, making it difficult to conclude that a distinct short-term store was damaged. Consistently with this, a meta-analysis of dual-task visual-spatial STM research shows that robust dual-task costs are consistently observed regardless of the domain or sensory code of the secondary task. Together, this evidence suggests that positing a specialized visual STM system is not necessary. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Spatial Autocorrelation And Autoregressive Models In Ecology
Jeremy W. Lichstein; Theodore R. Simons; Susan A. Shriner; Kathleen E. Franzreb
2003-01-01
Abstract. Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available...
Spatial analysis of agri-environmental policy uptake and expenditure in Scotland.
Yang, Anastasia L; Rounsevell, Mark D A; Wilson, Ronald M; Haggett, Claire
2014-01-15
Agri-environment is one of the most widely supported rural development policy measures in Scotland in terms of number of participants and expenditure. It comprises 69 management options and sub-options that are delivered primarily through the competitive 'Rural Priorities scheme'. Understanding the spatial determinants of uptake and expenditure would assist policy-makers in guiding future policy targeting efforts for the rural environment. This study is unique in examining the spatial dependency and determinants of Scotland's agri-environmental measures and categorised options uptake and payments at the parish level. Spatial econometrics is applied to test the influence of 40 explanatory variables on farming characteristics, land capability, designated sites, accessibility and population. Results identified spatial dependency for each of the dependent variables, which supported the use of spatially-explicit models. The goodness of fit of the spatial models was better than for the aspatial regression models. There was also notable improvement in the models for participation compared with the models for expenditure. Furthermore a range of expected explanatory variables were found to be significant and varied according to the dependent variable used. The majority of models for both payment and uptake showed a significant positive relationship with SSSI (Sites of Special Scientific Interest), which are designated sites prioritised in Scottish policy. These results indicate that environmental targeting efforts by the government for AEP uptake in designated sites can be effective. However habitats outside of SSSI, termed here the 'wider countryside' may not be sufficiently competitive to receive funding in the current policy system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Generalized index for spatial data sets as a measure of complete spatial randomness
NASA Astrophysics Data System (ADS)
Hackett-Jones, Emily J.; Davies, Kale J.; Binder, Benjamin J.; Landman, Kerry A.
2012-06-01
Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate trends in the generalized index as a function of density and compare the results with those using equal size bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin configurations—the values will be approximately the same if the data is at the CSR state, while the values will differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of the index, since objects do not have access to the entire region due to blocking by other objects. These methods are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation in the enteric nervous system and (ii) a known plant data distribution.
Durand, Jean-Dominique; Guinand, Bruno; Dodson, Julian J.; Lecomte, Frédéric
2013-01-01
The bonga shad, Ethmalosa fimbriata, is a West African pelagic species still abundant in most habitats of its distribution range and thought to be only recently affected by anthropogenic pressure (habitat destruction or fishing pressure). Its presence in a wide range of coastal habitats characterised by different hydrodynamic processes, represents a case study useful for evaluating the importance of physical structure of the west African shoreline on the genetic structure of a small pelagic species. To investigate this question, the genetic diversity of E. fimbriata was assessed at both regional and species range scales, using mitochondrial (mt) and nuclear DNA markers. Whereas only three panmictic units were identified with mtDNA at the large spatial scale, nuclear genetic markers (EPIC: exon-primed intron-crossing) indicated a more complex genetic pattern at the regional scale. In the northern-most section of shad’s distribution range, up to 4 distinct units were identified. Bayesian inference as well as spatial autocorrelation methods provided evidence that gene flow is impeded by the presence of deep-water areas near the coastline (restricting the width of the coastal shelf), such as the Cap Timiris and the Kayar canyons in Mauritania and Senegal, respectively. The added discriminatory power provided by the use of EPIC markers proved to be essential to detect the influence of more subtle, contemporary processes (e.g. gene flow, barriers, etc.) acting within the glacial refuges identified previously by mtDNA. PMID:24130890
Assumption-versus data-based approaches to summarizing species' ranges.
Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Gordillo, Alejandro
2018-06-01
For conservation decision making, species' geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse-resolution extent-of-occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent-of-occurrence maps as range summaries and the utility of refining those maps into fine-resolution distributional hypotheses. Extent-of-occurrence maps tend to be overly simple, omit many known and well-documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species' true areas of distribution. However, no model-evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse-grained, global-extent studies, their continued use in on-the-ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data-driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data-driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well-founded, widely accepted method for summarizing species' distributional patterns for conservation applications. © 2016 Society for Conservation Biology.