High Gain and Wide Range Time Amplifier Using Inverter Delay Chain in SR Latches
NASA Astrophysics Data System (ADS)
Lee, Jaejun; Lee, Sungho; Song, Yonghoon; Nam, Sangwook
This paper presents a time amplifier design that improves time resolution using an inverter chain delay in SR latches. Compared with the conventional design, the proposed time amplifier has better characteristics such as higher gain, wide range, and small die size. It is implemented using 0.13µm standard CMOS technology and the experimental results agree well with the theory.
ERIC Educational Resources Information Center
Reinhart, Paul N.; Souza, Pamela E.
2016-01-01
Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…
Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di
2013-01-15
The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.
Current Status of Biomedical Book Reviewing: Part II. Time Lag in Biomedical Book Reviewing
Chen, Ching-Chih
1974-01-01
This part of the study explores the effectiveness of the review media in terms of speed of reviewing, comprehensiveness of review treatment, and authority. The time lags for the fifty-four journals varied widely, the mean ranging from 5.8 months to forty-two months. The time lags for all 3,347 reviews varied even more widely, ranging from less than a month to 108 months after a book was off the press. The 3,347 reviews had a mean time lag of 10.43 months and a standard deviation of 6.63 months. PMID:4826480
Long-range airplane study: The consumer looks at SST travel
NASA Technical Reports Server (NTRS)
Landes, K. H.; Matter, J. A.
1980-01-01
The attitudes of long-range air travelers toward several basic air travel decisions, were surveyed. Of interest were tradeoffs involving time versus comfort and time versus cost as they pertain to supersonic versus conventional wide-body aircraft on overseas routes. The market focused upon was the segment of air travelers most likely to make that type of tradeoff decision: those having flown overseas routes for business or personal reasons in the recent past. The information generated is intended to provide quantifiable insight into consumer demand for supersonic as compared to wide-body aircraft alternatives for long-range overseas air travel.
Widely tunable Tm-doped mode-locked all-fiber laser
Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie
2016-01-01
We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others. PMID:27263655
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.
Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling
2018-06-12
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.
Estimates of air drying times for several hardwoods and softwoods
W.T. Simpson; C.A. Hart
2000-01-01
Published data on estimated air drying times of lumber are of limited usefulness because they are restricted to a specific location or to the time of year the lumber is stacked for drying. At best, these estimates give a wide range of possible times over a broad range of possible locations and stacking dates. This report describes a method for estimating air drying...
Method for estimating air-drying times of lumber
William T. Simpson; C. Arthur Hart
2001-01-01
Published information on estimated air-drying times of lumber is of limited usefulness because it is restricted to a specific location or to the time of year the lumber is stacked for drying. At best, these estimates give a wide range of possible times over a broad range of possible locations and stacking dates. In this paper, we describe a method for estimating air-...
A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M
NASA Astrophysics Data System (ADS)
Wu, Tongyu; Zhang, Wei; Yin, Zejie
2017-09-01
A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.
Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2011-01-01
The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.
A Wide Dynamic Range Tapped Linear Array Image Sensor
NASA Astrophysics Data System (ADS)
Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl
1988-08-01
Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.
NASA Astrophysics Data System (ADS)
Higashino, Satoru; Kobayashi, Shoei; Yamagami, Tamotsu
2007-06-01
High data transfer rate has been demanded for data storage devices along increasing the storage capacity. In order to increase the transfer rate, high-speed data processing techniques in read-channel devices are required. Generally, parallel architecture is utilized for the high-speed digital processing. We have developed a new architecture of Interpolated Timing Recovery (ITR) to achieve high-speed data transfer rate and wide capture-range in read-channel devices for the information storage channels. It facilitates the parallel implementation on large-scale-integration (LSI) devices.
Core Flight System (cFS) a Low Cost Solution for SmallSats
NASA Technical Reports Server (NTRS)
McComas, David; Strege, Susanne; Wilmot, Jonathan
2015-01-01
The cFS is a FSW product line that uses a layered architecture and compile-time configuration parameters which make it portable and scalable for a wide range of platforms. The software layers that defined the application run-time environment are now under a NASA-wide configuration control board with the goal of sustaining an open-source application ecosystem.
Time Series Data Visualization in World Wide Telescope
NASA Astrophysics Data System (ADS)
Fay, J.
WorldWide Telescope provides a rich set of timer series visualization for both archival and real time data. WWT consists of both interactive desktop tools for interactive immersive visualization and HTML5 web based controls that can be utilized in customized web pages. WWT supports a range of display options including full dome, power walls, stereo and virtual reality headsets.
NASA Astrophysics Data System (ADS)
Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim
2016-02-01
We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.
Method and apparatus of high dynamic range image sensor with individual pixel reset
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric R. (Inventor)
2001-01-01
A wide dynamic range image sensor provides individual pixel reset to vary the integration time of individual pixels. The integration time of each pixel is controlled by column and row reset control signals which activate a logical reset transistor only when both signals coincide for a given pixel.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor.
Du, Yuhuan; Guo, Yingqing
2016-07-15
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter.
Theoretical and Experimental Study on Wide Range Optical Fiber Turbine Flow Sensor
Du, Yuhuan; Guo, Yingqing
2016-01-01
In this paper, a novel fiber turbine flow sensor was proposed and demonstrated for liquid measurement with optical fiber, using light intensity modulation to measure the turbine rotational speed for converting to flow rate. The double-circle-coaxial (DCC) fiber probe was introduced in frequency measurement for the first time. Through the divided ratio of two rings light intensity, the interference in light signals acquisition can be eliminated. To predict the characteristics between the output frequency and flow in the nonlinear range, the turbine flow sensor model was built. Via analyzing the characteristics of turbine flow sensor, piecewise linear equations were achieved in expanding the flow measurement range. Furthermore, the experimental verification was tested. The results showed that the flow range ratio of DN20 turbine flow sensor was improved 2.9 times after using piecewise linear in the nonlinear range. Therefore, combining the DCC fiber sensor and piecewise linear method, it can be developed into a strong anti-electromagnetic interference(anti-EMI) and wide range fiber turbine flowmeter. PMID:27428976
Link Performance Analysis and monitoring - A unified approach to divergent requirements
NASA Astrophysics Data System (ADS)
Thom, G. A.
Link Performance Analysis and real-time monitoring are generally covered by a wide range of equipment. Bit Error Rate testers provide digital link performance measurements but are not useful during real-time data flows. Real-time performance monitors utilize the fixed overhead content but vary widely from format to format. Link quality information is also present from signal reconstruction equipment in the form of receiver AGC, bit synchronizer AGC, and bit synchronizer soft decision level outputs, but no general approach to utilizing this information exists. This paper presents an approach to link tests, real-time data quality monitoring, and results presentation that utilizes a set of general purpose modules in a flexible architectural environment. The system operates over a wide range of bit rates (up to 150 Mbs) and employs several measurement techniques, including P/N code errors or fixed PCM format errors, derived real-time BER from frame sync errors, and Data Quality Analysis derived by counting significant sync status changes. The architecture performs with a minimum of elements in place to permit a phased update of the user's unit in accordance with his needs.
Photodiode Preamplifier for Laser Ranging With Weak Signals
NASA Technical Reports Server (NTRS)
Abramovici, Alexander; Chapsky, Jacob
2007-01-01
An improved preamplifier circuit has been designed for processing the output of an avalanche photodiode (APD) that is used in a high-resolution laser ranging system to detect laser pulses returning from a target. The improved circuit stands in contrast to prior such circuits in which the APD output current pulses are made to pass, variously, through wide-band or narrow-band load networks before preamplification. A major disadvantage of the prior wide-band load networks is that they are highly susceptible to noise, which degrades timing resolution. A major disadvantage of the prior narrow-band load networks is that they make it difficult to sample the amplitudes of the narrow laser pulses ordinarily used in ranging. In the improved circuit, a load resistor is connected to the APD output and its value is chosen so that the time constant defined by this resistance and the APD capacitance is large, relative to the duration of a laser pulse. The APD capacitance becomes initially charged by the pulse of current generated by a return laser pulse, so that the rise time of the load-network output is comparable to the duration of the return pulse. Thus, the load-network output is characterized by a fast-rising leading edge, which is necessary for accurate pulse timing. On the other hand, the resistance-capacitance combination constitutes a lowpass filter, which helps to suppress noise. The long time constant causes the load network output pulse to have a long shallow-sloping trailing edge, which makes it easy to sample the amplitude of the return pulse. The output of the load network is fed to a low-noise, wide-band amplifier. The amplifier must be a wide-band one in order to preserve the sharp pulse rise for timing. The suppression of noise and the use of a low-noise amplifier enable the ranging system to detect relatively weak return pulses.
Fault Tolerant Real-Time Systems
1993-09-30
The ART (Advanced Real-Time Technology) Project of Carnegie Mellon University is engaged in wide ranging research on hard real - time systems . The...including hardware and software fault tolerance using temporal redundancy and analytic redundancy to permit the construction of real - time systems whose
Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability
NASA Astrophysics Data System (ADS)
French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.
2010-10-01
Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.
Gene flow analysis method, the D-statistic, is robust in a wide parameter space.
Zheng, Yichen; Janke, Axel
2018-01-08
We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.
NASA Astrophysics Data System (ADS)
Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro
2018-04-01
In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.
A time-accurate implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun
1992-01-01
A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.
A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2014-01-01
In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592
Comparison of SANS instruments at reactors and pulsed sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.
1992-09-01
Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges untilmore » now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments.« less
Optimization of Exposure Time Division for Multi-object Photometry
NASA Astrophysics Data System (ADS)
Popowicz, Adam; Kurek, Aleksander R.
2017-09-01
Optical observations of wide fields of view entail the problem of selecting the best exposure time. As many objects are usually observed simultaneously, the quality of photometry of the brightest ones is always better than that of the dimmer ones, even though all of them are frequently equally interesting for astronomers. Thus, measuring all objects with the highest possible precision is desirable. In this paper, we present a new optimization algorithm, dedicated for the division of exposure time into sub-exposures, which enables photometry with a more balanced noise budget. The proposed technique increases the photometric precision of dimmer objects at the expense of the measurement fidelity of the brightest ones. We have tested the method on real observations using two telescope setups, demonstrating its usefulness and good consistency with theoretical expectations. The main application of our approach is a wide range of sky surveys, including ones performed by space telescopes. The method can be used to plan virtually any photometric observation of objects that show a wide range of magnitudes.
Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos
2018-03-08
Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.
The French 35-hour workweek: a wide-ranging social change.
Prunier-Poulmaire, S; Gadbois, C
2001-12-01
The reduction of the legal working week to 35 hours in France has generated wide-ranging social change. We examine the resulting changes in working-time patterns as well as their repercussions on the use of the time gained and on the quality of life and health. To compensate the reduction in the length of the working week, companies have modified the working-time patterns, by extending operation time (shiftwork, atypical schedules) and by matching the on-site workforce to production requirements (flexible working hours). They have sought to make more efficient use of working time: job intensification or job compression. The effects on the off-the-job life and health are linked to the shiftwork and atypical schedules designed to increase the company's operating time, and adjustments to the company's need for flexibilization impose working time/free time patterns that are at odds with biological rhythms and social life patterns. Changes to working-time patterns have unexpected consequences for work organization: heightened difficulties for the individual and the crew. These changes may generate a range of health problems related to overwork and stress. The way some companies have adapted may call into question the usefulness of work done by employees, thus damaging their social identity and mental well-being.
Widely tunable chaotic fiber laser for WDM-PON detection
NASA Astrophysics Data System (ADS)
Zhang, Juan; Yang, Ling-zhen; Xu, Nai-jun; Wang, Juan-fen; Zhang, Zhao-xia; Liu, Xiang-lian
2014-05-01
A widely tunable high precision chaotic fiber laser is proposed and experimentally demonstrated. A tunable fiber Bragg grating (TFBG) filter is used as a tuning element to determine the turning range from 1533 nm to 1558 nm with a linewidth of 0.5 nm at any wavelength. The wide tuning range is capable of supporting 32 wavelength-division multiplexing (WDM) channels with 100 GHz channel spacing. All single wavelengths are found to be chaotic with 10 GHz bandwidth. The full width at half maximum (FWHM) of the chaotic correlation curve of the different wavelengths is on a picosecond time scale, thereby offering millimeter spatial resolution in WDM detection.
Wide-range radioactive-gas-concentration detector
Anderson, D.F.
1981-11-16
A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Vashpanov, Yuriy; Choo, Hyunseung; Kim, Dongsoo Stephen
2011-01-01
This paper proposes an adsorption sensitivity control method that uses a wireless network and illumination light intensity in a photo-electromagnetic field (EMF)-based gas sensor for measurements in real time of a wide range of ammonia concentrations. The minimum measurement error for a range of ammonia concentration from 3 to 800 ppm occurs when the gas concentration magnitude corresponds with the optimal intensity of the illumination light. A simulation with LabView-engineered modules for automatic control of a new intelligent computer system was conducted to improve measurement precision over a wide range of gas concentrations. This gas sensor computer system with wireless network technology could be useful in the chemical industry for automatic detection and measurement of hazardous ammonia gas levels in real time. PMID:22346680
Cohort Profile Update: The TRacking Adolescents’ Individual Lives Survey (TRAILS)
Oldehinkel, Albertine J; Rosmalen, Judith GM; Buitelaar, Jan K; Hoek, Hans W; Ormel, Johan; Raven, Dennis; Reijneveld, Sijmen A; Veenstra, René; Verhulst, Frank C; Vollebergh, Wilma AM; Hartman, Catharina A
2015-01-01
TRAILS consists of a population cohort (N = 2230) and a clinical cohort (N = 543), both of which were followed from about age 11 years onwards. To date, the population cohort has been assessed five times over a period of 11 years, with retention rates ranging between 80% and 96%. The clinical cohort has been assessed four times over a period of 8 years, with retention rates ranging between 77% and 85%. Since the IJE published a cohort profile on the TRAILS in 2008, the participants have matured from adolescents into young adults. The focus shifted from parents and school to entry into the labour market and family formation, including offspring. Furthermore, psychiatric diagnostic interviews were administered, the database was linked to a Psychiatric Case Registry, and the availability of genome-wide SNP variations opened the door to genome-wide association studies regarding a wide range of (endo)phenotypes. With some delay, TRAILS data are available to researchers outside the TRAILS consortium without costs; access can be obtained by submitting a publication proposal (see www.trails.nl). PMID:25431468
A simplified controller and detailed dynamics of constant off-time peak current control
NASA Astrophysics Data System (ADS)
Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan
2017-09-01
A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.
Radulescu, Aurel; Szekely, Noemi Kinga; Appavou, Marie-Sousai; Pipich, Vitaliy; Kohnke, Thomas; Ossovyi, Vladimir; Staringer, Simon; Schneider, Gerald J.; Amann, Matthias; Zhang-Haagen, Bo; Brandl, Georg; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter
2016-01-01
The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved. PMID:28060296
U27 : real-time commercial vehicle safety & security monitoring final report.
DOT National Transportation Integrated Search
2012-12-01
Accurate real-time vehicle tracking has a wide range of applications including fleet management, drug/speed/law enforcement, transportation planning, traffic safety, air quality, electronic tolling, and national security. While many alternative track...
New broadband square-law detector
NASA Technical Reports Server (NTRS)
Reid, M. S.; Gardner, R. A.; Stelzried, C. T.
1975-01-01
Compact device has wide dynamic range, accurate square-law response, good thermal stability, high-level dc output with immunity to ground-loop problems, ability to insert known time constants for radiometric applications, and fast response times compatible with computer systems.
Study of Saturn Electrostatic Discharges in a Wide Range of Timec SCALES
NASA Astrophysics Data System (ADS)
Mylostna, K.; Zakharenko, V.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griemeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Nikolaenko, V.; Shevchenko, V.
Saturn Electrostatic discharges (SED) are sporadic broadband impulsive radio bursts associated with lightning in Saturnian atmosphere. After 25 years of space investigations in 2006 the first successful observations of SED on the UTR-2 radio telescope were carried out [1]. Since 2007 a long-term program of ED search and study in the Solar system has started. As a part of this program the unique observations with high time resolution were taken in 2010. New possibilities of UTR-2 radio telescope allowed to provide a long-period observations and study with high temporal resolution. This article presents the results of SED study in a wide range of time scales: from seconds to microseconds. For the first time there were obtained a low frequency spectrum of SED. We calculated flux densities of individual bursts at the maximum achievable time resolution. Flux densities of most intensive bursts reach 4200 Jy.
The superiority of L3-CCDs in the high-flux and wide dynamic range regimes
NASA Astrophysics Data System (ADS)
Butler, Raymond F.; Sheehan, Brendan J.
2008-02-01
Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin
2013-01-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803
Kuppa, V; Foley, T M D; Manias, E
2003-09-01
In this paper we review molecular modeling investigations of polymer/layered-silicate intercalates, as model systems to explore polymers in nanoscopically confined spaces. The atomic-scale picture, as revealed by computer simulations, is presented in the context of salient results from a wide range of experimental techniques. This approach provides insights into how polymeric segmental dynamics are affected by severe geometric constraints. Focusing on intercalated systems, i.e. polystyrene (PS) in 2 nm wide slit-pores and polyethylene-oxide (PEO) in 1 nm wide slit-pores, a very rich picture for the segmental dynamics is unveiled, despite the topological constraints imposed by the confining solid surfaces. On a local scale, intercalated polymers exhibit a very wide distribution of segmental relaxation times (ranging from ultra-fast to ultra-slow, over a wide range of temperatures). In both cases (PS and PEO), the segmental relaxations originate from the confinement-induced local density variations. Additionally, where there exist special interactions between the polymer and the confining surfaces ( e.g., PEO) more molecular mechanisms are identified.
Extraordinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides
2015-01-23
excitations of spin degrees of freedom. We measmed for the first time the magnon -phonon coupling parameter of a spin-ladder compound over a wide temperatme...the first time the magnon -phonon coupling parameter of a spin-ladder compound over a wide temperature range. We developed advances in the analysis of...Scientific Instruments, (10 2014): 104903. doi: 10.1063/1.4897622 Gregory T. Hohensee, R. B. Wilson, Joseph P. Feser, David G. Cahill. Magnon -phonon
Wide range radioactive gas concentration detector
Anderson, David F.
1984-01-01
A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You ) provides a wide range of astronomical data and products, and serves as the official source of time for the U.S. Department of Defense and a standard of time for the entire United States. The following NMOC
Extended Time Testing Accommodations: What Does the Research Say?
ERIC Educational Resources Information Center
Lovett, Benjamin J.
2011-01-01
Extended time is among the most common testing accommodations given to students with a wide range of disabilities. However, although school psychologists are often involved in accommodation decisions, many are unaware of research from the past decade that has changed their understanding of extended time. Used properly, testing accommodations let…
NASA Technical Reports Server (NTRS)
Chien, Steve; Rabideau, Gregg; Tran, Daniel; Knight, Russell; Chouinard, Caroline; Estlin, Tara; Gaines, Daniel; Clement, Bradley; Barrett, Anthony
2007-01-01
CASPER is designed to perform automated planning of interdependent activities within a system subject to requirements, constraints, and limitations on resources. In contradistinction to the traditional concept of batch planning followed by execution, CASPER implements a concept of continuous planning and replanning in response to unanticipated changes (including failures), integrated with execution. Improvements over other, similar software that have been incorporated into CASPER version 2.0 include an enhanced executable interface to facilitate integration with a wide range of execution software systems and supporting software libraries; features to support execution while reasoning about urgency, importance, and impending deadlines; features that enable accommodation to a wide range of computing environments that include various central processing units and random- access-memory capacities; and improved generic time-server and time-control features.
Yang, Wei; Chen, Jie; Zeng, Hong Cheng; Wang, Peng Bo; Liu, Wei
2016-01-01
Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. Then, the azimuth deramp operation is performed to resolve image folding in azimuth. The traditional dermap function will introduce a time shift, resulting in appearance of ghost targets and azimuth resolution reduction at the scene edge, especially in the wide-swath coverage case. To avoid this, a novel solution is provided using a modified range-dependent deramp function combined with the chirp-z transform. Moreover, range scaling and azimuth scaling are performed to provide the same azimuth and range sampling interval for all sub-swaths, instead of the interpolation operation for the sub-swath image mosaic. Simulation results are provided to validate the proposed algorithm. PMID:27941706
Improving the Lieb-Robinson Bound for Long-Range Interactions
NASA Astrophysics Data System (ADS)
Matsuta, Takuro; Koma, Tohru; Nakamura, Shu
2017-02-01
We improve the Lieb-Robinson bound for a wide class of quantum many-body systems with long-range interactions decaying by power law. As an application, we show that the group velocity of information propagation grows by power law in time for such systems, whereas systems with short-range interactions exhibit a finite group velocity as shown by Lieb and Robinson.
Simple tunnel diode circuit for accurate zero crossing timing
NASA Technical Reports Server (NTRS)
Metz, A. J.
1969-01-01
Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.
Space and Time to Engage: Mature-Aged Distance Students Learn to Fit Study into Their Lives
ERIC Educational Resources Information Center
Kahu, Ella R.; Stephens, Christine; Zepke, Nick; Leach, Linda
2014-01-01
Student engagement, a student's emotional, behavioural and cognitive connection to their study, is widely recognized as important for student achievement. Influenced by a wide range of personal, structural and sociocultural factors, engagement is both unique and subjective. One important structural factor shown in past research to be a barrier for…
Cohort Profile Update: the TRacking Adolescents' Individual Lives Survey (TRAILS).
Oldehinkel, Albertine J; Rosmalen, Judith Gm; Buitelaar, Jan K; Hoek, Hans W; Ormel, Johan; Raven, Dennis; Reijneveld, Sijmen A; Veenstra, René; Verhulst, Frank C; Vollebergh, Wilma Am; Hartman, Catharina A
2015-02-01
TRAILS consists of a population cohort (N=2230) and a clinical cohort (N=543), both of which were followed from about age 11 years onwards. To date, the population cohort has been assessed five times over a period of 11 years, with retention rates ranging between 80% and 96%. The clinical cohort has been assessed four times over a period of 8 years, with retention rates ranging between 77% and 85%. Since the IJE published a cohort profile on the TRAILS in 2008, the participants have matured from adolescents into young adults. The focus shifted from parents and school to entry into the labour market and family formation, including offspring. Furthermore, psychiatric diagnostic interviews were administered, the database was linked to a Psychiatric Case Registry, and the availability of genome-wide SNP variations opened the door to genome-wide association studies regarding a wide range of (endo)phenotypes. With some delay, TRAILS data are available to researchers outside the TRAILS consortium without costs; access can be obtained by submitting a publication proposal (see www.trails.nl). © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Sun, Bo; Sunkavalli, Kalyan; Ramamoorthi, Ravi; Belhumeur, Peter N; Nayar, Shree K
2007-01-01
The properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs). We have developed an acquisition system that is capable of sampling a material's BRDF at multiple time instances, with each time sample acquired within 36 sec. We have used this acquisition system to measure the BRDFs of a wide range of time-varying phenomena, which include the drying of various types of paints (watercolor, spray, and oil), the drying of wet rough surfaces (cement, plaster, and fabrics), the accumulation of dusts (household and joint compound) on surfaces, and the melting of materials (chocolate). Analytic BRDF functions are fit to these measurements and the model parameters' variations with time are analyzed. Each category exhibits interesting and sometimes nonintuitive parameter trends. These parameter trends are then used to develop analytic TVBRDF models. The analytic TVBRDF models enable us to apply effects such as paint drying and dust accumulation to arbitrary surfaces and novel materials.
NASA Astrophysics Data System (ADS)
Yamashita, Takashi; Nakano, Daisuke; Mori, Masayuki; Maezawa, Koichi
2018-04-01
A resonant tunneling diode oscillator having a wide frequency variation range based on a novel MEMS resonator was proposed, which exploits the change in the signal propagation velocity on a coplanar waveguide according to a movable ground plane. First, we discussed the velocity modulation mechanism, and clarified the importance of the dielectric constant of the substrate. Then, a prototype device oscillating in a 10 to 20 GHz frequency range was fabricated to demonstrate the basic operation. A large and continuous increase in the oscillation frequency of about two times was achieved with this device. This is promising for various applications including THz spectroscopy.
Goldsworthy, W.W.
1958-02-01
This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.
Time-derivative preconditioning for viscous flows
NASA Technical Reports Server (NTRS)
Choi, Yunho; Merkle, Charles L.
1991-01-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.
Accurate atomistic first-principles calculations of electronic stopping
Schleife, André; Kanai, Yosuke; Correa, Alfredo A.
2015-01-20
In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less
NASA Astrophysics Data System (ADS)
Sallander, J.
1998-06-01
The radial distribution of impurity line emission in the EXTRAP-T2 reversed field pinch (RFP) is studied with a five viewing chord, absolutely calibrated, spectrometer system. The light is analyzed with a single 0.5 m grating spectrometer. Different parts of the entrance slit are used for different channels. This arrangement makes it possible to use the system over a wide wavelength range, from 2500 to 6500 Å, without having to recalibrate the relative sensitivity for the different channels. The rather short plasma pulses of 10-15 ms require a high time resolution. The use of photomultiplier tubes provides a time resolution of 10 μs which is limited by the transient recorders used. The result is a robust, low-cost system that produces reliable measurements of the radial dependence of emission from a wide range of impurity ions.
Perspectives on integrated modeling of transport processes in semiconductor crystal growth
NASA Technical Reports Server (NTRS)
Brown, Robert A.
1992-01-01
The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.
A pressure flux-split technique for computation of inlet flow behavior
NASA Technical Reports Server (NTRS)
Pordal, H. S.; Khosla, P. K.; Rubin, S. G.
1991-01-01
A method for calculating the flow field in aircraft engine inlets is presented. The phenomena of inlet unstart and restart are investigated. Solutions of the reduced Navier-Stokes (RNS) equations are obtained with a time consistent direct sparse matrix solver that computes the transient flow field both internal and external to the inlet. Time varying shocks and time varying recirculation regions can be efficiently analyzed. The code is quite general and is suitable for the computation of flow for a wide variety of geometries and over a wide range of Mach and Reynolds numbers.
Neuromorphic Silicon Neuron Circuits
Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena
2011-01-01
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754
A Study of the Quantity of Time for Teaching Reading.
ERIC Educational Resources Information Center
Florida Reading Association.
A study was conducted to provide descriptive information about the quantity of classroom time used for teaching reading and the interruptive events that occur during the scheduled reading time. Data were gathered from 148 public and private school teachers representing all grade levels and a wide range of teaching experience. The subjects each…
NASA Technical Reports Server (NTRS)
Zhou, Wei
1993-01-01
In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.
Study of pseudo noise CW diode laser for ranging applications
NASA Technical Reports Server (NTRS)
Lee, Hyo S.; Ramaswami, Ravi
1992-01-01
A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.
Chemical and Biological Dynamics Using Droplet-Based Microfluidics.
Dressler, Oliver J; Casadevall I Solvas, Xavier; deMello, Andrew J
2017-06-12
Recent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.
Development of the European Small Geostationary Satellite SGEO
NASA Astrophysics Data System (ADS)
Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.
2008-08-01
The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.
WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY.
Jantz, Paul B; Bigler, Erin D; Froehlich, Alyson L; Prigge, Molly B D; Cariello, Annahir N; Travers, Brittany G; Anderson, Jeffrey; Zielinski, Brandon A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet E
2015-06-01
The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6-22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8 mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.
Satellite orbit and data sampling requirements
NASA Technical Reports Server (NTRS)
Rossow, William
1993-01-01
Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Harman, Ciaran J.; Kirchner, James W.
2018-02-01
River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling - in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) - are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β = 0) to Brown noise (β = 2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb-Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of prescribed β values and gap distributions. The aliasing method, however, does not itself account for sampling irregularity, and this introduces some bias in the result. Nonetheless, the wavelet method is recommended for estimating β in irregular time series until improved methods are developed. Finally, all methods' performances depend strongly on the sampling irregularity, highlighting that the accuracy and precision of each method are data specific. Accurately quantifying the strength of fractal scaling in irregular water-quality time series remains an unresolved challenge for the hydrologic community and for other disciplines that must grapple with irregular sampling.
Heating, cooling, and uplift during Tertiary time, northern Sangre de Cristo Range, Colorado ( USA).
Lindsay, D.A.; Andriessen, P.A.M.; Wardlaw, B.R.
1986-01-01
Paleozoic sedimentary rocks in a wide area of the northern Sangre de Cristo Range show effects of heating during Tertiary time. Heating is tentatively interpreted as a response to burial during Laramide folding and thrusting and also to high heat flow during Rio Grande rifting. Fission-track ages of apatite across a section of the range show that rocks cooled abruptly below 120oC, the blocking temperature for apatite, approx 19 Ma ago. Cooling was probably in response to rapid uplift and erosion of the northern Sangre de Cristo Range during early Rio Grande rifting.-from Authors
Quantitative analysis of ground penetrating radar data in the Mu Us Sandland
NASA Astrophysics Data System (ADS)
Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong
2018-06-01
Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.
Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth
2015-02-10
Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.
Characterization of two biologically distinct variants of Tomato spotted wilt virus
USDA-ARS?s Scientific Manuscript database
Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...
Teaching Science Methods Courses with Web-Enhanced Activities.
ERIC Educational Resources Information Center
Bodzin, Alec M.
Learning science in today's classroom does not have to be restricted to text-based curricular resources. Web sites present learners with a wide range of science activities in various formats ranging from text-only information to providing authentic real-time data sets and interactive simulations. This paper discusses reasons for using the Internet…
The Benefits of Part-Time Undergraduate Study and UK Higher Education Policy: A Literature Review
ERIC Educational Resources Information Center
Bennion, Alice; Scesa, Anna; Williams, Ruth
2011-01-01
Part-time study in the UK is significant: nearly 40 per cent of higher education students study part-time. This article reports on a literature review that sought to understand the economic and social benefits of part-time study in the UK. It concludes that there are substantial and wide-ranging benefits from studying part-time. The article also…
The effect of wide swathing on wilting times and nutritive value of alfalfa haylage.
Kung, L; Stough, E C; McDonell, E E; Schmidt, R J; Hofherr, M W; Reich, L J; Klingerman, C M
2010-04-01
On 3 consecutive cuttings, alfalfa from a single field was mowed with a John Deere 946 mower-conditioner (4-m cut width; Moline, IL) to leave narrow swaths (NS) ranging from 1.2 to 1.52 m wide (30-37% of cutter bar width) and wide swaths (WS) ranging from 2.44 to 2.74 m wide (62-67% of cutter bar width). Samples were collected from windrows and dry matter (DM) was monitored during wilting until a target of 43 to 45% DM was obtained. Forage from random windrows (n=4-6) was harvested by hand, chopped through a forage harvester before being packed in replicated vacuum-sealed bags, and allowed to ensile for 65 d. There was no swath width x cutting interaction for any parameter tested. Over all cuttings, the resulting silage DM was not different between the NS silage (43.8%) and the WS silage (44.9%). However, wide swathing greatly reduced the time of wilting before making silage. The hours of wilting time needed to reach the targeted DM for the NS silage compared with the WS silage at cuttings 1, 2, and 3 were 50 versus 29, 54 versus 28, and 25 versus 6, respectively. At the time of ensiling, the WS silage had more water-soluble carbohydrates (5.1%) than did the NS silage (3.7%). The WS silage had a lower pH (4.58) than did the NS silage (4.66), but swath width did not affect fermentation end products (lactic acid, acetic acid, and ethanol). The NS silage had more NH(3)-N (0.26%) than did the WS silage (0.21%). Wide swathing did not affect the concentration of ash or the digestibility of NDF, but it lowered the N content (NS=3.45%; WS=3.23%) and increased the ADF content (NS=39.7%; WS=40.9%) of the resulting silage. Wide swathing can markedly reduce the time that alfalfa must wilt before it can be chopped for silage, but under good conditions, as in this study, the resulting silage quality was generally not improved. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanoi, Satoru; Endoh, Tetsuo
2012-04-01
A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.
Exact Solutions to Time-dependent Mdps
NASA Technical Reports Server (NTRS)
Boyan, Justin A.; Littman, Michael L.
2000-01-01
We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
Time-of-flight measurements of heavy ions using Si PIN diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strekalovsky, A. O., E-mail: alex.strek@bk.ru; Kamanin, D. V.; Pyatkov, Yu. V.
2016-12-15
A new off-line timing method for PIN diode signals is presented which allows the plasma delay effect to be suppressed. Velocities of heavy ions measured by the new method are in good agreement within a wide range of masses and energies with velocities measured by time stamp detectors based on microchannel plates.
78 FR 29258 - Blueberry Promotion, Research and Information Order; Assessment Rate Increase
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
.... \\6\\ The econometric model used statistical methods with time series data to measure how strongly the... program has been over 15 times greater than the costs. At the opposite end of the spectrum in the supply... times greater than the costs. Given the wide range of supply responses considered in the analysis, and...
Preliminary design approach for large high precision segmented reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
Sign changes as a universal concept in first-passage-time calculations
NASA Astrophysics Data System (ADS)
Braun, Wilhelm; Thul, Rüdiger
2017-01-01
First-passage-time problems are ubiquitous across many fields of study, including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of nondifferentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalizes the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths, thus alleviating common hurdles in first-passage-time calculations.
Remote sensing support for national forest inventories
Ronald E. McRoberts; Erkki O. Tomppo
2007-01-01
National forest inventory programs are tasked to produce timely and accurate estimates for a wide range of forest resource variables for a variety of users and applications. Time, cost, and precision constraints cause these programs to seek technological innovations that contribute to measurement and estimation efficiencies and that facilitate the production and...
Development of high frequency and wide bandwidth Johnson noise thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossno, Jesse; Liu, Xiaomeng; Kim, Philip
We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law abovemore » T ∼ 100 K.« less
Sanderson, E.W.; Redford, Kent; Weber, Bill; Aune, K.; Baldes, Dick; Berger, J.; Carter, Dave; Curtin, C.; Derr, James N.; Dobrott, S.J.; Fearn, Eva; Fleener, Craig; Forrest, Steven C.; Gerlach, Craig; Gates, C. Cormack; Gross, J.E.; Gogan, P.; Grassel, Shaun M.; Hilty, Jodi A.; Jensen, Marv; Kunkel, Kyran; Lammers, Duane; List, R.; Minkowski, Karen; Olson, Tom; Pague, Chris; Robertson, Paul B.; Stephenson, Bob
2008-01-01
Many wide-ranging mammal species have experienced significant declines over the last 200 years; restoring these species will require long-term, large-scale recovery efforts. We highlight 5 attributes of a recent range-wide vision-setting exercise for ecological recovery of the North American bison (Bison bison) that are broadly applicable to other species and restoration targets. The result of the exercise, the “Vermejo Statement” on bison restoration, is explicitly (1) large scale, (2) long term, (3) inclusive, (4) fulfilling of different values, and (5) ambitious. It reads, in part, “Over the next century, the ecological recovery of the North American bison will occur when multiple large herds move freely across extensive landscapes within all major habitats of their historic range, interacting in ecologically significant ways with the fullest possible set of other native species, and inspiring, sustaining and connecting human cultures.” We refined the vision into a scorecard that illustrates how individual bison herds can contribute to the vision. We also developed a set of maps and analyzed the current and potential future distributions of bison on the basis of expert assessment. Although more than 500,000 bison exist in North America today, we estimated they occupy <1% of their historical range and in no place express the full range of ecological and social values of previous times. By formulating an inclusive, affirmative, and specific vision through consultation with a wide range of stakeholders, we hope to provide a foundation for conservation of bison, and other wide-ranging species, over the next 100 years.
ERIC Educational Resources Information Center
King, Ronnel B.
2016-01-01
Time perspectives have been found to be related to a wide range of psychological phenomena. However, in the educational context, there remains to be a lack of research on how they relate to important academic outcomes. Therefore, the aim of this research was to examine how time perspectives are related to educational outcomes such as engagement,…
Calibration of time of flight detectors using laser-driven neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.
2015-07-15
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
Calibration of time of flight detectors using laser-driven neutron source.
Mirfayzi, S R; Kar, S; Ahmed, H; Krygier, A G; Green, A; Alejo, A; Clarke, R; Freeman, R R; Fuchs, J; Jung, D; Kleinschmidt, A; Morrison, J T; Najmudin, Z; Nakamura, H; Norreys, P; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M
2015-07-01
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
Calibration of time of flight detectors using laser-driven neutron source
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.
2015-07-01
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
1995-07-08
Marshall researchers, in the Astrionics lab, study rotating unbalanced mass devices. These require less power, and are lighter than current devices used for scanning images, a slice at a time. They have a wide range of space-based applications.
Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Elster, Josef; Henttonen, Heikki; Laine, Kari; Taulavuori, Kari; Taulavuori, Erja; Zöckler, Christoph
2004-11-01
The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctic's climate: some can metabolize at temperatures down to -39 degrees C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.
Dakos, Vasilis; Carpenter, Stephen R.; Brock, William A.; Ellison, Aaron M.; Guttal, Vishwesha; Ives, Anthony R.; Kéfi, Sonia; Livina, Valerie; Seekell, David A.; van Nes, Egbert H.; Scheffer, Marten
2012-01-01
Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data. PMID:22815897
Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim
2018-06-21
Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.
Atomistic simulations of graphite etching at realistic time scales.
Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C
2017-10-01
Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Scene Context Dependency of Pattern Constancy of Time Series Imagery
NASA Technical Reports Server (NTRS)
Woodell, Glenn A.; Jobson, Daniel J.; Rahman, Zia-ur
2008-01-01
A fundamental element of future generic pattern recognition technology is the ability to extract similar patterns for the same scene despite wide ranging extraneous variables, including lighting, turbidity, sensor exposure variations, and signal noise. In the process of demonstrating pattern constancy of this kind for retinex/visual servo (RVS) image enhancement processing, we found that the pattern constancy performance depended somewhat on scene content. Most notably, the scene topography and, in particular, the scale and extent of the topography in an image, affects the pattern constancy the most. This paper will explore these effects in more depth and present experimental data from several time series tests. These results further quantify the impact of topography on pattern constancy. Despite this residual inconstancy, the results of overall pattern constancy testing support the idea that RVS image processing can be a universal front-end for generic visual pattern recognition. While the effects on pattern constancy were significant, the RVS processing still does achieve a high degree of pattern constancy over a wide spectrum of scene content diversity, and wide ranging extraneousness variations in lighting, turbidity, and sensor exposure.
Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo
NASA Technical Reports Server (NTRS)
Gehrels, N.; Spergel, D.
2015-01-01
The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.
Communication: Polymer entanglement dynamics: Role of attractive interactions
Grest, Gary S.
2016-10-10
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T g. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less
Santibanez, Scott; Fischer, Leah S; Krishnadasan, Anusha; Sederdahl, Bethany; Merlin, Toby; Moran, Gregory J; Talan, David A; Mower, William; Sullivan, Matthew; Abrahamian, Fredrick M; Ong, Sam; Gross, Eric; Salhi, Bisan; Heilpern, Katherine; Hess, Jeremy; Karras, David; Biros, Michelle; Dunbar, Lala; Takhar, Sukhjit; Pollack, Charles; Runge, Jeffrey; Cheney, Paul; Rothrock, Stephen; O’Brian, John; Citron, Diane; Goldstein, Ellie; Finegold, Sydney; Nakase, Janet; Newdow, Michael; Merchant, Guy; Pathmarajah, Kavitha; Gonzalez, Eva; Mulrow, Mary; Bussman, Silas; Kalugdnan, Vernon; Peterson, Stephen; Pitts, Seth; Narayan, Kamil; Rubin, Ada; Kemble, Laurie; Beckham, Danielle; Neal, Niccole; Yagapen, Annick; Von Hofen, Carol; Hatala, Kathleen; Fuentes, Shelley; Sibley, Debbi; Colucci, Ashley; Hernandez, Jackeline; Cruse, Hope; Usher, Sarah; Hendrickson, Audrey; Dehnkamp, Kimberly; Zeglin, Britney; Jambaulikar, Guruprasad; Gorwitz, Rachel; Limbago, Brandi; Kuehnert, Matthew; Jarvis, William; Slutsker, Larry; Arvay, Melissa; Conn, Laura
2017-01-01
Abstract As providers of frontline clinical care for patients with acute and potentially life-threatening infections, emergency departments (EDs) have the priorities of saving lives and providing care quickly and efficiently. Although these facilities see a diversity of patients 24 hours per day and can collect prospective data in real time, their ability to conduct timely research on infectious syndromes is not well recognized. EMERGEncy ID NET is a national network that demonstrates that EDs can also collect data and conduct research in real time. This network collaborates with the Centers for Disease Control and Prevention (CDC) and other partners to study and address a wide range of infectious diseases and clinical syndromes. In this paper, we review selected highlights of EMERGEncy ID NET’s history from 1995 to 2017. We focus on the establishment of this multisite research network and the network’s collaborative research on a wide range of ED clinical topics. PMID:29670931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián
We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for amore » wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.« less
Wide-Range Temperature Sensors with High-Level Pulse Train Output
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad; Patterson, Richard L.
2009-01-01
Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-07
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Multimode VCSEL model for wide frequency-range RIN simulation
NASA Astrophysics Data System (ADS)
Perchoux, Julien; Rissons, Angélique; Mollier, Jean-Claude
2008-01-01
In this paper, we present an equivalent circuit model for oxide-confined AlGaAs/GaAs VCSEL with the noise contribution adapted to optomicrowave links applications. This model is derived from the multimode rate equations. In order to understand the modal competition process, we restrain our description to a two-modes rate equations system affected by the spectral hole-burning. The relative intensity noise (RIN) measurements which were achieved on a prober in Faraday cage confirm the low frequency enhancement described by the model. We validate our model for a wide frequency-range [1 MHz-10 GHz] and high bias level up to six times the threshold current.
Sandy Hook Traveler Information System
DOT National Transportation Integrated Search
2010-09-01
This report focuses on equipment and procedural solutions for gathering and disseminating a wide range of visitor information, including real-time traveler information data relating to traffic and parking at the Sandy Hook Unit of the Gateway Recreat...
GrainGenes: Changing Times, Changing Databases, Digital Evolution.
USDA-ARS?s Scientific Manuscript database
The GrainGenes database is one of few agricultural databases that had an early start on the Internet and that has changed with the times. Initial goals were to collect a wide range of data relating to the developing maps and attributes of small grains crops, and to make them easily accessible. The ...
A novel automated rat catalepsy bar test system based on a RISC microcontroller.
Alvarez-Cervera, Fernando J; Villanueva-Toledo, Jairo; Moo-Puc, Rosa E; Heredia-López, Francisco J; Alvarez-Cervera, Margarita; Pineda, Juan C; Góngora-Alfaro, José L
2005-07-15
Catalepsy tests performed in rodents treated with drugs that interfere with dopaminergic transmission have been widely used for the screening of drugs with therapeutic potential in the treatment of Parkinson's disease. The basic method for measuring catalepsy intensity is the "standard" bar test. We present here an easy to use microcontroller-based automatic system for recording bar test experiments. The design is simple, compact, and has a low cost. Recording intervals and total experimental time can be programmed within a wide range of values. The resulting catalepsy times are stored, and up to five simultaneous experiments can be recorded. A standard personal computer interface is included. The automated system also permits the elimination of human error associated with factors such as fatigue, distraction, and data transcription, occurring during manual recording. Furthermore, a uniform criterion for timing the cataleptic condition can be achieved. Correlation values between the results obtained with the automated system and those reported by two independent observers ranged between 0.88 and 0.99 (P<0.0001; three treatments, nine animals, 144 catalepsy time measurements).
METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM
Aaland, K.; Kuenning, R.W.; Harmon, R.K.
1961-05-01
A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.
Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
A digital wide range neutron flux measuring system for HL-2A
NASA Astrophysics Data System (ADS)
Yuan, Chen; Wu, Jun; Yin, Zejie
2017-08-01
To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.
Data Tales from a Small Island
ERIC Educational Resources Information Center
Henry, Philip
2016-01-01
In this article Philip Henry, now in semi-retirement, reflects on the last 50 years of his career in United Kingdom higher education and the changes that ensued during this time. Over the span of his career he had the opportunity to experience a wide range of institutions in all of the U.K. university mission groups and in a range of positions…
A Computer Program for Variable Density Yield Tables for Loblolly Pine Plantations
Clifford A. Myers
1977-01-01
The computer program described here uses relationships developed from research on loblolly pine growth to predict volumes and yields of planted stands, over the site range of the species, under a wide range of management alternatives. Timing and severity of thinnings, length of rotation, and type of harvest can be modified to compare the effects of various management...
Vikre, Peter
2014-01-01
Introduction The Humboldt Range, Pershing County, Nevada, predominantly consists of Mesozoic igneous and sedimentary rocks that were modified several times by magmatism, metasomatism, and tectonism, and contain a variety of metallic (Ag, Au, Pb, Zn, Sb, W, Hg) and non-metallic (dumortierite, pinite, fluorite) mineral deposits (Knopf, 1924; Kerr and Jenney, 1935; Kerr, 1938; Cameron, 1939; Campbell, 1939; Kerr, 1940; Page et al., 1940; Johnson, 1977; Vikre, 1978; 1981; Crosby, 2012). Early Triassic Koipato Group volcanic rocks, which are widely exposed in the range, have been altered to quartz, muscovite (sericite), chlorite, pyrite, and other minerals during emplacement of Mesozoic intrusions and by crustal thickening. Most hydrothermal alteration of volcanic rocks and formation of mineral deposits involved externally derived water and other volatiles, although some volcanic strata were apparently altered by pore or dehydration water. Cospatial hydrothermal mineral assemblages and associations, produced by events widely spaced in time, are difficult to separate because of common mineralogy (quartz, sericite, and pyrite), partial to complete recrystallization, thermally compromised Ar geochronology, and lack of comprehensive investigations of volatile sources and deformational fabric. Distinguishing between metasomatic and metamorphic processes that affected rocks in the Humboldt Range is not straightforward.
Spectral measurements of asymmetrically irradiated capsule backlighters
Keiter, P. A.; Drake, R. P.
2016-09-09
Capsule backlighters provide a quasi-continuum x-ray spectrum over a wide range of photon energies. Ideally one irradiates the capsule backlighter symmetrically, however, in complex experimental geometries, this is not always possible. In recent experiments we irradiated capsule backlighters asymmetrically and measured the x-ray spectrum from multiple directions. We will present time-integrated spectra over the photon energy range of ~2-13 keV and time-resolved spectra over the photon energy range of ~2-3 keV. Lastly, we will compare the spectra from different lines of sight to determine if the laser asymmetry results in an angular dependence in the x-ray emission.
NASA Astrophysics Data System (ADS)
Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo
2015-08-01
This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.
2016-12-01
Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.
2016-06-01
Here we present a summary of first years of operation and first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (~900 square degrees) or narrow (~100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.
Atmospheric Science Data Center
2018-04-23
... the long term time series of ozone data from OMI and SBUV instruments. Scene Reflectivity (clouds, aerosolos, and surface) is derived as ... available and are expected to support a wide range of scientific studies. Project Title: DSCOVR ...
Phase I development of an aesthetic, precast concrete bridge rail.
DOT National Transportation Integrated Search
2012-02-01
Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction : time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, impro...
Li, Haitao; Boling, C Sam; Mason, Andrew J
2016-08-01
Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.
A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes
Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-01-01
This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899
A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.
Lee, Inhee; Sylvester, Dennis; Blaauw, David
2016-03-01
This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.
Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project
NASA Astrophysics Data System (ADS)
Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.
2018-07-01
The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.
Amorphous In-Ga-Zn-O Powder with High Gas Selectivity towards Wide Range Concentration of C₂H₅OH.
Chen, Hongxiang; Jiang, Wei; Zhu, Lianfeng; Yao, Youwei
2017-05-24
Amorphous indium gallium zinc oxide (a-IGZO) powder was prepared by typical solution-based process and post-annealing process. The sample was used as sensor for detecting C₂H₅OH, H₂, and CO. Gas-sensing performance was found to be highly sensitive to C₂H₅OH gas in a wide range of concentration (0.5-1250 ppm) with the response of 2.0 towards 0.5 ppm and 89.2 towards 1250 ppm. Obvious difference of response towards C₂H₅OH, H₂, and CO was found that the response e.g., was 33.20, 6.64, and 2.84 respectively at the concentration of 200 ppm. The response time and recovery time of was 32 s and 14 s respectively towards 200 ppm concentration of C₂H₅OH gas under heating voltage of 6.5 V.
"V-junction": a novel structure for high-speed generation of bespoke droplet flows.
Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew
2015-01-21
We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.
Porous silicon platform for optical detection of functionalized magnetic particles biosensing.
Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh
2013-04-01
The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.
A Distributed Representation of Remembered Time
2015-11-19
hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...The hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...accomplished this goal by developing a computational framework that describes a wide range of functional cellular correlates in the hippocampus and
Development (design and systematization) of HMS Group pump ranges
NASA Astrophysics Data System (ADS)
Tverdokhleb, I.; Yamburenko, V.
2017-08-01
The article reveals the need for pump range charts development for different applications and describes main principles used by HMS Group. Some modern approaches to pump selection are reviewed and highlighted the need for pump compliance with international standards and modern customer requirements. Even though pump design types are similar for different applications they need adjustment to specific requirements, which gets manufacturers develop their particular design for each pump range. Having wide pump ranges for different applications enables to create pump selection software, facilitating manufacturers to prepare high quality quotations in shortest time.
Zhang, Danke; Wu, Si; Rasch, Malte J.
2015-01-01
In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems. PMID:25723493
Zhang, Danke; Wu, Si; Rasch, Malte J
2015-01-01
In natural signals, such as the luminance value across of a visual scene, abrupt changes in intensity value are often more relevant to an organism than intensity values at other positions and times. Thus to reduce redundancy, sensory systems are specialized to detect the times and amplitudes of informative abrupt changes in the input stream rather than coding the intensity values at all times. In theory, a system that responds transiently to fast changes is called a differentiator. In principle, several different neural circuit mechanisms exist that are capable of responding transiently to abrupt input changes. However, it is unclear which circuit would be best suited for early sensory systems, where the dynamic range of the natural input signals can be very wide. We here compare the properties of different simple neural circuit motifs for implementing signal differentiation. We found that a circuit motif based on presynaptic inhibition (PI) is unique in a sense that the vesicle resources in the presynaptic site can be stably maintained over a wide range of stimulus intensities, making PI a biophysically plausible mechanism to implement a differentiator with a very wide dynamical range. Moreover, by additionally considering short-term plasticity (STP), differentiation becomes contrast adaptive in the PI-circuit but not in other potential neural circuit motifs. Numerical simulations show that the behavior of the adaptive PI-circuit is consistent with experimental observations suggesting that adaptive presynaptic inhibition might be a good candidate neural mechanism to achieve differentiation in early sensory systems.
Improving frequencies range measurement of vibration sensor based on Fiber Bragg Grating (FBG)
NASA Astrophysics Data System (ADS)
Qomaruddin; Setiono, A.; Afandi, M. I.
2017-04-01
This research aimed to develop a vibration sensor based on Fiber Bragg Grating (FBG). The design was mainly done by attaching FBG at the cantilever. The free-end of the cantilever was tied to a vibration source in order to increase the measurement range of vibration frequencies. The results indicated that the developed sensor was capable of detecting wide range of frequencies (i.e. 10 - 1700 Hz). The results also showed both good stability and repeatability. The measured frequency range was 566 times greater than the range obtained from the previous works.
Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)
2000-01-01
We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
[Training in addiction medicine].
de Jong, Cor A J; Luycks, Lonneke; Delicat, Jan-Wilm
2013-01-01
The treatment of addiction is a skill. It not only requires the necessary specialist medical knowledge but a wide range of communication skills as well. Both facets are explicitly covered in the two-year postgraduate program on addiction medicine at Radboud University Nijmegen, the Netherlands. In September 2013, this competency-based full-time training will be offered for the fifth time.
Exposure Influences Expressive Timing Judgments in Music
ERIC Educational Resources Information Center
Honing, Henkjan; Ladinig, Olivia
2009-01-01
This study is concerned with the question whether, and to what extent, listeners' previous exposure to music in everyday life, and expertise as a result of formal musical training, play a role in making expressive timing judgments in music. This was investigated by using a Web-based listening experiment in which listeners with a wide range of…
Organisation of School Time in the European Union. Second Edition.
ERIC Educational Resources Information Center
EURYDICE European Unit, Brussels (Belgium).
This brief report contains basic data on the management of pupils' school time in European primary and secondary education. A wide range of aspects are covered, including the duration of compulsory education, the organization of the school year, the distribution of holidays, and daily and weekly timetables. A description is given of each of these,…
High performance interconnection between high data rate networks
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.
1992-01-01
The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.
Drozd, Greg T; Zhao, Yunliang; Saliba, Georges; Frodin, Bruce; Maddox, Christine; Weber, Robert J; Chang, M-C Oliver; Maldonado, Hector; Sardar, Satya; Robinson, Allen L; Goldstein, Allen H
2016-12-20
Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to understand changes in vehicle emissions in response to stricter emissions standards over the past 25 years. Measurements included a wide range of volatile organic compounds (VOCs) for a wide range of spark ignition gasoline vehicles meeting varying levels of emissions standards, including all certifications from Tier 0 up to Partial Zero Emission Vehicle. Standard gas chromatography (GC) and high performance liquid chromatography (HLPC) analyses were employed for drive-cycle phase emissions. A proton-transfer-reaction mass spectrometer measured time-resolved emissions for a wide range of VOCs. Cold-start emissions occur almost entirely in the first 30-60 s for newer vehicles. Cold-start emissions have compositions that are not significantly different across all vehicles tested and are markedly different from neat fuel. Hot-stabilized emissions have varying importance depending on species and may require a driving distance of 200 miles to equal the emissions from a single cold start. Average commute distances in the U.S. suggest the majority of in-use vehicles have emissions dominated by cold starts. The distribution of vehicle ages in the U.S. suggests that within several years only a few percent of vehicles will have significant driving emissions compared to cold-start emissions.
ERIC Educational Resources Information Center
Randall, Mac
2009-01-01
Music teachers across the country are taking advantage of a wide range of grants from any number of sources--cities and towns, states, the federal government, nonprofit foundations, businesses, even generous individuals--to lend extra strength to their programs. Finding the right grantor for one's program is a major part of the equation. Before…
Field emitter displays for future avionics applications
NASA Astrophysics Data System (ADS)
Jones, Susan K.; Jones, Gary W.; Zimmerman, Steven M.; Blazejewski, Edward R.
1995-06-01
Field emitter array-based display technology offers CRT-like characteristics in a thin flat-panel display with many potential applications for vehicle-mounted, crew workstation, and helmet-mounted displays, as well as many other military and commercial applications. In addition to thinness, high brightness, wide viewing angle, wide temperature range, and low weight, field emitter array displays also offer potential advantages such as row-at-a-time matrix addressability and the ability to be segmented.
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance. PMID:26907291
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-02-20
In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.
A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel
NASA Astrophysics Data System (ADS)
Pathak, Akhilesh Kumar; Singh, Vinod Kumar
2017-12-01
In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.
Optimizing Floating Guard Ring Designs for FASPAX N-in-P Silicon Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Kyung-Wook; Bradford, Robert; Lipton, Ronald
2016-10-06
FASPAX (Fermi-Argonne Semiconducting Pixel Array X-ray detector) is being developed as a fast integrating area detector with wide dynamic range for time resolved applications at the upgraded Advanced Photon Source (APS.) A burst mode detector with intendedmore » $$\\mbox{13 $$MHz$}$ image rate, FASPAX will also incorporate a novel integration circuit to achieve wide dynamic range, from single photon sensitivity to $$10^{\\text{5}}$$ x-rays/pixel/pulse. To achieve these ambitious goals, a novel silicon sensor design is required. This paper will detail early design of the FASPAX sensor. Results from TCAD optimization studies, and characterization of prototype sensors will be presented.« less
Light flavour hadron production in pp collisions at \\sqrt{s} = 13 TeV with ALICE
NASA Astrophysics Data System (ADS)
Tonatiuh Jiménez Bustamante, Raúl;
2017-04-01
The ALICE detector has excellent Particle IDentification (PID) capabilities in the central barrel (|η| < 0.9). This allows identified hadron production to be measured over a wide transverse momentum (pT) range, using different sub-detectors and techniques: their specific energy loss (dE/dx), the velocity determination via time-of-flight measurement, the Cherenkov angle or their characteristic weak decay topology. Results on identified light flavour hadron production at mid-rapidity measured by ALICE in proton-proton collisions at \\sqrt{s} = 13 TeV are presented and compared with previous measurements performed at lower energies. The results cover a wide range of particle species including long-lived hadrons, resonances and multi-strange baryons over the pT range from 150 MeV/c up to 20 GeV/c, depending on the particle species.
Prompt and Afterglow Emission from Short GRB Cocoons
NASA Astrophysics Data System (ADS)
Morsony, Brian; Lazzati, Davide; López-Cámara, Diego; Workman, Jared; Moskal, Jeremiah; Cantiello, Matteo; Perna, Rosalba
2018-01-01
We present simulations of short GRB jets that create a wide cocoon of mildly relativistic material surrounding the narrow, highly relativistic jet. We model the prompt and afterglow emission from the jet and cocoon at a range of observer angles relative to the jet axis. Even far off axis, prompt X-ray and gamma-ray emission from the cocoon may be detectable by FERMI GBM out to several 10’s of Mpc. Afterglow emission off-axis is dominated by cocoon material at early times (hours - days). The afterglow should be detectable at a wide range of frequencies (radio, optical, X-ray) for a large fraction of off-axis short GRBs within 200 Mpc, the detection range of aLIGO at design sensitivity. Given recent events, cocoon emission may be very important in the future for localizing LIGO-detected neutron star mergers.
Wide-band profile domain pulsar timing analysis
NASA Astrophysics Data System (ADS)
Lentati, L.; Kerr, M.; Dai, S.; Hobson, M. P.; Shannon, R. M.; Hobbs, G.; Bailes, M.; Bhat, N. D. Ramesh; Burke-Spolaor, S.; Coles, W.; Dempsey, J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.; Wen, L.; You, X.; Zhu, X.
2017-04-01
We extend profile domain pulsar timing to incorporate wide-band effects such as frequency-dependent profile evolution and broad-band shape variation in the pulse profile. We also incorporate models for temporal variations in both pulse width and in the separation in phase of the main pulse and interpulse. We perform the analysis with both nested sampling and Hamiltonian Monte Carlo methods. In the latter case, we introduce a new parametrization of the posterior that is extremely efficient in the low signal-to-noise regime and can be readily applied to a wide range of scientific problems. We apply this methodology to a series of simulations, and to between seven and nine years of observations for PSRs J1713+0747, J1744-1134 and J1909-3744 with frequency coverage that spans 700-3600 Mhz. We use a smooth model for profile evolution across the full frequency range, and compare smooth and piecewise models for the temporal variations in dispersion measure (DM). We find that the profile domain framework consistently results in improved timing precision compared to the standard analysis paradigm by as much as 40 per cent for timing parameters. Incorporating smoothness in the DM variations into the model further improves timing precision by as much as 30 per cent. For PSR J1713+0747, we also detect pulse shape variation uncorrelated between epochs, which we attribute to variation intrinsic to the pulsar at a level consistent with previously published analyses. Not accounting for this shape variation biases the measured arrival times at the level of ˜30 ns, the same order of magnitude as the expected shift due to gravitational waves in the pulsar timing band.
Ignition delay times of benzene and toluene with oxygen in argon mixtures
NASA Technical Reports Server (NTRS)
Burcat, A.; Snyder, C.; Brabbs, T.
1985-01-01
The ignition delay times of benzene and toluene with oxygen diluted in argon were investigated over a wide range of conditions. For benzene the concentration ranges were 0.42 to 1.69 percent fuel and 3.78 to 20.3 percent oxygen. The temperature range was 1212 to 1748 K and the reflected shock pressures were 1.7 to 7.89 atm. Statistical evaluation of the benzene experiments provided an overall equation which is given. For toluene the concentration ranges were 0.5 to 1.5 percent fuel and 4.48 to 13.45 percent oxygen. The temperature range was 1339 to 1797 K and the reflected shock pressures were 1.95 to 8.85 atm. The overall ignition delay equation for toluene after a statistical evaluation is also given. Detailed experimental information is provided.
NASA Technical Reports Server (NTRS)
Gouzhva, Yuri G.; Balyasnikov, Boris N.; Korniyenko, Vladimir V.; Pushkina, Irina G.; Shebshayevich, Valentin S.; Denisov, Vladimir I.; Reutov, Alexander P.
1990-01-01
The concept being designed by the Leningrad Scientific Research Radio Technical Institute (LSRRI) of united positioning and timing service on the basis of the utilization of long-range and global radionavigation and common time systems and aids for different users is described. The estimate of its utilization on the national as well as on international scale is given.
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Seldner, K.; Cwynar, D. S.
1977-01-01
A real time, hybrid computer simulation of a turbofan engine is described. Controls research programs involving that engine are supported by the simulation. The real time simulation is shown to match the steady state and transient performance of the engine over a wide range of flight conditions and power settings. The simulation equations, FORTRAN listing, and analog patching diagrams are included.
Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.
Bonanno, Gabriele; Brotman, David; Stuber, Matthias
2015-03-01
Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.
Scaling properties of marathon races
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, Jose; Rodriguez, Eduardo
2006-06-01
Some regularities in popular marathon races are identified in this paper. It is found for high-performance participants (i.e., racing times in the range [2:15,3:15] h), the average velocity as a function of the marathoner's ranking behaves as a power-law, which may be suggesting the presence of critical phenomena. Elite marathoners with racing times below 2:15 h can be considered as outliers with respect to this behavior. For the main marathon pack (i.e., racing times in the range [3:00,6:00] h), the average velocity as a function of the marathoner's ranking behaves linearly. For this racing times, the interpersonal velocity, defined as the difference of velocities between consecutive runners, displays a continuum of scaling behavior ranging from uncorrelated noise for small scales to correlated 1/f-noise for large scales. It is a matter of fact that 1/f-noise is characterized by correlations extended over a wide range of scales, a clear indication of some sort of cooperative effect.
High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time
NASA Astrophysics Data System (ADS)
Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven
2017-04-01
As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with <=1 nm resolution. With this system, nanoparticles ranging from 1 to 3000 nm diameters can be studied. The nanoparticles are typically suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.
Ranking in evolving complex networks
NASA Astrophysics Data System (ADS)
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
NASA Astrophysics Data System (ADS)
Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules
2017-03-01
The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.
Effect of α-stable sorptive waiting times on microbial transport in microflow cells
NASA Astrophysics Data System (ADS)
Bonilla, F. Alejandro; Cushman, John H.
2002-09-01
The interaction of bacteria in the fluid phase with pore walls of a porous material involves a wide range of effective reaction times which obey a diversity of substrate-bacteria adhesion conditions, and adhesive mechanisms. For a transported species, this heterogeneity in sorption conditions occurs both in time and space. Modern experimental methods allow one to measure adhesive reaction times of individual bacteria. This detailed information may be incorporated into nonequilibrium transport-sorption models that capture the heterogeneity in reaction times caused by varying chemical conditions. We have carried out particle (Brownian dynamic) simulations of adhesive, self-motile bacteria convected between two infinite plates as a model for a microflow cell. The adhesive heterogeneity is included by introducing adhesive reaction time (understood as time spent at a solid boundary once the particle collides against it) as a random variable that can be infinite (irreversible sorption) or vary over a wide range of values. This is made possible by treating this reaction time random variable as having an α-stable probability distribution whose properties (e.g., infinite moments and long tails) are distinctive from the standard exponential distribution commonly used to model reversible sorption. In addition, the α-stable distribution is renormalizable and hence upscalable to complex porous media. Simulations are performed in a pressure-driven microflow cell. Bacteria motility (driven by an effective Brownian force) acts as a dispersive component in the convective field. Upon collision with the pore wall, bacteria attachment or detachment occurs. The time bacteria spend at the wall varies over a wide range of time scales. This model has the advantage of being parsimonious, that is, involving very few parameters to model complex irreversible or reversible adhesion in heterogeneous environments. It is shown that, as in Taylor dispersion, the ratio of the channel half width b to the Brownian bacteria motility coefficient (D0 or dispersion coefficient) tb=b2/D0 controls the different adhesion regimes along with the value of α. Universal scalings (with respect to dimensionless time t*=t/tb) for the mean position,
Paccapelo, Alessandro; Lolli, Ivan; Fabrini, Maria Grazia; Silvano, Giovanni; Detti, Beatrice; Perrone, Franco; Savio, Giuseppina; Santoni, Matteo; Bonizzoni, Erminio; Perrone, Tania; Scoccianti, Silvia
2012-05-14
At recurrence the use of nitrosoureas is widely-used as a therapeutic option for glioblastoma (GBM) patients. The efficacy of fotemustine (FTM) has been demonstrated in phase II clinical trials; however, these papers report a wide range of progression-free-survival (PFS-6 m) rates, ranging from 21% to 52%. We investigated whether FTM could have a different response pattern in respect to time to adjuvant temozolomide failure, or whether specific independent risk factors could be responsible for the wide range of response rates observed. Recurrent GBM patients have been treated with fotemustine 75-100 mg/sqm at day 1, 8, 15 and after 4/5 weeks of rest with 100 mg/sqm every 21 days. Patients were stratified in 4 groups according to time to temozolomide failure: before starting (B0), during the first 6 months (B1), after more than 6 months of therapy (B2), and after a treatment-free interval (B3). Primary endpoint was PFS-6 m. A multivariable analysis was performed to identify whether gender, time after radiotherapy, second surgery and number of TMZ cycles could be independent predictors of the clinical benefit to FTM treatment. 163 recurrent GBM patients were included in the analysis. PFS-6 m rates for the B0, B1, B2 and B3 groups were 25%, 28%, 31.1% and 43.8%, respectively. The probability of disease control was higher in patients with a longer time after radiotherapy (p = 0.0161) and in those who had undergone a second surgery (p = 0.0306). FTM is confirmed as a valuable therapeutic option for patients with recurrent GBM and was active in all study patient groups. Time after the completion of radiotherapy and second surgery are independent treatment-related risk factors that were predictive of clinical benefit.
2012-01-01
Background At recurrence the use of nitrosoureas is widely-used as a therapeutic option for glioblastoma (GBM) patients. The efficacy of fotemustine (FTM) has been demonstrated in phase II clinical trials; however, these papers report a wide range of progression-free-survival (PFS-6 m) rates, ranging from 21% to 52%. We investigated whether FTM could have a different response pattern in respect to time to adjuvant temozolomide failure, or whether specific independent risk factors could be responsible for the wide range of response rates observed. Methods Recurrent GBM patients have been treated with fotemustine 75-100 mg/sqm at day 1, 8, 15 and after 4/5 weeks of rest with 100 mg/sqm every 21 days. Patients were stratified in 4 groups according to time to temozolomide failure: before starting (B0), during the first 6 months (B1), after more than 6 months of therapy (B2), and after a treatment-free interval (B3). Primary endpoint was PFS-6 m. A multivariable analysis was performed to identify whether gender, time after radiotherapy, second surgery and number of TMZ cycles could be independent predictors of the clinical benefit to FTM treatment. Results 163 recurrent GBM patients were included in the analysis. PFS-6 m rates for the B0, B1, B2 and B3 groups were 25%, 28%, 31.1% and 43.8%, respectively. The probability of disease control was higher in patients with a longer time after radiotherapy (p = 0.0161) and in those who had undergone a second surgery (p = 0.0306). Conclusions FTM is confirmed as a valuable therapeutic option for patients with recurrent GBM and was active in all study patient groups. Time after the completion of radiotherapy and second surgery are independent treatment-related risk factors that were predictive of clinical benefit. PMID:22583678
Microbial Phenazines: Biosynthesis, Agriculture and Health
USDA-ARS?s Scientific Manuscript database
Phenazines, a large class of nitrogen-containing redox-active heterocyclomers of biological and chemical origin, have attracted scientific interest since historical times because of their colorful pigmentation. More than 6,000 phenazine derivatives with wide-ranging bioactivities are now known, of w...
Varifocal liquid lens based on microelectrofluidic technology.
Chang, Jong-hyeon; Jung, Kyu-Dong; Lee, Eunsung; Choi, Minseog; Lee, Seungwan; Kim, Woonbae
2012-11-01
This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and -30 D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.
Validation of endogenous internal real-time PCR controls in renal tissues.
Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal
2009-01-01
Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.
van Eeden, Rowen; Whitfield, D. Philip; Botha, Andre; Amar, Arjun
2017-01-01
Understanding the ranging behaviours of species can be helpful in effective conservation planning. However, for many species that are rare, occur at low densities, or occupy challenging environments, this information is often lacking. The Martial Eagle (Polemaetus bellicosus) is a low density apex predator declining in both non-protected and protected areas in southern Africa, and little is known about its ranging behaviour. We use GPS tags fitted to Martial Eagles (n = 8) in Kruger National Park (KNP), South Africa to describe their ranging behaviour and habitat preference. This represents the first time that such movements have been quantified in adult Martial Eagles. Territorial eagles (n = 6) held home ranges averaging ca. 108 km2. Home range estimates were similar to expectations based on inter-nest distances, and these large home range sizes could constrain the carrying capacity of even the largest conservation areas. Two tagged individuals classed as adults on plumage apparently did not hold a territory, and accordingly ranged more widely (ca. 44,000 km2), and beyond KNP boundaries as floaters. Another two territorial individuals abandoned their territories and joined the ‘floater’ population, and so ranged widely after leaving their territories. These unexpected movements after territory abandonment could indicate underlying environmental degradation. Relatively high mortality of these wide-ranging ‘floaters’ due to anthropogenic causes (three of four) raises further concerns for the species’ persistence. Habitat preference models suggested Martial Eagles used areas preferentially that were closer to rivers, had higher tree cover, and were classed as dense bush rather than open bush or grassland. These results can be used by conservation managers to help guide actions to preserve breeding Martial Eagles at an appropriate spatial scale. PMID:28306744
Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi
2014-03-01
We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Reconstructing Past Admixture Processes from Local Genomic Ancestry Using Wavelet Transformation
Sanderson, Jean; Sudoyo, Herawati; Karafet, Tatiana M.; Hammer, Michael F.; Cox, Murray P.
2015-01-01
Admixture between long-separated populations is a defining feature of the genomes of many species. The mosaic block structure of admixed genomes can provide information about past contact events, including the time and extent of admixture. Here, we describe an improved wavelet-based technique that better characterizes ancestry block structure from observed genomic patterns. principal components analysis is first applied to genomic data to identify the primary population structure, followed by wavelet decomposition to develop a new characterization of local ancestry information along the chromosomes. For testing purposes, this method is applied to human genome-wide genotype data from Indonesia, as well as virtual genetic data generated using genome-scale sequential coalescent simulations under a wide range of admixture scenarios. Time of admixture is inferred using an approximate Bayesian computation framework, providing robust estimates of both admixture times and their associated levels of uncertainty. Crucially, we demonstrate that this revised wavelet approach, which we have released as the R package adwave, provides improved statistical power over existing wavelet-based techniques and can be used to address a broad range of admixture questions. PMID:25852078
On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution
ERIC Educational Resources Information Center
Wagenmakers, Eric-Jan; Brown, Scott
2007-01-01
Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; ...
2016-06-15
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in realmore » time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).« less
Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai
2016-01-01
Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments). PMID:27302087
A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification.
Aguilera-Sigalat, Jordi; Bradshaw, Darren
2014-05-11
We report for the first time the pH-dependent fluorescence of UiO-66-NH2 across the wide range from 1 to 9. By application of a post-synthetic modification (PSM) diazotisation strategy, we synthesized a new material, UiO-66-N=N-ind, which shows increased chemical stability and enhanced sensing up to pH 12.
Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E
2016-05-01
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).
Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources
Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.
2016-01-01
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks.
Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang
2015-11-13
Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments.
Measuring Thermoelectric Properties Automatically
NASA Technical Reports Server (NTRS)
Chmielewski, A.; Wood, C.
1986-01-01
Microcomputer-controlled system speeds up measurements of Hall voltage, Seebeck coefficient, and thermal diffusivity in semiconductor compounds for thermoelectric-generator applications. With microcomputer system, large data base of these parameters gathered over wide temperature range. Microcomputer increases measurement accuracy, improves operator productivity, and reduces test time.
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.
2017-07-01
Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (900 square degrees) or narrow (100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds.The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT also include faint meteors and artificial satellites.
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.
2017-06-01
Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds.The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites.
William N., Jr. Cannon; Jack H. Barger; Charles J. Kostichka; Charles J. Kostichka
1986-01-01
Dutch elm disease control practice in 15 communities showed a wide range of time and material required to apply control methods. The median time used for each method was: sanitation survey, 9.8 hours per square mile; symptom survey, 96 hours per thousand elms; systemic fungicide injection, 1.4 hours per elm; and root-graft barrier installation, 2.2 hours per barrier (5...
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
A pattern jitter free AFC scheme for mobile satellite systems
NASA Technical Reports Server (NTRS)
Yoshida, Shousei
1993-01-01
This paper describes a scheme for pattern jitter free automatic frequency control (AFC) with a wide frequency acquisition range. In this scheme, equalizing signals fed to the frequency discriminator allow pattern jitter free performance to be achieved for all roll-off factors. In order to define the acquisition range, frequency discrimination characateristics are analyzed on a newly derived frequency domain model. As a result, it is shown that a sufficiently wide acquisition range over a given system symbol rate can be achieved independent of symbol timing errors. Additionally, computer simulation demonstrates that frequency jitter performance improves in proportion to E(sub b)/N(sub 0) because pattern-dependent jitter is suppressed in the discriminator output. These results show significant promise for applciation to mobile satellite systems, which feature relatively low symbol rate transmission with an approximately 0.4-0.7 roll-off factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karcı, Özgür; Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara; Dede, Münir
We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hardmore » disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.« less
Pulse Based Time-of-Flight Range Sensing.
Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas
2018-05-23
Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
Chasing a Comet with a Solar Sail
NASA Technical Reports Server (NTRS)
Stough, Robert W.; Heaton, Andrew F.; Whorton, Mark S.
2008-01-01
Solar sail propulsion systems enable a wide range of missions that require constant thrust or high delta-V over long mission times. One particularly challenging mission type is a comet rendezvous mission. This paper presents optimal low-thrust trajectory designs for a range of sailcraft performance metrics and mission transit times that enables a comet rendezvous mission. These optimal trajectory results provide a trade space which can be parameterized in terms of mission duration and sailcraft performance parameters such that a design space for a small satellite comet chaser mission is identified. These results show that a feasible space exists for a small satellite to perform a comet chaser mission in a reasonable mission time.
Probabilistic motor sequence learning in a virtual reality serial reaction time task.
Sense, Florian; van Rijn, Hedderik
2018-01-01
The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.
Human Chronotypes from a Theoretical Perspective
Kramer, Achim; Herzel, Hanspeter
2013-01-01
The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically tractable models. In this way we derive relations between the phase of entrainment to the mismatch between the endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the “180° rule” asserting that the phase varies over a range of about 180° within the entrainment range. The 180° rule implies that clocks with a narrow entrainment range (“strong oscillators”) exhibit quite flexible entrainment phases. We argue that this high sensitivity of the entrainment phase contributes to the wide range of human chronotypes. PMID:23544070
Domain decomposition in time for PDE-constrained optimization
Barker, Andrew T.; Stoll, Martin
2015-08-28
Here, PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.
Universal SaaS platform of internet of things for real-time monitoring
NASA Astrophysics Data System (ADS)
Liu, Tongke; Wu, Gang
2018-04-01
Real-time monitoring service, as a member of the IoT (Internet of Things) service, has a wide range application scenario. To support rapid construction and deployment of applications and avoid repetitive development works in these processes, this paper designs and develops a universal SaaS platform of IoT for real-time monitoring. Evaluation shows that this platform can provide SaaS service to multiple tenants and achieve high real-time performance under the situation of large amount of device access.
Disaccommodation in LaMnO3.075
NASA Astrophysics Data System (ADS)
Muroi, M.; Street, R.; Cochrane, J. W.; Russell, G. J.
2000-10-01
The time dependence of low-field ac susceptibility has been studied on the cation-deficient perovskite manganite LaMnO3.075. It is found that the ac susceptibility \\|χ\\| decreases with time over a wide temperature range below Tc (122 K) and the decay of \\|χ\\| is roughly proportional to the logarithm of time after demagnetization. It is argued that the time dependence of \\|χ\\|, or disaccommodation, arises from progressive domain-wall stabilization through induced exchange interaction, as well as induced magnetocrystalline anisotropy.
The MUSE-Wide survey: a measurement of the Ly α emitting fraction among z > 3 galaxies
NASA Astrophysics Data System (ADS)
Caruana, Joseph; Wisotzki, Lutz; Herenz, Edmund Christian; Kerutt, Josephine; Urrutia, Tanya; Schmidt, Kasper Borello; Bouwens, Rychard; Brinchmann, Jarle; Cantalupo, Sebastiano; Carollo, Marcella; Diener, Catrina; Drake, Alyssa; Garel, Thibault; Marino, Raffaella Anna; Richard, Johan; Saust, Rikke; Schaye, Joop; Verhamme, Anne
2018-01-01
We present a measurement of the fraction of Lyman α (Ly α) emitters (XLy α) amongst HST continuum-selected galaxies at 3 < z < 6 with the Multi-Unit Spectroscopic Explorer (MUSE) on the VLT. Making use of the first 24 MUSE-Wide pointings in GOODS-South, each having an integration time of 1 h, we detect 100 Ly α emitters and find XLy α ≳ 0.5 for most of the redshift range covered, with 29 per cent of the Ly α sample exhibiting rest equivalent widths (rest-EWs) ≤ 15 Å. Adopting a range of rest-EW cuts (0-75 Å), we find no evidence of a dependence of XLy α on either redshift or ultraviolet luminosity.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Eighth International Workshop on Laser Ranging Instrumentation
NASA Technical Reports Server (NTRS)
Degnan, John J. (Compiler)
1993-01-01
The Eighth International Workshop for Laser Ranging Instrumentation was held in Annapolis, Maryland in May 1992, and was sponsored by the NASA Goddard Space Flight Center in Greenbelt, Maryland. The workshop is held once every 2 to 3 years under differing institutional sponsorship and provides a forum for participants to exchange information on the latest developments in satellite and lunar laser ranging hardware, software, science applications, and data analysis techniques. The satellite laser ranging (SLR) technique provides sub-centimeter precision range measurements to artificial satellites and the Moon. The data has application to a wide range of Earth and lunar science issues including precise orbit determination, terrestrial reference frames, geodesy, geodynamics, oceanography, time transfer, lunar dynamics, gravity and relativity.
Choo, Richard; Klotz, Laurence; Deboer, Gerrit; Danjoux, Cyril; Morton, Gerard C
2004-08-01
To assess the prostate specific antigen (PSA) doubling time of untreated, clinically localized, low-to-intermediate grade prostate carcinoma. A prospective single-arm cohort study has been in progress since November 1995 to assess the feasibility of a watchful-observation protocol with selective delayed intervention for clinically localized, low-to-intermediate grade prostate adenocarcinoma. The PSA doubling time was estimated from a linear regression of ln(PSA) against time, assuming a simple exponential growth model. As of March 2003, 231 patients had at least 6 months of follow-up (median 45) and at least three PSA measurements (median 8, range 3-21). The distribution of the doubling time was: < 2 years, 26 patients; 2-5 years, 65; 5-10 years, 42; 10-20 years, 26; 20-50 years, 16; >50 years, 56. The median doubling time was 7.0 years; 42% of men had a doubling time of >10 years. The doubling time of untreated clinically localized, low-to-intermediate grade prostate cancer varies widely.
van den Heuvel, Maria Elisabeth Nicoletta; van Zanten, Henriette A; Bachman, Tom E; Te Pas, Arjan B; van Kaam, Anton H; Onland, Wes
2018-06-01
To investigate the effect of different pulse oximetry (SpO 2 ) target range settings during automated fraction of inspired oxygen control (A-FiO 2 ) on time spent within a clinically set SpO 2 alarm range in oxygen-dependent infants on noninvasive respiratory support. Forty-one preterm infants (gestational age [median] 26 weeks, age [median] 21 days) on FiO 2 >0.21 receiving noninvasive respiratory support were subjected to A-FiO 2 using 3 SpO 2 target ranges (86%-94%, 88%-92%, or 89%-91%) in random order for 24 hours each. Before switching to the next target range, SpO 2 was manually controlled for 24 hours (washout period). The primary outcome was the time spent within the clinically set alarm limits of 86%-94%. The percent time within the 86%-94% SpO 2 alarm range was similar for all 3 A-FiO 2 target ranges (74%). Time spent in hyperoxemia was not significantly different between target ranges. However, the time spent in severe hypoxemia (SpO 2 <80%) was significantly reduced during the narrowed target ranges of A-FiO 2 (88%-92%; 1.9%, 89%-91%; 1.7%) compared with the wide target range (86%-94%; 3.4%, P < .001). There were no differences between the 88%-92% and 89-91% target range. Narrowing the target range of A-FiO 2 to the desired median ±2% is effective in reducing the time spent in hypoxemia, without increasing the risk of hyperoxemia. www.trialregister.nl: NTR4368. Copyright © 2018 Elsevier Inc. All rights reserved.
MethylMix 2.0: an R package for identifying DNA methylation genes. | Office of Cancer Genomics
DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes.
Mechanical and optical nanodevices in single-crystal quartz
NASA Astrophysics Data System (ADS)
Sohn, Young-Ik; Miller, Rachel; Venkataraman, Vivek; Lončar, Marko
2017-12-01
Single-crystal α-quartz, one of the most widely used piezoelectric materials, has enabled a wide range of timing applications. Owing to the fact that an integrated thin-film based quartz platform is not available, most of these applications rely on macroscopic, bulk crystal-based devices. Here, we show that the Faraday cage angled-etching technique can be used to realize nanoscale electromechanical and photonic devices in quartz. Using this approach, we demonstrate quartz nanomechanical cantilevers and ring resonators featuring Qs of 4900 and 8900, respectively.
Multiscale multifractal detrended cross-correlation analysis of financial time series
NASA Astrophysics Data System (ADS)
Shi, Wenbin; Shang, Pengjian; Wang, Jing; Lin, Aijing
2014-06-01
In this paper, we introduce a method called multiscale multifractal detrended cross-correlation analysis (MM-DCCA). The method allows us to extend the description of the cross-correlation properties between two time series. MM-DCCA may provide new ways of measuring the nonlinearity of two signals, and it helps to present much richer information than multifractal detrended cross-correlation analysis (MF-DCCA) by sweeping all the range of scale at which the multifractal structures of complex system are discussed. Moreover, to illustrate the advantages of this approach we make use of the MM-DCCA to analyze the cross-correlation properties between financial time series. We show that this new method can be adapted to investigate stock markets under investigation. It can provide a more faithful and more interpretable description of the dynamic mechanism between financial time series than traditional MF-DCCA. We also propose to reduce the scale ranges to analyze short time series, and some inherent properties which remain hidden when a wide range is used may exhibit perfectly in this way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu
Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resultingmore » Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources.« less
Stable high absorption metamaterial for wide-angle incidence of terahertz wave
NASA Astrophysics Data System (ADS)
Du, Qiujiao; Zeng, Zuoxun; Xiang, Dong; Lv, Tao; Zhang, Guangyong; Yang, Hongwu
2014-04-01
We propose a metamaterial based on metallic Jerusalem cross and cross-wire structures for realizing relatively stable high absorption with respect to the wide angle incidence of both polarized terahertz (THz) waves. Numerical simulations are carried out to verify the proposed absorber. For both transverse electric and transverse magnetic polarizations, absorptions around 0.93 THz reach nearly up to unity under normal incidence and maintain above 97% over a wide incidence angle range. The THz absorber can be easily micro-fabricated due to a thickness about 40 times smaller than operating wavelength. The proposed metamaterial is a promising candidate as absorbing element in THz thermal imager, due to its wide angle, stable high absorption and very thin thickness.
32 CFR 775.9 - Documentation and analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the implementing factors of the program that can be ascertained at the time of impact statement... any environmental studies, surveys and impact analyses required by other environmental review laws and... programmatic environmental impact statement discussing the impacts of a wide ranging or long term stepped...
32 CFR 775.9 - Documentation and analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of the implementing factors of the program that can be ascertained at the time of impact statement... any environmental studies, surveys and impact analyses required by other environmental review laws and... programmatic environmental impact statement discussing the impacts of a wide ranging or long term stepped...
32 CFR 775.9 - Documentation and analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the implementing factors of the program that can be ascertained at the time of impact statement... any environmental studies, surveys and impact analyses required by other environmental review laws and... programmatic environmental impact statement discussing the impacts of a wide ranging or long term stepped...
32 CFR 775.9 - Documentation and analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the implementing factors of the program that can be ascertained at the time of impact statement... any environmental studies, surveys and impact analyses required by other environmental review laws and... programmatic environmental impact statement discussing the impacts of a wide ranging or long term stepped...
32 CFR 775.9 - Documentation and analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of the implementing factors of the program that can be ascertained at the time of impact statement... any environmental studies, surveys and impact analyses required by other environmental review laws and... programmatic environmental impact statement discussing the impacts of a wide ranging or long term stepped...
The Downy Mildews: so many genomes, so little time
USDA-ARS?s Scientific Manuscript database
Downy mildews (DMs) are obligate biotrophic oomycete pathogens that cause diseases on a wide range of plant species. Individual species exhibit a high degree of host specialization. We have utilized next generation sequencing to efficiently generate de novo genome assemblies of multiple geographica...
Precipitation Storage Efficiency During Fallow in Wheat-Fallow Systems
USDA-ARS?s Scientific Manuscript database
Wheat-fallow production systems arose in order to stabilize widely ranging wheat yields that resulted from highly variable precipitation in the Great Plains. Historically, precipitation storage efficiency (PSE) over the fallow period increased over time as inversion tillage systems used for weed con...
A Fourier method for the analysis of exponential decay curves.
Provencher, S W
1976-01-01
A method based on the Fourier convolution theorem is developed for the analysis of data composed of random noise, plus an unknown constant "base line," plus a sum of (or an integral over a continuous spectrum of) exponential decay functions. The Fourier method's usual serious practical limitation of needing high accuracy data over a very wide range is eliminated by the introduction of convergence parameters and a Gaussian taper window. A computer program is described for the analysis of discrete spectra, where the data involves only a sum of exponentials. The program is completely automatic in that the only necessary inputs are the raw data (not necessarily in equal intervals of time); no potentially biased initial guesses concerning either the number or the values of the components are needed. The outputs include the number of components, the amplitudes and time constants together with their estimated errors, and a spectral plot of the solution. The limiting resolving power of the method is studied by analyzing a wide range of simulated two-, three-, and four-component data. The results seem to indicate that the method is applicable over a considerably wider range of conditions than nonlinear least squares or the method of moments.
The compatibility of consumer DLP projectors with time-sequential stereoscopic 3D visualisation
NASA Astrophysics Data System (ADS)
Woods, Andrew J.; Rourke, Tegan
2007-02-01
A range of advertised "Stereo-Ready" DLP projectors are now available in the market which allow high-quality flickerfree stereoscopic 3D visualization using the time-sequential stereoscopic display method. The ability to use a single projector for stereoscopic viewing offers a range of advantages, including extremely good stereoscopic alignment, and in some cases, portability. It has also recently become known that some consumer DLP projectors can be used for timesequential stereoscopic visualization, however it was not well understood which projectors are compatible and incompatible, what display modes (frequency and resolution) are compatible, and what stereoscopic display quality attributes are important. We conducted a study to test a wide range of projectors for stereoscopic compatibility. This paper reports on the testing of 45 consumer DLP projectors of widely different specifications (brand, resolution, brightness, etc). The projectors were tested for stereoscopic compatibility with various video formats (PAL, NTSC, 480P, 576P, and various VGA resolutions) and video input connections (composite, SVideo, component, and VGA). Fifteen projectors were found to work well at up to 85Hz stereo in VGA mode. Twenty three projectors would work at 60Hz stereo in VGA mode.
Amorphous In–Ga–Zn–O Powder with High Gas Selectivity towards Wide Range Concentration of C2H5OH
Chen, Hongxiang; Jiang, Wei; Zhu, Lianfeng; Yao, Youwei
2017-01-01
Amorphous indium gallium zinc oxide (a-IGZO) powder was prepared by typical solution-based process and post-annealing process. The sample was used as sensor for detecting C2H5OH, H2, and CO. Gas-sensing performance was found to be highly sensitive to C2H5OH gas in a wide range of concentration (0.5–1250 ppm) with the response of 2.0 towards 0.5 ppm and 89.2 towards 1250 ppm. Obvious difference of response towards C2H5OH, H2, and CO was found that the response e.g., was 33.20, 6.64, and 2.84 respectively at the concentration of 200 ppm. The response time and recovery time of was 32 s and 14 s respectively towards 200 ppm concentration of C2H5OH gas under heating voltage of 6.5 V. PMID:28538686
Transparent, polycrystalline cubic aluminum oxide
NASA Astrophysics Data System (ADS)
McCauley, J. W.; Corbin, N. D.
1980-06-01
The means used to observe or sense the enemy have progressed from actual eye-to-eye observation to extensive use of radar and sonar, and now include using infrared (IR) signals. At the same time, various forms of armor, from face shields to sophisticated electromagnetic (EM) windows and domes (radomes, IR domes), have been developed to transmit signals and also to protect the sensing mechanisms - either the human eye or intricate electronic devices. Countermeasures such as smoke and radar-jamming systems have concurrently evolved to defeat the various sensing devices. In order to minimize the effectiveness of dedicated (single-mode) or even broadband countermeasure tactics, sensing devices of the future, therefore, must be able to simultaneously function over a large region of the EM spectrum, including visible light, IR, microwave and millimeter wave radars. It is imperative, then, that new materials must be developed to transmit a wide range of the EM spectrum, while at the same time protecting the fragile sensing equipment in wide-ranging types of severe battlefield environments.
The S-054 X-ray telescope experiment on Skylab
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Van Speybroeck, L.; Zombeck, M. V.; Krieger, A. S.; Silk, J. K.; Timothy, A.
1977-01-01
A description of the S-054 X-ray telescope on Skylab is presented with a discussion of the experimental objectives, observing program, data reduction and analysis. Some results from the Skylab mission are given. The telescope photographically records high-resolution images of the solar corona in several broadband regions of the soft X-ray spectrum. It includes an objective grating used to study the line spectrum. The spatial resolution, sensitivity, dynamic range and time resolution of the instrument were chosen to survey a wide variety of solar phenomena. It embodies improvements in design, fabrication, and calibration techniques which were developed over a ten-year period. The observing program was devised to optimize the use of the instrument and to provide studies on a wide range of time scales. The data analysis program includes morphological studies and quantitative analysis using digitized images. A small sample of the data obtained in the mission is presented to demonstrate the type of information that is available and the kinds of results that can be obtained from it.
NASA Astrophysics Data System (ADS)
Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay
2018-02-01
A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.
Optimization of wide-angle seismic signal-to-noise ratios and P-wave transmission in Kenya
Jacob, A.W.B.; Vees, R.; Braile, L.W.; Criley, E.
1994-01-01
In previous refraction and wide-angle reflection experiments in the Kenya Rift there were problems with poor signal-noise ratios which made good seismic interpretation difficult. Careful planning and preparation for KRISP 90 has substantially overcome these problems and produced excellent seismic sections in a difficult environment. Noise levels were minimized by working, as far as possible, at times of the day when conditions were quiet, while source signals were optimized by using dispersed charges in water where it was available and waterfilled boreholes in most cases where it was not. Seismic coupling at optimum depth in water has been found to be more than 100 times greater than it is in a borehole in dry loosely compacted material. Allowing for the source coupling, a very marked difference has been found between the observation ranges in the rift and those on the flanks, where the observation ranges are greater. These appear to indicate a significant difference in seismic transmission through the two types of crust. ?? 1994.
Resolving the substructure of molecular clouds in the LMC
NASA Astrophysics Data System (ADS)
Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Remy; Wojciechowski, Evan; Bandurski, Jeffrey; MC3 Collaboration
2018-01-01
We present recent wide-field CO and 13CO mapping of giant molecular clouds in the Large Magellanic Cloud with ALMA. Our sample exhibits diverse star-formation properties, and reveals comparably diverse molecular cloud properties including surface density and velocity dispersion at a given scale. We first present the results of a recent study comparing two GMCs at the extreme ends of the star formation activity spectrum. Our quiescent cloud exhibits 10 times lower surface density and 5 times lower velocity dispersion than the active 30 Doradus cloud, yet in both clouds we find a wide range of line widths at the smallest resolved scales, spanning nearly the full range of line widths seen at all scales. This suggests an important role for feedback on sub-parsec scales, while the energetics on larger scales are dominated by clump-to-clump relative velocities. We then extend our analysis to four additional clouds that exhibit intermediate levels of star formation activity.
NASA Astrophysics Data System (ADS)
Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei
2018-03-01
Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.
William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver
2009-01-01
We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...
New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minitti, Michael
2015-06-22
Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.
Timothy B. Harrington; James H. Miller
2005-01-01
Chinese privet is a nonnative shrub that has invaded mesic forests throughout the southeastern United States during the past century. Foliar sprays of glyphosate and triclopyr were tested in three factorial experiments that included wide ranges of application rate, timing, and formulation to refine methods for controlling Chinese privet. For spring (April) and fall (...
Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive
2009-06-01
time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast
New 'Molecular Movie' Reveals Ultrafast Chemistry in Motion
Minitti, Michael
2018-02-14
Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled. Ring-shaped molecules are abundant in biochemistry and also form the basis for many drug compounds. The study points the way to a wide range of real-time X-ray studies of gas-based chemical reactions that are vital to biological processes.
Distorted neutrino oscillations from time varying cosmic fields
NASA Astrophysics Data System (ADS)
Krnjaic, Gordan; Machado, Pedro A. N.; Necib, Lina
2018-04-01
Cold, ultralight (≪eV ) bosonic fields can induce fast temporal variation in neutrino couplings, thereby distorting neutrino oscillations. In this paper, we exploit this effect to introduce a novel probe of neutrino time variation and dark matter at long-baseline experiments. We study several representative observables and find that current and future experiments, including DUNE and JUNO, are sensitive to a wide range of model parameters over many decades in mass reach and time-variation periodicity.
High resolution, wide field of view, real time 340GHz 3D imaging radar for security screening
NASA Astrophysics Data System (ADS)
Robertson, Duncan A.; Macfarlane, David G.; Hunter, Robert I.; Cassidy, Scott L.; Llombart, Nuria; Gandini, Erio; Bryllert, Tomas; Ferndahl, Mattias; Lindström, Hannu; Tenhunen, Jussi; Vasama, Hannu; Huopana, Jouni; Selkälä, Timo; Vuotikka, Antti-Jussi
2017-05-01
The EU FP7 project CONSORTIS (Concealed Object Stand-Off Real-Time Imaging for Security) is developing a demonstrator system for next generation airport security screening which will combine passive and active submillimeter wave imaging sensors. We report on the development of the 340 GHz 3D imaging radar which achieves high volumetric resolution over a wide field of view with high dynamic range and a high frame rate. A sparse array of 16 radar transceivers is coupled with high speed mechanical beam scanning to achieve a field of view of 1 x 1 x 1 m3 and a 10 Hz frame rate.
The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems
NASA Technical Reports Server (NTRS)
Abramson, Michael; Refai, Mohamad; Santiago, Confesor
2017-01-01
The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.
Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.
Hocking, David P.; Salverson, Marcia; Evans, Alistair R.
2015-01-01
During wild foraging, Australian fur seals (Arctocephalus pusillus doriferus) encounter many different types of prey in a wide range of scenarios, yet in captive environments they are typically provided with a narrower range of opportunities to display their full repertoire of behaviours. This study aimed to quantitatively explore the effect of foraging-based enrichment on the behaviour and activity patterns displayed by two captive Australian fur seals at Melbourne Zoo, Australia. Food was presented as a scatter in open water, in a free-floating ball device, or in a static box device, with each treatment separated by control trials with no enrichment. Both subjects spent more time interacting with the ball and static box devices than the scatter feed. The total time spent pattern swimming was reduced in the enrichment treatments compared to the controls, while the time spent performing random swimming behaviours increased. There was also a significant increase in the total number of bouts of behaviour performed in all three enrichment treatments compared to controls. Each enrichment method also promoted a different suit of foraging behaviours. Hence, rather than choosing one method, the most effective way to increase the diversity of foraging behaviours, while also increasing variation in general activity patterns, is to provide seals with a wide range of foraging scenarios where food is encountered in different ways. PMID:25946412
NASA Astrophysics Data System (ADS)
Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald
2017-04-01
The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison
Downturn Threatens the Faculty's Role in Running Colleges
ERIC Educational Resources Information Center
Wilson, Robin
2009-01-01
The author reports that tough economic times are leading administrators to propose changes that short-circuit faculty governance, long a prized principle that gives professors wide-ranging authority over educational matters. The results, faculty members say, are hastily conceived plans that reorganize academic programs, decrease professors' roles…
Real-time visualization of cross-sectional data in three dimensions
NASA Technical Reports Server (NTRS)
Mayes, Terrence J.; Foley, Theodore T.; Hamilton, Joseph A.; Duncavage, Tom C.
2005-01-01
This paper describes a technique for viewing and interacting with 2-D medical data in three dimensions. The approach requires little pre-processing, runs on personal computers, and has a wide range of application. Implementation details are discussed, examples are presented, and results are summarized.
Real-Time Teaching: Lessons from Katrina
ERIC Educational Resources Information Center
Phillips, Antoinette S.; Phillips, Carl R.
2008-01-01
Professors strive constantly to find ways for students to apply what they are learning in the classroom, thereby reinforcing principles being taught and increasing student interest and involvement in the learning process. Hurricane Katrina's devastating impact on the Gulf Coast had wide-ranging consequences. As a result, many individuals…
Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection
Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo
2016-01-01
We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944
Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues
Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal
2009-01-01
Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889
De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard
2018-03-16
Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.
Retention and effective diffusion of model metabolites on porous graphitic carbon.
Lunn, Daniel B; Yun, Young J; Jorgenson, James W
2017-12-29
The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Reliability and validity analysis of the transfer assessment instrument.
McClure, Laura A; Boninger, Michael L; Ozawa, Haishin; Koontz, Alicia
2011-03-01
To describe the development and evaluate the reliability and validity of a newly created outcome measure, the Transfer Assessment Instrument (TAI), to assess the quality of transfers performed by full-time wheelchair users. Repeated measures. 2009 National Veterans Wheelchair Games in Spokane, WA. A convenience sample of full-time wheelchair users (N=40) who perform sitting pivot or standing pivot transfers. Not applicable. Intraclass correlation coefficients (ICCs) for reliability and Spearman correlation coefficients for concurrent validity between the TAI and a global assessment scale (0-100 visual analog scale [VAS]). No adverse events occurred during testing. Intrarater ICCs for 3 raters ranged between .35 and .89, and the interrater ICC was .642. Correlations between the TAI and a global assessment VAS ranged between .19 (P=.285) and .69 (P>.000). Item analyses of the tool found a wide range of results, from weak to good reliability. Evaluators found the TAI to be safe and able to be completed in a short time. The TAI is a safe, quick outcome measure that uses equipment typically found in a clinical setting and does not ask participants to perform new skills. Reliability and validity testing found the TAI to have acceptable interrater and a wide range of intrarater reliability. Future work indicates the need for continued refinement including removal or modification of items found to have low reliability, improved education for clinicians, and further reliability and validity analysis with a more diverse subject population. The TAI has the potential to fill a void in assessment of transfers. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Postdiction: its implications on visual awareness, hindsight, and sense of agency
Shimojo, Shinsuke
2014-01-01
There are a few postdictive perceptual phenomena known, in which a stimulus presented later seems causally to affect the percept of another stimulus presented earlier. While backward masking provides a classical example, the flash lag effect stimulates theorists with a variety of intriguing findings. The TMS-triggered scotoma together with “backward filling-in” of it offer a unique neuroscientific case. Findings suggest that various visual attributes are reorganized in a postdictive fashion to be consistent with each other, or to be consistent in a causality framework. In terms of the underlying mechanisms, four prototypical models have been considered: the “catch up,” the “reentry,” the “different pathway” and the “memory revision” models. By extending the list of postdictive phenomena to memory, sensory-motor and higher-level cognition, one may note that such a postdictive reconstruction may be a general principle of neural computation, ranging from milliseconds to months in a time scale, from local neuronal interactions to long-range connectivity, in the complex brain. The operational definition of the “postdictive phenomenon” can be applicable to such a wide range of sensory/cognitive effects across a wide range of time scale, even though the underlying neural mechanisms may vary across them. This has significant implications in interpreting “free will” and “sense of agency” in functional, psychophysical and neuroscientific terms. PMID:24744739
Impact of Aspirin on Warfarin Control as Measured by Time in Therapeutic Range.
Boyce, Michelle L; Zayac, Alexa; Davis, Arie; Badrick, Tony; Anoopkumar-Dukie, Shailendra; Bernaitis, Nijole
2018-05-12
Warfarin is an oral anticoagulant widely prescribed for a variety of thromboembolic indications including venous thromboembolism (VTE) deep vein thrombosis (DVT) and the prevention of stroke associated for atrial fibrillation (AF). 1 Warfarin requires ongoing monitoring of Internationalised Normalised Ratio (INR) due to a narrow therapeutic index and interactions with numerous drugs. 2 The time in therapeutic range (TTR) is often used to indicate the quality of warfarin therapy due to the established correlation between higher mean TTR and reduced complications such as bleeding and thromboembolism. 3 This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A compact time-of-flight mass spectrometer for ion source characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L., E-mail: l.chen03@gmail.com; Wan, X.; Jin, D. Z.
2015-03-15
A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study themore » mass to charge composition of plasma with wide range of parameters.« less
ERIC Educational Resources Information Center
Shushok, Frank, Jr.
2017-01-01
In this wide-ranging interview, Krista Tippett, a Peabody Award-winning broadcaster and the New York Times bestselling author of "Becoming Wise: An Inquiry into the Mystery and Art of Living" (Penguin Press, 2016) shares her perspective on wisdom, the reemergence of hope, and the need to talk about values.
Oscillatory vortex formation behind a movable plat
NASA Astrophysics Data System (ADS)
Vukicevic, Marija; Pedrizzetti, Gianni
2010-11-01
INTRODUCTION: A wide spectra of application, from industrial to environmental and biological, involve fluid-structure interaction (FSI) at a fundamental level. We investigate a 2D FSI problem for a rigid structure hinged on a wall, freely rotating by the action of an oscillatory fluid flow. METHODS: The Navier-Stokes equations are solved simultaneously with the body dynamics. An accurate numerical solution is developed on the conformal map of the time-varying physical domain. RESULTS: The FSI is primarily influenced by the vortex formation process and by the interaction between vortices generated during the sequential flow oscillations. The emerging bodies can be arranged into a three main groups. The first, made of heavy bodies, terminates the motion during the first few oscillations with the impact of the body on the wall. On the other extreme, the third group made of relatively light bodies presents a flow-driven motion that oscillates periodically in time. In a wide intermediate range, the body oscillates in time presenting non periodic features. CONCLUSIONS: The process of oscillatory vortex formation in presence of fluid-structure interaction shows the emergence of various phenomena that were analyzed in details. In this specific application the results demonstrate that the FSI range from linear to chaotic interaction and finite-time collapse.
SINEs of progress: Mobile element applications to molecular ecology.
Ray, David A
2007-01-01
Mobile elements represent a unique and under-utilized set of tools for molecular ecologists. They are essentially homoplasy-free characters with the ability to be genotyped in a simple and efficient manner. Interpretation of the data generated using mobile elements can be simple compared to other genetic markers. They exist in a wide variety of taxa and are useful over a wide selection of temporal ranges within those taxa. Furthermore, their mode of evolution instills them with another advantage over other types of multilocus genotype data: the ability to determine loci applicable to a range of time spans in the history of a taxon. In this review, I discuss the application of mobile element markers, especially short interspersed elements (SINEs), to phylogenetic and population data, with an emphasis on potential applications to molecular ecology.
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability
NASA Astrophysics Data System (ADS)
Palmer, A.; Silevitch, D. M.; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.
2015-09-01
We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.
Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment
While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of a...
ERIC Educational Resources Information Center
Rowland, Gordon
2007-01-01
A wide range of developments in science in recent years has altered our views of our world and ourselves in significant ways. These views challenge the direction of applied science and technology in many fields, including those associated with learning and performance in organizations. At the same time, they open up opportunities and…
Manhattan Country School: An Urban School in the Catskills
ERIC Educational Resources Information Center
Southern, Jane; Plummer, James
1978-01-01
This school integrates an outdoor, farm experience with an urban school curriculum. Elementary students spend increasing lengths of time working on a country farm as a mandatory requirement. Activities include farm chores, nature hikes, household chores, and practical crafts. Students come from a wide range of backgrounds and incomes. (MA)
Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.
2017-01-01
A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water. PMID:28217299
Running, Climbing, Swimming, and Flying
ERIC Educational Resources Information Center
Kinney, Patti
2009-01-01
Schools today are filled with students who have diverse personal needs as well as a wide range of academic abilities. This situation creates a challenge as educators work to fulfill their responsibility of providing an equitable educational opportunity for all students. Many times, principals attempt to deal with this diversity of needs by taking…
Effortful Control, Explicit Processing, and the Regulation of Human Evolved Predispositions
ERIC Educational Resources Information Center
MacDonald, Kevin B.
2008-01-01
This article analyzes the effortful control of automatic processing related to social and emotional behavior, including control over evolved modules designed to solve problems of survival and reproduction that were recurrent over evolutionary time. The inputs to effortful control mechanisms include a wide range of nonrecurrent…
USE OF WILDLIFE MORTALITY DATA TO QUALIFY RISKS TO POPULATIONS ACROSS SPACE AND TIME
Common loon (Gavia immer) populations have declined from historic levels in New England and despite recent range-wide increases; mortality has increased in some areas. To identify and quantify the causes of disease and death in New England loons, the Wildlife Clinic at Tufts Uni...
Estimation of Errors in Force Platform Data
ERIC Educational Resources Information Center
Psycharakis, Stelios G.; Miller, Stuart
2006-01-01
Force platforms (FPs) are regularly used in the biomechanical analysis of sport and exercise techniques, often in combination with image-based motion analysis. Force time data, particularly when combined with joint positions and segmental inertia parameters, can be used to evaluate the effectiveness of a wide range of movement patterns in sport…
New Designs for Correctional Education and Training Programs.
ERIC Educational Resources Information Center
McCollum, Sylvia G.
1973-01-01
The challenge confronting creative educators concerned with using the correctional experience in positive ways is to structure an educational delivery system which takes into account the wide range of individual differences among people whose only common denominator is "serving time." Inherent is the problem of staff and public resistance to…
Demonstration of the Capabilities of the KINEROS2 – AGWA 3.0 Suite of Modeling Tools
This poster and computer demonstration illustrates a sampling of the wide range of applications that are possible using the KINEROS2 - AGWA suite of modeling tools. Applications include: 1) Incorporation of Low Impact Development (LID) features; 2) A real-time flash flood forecas...
Online Learning and Social Exclusion.
ERIC Educational Resources Information Center
Clarke, Alan
Online learning covers a wide range of technologies and formal and informal learning methods. A key factor promoting the significant enthusiasm for online learning across all education and training sectors in Great Britain and elsewhere is its potential to overcome many of the barriers of place, pace, and time that socially and economically…
Taking Learning to the Community
ERIC Educational Resources Information Center
Stanistreet, Paul
2009-01-01
These are tough times for adult and community learning, with many providers struggling to sustain a broad curriculum offer that includes a wide-ranging adult learning programme. South Devon College is determined to keep its flourishing adult offer alive but realises that, with funding increasingly scarce, it has to find innovative ways of ensuring…
Digital Education: Opportunities for Social Collaboration. Digital Education and Learning
ERIC Educational Resources Information Center
Thomas, Michael, Ed.
2011-01-01
This timely collection of theoretical and applied studies examines the pedagogical potential and realities of digital technologies in a wide range of disciplinary contexts across the educational spectrum. By mixing content-based chapters with a theoretical perspective with case studies detailing actual teaching approaches utilizing digital…
Ancient Civilization in Contemporary Contexts.
ERIC Educational Resources Information Center
Natunewicz, Chester F.
The development of more than 325 short radio talks, designed to inform the general public, on the relevance and contemporaneity of classical civilization to our times, is discussed in this address. Materials are derived from a wide range of sources and include such writers as Cicero, Plautus, Horace, Ovid, Quintillian, Aeschylus, and Plutarch.…
Short-Term Play Therapy for Children.
ERIC Educational Resources Information Center
Kaduson, Heidi Gerard, Ed.; Schaefer, Charles E., Ed.
Play therapy offers a powerful means of helping children resolve a wide range of psychological difficulties, and many play approaches are ideally suited to short-term work. This book brings together leading play therapists to share their expertise on facilitating children's healing in a shorter time frame. The book provides knowledge and skills…
ERIC Educational Resources Information Center
Tetlow, Linda
2009-01-01
Display took a wide variety of forms ranging from students presenting their initial planning and thought processes, to displays of their finished work, and their suggestions for extending the task should they, or others, have time to return to it in the future. A variety of different media were used from traditional posters in many shapes and…
ERIC Educational Resources Information Center
Wagoner, Norma E.; Romero-O'Connell, Josina M.
2009-01-01
Students often attain memorable experiences from cadaver dissections through reflective writing. For many, facing a dissection for the first time elicits a wide range of emotions. These may include thoughts of their own mortality to the sheer admiration of knowing that someone cared enough to help others learn about the body, even in death. Poems…
Ultra High Strain Rate Nanoindentation Testing.
Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl
2017-06-17
Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.
Real-time image processing of TOF range images using a reconfigurable processor system
NASA Astrophysics Data System (ADS)
Hussmann, S.; Knoll, F.; Edeler, T.
2011-07-01
During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Bobick, Aaron; Jones, Eric
2010-04-01
In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.
Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito
2015-03-16
We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.
Living Color Frame System: PC graphics tool for data visualization
NASA Technical Reports Server (NTRS)
Truong, Long V.
1993-01-01
Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.
The importance of antipersistence for traffic jams
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Habel, Lars; Guhr, Thomas; Schreckenberg, Michael
2017-05-01
Universal characteristics of road networks and traffic patterns can help to forecast and control traffic congestion. The antipersistence of traffic flow time series has been found for many data sets, but its relevance for congestion has been overseen. Based on empirical data from motorways in Germany, we study how antipersistence of traffic flow time-series impacts the duration of traffic congestion on a wide range of time scales. We find a large number of short-lasting traffic jams, which implies a large risk for rear-end collisions.
Distorted neutrino oscillations from time varying cosmic fields
Krnjaic, Gordan; Machado, Pedro A. N.; Necib, Lina
2018-04-16
Cold, ultralight (more » $$\\ll$$ eV) bosonic fields can induce fast temporal variation in neutrino couplings, thereby distorting neutrino oscillations. In this paper, we exploit this effect to introduce a novel probe of neutrino time variation and dark matter at long-baseline experiments. We study several representative observables and find that current and future experiments, including DUNE and JUNO, are sensitive to a wide range of model parameters over many decades in mass reach and time-variation periodicity.« less
Distorted neutrino oscillations from time varying cosmic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krnjaic, Gordan; Machado, Pedro A. N.; Necib, Lina
Cold, ultralight (more » $$\\ll$$ eV) bosonic fields can induce fast temporal variation in neutrino couplings, thereby distorting neutrino oscillations. In this paper, we exploit this effect to introduce a novel probe of neutrino time variation and dark matter at long-baseline experiments. We study several representative observables and find that current and future experiments, including DUNE and JUNO, are sensitive to a wide range of model parameters over many decades in mass reach and time-variation periodicity.« less
Transit time spreads in biased paracentric hemispherical deflection analyzers
NASA Astrophysics Data System (ADS)
Sise, Omer; Zouros, Theo J. M.
2016-02-01
The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.
The Origin of Fluorescence from Graphene Oxide
Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G.
2012-01-01
Time-resolved fluorescence measurements of graphene oxide in water show multiexponential decay kinetics ranging from 1 ps to 2 ns. Electron-hole recombination from the bottom of the conduction band and nearby localized states to wide-range valance band is suggested as origin of the fluorescence. Excitation wavelength dependence of the fluorescence was caused by relative intensity changes of few emission species. By introducing the molecular orbital concept, the dominant fluorescence was found to originate from the electronic transitions among/between the non-oxidized carbon regions and the boundary of oxidized carbon atom regions, where all three kinds of functionalized groups C-O, C = O and O = C-OH were participating. In the visible spectral range, the ultrafast fluorescence of graphene oxide was observed for the first time. PMID:23145316
Dunhill, Alexander M; Wills, Matthew A
2015-08-11
Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.
Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu
2017-11-09
Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.
Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco
2013-01-01
A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.
Kerner, Berit; North, Kari E; Fallin, M Daniele
2010-01-01
Participants analyzed actual and simulated longitudinal data from the Framingham Heart Study for various metabolic and cardiovascular traits. The genetic information incorporated into these investigations ranged from selected single-nucleotide polymorphisms to genome-wide association arrays. Genotypes were incorporated using a broad range of methodological approaches including conditional logistic regression, linear mixed models, generalized estimating equations, linear growth curve estimation, growth modeling, growth mixture modeling, population attributable risk fraction based on survival functions under the proportional hazards models, and multivariate adaptive splines for the analysis of longitudinal data. The specific scientific questions addressed by these different approaches also varied, ranging from a more precise definition of the phenotype, bias reduction in control selection, estimation of effect sizes and genotype associated risk, to direct incorporation of genetic data into longitudinal modeling approaches and the exploration of population heterogeneity with regard to longitudinal trajectories. The group reached several overall conclusions: 1) The additional information provided by longitudinal data may be useful in genetic analyses. 2) The precision of the phenotype definition as well as control selection in nested designs may be improved, especially if traits demonstrate a trend over time or have strong age-of-onset effects. 3) Analyzing genetic data stratified for high-risk subgroups defined by a unique development over time could be useful for the detection of rare mutations in common multi-factorial diseases. 4) Estimation of the population impact of genomic risk variants could be more precise. The challenges and computational complexity demanded by genome-wide single-nucleotide polymorphism data were also discussed. PMID:19924713
A CONSTANT MOLECULAR GAS DEPLETION TIME IN NEARBY DISK GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigiel, F.; Leroy, A. K.; Walter, F.
2011-04-01
We combine new sensitive, wide-field CO data from the HERACLES survey with ultraviolet and infrared data from GALEX and Spitzer to compare the surface densities of H{sub 2}, {Sigma}{sub H2}, and the recent star formation rate, {Sigma}{sub SFR}, over many thousands of positions in 30 nearby disk galaxies. We more than quadruple the size of the galaxy sample compared to previous work and include targets with a wide range of galaxy properties. Even though the disk galaxies in this study span a wide range of properties, we find a strong, and approximately linear correlation between {Sigma}{sub SFR} and {Sigma}{sub H2}more » at our common resolution of 1 kpc. This implies a roughly constant median H{sub 2} consumption time, {tau}{sup H2}{sub Dep} = {Sigma}{sub H2}/{Sigma}{sub SFR}, of {approx}2.35 Gyr (including heavy elements) across our sample. At 1 kpc resolution, there is only a weak correlation between {Sigma}{sub H2} and {tau}{sup H2}{sub Dep} over the range {Sigma}{sub H2} {approx} 5-100 M{sub sun} pc{sup -2}, which is probed by our data. We compile a broad set of literature measurements that have been obtained using a variety of star formation tracers, sampling schemes, and physical scales and show that overall, these data yield almost exactly the same results, although with more scatter. We interpret these results as strong, albeit indirect evidence that star formation proceeds in a uniform way in giant molecular clouds in the disks of spiral galaxies.« less
Laser-Ranging Transponders for Science Investigations of the Moon and Mars
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Chen, Yijiang; Bimbaum, Kevin
2012-01-01
An active laser was developed ranging in real-time with two terminals, emulating interplanetary distances, and with submillimeter accuracy. In order to overcome the limitations to ranging accuracy from jitters and delay drifts within the transponders, architecture was proposed based on asynchronous paired one-way ranging with local references. A portion of the transmitted light is directed, via a reference path, to the local detector. This allows for compensation of any jitter in the timing of the emitted laser pulse. The same detector is used to measure the time of the received pulses emitted from the remote terminal. This approach removes any change in the delay caused by the detector or its electronics. Two separate terminals using commercial off-the-shelf hardware were built to emulate active laser ranging over interplanetary distances. The communication link for the command to start recording pulse arrival times and data transfer from one terminal to the other was achieved using a standard wireless link, emulating free space laser communication. The deviation is well below the goal of 1-mm precision. This leaves enough margin to achieve 1-mm precision when including the fluctuations due to atmospheric turbulence while ranging to Mars through the Earth s atmosphere. The two terminals are mounted on translation stages, which can be moved freely on rails to yield a wide range of distances with fine adjustment. The two terminals were separated by approximately 16 meters.
NASA Astrophysics Data System (ADS)
Bintley, Dan; Dempsey, Jessica T.; Friberg, Per; Holland, Wayne S.; MacIntosh, Michael J.
2016-07-01
SCUBA-2 is a state of the art wide field camera on the JCMT. SCUBA-2 has been fully operational since November 2011, producing a wide range of science results, including a unique series of survey programs. A new large survey programme commenced in 2015, which included for the first time, polarisation sensitive measurements using POL-2, the polarimeter ancillary instrument. We discuss proposals and the science case for upgrading SCUBA-2 with new detector arrays that will keep SCUBA-2 and the JCMT at the forefront of continuum submillimetre science.
GPU Acceleration of DSP for Communication Receivers.
Gunther, Jake; Gunther, Hyrum; Moon, Todd
2017-09-01
Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.
2.3. Global-scale atmospheric dispersion of microorganisms
Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre
2018-01-01
This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).
NASA Astrophysics Data System (ADS)
Lim, Teik-Cheng; Dawson, James Alexander
2018-05-01
This study explores the close-range, short-range and long-range relationships between the parameters of the Morse and Buckingham potential energy functions. The results show that the close-range and short-range relationships are valid for bond compression and for very small changes in bond length, respectively, while the long-range relationship is valid for bond stretching. A wide-range relationship is proposed to combine the comparative advantages of the close-range, short-range and long-range parameter relationships. The wide-range relationship is useful for replacing the close-range, short-range and long-range parameter relationships, thereby preventing the undesired effects of potential energy jumps resulting from functional switching between the close-range, short-range and long-range interaction energies.
NASA Astrophysics Data System (ADS)
Graur, Or; SDF SN Team
2012-01-01
The Type Ia supernova (SN Ia) rate, when compared to the cosmic star formation history (SFH), can be used to derive the delay-time distribution (DTD; the hypothetical SN Ia rate versus time following a brief burst of star formation) of SNe Ia, which can distinguish among progenitor models. We present the results of a supernova (SN) survey in the Subaru Deep Field (SDF). Over a period of 3 years, we have observed the SDF on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i'and z‧ bands. We have discovered 150 SNe out to redshift z≈ 2. Our final sample includes 28 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. As our survey is largely insensitive to core-collapse SNe (CC SNe) at z > 1, most of the events found in this range are likely SNe Ia. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD (with a reduced χ2= 0.7) is a power law of the form &Psi(t) ∝tβ, with index β=-1.1 ± 0.1 (statistical) ±0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs, with that from SNe Ia, calculated with the best-fitting DTD, we predict that the mean present-day cosmic iron abundance is in the range ZFe= (0.09-0.37) ZFe, ⊙.
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Van Laerhoven, Christa; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi
2016-03-01
We infer dynamical masses in eight multiplanet systems using transit times measured from Kepler's complete data set, including short-cadence data where available. Of the 18 dynamical masses that we infer, 10 pass multiple tests for robustness. These are in systems Kepler-26 (KOI-250), Kepler-29 (KOI-738), Kepler-60 (KOI-2086), Kepler-105 (KOI-115), and Kepler-307 (KOI-1576). Kepler-105 c has a radius of 1.3 R⊕ and a density consistent with an Earth-like composition. Strong transit timing variation (TTV) signals were detected from additional planets, but their inferred masses were sensitive to outliers or consistent solutions could not be found with independently measured transit times, including planets orbiting Kepler-49 (KOI-248), Kepler-57 (KOI-1270), Kepler-105 (KOI-115), and Kepler-177 (KOI-523). Nonetheless, strong upper limits on the mass of Kepler-177 c imply an extremely low density of ˜0.1 g cm-3. In most cases, individual orbital eccentricities were poorly constrained owing to degeneracies in TTV inversion. For five planet pairs in our sample, strong secular interactions imply a moderate to high likelihood of apsidal alignment over a wide range of possible eccentricities. We also find solutions for the three planets known to orbit Kepler-60 in a Laplace-like resonance chain. However, nonlibrating solutions also match the transit timing data. For six systems, we calculate more precise stellar parameters than previously known, enabling useful constraints on planetary densities where we have secure mass measurements. Placing these exoplanets on the mass-radius diagram, we find that a wide range of densities is observed among sub-Neptune-mass planets and that the range in observed densities is anticorrelated with incident flux.
Another Piece of the Antibody Puzzle: Observations from the HALT study\\.
Snyder, Laurie D; Tinckam, Kathryn J
2018-06-04
In the rapidly evolving domain of clinical transplantation immunobiology, the interrogation and interpretation of HLA antibodies and their associated clinical consequences are in the spotlight. In lung transplant, HLA antibodies, in particular donor specific antibodies (DSA), are a determining component of the lung transplant antibody mediated rejection (AMR) definition (1). DSA after lung transplant are widely regarded as poor prognosticator, though sparse data to date necessitate ongoing discourse and continued investigation into incidence, timing and treatment. Prior studies reported a wide range of DSA incidence with differing consequences on a background of highly variable timing, methods, antibody analytic strategies and clinical definitions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation
Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397
Djurado, David; Bée, Marc; Sniechowski, Maciej; Howells, Spencer; Rannou, Patrice; Pron, Adam; Travers, J P; Luzny, Wojciech
2005-03-21
Proton dynamics in films of poly(aniline) "plastdoped" with di-esters of sulfophthalic (or sulfosuccinic) acids have been investigated by using quasi-elastic neutron scattering techniques. A broad time range (10(-13)-10(-9) s) has been explored by using four different spectrometers. In this time range, the dynamics is exclusively due to protons attached to the flexible tails of the counter-ions. A model of limited diffusion in spheres whose radii are distributed in size gives a realistic view of the geometry of molecular motions. However, it is found that the characteristic times of these motions are widely distributed over several orders of magnitude. The time decay of the intermediate scattering function is well described by a time power law. This behaviour is qualitatively discussed in connection with the structure of the systems and by comparison with other so-called complex systems.
Xenon gamma-ray detector for ecological applications
NASA Astrophysics Data System (ADS)
Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.
2015-01-01
A description of the xenon detector (XD) for ecological applications is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.
NASA Astrophysics Data System (ADS)
Kwon, Su-Yong; Kim, Jong-Chul; Choi, Buyng-Il
2008-11-01
Quartz crystal microbalance (QCM) dew-point sensors are based on frequency measurement, and so have fast response time, high sensitivity and high accuracy. Recently, we have reported that they have the very convenient attribute of being able to distinguish between supercooled dew and frost from a single scan through the resonant frequency of the quartz resonator as a function of the temperature. In addition to these advantages, by using three different types of heat sinks, we have developed a QCM dew/frost-point sensor with a very wide working temperature range (-90 °C to 15 °C). The temperature of the quartz surface can be obtained effectively by measuring the temperature of the quartz crystal holder and using temperature compensation curves (which showed a high level of repeatability and reproducibility). The measured dew/frost points showed very good agreement with reference values and were within ±0.1 °C over the whole temperature range.
Sub-picosecond streak camera measurements at LLNL: From IR to x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuba, J; Shepherd, R; Booth, R
An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2)more » temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.« less
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2003-01-01
A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.
Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range
NASA Astrophysics Data System (ADS)
Pestryaev, E. M.
2018-07-01
The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.
Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris
2006-01-01
We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
Kim, Kang-Hyun; Hong, Soon Kyu; Jang, Nam-Su; Ha, Sung-Hun; Lee, Hyung Woo; Kim, Jong-Man
2017-05-24
Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa -1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).
Quantitative modeling of multiscale neural activity
NASA Astrophysics Data System (ADS)
Robinson, Peter A.; Rennie, Christopher J.
2007-01-01
The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.
Bimolecular Recombination Kinetics of an Exciton-Trion Gas
2015-07-01
3-D systems. Whereas a linear time-dependent system of first-order differential equations has only trivial steady- state solutions (all carrier...derivatives to zero, which reduces the system (Eq. 9) to the following set of 3 algebraic equations: ( ) ( ) ( ) ( ) 1 2 210 2 110...crossover around 20 ns. The exciton curve is nearly linear over a wide range from 10 ns to 50 ns. Fig. 2 Time dependence of carrier species for Λ = 4
Multi-time-scale X-ray reverberation mapping of accreting black holes
NASA Astrophysics Data System (ADS)
Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel
2018-04-01
Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.
Rapid DNA analysis for automated processing and interpretation of low DNA content samples.
Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F
2016-01-01
Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.
Education, Time-Poverty and Well-Being
ERIC Educational Resources Information Center
White, John
2016-01-01
This article focuses on "objective list" accounts of personal well-being and the related view that schools should aim at inducting students into a wide range of objective goods. It reviews various objective lists and notes that very many of them include knowledge, a love of beauty and close personal relationships. It then seeks to…
Trends in Cumulative Exposures of Six Phthalates in the United States from 2005 to 2014
Phthalates are utilized in a wide range of consumer goods and are common contaminants in food. Exposures and resulting dosages of individual phthalates vary over time as a result of changes in their use in consumer products and food contact materials. We calculated the trends in ...
Temporal trends of cumulative risks to phthalate mixtures in the United States from 2005 to 2014
Phthalates are used in a wide range of consumer goods resulting in widespread exposures among the general population. Exposures to specific phthalates are expected to vary over time with changes in the patterns of phthalate use. We investigated the existence of trends in estimate...
Organize, Communicate, Empower! How Principals Can Make Time for Leadership
ERIC Educational Resources Information Center
Shaver, Heidi
2004-01-01
Instructional leaders need a wide range of skills and talents to be effective in today's schools and this resource will provide a variety of practical strategies and tools for efficiently handling all the details in order to increase productivity. This text highlights techniques, skills, and strategies related to Organization, Communication, and…
ERIC Educational Resources Information Center
Westwood, Andy
Some new work is good work. Quality is ultimately defined by the individual. However, these perceptions are inevitably colored by the circumstances in which people find themselves, by the time, place, and wide range of motivations for having to do a particular job in the first place. One person's quality may be another's purgatory and vice versa.…
ERIC Educational Resources Information Center
Loudermill, Chenell Smith
2014-01-01
The purpose of this study was to investigate the relationship between reading comprehension and morphological awareness skills. Researchers have documented a wide range of skills that influence reading comprehension ability at different times to different degrees. One of the skills identified as having an influence on reading comprehension ability…
OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy
NASA Technical Reports Server (NTRS)
Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.
1982-01-01
The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.
Motivation to Learn and Teacher-Student Relationship
ERIC Educational Resources Information Center
Koca, Fatih
2016-01-01
When children enter school for the first time, they encounter a variety of new challenges that include creating positive relationships with peer groups and adults as well as learning to meet the demands of a wide range of cognitive, social, and academic tasks (Baker, 2006; Birch & Ladd, 1997; Pianta, Steinberg, & Rollins, 1995). Infants…
Malleability and Measurement of Army Leader Attributes: Personnel Development in the U.S. Army
as generalized self -efficacy and expertise, may be amenable to change, but development requires substantial time and effort. A second objective of the...review are relevant not only to leadership and to the Army but to development and assessment of personnel in a wide range of positions and organizations .
Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals.
Zhu, Weimo; Wang, Lei; Zhao, Rui; Ren, Jiawen; Lu, Guanzhong; Wang, Yanqin
2011-07-01
The electromagnetic and microwave absorbing properties of nickel ferrite nanocrystals were investigated for the first time. There were two frequencies corresponding to the maximum reflection loss in a wide thickness range from 3.0 to 5.0 mm, which may be bought by the nanosize effect and the good crystallization of the nanocrystals.
Star formation in the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Leichenauer, Stefan
2009-03-15
We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.
States Pave the Way for Smoother Transitions to Kindergarten
ERIC Educational Resources Information Center
Loewenberg, Aaron
2018-01-01
Children enter kindergarten with a wide range of previous education experiences: Some have participated in pre-K programs: private, state-funded, or part of Head Start. Others have spent time in a family child care setting or in informal arrangements with family, friends, and neighbors. Regardless, this transition is fraught with stress and…
Wisconsin State Forests Continuous Forest Inventory: A look at the first year
Randall S. Morin; Teague Prichard; Vern Everson; Jim Westfall; Charles Scott
2009-01-01
The demand for timely, consistent, and reliable forest inventory and monitoring information for Wisconsin's state forests has increased significantly. A wide range of publics and partners, including businesses, organizations, and citizens alike are well aware of the benefits of sustainable forestry and are working together to increase knowledge through an annual...
Effective School Leadership in a Time of Change: Emerging Themes and Issues.
ERIC Educational Resources Information Center
Riley, Kathryn; And Others
Headteachers in England, Scotland, and Denmark must respond to wide-ranging and often conflicting external demands. Simultaneously, they must develop strategies to enhance their staffs' skills and improve pupil performance. This paper examines the background of a collaborative research project on school leadership in the three countries;…
Parents in the Workplace Report: Minnesota Business Survey.
ERIC Educational Resources Information Center
Copeland, Thomas B.
A recent survey of 473 Minnesota businesses conducted by Parents in the Workplace (a nonprofit organization based in St. Paul, Minnesota) revealed that most area businesses provide or are considering providing a wide range of child care related benefits for employees. Flexible scheduling of employees' work hours, part-time work, leave to care for…
Microscale acceleration history discriminators
Polosky, Marc A.; Plummer, David W.
2002-01-01
A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.
High Performance Team: Building a Business Program with Part- and Full-Time Faculty
ERIC Educational Resources Information Center
Marsh, F. K.
2010-01-01
Business programs at colleges and universities presently face wide-ranging challenges in delivering quality education. As more and more business programs find it necessary to conserve or redirect resources, successfully leading through change becomes paramount for departments and their faculty teams. This challenge is compounded by a growing…
ERIC Educational Resources Information Center
Dyment, Janet E.; O'Connell, Timothy S.
This digest explores the literature related to journal writing from various disciplines, including psychology, language studies, outdoor education, and experiential education. Although journal writing has been around since ancient times, it was not until the early 1960s that it flourished as a learning tool. Instructors from a wide range of…
Boredom and Schooling: A Cross-Disciplinary Exploration
ERIC Educational Resources Information Center
Belton, Teresa; Priyadharshini, Esther
2007-01-01
This paper undertakes a wide-ranging exploration of the concept of boredom from contrasting perspectives across different disciplines with a view to informing the pedagogy of schooling. It notes the rise of the concept in recent times, and juxtaposes diverse views on the perceived forms, causes, effects and responses to boredom, along the way…
Abstract: Air pollution research ranges broadly at the US EPA and includes the characterization of pollutant emissions from a wide array of sources, studying post-emission transport and transformation in the atmosphere, and evaluating the linkages between air pollution and advers...
Powerful Learning Experiences and Suzuki Music Teachers
ERIC Educational Resources Information Center
Reuning-Hummel, Carrie; Meyer, Allison; Rowland, Gordon
2016-01-01
Powerful Learning Experiences (PLEs) of Suzuki music teachers were examined in this fifth study in a series. The definition of a PLE is: "Experiences that stand out in memory because of their high quality, their impact on one's thoughts and actions over time, and their transfer to a wide range of contexts and circumstances." Ten…
Pixellated Play: Practical and Theoretical Issues regarding Videogames in Art Education
ERIC Educational Resources Information Center
Sweeny, Robert W.
2010-01-01
Videogames represent one of the fastest growing and most influential forms of contemporary visual culture. In this article, the author looks to five aspects of current videogames: perspective, interactivity, interface, narrative, and time and movement. Each of these videogame modalities is analyzed as related to a wide range of popular media,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
TEMPEST offers simulation capabilities over a wide range of hydrothermal problems that are definable by input instructions. These capabilities are summarized by categories as follows: modeling capabilities; program control; and I/O control. 10 refs., 22 figs., 2 tabs. (LSP)
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) GUIDELINES ESTABLISHING TEST PROCEDURES... to a wide variety of sample types ranging from reagent (blank) water containing analyte to wastewater... times the standard deviation of replicate instrumental measurements of the analyte in reagent water. (c...
Stars, Galaxies, Cosmos: The Past Decade, the Next Decade.
ERIC Educational Resources Information Center
Rubin, Vera C.
1980-01-01
This article focuses on discoveries in astronomy during the past 20 years using a wide range of observing techniques. The future is seen as a time when astronomers will learn more about the distribution of mass in the universe, the physics of energetic sources, and the intricate interconnections of astrophysical processes. (Author/SA)
A Mobile Learning Overview by Timeline and Mind Map
ERIC Educational Resources Information Center
Parsons, David
2014-01-01
Mobile learning has been a research topic for some 20 years. Over that time it has encompassed a wide range of concepts, theories, designs, experiments and evaluations. With increasing interest in mobile learning from researchers and practitioners, an accessible overview of this area of research that encapsulates its many facets and features can…
Composition pulse time-of-flight mass flow sensor
Harnett, Cindy K [Livermore, CA; Crocker, Robert W [Fremont, CA; Mosier, Bruce P [San Francisco, CA; Caton, Pamela F [Berkeley, CA; Stamps, James F [Livermore, CA
2007-06-05
A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.
Continuous-flow electrophoretic separator for biologicals
NASA Technical Reports Server (NTRS)
Mccreight, L. R.; Griffin, R. N.; Locker, R. J.
1976-01-01
In the near absence of gravity, a continuous-flow type of electrophoretic separator can be operated with a much thicker separation chamber than is possible under 1 g conditions. This should permit either better resolution or shorter separation time per unit of sample. An apparatus to perform experiments on sounding rockets is under development and will be described. The electrophoresis cell is 5 mm thick by 5 cm wide with 10 cm long electrodes. It is supplied with buffer, sample, and coolant at about 4 C through the use of a passive refrigerant system. UV sample detection and provision for recovery and cold storage of up to 50 sample fractions are now being added to the basic unit. A wide range of operating conditions are electronically programmable into the unit, even up to a short time before flight, and a further range of some parameters can be achieved by exchanging power supplies and by changing gears in the motor drive units of the pump. The preliminary results of some separation studies on various biological products using a commercially available electrophoretic separator are also presented.
The Subcellular Origin of Bioluminescence in Noctiluca miliaris
Eckert, Roger; Reynolds, George T.
1967-01-01
The light emitted by Noctiluca has its origin in 1 to 5 x 104 organelles ("microsources") which are scattered throughout the perivacuolar cytoplasm, and which appear to be the elementary functional units of bioluminescence. Microscopical techniques, image intensification, and microphotometry were employed in their investigation. Microsources are fluorescent, strongly phase-retarding, and range widely in diameter below 1.5 microns. The number of quanta emitted in a flash from a microsource ("microflash") is of the order of 105 photons. However, microflashes show a wide range of intensities, which are correlated with the size of the organelles from which they arise. Each organelle responds repetitively and with reproducible time course to a succession of invading triggering potentials. Reversible changes in the intensity of the flash emitted by the whole cell ("macroflash") occur because of graduations in intensity of microflashes rather than as a result of changes in the number of responsive organelles. The shape of the flash emitted by individual microsources resembles that of the macroflash except for slightly shorter rise and decay times. It is concluded that the macroflash results from somewhat asynchronous, but otherwise parallel summation of microflashes. PMID:5340466
Héron, F; Mialet, G; Schuller, C; Breton, D; Perrin, J; Degeorges, M
1979-01-01
Signals of the electrical activity of the specific atrioventricular conduction pathways were recorded with an unipolar lead to obtain an exact time reference. The amplifier used had special characteristics: high gain settings (up to 300,000), very low noise levels, and wide filter range (2 Hz - 1,600 Hz). The low amplitude of the signals under study, of the order of a microvolt, and the wide filter range of the amplifier necessitated placing the patient in a Faraday cage. The signals recorded on magnetic tape were treated by a system of analysis for signal treatment. The method of averaging was used to extract the signal from background noise especially that arising from somatic muscle. The amplitude of the Hisian signal was much larger than that usually obtained with other methods. The intervals were determined with precision of the order of 1 millisecond. Frequential analysis of the signals gave another representation of the information contained in the time signals. This new representation seems to give better discrimination of the different zones of activation of the specific atrioventricular conduction pathways.
Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying
2014-09-01
The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.
A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less
Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes
Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; ...
2017-03-01
A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less
Wide Field and Planetary Camera for Space Telescope
NASA Technical Reports Server (NTRS)
Lockhart, R. F.
1982-01-01
The Space Telescope's Wide Field and Planetary Camera instrument, presently under construction, will be used to map the observable universe and to study the outer planets. It will be able to see 1000 times farther than any previously employed instrument. The Wide Field system will be located in a radial bay, receiving its signals via a pick-off mirror centered on the optical axis of the telescope assembly. The external thermal radiator employed by the instrument for cooling will be part of the exterior surface of the Space Telescope. In addition to having a larger (1200-12,000 A) wavelength range than any of the other Space Telescope instruments, its data rate, at 1 Mb/sec, exceeds that of the other instruments. Attention is given to the operating modes and projected performance levels of the Wide Field Camera and Planetary Camera.
PINT, A Modern Software Package for Pulsar Timing
NASA Astrophysics Data System (ADS)
Luo, Jing; Ransom, Scott M.; Demorest, Paul; Ray, Paul S.; Stovall, Kevin; Jenet, Fredrick; Ellis, Justin; van Haasteren, Rutger; Bachetti, Matteo; NANOGrav PINT developer team
2018-01-01
Pulsar timing, first developed decades ago, has provided an extremely wide range of knowledge about our universe. It has been responsible for many important discoveries, such as the discovery of the first exoplanet and the orbital period decay of double neutron star systems. Currently pulsar timing is the leading technique for detecting low frequency (about 10^-9 Hertz) gravitational waves (GW) using an array of pulsars as the detectors. To achieve this goal, high precision pulsar timing data, at about nanoseconds level, is required. Most high precision pulsar timing data are analyzed using the widely adopted software TEMPO/TEMPO2. But for a robust and believable GW detection, it is important to have independent software that can cross-check the result. In this poster we present the new generation pulsar timing software PINT. This package will provide a robust system to cross check high-precision timing results, completely independent of TEMPO and TEMPO2. In addition, PINT is designed to be a package that is easy to extend and modify, through use of flexible code architecture and a modern programming language, Python, with modern technology and libraries.
Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio
2007-10-11
We performed dielectric spectroscopy measurements on aqueous solutions of glycine betaine (N,N,N-trimethylglycine), which is known to be a strong stabilizer of globular proteins, over a wide concentration range (3-62 wt %) and compared the results with our previously published data for aqueous solutions of urea, a representative protein denaturant. The hydration number of betaine (9), calculated on the basis of the reduction in the dielectric relaxation strength of bulk water with addition of betaine, is significantly larger than that of urea (2). Furthermore, the dielectric relaxation time increased with betaine concentration, while that remained nearly constant for the urea-water system over a wide concentration range. This difference between urea and betaine is probably related to their opposite effects on the protein stabilization.
TANDIR: projectile warning system using uncooled bolometric technology
NASA Astrophysics Data System (ADS)
Horovitz-Limor, Z.; Zahler, M.
2007-04-01
Following the demand for affordable, various range and light-weight protection against ATGM's, Elisra develops a cost-effective passive IR system for ground vehicles. The system is based on wide FOV uncooled bolometric sensors with full azimuth coverage and a lightweight processing & control unit. The system design is based on the harsh environmental conditions. The basic algorithm discriminates the target from its clutter and predicts the time to impact (TTI) and the target aiming direction with relation to vehicle. The current detector format is 320*240 pixels and frame rate is 60 Hz, Spectral response is on Far Infrared (8-14μ). The digital video output has 14bit resolution & wide dynamic range. Future goal is to enhance detection performance by using large format uncooled detector (640X480) with improved sensitivity and higher frame rates (up to 120HZ).
Emerging and Underrecognized Complications of Illicit Drug Use
Wurcel, Alysse G.; Merchant, Elisabeth A.; Clark, Roger P.; Stone, David R.
2015-01-01
Illicit drug use can result in a wide range of medical complications. As the availability, synthesis, and popularity of illicit drugs evolve over time, new syndromes associated with their use may mimic infections. Some of these symptoms are anticipated drug effects, and others are complications of adulterants mixed with drugs or complications from the method of using drugs. Some illicit drugs are associated with rare infections, which are difficult to diagnosis with standard microbiological techniques. The goal of this review is to orient a wide range of clinicians—including general practitioners, emergency medicine providers, and infectious diseases specialists—to complications of illicit drug use that may be underrecognized. Improving awareness of infectious and noninfectious complications of illicit drug can expedite diagnosis and medical treatment of persons who use drugs and facilitate targeted harm reduction counseling to prevent future complications. PMID:26270683
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A; Silevitch, D M; Feng, Yejun
2015-09-01
We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, whilemore » at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.« less
Jardine, E.; Wallis, C.
1998-01-01
Paediatric home ventilation is a feasible option and can be successful in a wide range of conditions and ages. Advances in ventilator technology and an ethos of optimism for home care has increased the possibilities for discharging chronically ventilated children from intensive care units and acute medical beds. With careful planning the process can succeed, but difficulties often thwart the responsible team, especially when attempting discharge for the first time. These core guidelines aim to assist a smooth, swift and successful transfer. They were developed by a working party of interested professionals spanning a wide range of health care disciplines and represent a synthesis of views accumulated from the experiences of individual teams throughout the UK. Three case scenarios provide further illustrative detail and guidance. PMID:10319058
NASA Technical Reports Server (NTRS)
Sonneborn, George; Rabin, Douglas M. (Technical Monitor)
2002-01-01
The Far Ultraviolet Spectroscopic Explorer (FUSE) is studying a wide range of astronomical problems in the 905-1187 Angstrom wavelength region through the use of high resolution spectroscopy. The FUSE bandpass forms a nearly optimal complement to the spectral coverage provided by the Hubble Space Telescope (HST), which extends down to approximately 1170 Angstroms. The photoionization threshold of atomic hydrogen (911 Angstroms) sets a natural short-wavelength limit for the FUV. FUSE was launched in June 1999 from Cape Canaveral, Florida, on a Delta II rocket into a 768 km circular orbit. Scientific observations started later that year. This spectral region is extremely rich in spectral diagnostics of astrophysical gases over a wide range of temperatures (100 K to over 10 million K). Important strong spectral lines in this wavelength range include those of neutral hydrogen, deuterium, nitrogen, oxygen, and argon (H I, D I, N I, O I, and Ar I), molecular hydrogen (H2), five-times ionized oxygen (O VI), and several ionization states of sulfur (S III - S VI). These elements are essential for understanding the origin and evolution of the chemical elements, the formation of stars and our Solar System, and the structure of galaxies, including our Milky Way. FUSE is one of NASA's Explorer missions and a cooperative project of NASA and the space agencies of Canada and France. These missions are smaller, more scientifically focused missions than the larger observatories, like Hubble and Chandra. FUSE was designed, built and operated for NASA by the Department of Physics and Astronomy at Johns Hopkins University. Hundreds of astronomers world-wide are using FUSE for a wide range of scientific research. Some of the important scientific discoveries from the first two years of the mission are described.
Technological advances in site-directed spin labeling of proteins.
Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu
2013-10-01
Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.
A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, J.-S.; Chen, K.-H.; Choi, Y.
1992-01-01
A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.
A high gain wide dynamic range transimpedance amplifier for optical receivers
NASA Astrophysics Data System (ADS)
Lianxi, Liu; Jiao, Zou; Yunfei, En; Shubin, Liu; Yue, Niu; Zhangming, Zhu; Yintang, Yang
2014-01-01
As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei
2017-03-20
A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300 MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.
NASA Astrophysics Data System (ADS)
Guo, Xinxin; Yan, Guqi; Benyahia, Lazhar; Sahraoui, Sohbi
2016-11-01
This paper presents a time domain method to determine viscoelastic properties of open-cell foams on a wide frequency range. This method is based on the adjustment of the stress-time relationship, obtained from relaxation tests on polymeric foams' samples under static compression, with the four fractional derivatives Zener model. The experimental relaxation function, well described by the Mittag-Leffler function, allows for straightforward prediction of the frequency-dependence of complex modulus of polyurethane foams. To show the feasibility of this approach, complex shear moduli of the same foams were measured in the frequency range between 0.1 and 16 Hz and at different temperatures between -20 °C and 20 °C. A curve was reconstructed on the reduced frequency range (0.1 Hz-1 MHz) using the time-temperature superposition principle. Very good agreement was obtained between experimental complex moduli values and the fractional Zener model predictions. The proposed time domain method may constitute an improved alternative to resonant and non-resonant techniques often used for dynamic characterization of polymers for the determination of viscoelastic moduli on a broad frequency range.
Physical Therapy Protocols for Arthroscopic Bankart Repair.
DeFroda, Steven F; Mehta, Nabil; Owens, Brett D
Outcomes after arthroscopic Bankart repair can be highly dependent on compliance and participation in physical therapy. Additionally, there are many variations in physician-recommended physical therapy protocols. The rehabilitation protocols of academic orthopaedic surgery departments vary widely despite the presence of consensus protocols. Descriptive epidemiology study. Level 3. Web-based arthroscopic Bankart rehabilitation protocols available online from Accreditation Council for Graduate Medical Education (ACGME)-accredited orthopaedic surgery programs were included for review. Individual protocols were reviewed to evaluate for the presence or absence of recommended therapies, goals for completion of ranges of motion, functional milestones, exercise start times, and recommended time to return to sport. Thirty protocols from 27 (16.4%) total institutions were identified out of 164 eligible for review. Overall, 9 (30%) protocols recommended an initial period of strict immobilization. Variability existed between the recommended time periods for sling immobilization (mean, 4.8 ± 1.8 weeks). The types of exercises and their start dates were also inconsistent. Goals to full passive range of motion (mean, 9.2 ± 2.8 weeks) and full active range of motion (mean, 12.2 ± 2.8 weeks) were consistent with other published protocols; however, wide ranges existed within the reviewed protocols as a whole. Only 10 protocols (33.3%) included a timeline for return to sport, and only 3 (10%) gave an estimate for return to game competition. Variation also existed when compared with the American Society of Shoulder and Elbow Therapists' (ASSET) consensus protocol. Rehabilitation protocols after arthroscopic Bankart repair were found to be highly variable. They also varied with regard to published consensus protocols. This discrepancy may lead to confusion among therapists and patients. This study highlights the importance of attending surgeons being very clear and specific with regard to their physical therapy instructions to patients and therapists.
Crimmins, Theresa M; Crimmins, Michael A; Gerst, Katharine L; Rosemartin, Alyssa H; Weltzin, Jake F
2017-01-01
In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species' ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation-thermal time models with a fixed start date. Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the "breaking leaf buds" and "leaves" phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species' geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.
Range-wide reproductive consequences of ocean climate variability for the seabird Cassin's Auklet.
Wolf, Shaye G; Sydeman, William J; Hipfner, J Mark; Abraham, Christine L; Tershy, Bernie R; Croll, Donald A
2009-03-01
We examine how ocean climate variability influences the reproductive phenology and demography of the seabird Cassin's Auklet (Ptychoramphus aleuticus) across approximately 2500 km of its breeding range in the oceanographically dynamic California Current System along the west coast of North America. Specifically, we determine the extent to which ocean climate conditions and Cassin's Auklet timing of breeding and breeding success covary across populations in British Columbia, central California, and northern Mexico over six years (2000-2005) and test whether auklet timing of breeding and breeding success are similarly related to local and large-scale ocean climate indices across populations. Local ocean foraging environments ranged from seasonally variable, high-productivity environments in the north to aseasonal, low-productivity environments to the south, but covaried similarly due to the synchronizing effects of large-scale climate processes. Auklet timing of breeding in the southern population did not covary with populations to the north and was not significantly related to local oceanographic conditions, in contrast to northern populations, where timing of breeding appears to be influenced by oceanographic cues that signal peaks in prey availability. Annual breeding success covaried similarly across populations and was consistently related to local ocean climate conditions across this system. Overall, local ocean climate indices, particularly sea surface height, better explained timing of breeding and breeding success than a large-scale climate index by better representing heterogeneity in physical processes important to auklets and their prey. The significant, consistent relationships we detected between Cassin's Auklet breeding success and ocean climate conditions across widely spaced populations indicate that Cassin's Auklets are susceptible to climate change across the California Current System, especially by the strengthening of climate processes that synchronize oceanographic conditions. Auklet populations in the northern and central regions of this ecosystem may be more sensitive to changes in the timing and variability of ocean climate conditions since they appear to time breeding to take advantage of seasonal productivity peaks.
High-frequency electric field measurement using a toroidal antenna
Lee, Ki Ha
2002-01-01
A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.
Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.
2014-01-01
Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807
Sandoval-Castillo, Jonathan; Jenner, K. Curt S.; Gill, Peter C.; Jenner, Micheline-Nicole M.; Morrice, Margaret G.
2018-01-01
Genetic datasets of tens of markers have been superseded through next-generation sequencing technology with genome-wide datasets of thousands of markers. Genomic datasets improve our power to detect low population structure and identify adaptive divergence. The increased population-level knowledge can inform the conservation management of endangered species, such as the blue whale (Balaenoptera musculus). In Australia, there are two known feeding aggregations of the pygmy blue whale (B. m. brevicauda) which have shown no evidence of genetic structure based on a small dataset of 10 microsatellites and mtDNA. Here, we develop and implement a high-resolution dataset of 8294 genome-wide filtered single nucleotide polymorphisms, the first of its kind for blue whales. We use these data to assess whether the Australian feeding aggregations constitute one population and to test for the first time whether there is adaptive divergence between the feeding aggregations. We found no evidence of neutral population structure and negligible evidence of adaptive divergence. We propose that individuals likely travel widely between feeding areas and to breeding areas, which would require them to be adapted to a wide range of environmental conditions. This has important implications for their conservation as this blue whale population is likely vulnerable to a range of anthropogenic threats both off Australia and elsewhere. PMID:29410806
Effects of Diffusion Time on Short-Range Hyperpolarized 3He Diffusivity Measurements in Emphysema
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gierada, David S.; Woods, Jason C.; Bierhals, Andrew J.
2009-09-28
Purpose: To characterize the effect of diffusion time on short-range hyperpolarized 3He MR diffusion measurements across a wide range of emphysema severity. Materials and Methods: 3He diffusion MR imaging was performed on 19 lungs or lobes resected from 18 subjects with varying degrees of emphysema using 3 diffusion times (1.6 msec, 5 msec, and 10 msec) at constant b value. Emphysema severity was quantified as the mean apparent diffusion coefficient (ADC) and as the percentage of pixels with ADC higher than multiple thresholds from 0.30-0.55 cm2/sec (ADC index). Quantitative histology (mean linear intercept) was obtained in 10 of the lungmore » specimens from 10 of the subjects. Results: The mean ADCs with diffusion times of 1.6, 5.0, and 10.0 msec were 0.46, 0.40, and 0.37 cm2/sec, respectively (P <0.0001, ANOVA). There was no relationship between the ADC magnitude and the effect of diffusion time on ADC values. Mean linear intercept correlated with ADC (r=0.91-0.94, P<0.001) and ADC index (r=0.78-0.92, P<0.01) at all diffusion times.« less
Time-resolved fluorescence decay measurements for flowing particles
Deka, C.; Steinkamp, J.A.
1999-06-01
Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.
Time-resolved fluorescence decay measurements for flowing particles
Deka, Chiranjit; Steinkamp, John A.
1999-01-01
Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.
E.H. Helmer; Thomas S. Ruzycki; Jr. Joseph M. Wunderle; Shannon Vogesser; Bonnie Ruefenacht; Charles Kwit; Thomas J. Brandeis; David N. Ewert
2010-01-01
Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE=0.9 m, R2=0.84, range 0.6â7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy...
Suzaku Wide-band All-sky Monitor (WAM) observations of GRBs and SGRs
NASA Astrophysics Data System (ADS)
Yamaoka, Kazutaka; Ohno, Masanori; Tashiro, Makoto S.; Hurley, Kevin; Krimm, Hans A.; Lien, Amy Y.; Ohmori, Norisuke; Sugita, Satoshi; Urata, Yuji; Yasuda, Tetsuya; Enomoto, Junichi; Fujinuma, Takeshi; Fukazawa, Yasushi; Hanabata, Yoshitaka; Iwakiri, Wataru; Kawano, Takafumi; Kinoshita, Ryuuji; Kokubun, Motohide; Makishima, Kazuo; Matsuoka, Shunsuke; Nagayoshi, Tsutomu; Nakagawa, Yujin; Nakaya, Souhei; Nakazawa, Kazuhiro; Nishioka, Yusuke; Sakamoto, Takanori; Takahashi, Tadayuki; Takeda, Sawako; Terada, Yukikatsu; Yabe, Seiya; Yamauchi, Makoto; Yoshida, Hiraku
2017-06-01
We will review results for gamma-ray bursts (GRBs) and soft gamma repeaters (SGRs), obtained from the Suzaku Wide-band All-sky Monitor (WAM) which operated for about 10 years from 2005 to 2015. The WAM is a BGO (bismuth germanate: Bi4Ge3O12) lateral shield for the Hard X-ray Detector (HXD), used mainly for rejecting its detector background, but it also works as an all-sky monitor for soft gamma-ray transients in the 50-5000 keV range thanks to its large effective area (˜600 cm2 at 1 MeV for one detector) and wide field of view (about half of the entire sky). The WAM actually detected more than 1400 GRBs and 300 bursts from SGRs, and this detection number is comparable to that of other GRB-specific instruments. Based on the 10 years of operation, we describe timing and spectral performance for short GRBs, weak GRBs with high redshifts, and time-resolved pulses with good statistics.
An alternative way to track the hot money in turbulent times
NASA Astrophysics Data System (ADS)
Sensoy, Ahmet
2015-02-01
During recent years, networks have proven to be an efficient way to characterize and investigate a wide range of complex financial systems. In this study, we first obtain the dynamic conditional correlations between filtered exchange rates (against US dollar) of several countries and introduce a time-varying threshold correlation level to define dynamic strong correlations between these exchange rates. Then, using evolving networks obtained from strong correlations, we propose an alternative approach to track the hot money in turbulent times. The approach is demonstrated for the time period including the financial turmoil of 2008. Other applications are also discussed.
Voltage Quench Dynamics of a Kondo System.
Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel
2016-01-22
We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.
Photogrammetry and Its Potential Application in Medical Science on the Basis of Selected Literature.
Ey-Chmielewska, Halina; Chruściel-Nogalska, Małgorzata; Frączak, Bogumiła
2015-01-01
Photogrammetry is a science and technology which allows quantitative traits to be determined, i.e. the reproduction of object shapes, sizes and positions on the basis of their photographs. Images can be recorded in a wide range of wavelengths of electromagnetic radiation. The most common is the visible range, but near- and medium-infrared, thermal infrared, microwaves and X-rays are also used. The importance of photogrammetry has increased with the development of computer software. Digital image processing and real-time measurement have allowed the automation of many complex manufacturing processes. Photogrammetry has been widely used in many areas, especially in geodesy and cartography. In medicine, this method is used for measuring the widely understood human body for the planning and monitoring of therapeutic treatment and its results. Digital images obtained from optical-electronic sensors combined with computer technology have the potential of objective measurement thanks to the remote nature of the data acquisition, with no contact with the measured object and with high accuracy. Photogrammetry also allows the adoption of common standards for archiving and processing patient data.
A Monte Carlo model for 3D grain evolution during welding
NASA Astrophysics Data System (ADS)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-09-01
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bézier curves, which allow for the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. The model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.
Ultrafast optical ranging using microresonator soliton frequency combs
NASA Astrophysics Data System (ADS)
Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.
2018-02-01
Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
A review of all Recent species in the genus Novocrania (Craniata, Brachiopoda).
Robinson, Jeffrey H
2017-10-10
The Recent species in the craniid genus Novocrania are reviewed, based on the examination of actual specimens wherever possible, especially for species named from one or a few specimens. The fourteen Recent species currently in the literature are reduced to eight; five species names are synonymized. One species name was given to a specimen that is not a craniid. The wide morphological ranges of the remaining Novocrania species are described and figured and the extended geographical ranges illustrated. Diagnoses of the remaining species are provided. The long-standing debate whether Novocrania anomala and N. turbinata are separate species or synonyms is resolved; they are separate species. New molecular analyses and a relative time-tree are provided by Cohen et al. (Appendix 1), the time-tree is calibrated herein and the results of Cohen et al. (2014; Appendix 1) and the time tree are discussed. The likelihood of craniid long-distance migration based on their geographical ranges is discussed.
A time domain frequency-selective multivariate Granger causality approach.
Leistritz, Lutz; Witte, Herbert
2016-08-01
The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.
Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters
NASA Astrophysics Data System (ADS)
Selyutina, N. S.; Petrov, Yu. V.
2018-02-01
The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.
Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system
NASA Astrophysics Data System (ADS)
Vítek, S.
2017-07-01
The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.
In situ two-dimensional imaging quick-scanning XAFS with pixel array detector.
Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi
2011-11-01
Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.
Galaxies Grow Their Bulges and Black Holes in Diverse Ways
NASA Astrophysics Data System (ADS)
Bell, Eric F.; Monachesi, Antonela; Harmsen, Benjamin; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; D'Souza, Richard; Holwerda, Benne W.
2017-03-01
Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity-mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18 Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.
Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response
Nakano, Masahiro; Arai, Yoshiyuki; Kotera, Ippei; Okabe, Kohki; Kamei, Yasuhiro; Nagai, Takeharu
2017-01-01
Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species. PMID:28212432
Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen
2014-11-01
The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.
Multicomponent T2 relaxation studies of the avian egg.
Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E
2016-05-01
To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a three-dimensional Carr-Purcell-Meiboom-Gill imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multicomponent signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. © 2015 Wiley Periodicals, Inc.
Typology of club drug use among young adults recruited using time-space sampling
Ramo, Danielle E.; Grov, Christian; Delucchi, Kevin; Kelly, Brian C.; Parsons, Jeffrey T.
2009-01-01
The present study examined patterns of recent club drug use among 400 young adults (18–29) recruited using time-space sampling in NYC. Subjects had used at least one of six club drugs (MDMA, Ketamine, GHB, Cocaine, Methamphetamine, and LSD) within the prior 3 months. We used latent class analysis (LCA) to estimate latent groups based on patterns of recent club drug use and examined differences in demographic and psychological variables by class. A 3-class model fit the data best. Patterns were: Primary cocaine users (42% of sample), Mainstream users (44% of sample), and Wide-range users (14% of sample). Those most likely to be Primary cocaine users were significantly less likely to be heterosexual males and had higher educational attainment than the other two classes. Those most likely to be Wide-range users were less likely to be heterosexual females, more likely to be gay/bisexual males, dependent on club drugs, had significantly greater drug and sexual sensation-seeking, and were more likely to use when experiencing physical discomfort or pleasant times with others compared to the other two groups. Findings highlight the utility of using person-centered approaches to understand patterns of substance use, as well as highlight several patterns of club drug use among young adults. PMID:19939585
A Campus-Wide Investigation of Clicker Implementation: The Status of Peer Discussion in STEM Classes
Lewin, Justin D.; Vinson, Erin L.; Stetzer, MacKenzie R.; Smith, Michelle K.
2016-01-01
At the University of Maine, middle and high school teachers observed more than 250 university science, technology, engineering, and mathematics classes and collected information on the nature of instruction, including how clickers were being used. Comparisons of classes taught with (n = 80) and without (n = 184) clickers show that, while instructional behaviors differ, the use of clickers alone does not significantly impact the time instructors spend lecturing. One possible explanation stems from the observation of three distinct modes of clicker use: peer discussion, in which students had the opportunity to talk with one another during clicker questions; individual thinking, in which no peer discussion was observed; and alternative collaboration, in which students had time for discussion, but it was not paired with clicker questions. Investigation of these modes revealed differences in the range of behaviors, the amount of time instructors lecture, and how challenging the clicker questions were to answer. Because instructors can vary their instructional style from one clicker question to the next, we also explored differences in how individual instructors incorporated peer discussion during clicker questions. These findings provide new insights into the range of clicker implementation at a campus-wide level and how such findings can be used to inform targeted professional development for faculty. PMID:26931397
Gene coexpression measures in large heterogeneous samples using count statistics.
Wang, Y X Rachel; Waterman, Michael S; Huang, Haiyan
2014-11-18
With the advent of high-throughput technologies making large-scale gene expression data readily available, developing appropriate computational tools to process these data and distill insights into systems biology has been an important part of the "big data" challenge. Gene coexpression is one of the earliest techniques developed that is still widely in use for functional annotation, pathway analysis, and, most importantly, the reconstruction of gene regulatory networks, based on gene expression data. However, most coexpression measures do not specifically account for local features in expression profiles. For example, it is very likely that the patterns of gene association may change or only exist in a subset of the samples, especially when the samples are pooled from a range of experiments. We propose two new gene coexpression statistics based on counting local patterns of gene expression ranks to take into account the potentially diverse nature of gene interactions. In particular, one of our statistics is designed for time-course data with local dependence structures, such as time series coupled over a subregion of the time domain. We provide asymptotic analysis of their distributions and power, and evaluate their performance against a wide range of existing coexpression measures on simulated and real data. Our new statistics are fast to compute, robust against outliers, and show comparable and often better general performance.
Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong
2017-11-01
In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log K ow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.
Reliability of Vibrating Mesh Technology.
Gowda, Ashwin A; Cuccia, Ann D; Smaldone, Gerald C
2017-01-01
For delivery of inhaled aerosols, vibrating mesh systems are more efficient than jet nebulizers are and do not require added gas flow. We assessed the reliability of a vibrating mesh nebulizer (Aerogen Solo, Aerogen Ltd, Galway Ireland) suitable for use in mechanical ventilation. An initial observational study was performed with 6 nebulizers to determine run time and efficiency using normal saline and distilled water. Nebulizers were run until cessation of aerosol production was noted, with residual volume and run time recorded. Three controllers were used to assess the impact of the controller on nebulizer function. Following the observational study, a more detailed experimental protocol was performed using 20 nebulizers. For this analysis, 2 controllers were used, and time to cessation of aerosol production was noted. Gravimetric techniques were used to measure residual volume. Total nebulization time and residual volume were recorded. Failure was defined as premature cessation of aerosol production represented by residual volume of > 10% of the nebulizer charge. In the initial observational protocol, an unexpected sporadic failure rate was noted of 25% in 55 experimental runs. In the experimental protocol, a failure rate was noted of 30% in 40 experimental runs. Failed runs in the experimental protocol exhibited a wide range of retained volume averaging ± SD 36 ± 21.3% compared with 3.2 ± 1.5% (P = .001) in successful runs. Small but significant differences existed in nebulization time between controllers. Aerogen Solo nebulization was often randomly interrupted with a wide range of retained volumes. Copyright © 2017 by Daedalus Enterprises.
NASA Astrophysics Data System (ADS)
Zingone, Adriana; Harrison, Paul J.; Kraberg, Alexandra; Lehtinen, Sirpa; McQuatters-Gollop, Abigail; O'Brien, Todd; Sun, Jun; Jakobsen, Hans H.
2015-09-01
Phytoplankton diversity and its variation over an extended time scale can provide answers to a wide range of questions relevant to societal needs. These include human health, the safe and sustained use of marine resources and the ecological status of the marine environment, including long-term changes under the impact of multiple stressors. The analysis of phytoplankton data collected at the same place over time, as well as the comparison among different sampling sites, provide key information for assessing environmental change, and evaluating new actions that must be made to reduce human induced pressures on the environment. To achieve these aims, phytoplankton data may be used several decades later by users that have not participated in their production, including automatic data retrieval and analysis. The methods used in phytoplankton species analysis vary widely among research and monitoring groups, while quality control procedures have not been implemented in most cases. Here we highlight some of the main differences in the sampling and analytical procedures applied to phytoplankton analysis and identify critical steps that are required to improve the quality and inter-comparability of data obtained at different sites and/or times. Harmonization of methods may not be a realistic goal, considering the wide range of purposes of phytoplankton time-series data collection. However, we propose that more consistent and detailed metadata and complementary information be recorded and made available along with phytoplankton time-series datasets, including description of the procedures and elements allowing for a quality control of the data. To keep up with the progress in taxonomic research, there is a need for continued training of taxonomists, and for supporting and complementing existing web resources, in order to allow a constant upgrade of knowledge in phytoplankton classification and identification. Efforts towards the improvement of metadata recording, data annotation and quality control procedures will ensure the internal consistency of phytoplankton time series and facilitate their comparability and accessibility, thus strongly increasing the value of the precious information they provide. Ultimately, the sharing of quality controlled data will allow one to recoup the high cost of obtaining the data through the multiple use of the time-series data in various projects over many decades.
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
Wu, Zhanpin; Zhang, Xiao-Jun; Cody, Robert B; Wolfe, Robert R
2004-01-01
The application of time-of-flight mass spectrometry to isotope ratio measurements has been limited by the relatively low dynamic range of the time-to-digital converter detectors available on commercial LC/ToF-MS systems. Here we report the measurement of phenylalanine isotope ratio enrichment by using a new LC/ToF-MS system with wide dynamic range. Underivatized phenylalanine was injected onto a C18 column directly with 0.1% formic acid/acetonitrile as the mobile phase. The optimal instrument parameters for the time-of-flight mass spectrometer were determined by tuning the instrument with a phenylalanine standard. The accuracy of the isotope enrichment measurement was determined by the injection of standard solutions with known isotope ratios ranging from 0.02% to 9.2%. A plot of the results against the theoretical values gave a linear curve with R2 of 0.9999. The coefficient of variation for the isotope ratio measurement was below 2%. The method is simple, rapid, and accurate and presents an attractive alternative to traditional GC/MS applications.
The Scoring of Matching Questions Tests: A Closer Look
ERIC Educational Resources Information Center
Jancarík, Antonín; Kostelecká, Yvona
2015-01-01
Electronic testing has become a regular part of online courses. Most learning management systems offer a wide range of tools that can be used in electronic tests. With respect to time demands, the most efficient tools are those that allow automatic assessment. The presented paper focuses on one of these tools: matching questions in which one…
ERIC Educational Resources Information Center
Fleet, Alma; Robertson, Janet
2004-01-01
The "Research in Practice Series" is published four times each year by Early Childhood Australia. The series aims to provide practical, easy to read, up-to-date information and support to a growing national readership of early childhood workers. The books bring together the best information available on wide-ranging topics and are an…
Student Use of Animated Pedagogical Agents in a Middle School Science Inquiry Program
ERIC Educational Resources Information Center
Bowman, Catherine D. D.
2012-01-01
Animated pedagogical agents (APAs) have the potential to provide one-on-one, just-in-time instruction, guidance or mentoring in classrooms where such individualized human interactions may be infeasible. Much current APA research focuses on a wide range of design variables tested with small samples or in laboratory settings, while overlooking…
ERIC Educational Resources Information Center
Kenward, Ben; Koch, Felix-Sebastian; Forssman, Ida; Brehm, Julia; Tidemann, Linda; Sundqvist, Annette; Marciszkom, Carin; Hermansen, Tone Kristine; Heimann, Mikael; Gredebäck, Gustaf
2017-01-01
Saccade latency is widely used across infant psychology to investigate infants' understanding of events. Interpreting particular latency values requires knowledge of standard saccadic RTs, but there is no consensus as to typical values. This study provides standard estimates of infants' (n = 194, ages 9 to 15 months) saccadic RTs under a range of…
ERIC Educational Resources Information Center
Kochersberger, Bob
2009-01-01
The author shares how he helps a student who is a drug addict and reflects about the role of teachers on the campus. He believes that most teachers on the faculty are caring individuals, often parents themselves who want the best for their students. But the author also realizes that teachers are pressed for time, have a wide range of conflicting…
ERIC Educational Resources Information Center
Freeman, Rebecca
2016-01-01
Student voice, namely the institutionalisation of students' contributions to the evaluation, and increasingly, the day-to-day running of higher education, has a wide-ranging influence. It shapes the concerns of management and academics; it changes the organisation and content of degree courses and, at times, challenges authority. Through her…
The Fallacy of Structures and the Fortitude of Vegetation
Wayne Elmore; Robert L. Beschta
1989-01-01
Given time and proper management conditions, degraded rangeland streams can often produce by natural means the same results that we expect from streambank stabilization and fisheries enhancement structures. Advantages of using vegetation and natural recovery processes include: 1) costs are likely to be lower and 2) a wide range of benefits can accrue to a recovered...
NASA Astrophysics Data System (ADS)
Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.
2018-04-01
We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.
Reducing Infant Mortality. KIDS COUNT Indicator Brief
ERIC Educational Resources Information Center
Shore, Rima; Shore, Barbara
2009-01-01
Despite the wide range of expertise that has been brought to bear on reducing infant mortality across the nation, the first year of life remains a time of considerable risk for many babies. Although the U.S. spends more on health care than any other country, its infant mortality rate remains higher than that of most other industrialized nations.…
Contemporary High-Profile Scientists and Their Interactions with the Community
ERIC Educational Resources Information Center
Smith, Dorothy V.; Mulhall, Pamela J.; Hart, Christina E.; Gunstone, Richard F.
2016-01-01
This article presents a case study of 10 high-profile Australian research scientists. These scientists are highly committed to engaging with the public. They interact with a wide range of groups in the community, including the traditional media. They are aware that they are seen as representatives of science at a time when the authority of science…
ERIC Educational Resources Information Center
Master, Benjamin; Loeb, Susanna; Wyckoff, James
2017-01-01
Evidence that teachers' short-term instructional effects persist over time and predict substantial long-run impacts on students' lives provides much of the impetus for a wide range of educational reforms focused on identifying and responding to differences in teachers' value-added to student learning. However, relatively little research has…
Criterion 2: Maintenance of productive capacity of forest ecosystems
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
People rely on forests, directly and indirectly, for a wide range of goods and services. Measures of forest productive capacity are indicators of the ability of forests to sustainably supply goods and services over time. An ongoing emphasis on maintaining productive capacity of forests can help ensure that utilization of forest resources does not impair long term...
Maximizing the Impact of State Early Childhood Home Visitation Programs. Issue Brief
ERIC Educational Resources Information Center
NGA Center for Best Practices, 2011
2011-01-01
Early childhood is a critical time for cognitive, social, and behavioral development. Many states have invested in comprehensive early childhood care and education systems that offer a wide range of supports and services to families from the prenatal period through school entry. Home visiting programs are an important component of state early…
Skills Recognition for the Rural Sector--Coming to a Screen Near You
ERIC Educational Resources Information Center
Bell, Charlie; White, Julie
2013-01-01
Tocal College, as part of New South Wales Department of Primary Industries (DPI), provides training in agriculture and related disciplines across NSW and Australia. Tocal College delivers a wide range of full time, short course, and distance education courses, along with publications and study support materials. The rural and related industries in…
Partners for Learning, Not Funding
ERIC Educational Resources Information Center
Alba, Guy D.
2012-01-01
During the author's first years as a teacher, he took a part-time job to make ends meet. As an exercise instructor in a large insurance company's corporate fitness center, he worked with a wide range of employees, including the top executives. Some of those executives asked how their company could help the school. Instead of asking for a monetary…
Rank-dependent deactivation in network evolution.
Xu, Xin-Jian; Zhou, Ming-Chen
2009-12-01
A rank-dependent deactivation mechanism is introduced to network evolution. The growth dynamics of the network is based on a finite memory of individuals, which is implemented by deactivating one site at each time step. The model shows striking features of a wide range of real-world networks: power-law degree distribution, high clustering coefficient, and disassortative degree correlation.
Developing Online Emergency Room Case Study Role Play for Medical Students.
ERIC Educational Resources Information Center
Doiron, J. A. Gilles; Isaac, John R.
In the face of panic and life-threatening situations in a hospital emergency room (ER), doctors must rely on well-defined procedures to assess the situation and respond appropriately. Because decisions to act must not only be timely, but also ingrained and swift, practice and experience in a wide range of situations is essential. This paper…
Storytelling with Young Children. Research in Practice Series. Volume 12, Number 1
ERIC Educational Resources Information Center
Smyth, Jane
2005-01-01
The "Research in Practice Series" is published four times each year by Early Childhood Australia. The series aims to provide practical, easy to read, up-to-date information and support to a growing national readership of early childhood workers. The books bring together the best information available on wide-ranging topics and are an…
ERIC Educational Resources Information Center
Yorks, Lyle; Nicolaides, Aliki
2013-01-01
Background/Context: The implications of complexity theory have become a recurring topic in the literatures of a wide range of scholarly and professional fields including adult education. This paper builds on literature calling attention to the educational need for pedagogically addressing the implications of the intensifying complexity in the…
NASA Technical Reports Server (NTRS)
Newbold, P. M.
1974-01-01
A programming language for the flight software of the NASA space shuttle program was developed and identified as HAL/S. The language is intended to satisfy virtually all of the flight software requirements of the space shuttle. The language incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks.
Deriving Forest Harvesting Machine Productivity from Positional Data
T.P. McDonald; S.E. Taylor; R.B. Rummer
2000-01-01
Automated production study systems will provide researchers a valuable tool for developing cost and impact models of forest operations under a wide range of conditions, making the development of true planning tools for tailoring logging systems to a particular site a reality. An automated time study system for skidders was developed, and in this study application of...
Evidence-Based Practice Guidelines and School Nursing
ERIC Educational Resources Information Center
Adams, Susan; McCarthy, Ann Marie
2007-01-01
The use of evidence-based practice (EBP) has become the standard of health care practice. Nurses are expected to use best evidence on a wide range of topics, yet most nurses have limited time, resources, and/or skills to access and evaluate the quality of research and evidence needed to practice evidence-based nursing. EBP guidelines allow nurses…
Engaging Families: Building Strong Communication. Research in Practice Series. Volume 12, Number 2
ERIC Educational Resources Information Center
Elliott, Roslyn
2005-01-01
The "Research in Practice Series" is published four times each year by Early Childhood Australia. The series aims to provide practical, easy to read, up-to-date information and support to a growing national readership of early childhood workers. The books bring together the best information available on wide-ranging topics and are an…
Passenger comfort response times as a function of aircraft motion
NASA Technical Reports Server (NTRS)
Rinalducci, E. J.
1975-01-01
The relationship between a passenger's response time of changes in level of comfort experienced as a function of aircraft motion was examined. The aircraft used in this investigation was capable of providing a wide range of vertical and transverse accelerations by means of direct lift flap control surfaces and side force generator surfaces in addition to normal control surfaces. Response times to changes in comfort were recorded along with the passenger's rating of comfort on a five point scale. In addition, a number of aircraft motion variables including vertical and transverse accelerations were also recorded. Results indicate some relationship between human comfort response times to reaction time data.
Light sensitometry of mammography films at varying development temperatures and times
Sharma, Reena; Sharma, Sunil Dutt; Mayya, Y. S.
2012-01-01
Kodak MinR-2000 mammography film is widely used for mammography imaging. The sensitometric indices like base plus fog level (B + F), maximum optical density (ODmax), average gradient (AG) and speed of this film at varying development temperatures and times were evaluated using a light sensitometer. Totally 33 film strips were cut from a single Kodak MinR-2000 mammography film box and exposed in a light sensitometer operated in the green light spectrum to produce a 21-step sensitometric strip. These exposed film strips were processed at temperatures in the range of 32°C–37°C in the step of 1°C and at processing times in the range of 1–6 minutes in the step of 1 minute. The results of the present study show that the measured base plus fog level of the mammography film was not affected much, whereas significant changes were seen in the ODmax, AG and speed with varying development temperatures and times. The ODmax values of the film were found in the range of 3.67–3.76, AG values were in the range of 2.48–3.4 and speed values were in the range of 0.015–0.0236 when the processing temperature was varied from 32°C to 37°C. With processing time variation from 1 to 6 minutes, the observed changes in ODmax values were in the range of 3.54-3.71, changes in AG were in the range of 2.66–3.27 and changes in speed were in the range of 0.011–0.025. Based on these observations, recommendations for optimum processing parameters to be used for this film are made. PMID:22363111
Zhukov, Ivan V; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Grishin, Yuri A; Vieth, Hans-Martin; Ivanov, Konstantin L
2018-05-09
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Concurrent systems and time synchronization
NASA Astrophysics Data System (ADS)
Burgin, Mark; Grathoff, Annette
2018-05-01
In the majority of scientific fields, system dynamics is described assuming existence of unique time for the whole system. However, it is established theoretically, for example, in relativity theory or in the system theory of time, and validated experimentally that there are different times and time scales in a variety of real systems - physical, chemical, biological, social, etc. In spite of this, there are no wide-ranging scientific approaches to exploration of such systems. Therefore, the goal of this paper is to study systems with this property. We call them concurrent systems because processes in them can go, events can happen and actions can be performed in different time scales. The problem of time synchronization is specifically explored.
Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan
2018-05-15
pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.
Chantler, C T; Bourke, J D
2014-04-09
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.
Snow cover monitoring model and change over both time and space in pastoral area of northern China
NASA Astrophysics Data System (ADS)
Cui, Yan; Li, Suju; Wang, Ping; Zhang, Wei; Nie, Juan; Wen, Qi
2014-11-01
Snow disaster is a natural phenomenon owning to widespread snowfall for a long time and usually affect people's life, property and economic. During the whole disaster management circle, snow disaster in pastoral area of northern china which including Xinjiang, Inner Mongolia, Qinghai, Tibet has been paid more attention. Thus do a good job in snow cover monitoring then found snow disaster in time can help the people in disaster area to take effective rescue measures, which always been the central and local government great important work. Remote sensing has been used widely in snow cover monitoring for its wide range, high efficiency, less conditions, more methods and large information. NOAA/AVHRR data has been used for wide range, plenty bands information and timely acquired and act as an import data of Snow Cover Monitoring Model (SCMM). SCMM including functions list below: First after NOAA/AVHRR data has been acquired, geometric calibration, radiometric calibration and other pre-processing work has been operated. Second after band operation, four threshold conditions are used to extract snow spectrum information among water, cloud and other features in NOAA/AVHRR image. Third snow cover information has been analyzed one by one and the maximum snow cover from about twenty images in a week has been selected. Then selected image has been mosaic which covered the pastoral area of China. At last both time and space analysis has been carried out through this operational model ,such as analysis on the difference between this week and the same period of last year , this week and last week in three level regional. SCMM have been run successfully for three years, and the results have been take into account as one of the three factors which led to risk warning of snow disaster and analysis results from it always play an important role in disaster reduction and relief.
Williams, Laura J; Bunyavejchewin, Sarayudh; Baker, Patrick J
2008-03-01
Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most ( approximately 70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.
New methods of data calibration for high power-aperture lidar.
Guan, Sai; Yang, Guotao; Chang, Qihai; Cheng, Xuewu; Yang, Yong; Gong, Shaohua; Wang, Jihong
2013-03-25
For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes' (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers' fluorescence signal. Pursuit for sophisticated description of metal layers' characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 10(2) to 10(8) counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs' distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20-110km) and guaranteeing good SNR (i.e. 10(4):1 around 90km) without debasing QE, in one single detecting channel. For the first time, PMT in photon-counting mode is independently applied to subtract reliable information of atmospheric parameters with wide acceptable linearity over an altitude range from stratosphere up to lower thermosphere (20-110km).
Broadband Control of Topological Nodes in Electromagnetic Fields
NASA Astrophysics Data System (ADS)
Song, Alex Y.; Catrysse, Peter B.; Fan, Shanhui
2018-05-01
We study topological nodes (phase singularities) in electromagnetic wave interactions with structures. We show that, when the nodes exist, it is possible to bind certain nodes to a specific plane in the structure by a combination of mirror and time-reversal symmetry. Such binding does not rely on any resonances in the structure. As a result, the nodes persist on the plane over a wide wavelength range. As an implication of such broadband binding, we demonstrate that the topological nodes can be used for hiding of metallic objects over a broad wavelength range.
Xenon detector with high energy resolution for gamma-ray line emission registration
NASA Astrophysics Data System (ADS)
Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.
2014-09-01
A description of the xenon detector (XD) for gamma-ray line emission registration is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.
Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.
1985-01-01
Dynamic dielectric analysis (DDA) is used to study curing polymer systems and thermoplastics. Measurements are made over a frequency range of six decades. This wide range of frequencies increases the amount of information which can be obtained. The data is analyzed in terms of the frequency dependence of the complex permittivity epsilon sup *, specific conductivity sigma (ohm/cm) and the relaxation time tau, parameters which are characteristic of the cure state of the material and independent of the size of the sample.
Experimental demonstration of highly localized pulses (X waves) at microwave frequencies
NASA Astrophysics Data System (ADS)
Chiotellis, Nikolaos; Mendez, Victor; Rudolph, Scott M.; Grbic, Anthony
2018-02-01
A device that radiates transverse magnetic Bessel beams in the radiative near field is reported. The cone angle of the emitted radiation remains constant over a wide frequency range (18-30 GHz), allowing highly localized pulses (X waves) to be generated under a broadband excitation. The design process, based on ray optics, is discussed. Both frequency and time domain experimental results for a prototype are presented. The measured fields show close agreement with simulation results, and demonstrate the radiator's ability to emit X waves within its nondiffracting range.
Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zickefoose, J.; Kulkarni, T.; Martinson, T.
The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube is extended and the linearity is greatly improved. Testing has been performed at Pacific Northwest National Laboratory (PNNL) in the USA and confirms compliance to IEC 60532 as well as linearity (± 10%) up to 100 Sv/hr. Furthermore, a network of EcoGamma probes may be linked through available supervisory software to provide a dose rate map of an area. This allows for real time monitoring of dose rates from one (or multiple) remote locations. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
2016-07-06
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)
NASA Astrophysics Data System (ADS)
Berumen, M. L.; Pratchett, M. S.; Goodman, B. A.
2011-12-01
Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors.
Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.
2001-01-01
The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.
A laboratory study of the electromagnetic bias of rough surface scattering by water waves
NASA Technical Reports Server (NTRS)
Parsons, Chester L.; Miller, Lee S.
1990-01-01
The design, development, and use of a focused-beam radar to measure the electromagnetic bias introduced by the scattering of radar waves by a roughened water surface are discussed. The bias measurements were made over wide ranges of environmental conditions in a wavetank laboratory. Wave-elevation data were provided by standard laboratory capacitance probes. Backscattered radar power measurements coincident in time and space with the elevation data were produced by the radar. The two data sets are histogrammed to produce probability density functions for elevation and radar reflectivity, from which the electromagnetic bias is computed. The experimental results demonstrate that the electromagnetic bias is quite variable over the wide range of environmental conditions that can be produced in the laboratory. The data suggest that the bias is dependent upon the local wind field and on the amplitude and frequency of any background wave field that is present.
Timing and documentation of key events in neonatal resuscitation.
Heathcote, Adam Charles; Jones, Jacqueline; Clarke, Paul
2018-04-30
Only a minority of babies require extended resuscitation at birth. Resuscitations concerning babies who die or who survive with adverse outcomes are increasingly subject to medicolegal scrutiny. Our aim was to describe real-life timings of key resuscitation events observed in a historical series of newborns who required full resuscitation at birth. Twenty-seven babies born in our centre over a 10-year period had an Apgar score of 0 at 1 min and required full resuscitation. The median (95% confidence interval) postnatal age at achieving key events were commencing cardiac compressions, 2.0 (1.5-4.0) min; endotracheal intubation, 3.8 (2.0-6.0) min; umbilical venous catheterisation 9.0 (7.5-12.0) min; and administration of first adrenaline dose 10.0 (8.0-14.0) min. The wide range of timings presented from real-life cases may prove useful to clinicians involved in medical negligence claims and provide a baseline for quality improvements in resuscitation training. What is Known: • Only a minority of babies require extended resuscitation at birth; these cases are often subject to medicolegal interrogation • Timings of key resuscitation events are poorly described and documentation of resuscitation events is often lacking yet is open to medicolegal scrutiny What is New: • We present a wide range of real-life timings of key resuscitation events during the era of routine newborn life support training • These timings may prove useful to clinicians involved in medical negligence claims and provide a baseline for quality improvements in resuscitation training.
NASA Astrophysics Data System (ADS)
Gica, E.
2016-12-01
The Short-term Inundation Forecasting for Tsunamis (SIFT) tool, developed by NOAA Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL), is used in forecast operations at the Tsunami Warning Centers in Alaska and Hawaii. The SIFT tool relies on a pre-computed tsunami propagation database, real-time DART buoy data, and an inversion algorithm to define the tsunami source. The tsunami propagation database is composed of 50×100km unit sources, simulated basin-wide for at least 24 hours. Different combinations of unit sources, DART buoys, and length of real-time DART buoy data can generate a wide range of results within the defined tsunami source. For an inexperienced SIFT user, the primary challenge is to determine which solution, among multiple solutions for a single tsunami event, would provide the best forecast in real time. This study investigates how the use of different tsunami sources affects simulated tsunamis at tide gauge locations. Using the tide gauge at Hilo, Hawaii, a total of 50 possible solutions for the 2011 Tohoku tsunami are considered. Maximum tsunami wave amplitude and root mean square error results are used to compare tide gauge data and the simulated tsunami time series. Results of this study will facilitate SIFT users' efforts to determine if the simulated tide gauge tsunami time series from a specific tsunami source solution would be within the range of possible solutions. This study will serve as the basis for investigating more historical tsunami events and tide gauge locations.
Morrison, Abigail; Straube, Sirko; Plesser, Hans Ekkehard; Diesmann, Markus
2007-01-01
Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.
A method for computing ion energy distributions for multifrequency capacitive discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.
2007-03-01
The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.
Ignition characteristics of cracked JP-7 fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Puneesh; Ma, Fuhua; Choi, Jeong-Yeol
2005-09-01
The ignition characteristics of cracked JP-7 fuel with both oxygen and air is studied over a wide range of pressures (1-20 atm), temperatures (1200-2000 K), and equivalence ratios (0.5-1.5). Correlations of ignition delay times, of the form t=Aexp(E/RT)[F]a[O2]b, are established using the Chemkin-II package and least-squares analysis. The effect of C3 hydrocarbons in cracked JP-7 fuel is examined by comparing ignition delay times for two different cracked compositions.
Development of a Low-Emission Spray Combustor for Emulsified Crude Oil
2017-03-03
has been studied for diesel [11,12] and gas turbine [13,14] engines for some time, but none of these fuels contain the wide range of hydrocarbons...measurements. We conducted the tests on the flight deck and discovered that the constantly shifting wind moved the exhaust plume away from the plume...when the wind speed was very low. This small period of about one hour, and the required set up time, severely 10 limited our ability to conduct
Particle simulation of Coulomb collisions: Comparing the methods of Takizuka and Abe and Nanbu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Chiaming; Lin, Tungyou; Caflisch, Russel
2008-04-20
The interactions of charged particles in a plasma are governed by long-range Coulomb collision. We compare two widely used Monte Carlo models for Coulomb collisions. One was developed by Takizuka and Abe in 1977, the other was developed by Nanbu in 1997. We perform deterministic and statistical error analysis with respect to particle number and time step. The two models produce similar stochastic errors, but Nanbu's model gives smaller time step errors. Error comparisons between these two methods are presented.
The pointing errors of geosynchronous satellites
NASA Technical Reports Server (NTRS)
Sikdar, D. N.; Das, A.
1971-01-01
A study of the correlation between cloud motion and wind field was initiated. Cloud heights and displacements were being obtained from a ceilometer and movie pictures, while winds were measured from pilot balloon observations on a near-simultaneous basis. Cloud motion vectors were obtained from time-lapse cloud pictures, using the WINDCO program, for 27, 28 July, 1969, in the Atlantic. The relationship between observed features of cloud clusters and the ambient wind field derived from cloud trajectories on a wide range of space and time scales is discussed.
Analysis of time-of-flight spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, E.M.; Foxon, C.T.; Zhang, J.
1990-07-01
A simplified method of data analysis for time of flight measurements of the velocity of molecular beams sources is described. This method does not require the complex data fitting previously used in such studies. The method is applied to the study of Pb molecular beams from a true Knudsen source and has been used to show that a VG Quadrupoles SXP300H mass spectrometer, when fitted with an open cross-beam ionizer, acts as an ideal density detector over a wide range of operating conditions.
Application of automatic gain control for radiometer diagnostic in SST-1 tokamak.
Makwana, Foram R; Siju, Varsha; Edappala, Praveenlal; Pathak, S K
2017-12-01
This paper describes the characterisation of a negative feedback type of automatic gain control (AGC) circuit that will be an integral part of the heterodyne radiometer system operating at a frequency range of 75-86 GHz at SST-1 tokamak. The developed AGC circuit is a combination of variable gain amplifier and log amplifier which provides both gain and attenuation typically up to 15 dB and 45 dB, respectively, at a fixed set point voltage and it has been explored for the first time in tokamak radiometry application. The other important characteristics are that it exhibits a very fast response time of 390 ns to understand the fast dynamics of electron cyclotron emission and can operate at very wide input RF power dynamic range of around 60 dB that ensures signal level within the dynamic range of the detection system.
Nonlinear unstable viscous fingers in Hele--Shaw flows. I. Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf-Sill, A.R.; Homsy, G.M.
1988-02-01
Post-instability viscous fingering in rectilinear flow in a Hele--Shaw cell has been studied experimentally. Of particular interest was the characterization of the range of length scales associated with tip splitting, over a reasonably wide range of parameters. A digital imaging system was used to record the patterns as a function of time, which allowed properties such as the tip velocity, finger width, perimeter, and area to be studied as functions of time and capillary number. The tip velocity was observed to be approximately constant regardless of the occurrence of splitting events, and the average finger width decreased as the degreemore » of supercriticality increased. Quantitative measures of the fact that there is a limit to the complexity of viscous fingers are provided, and that over the range of parameters studied, no evidence for fractal fingering exists. A discussion of the dynamics of tip splitting explains why this is so.« less
Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio
2016-01-01
The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813
PolarPortal.org Communicates Real-Time Developments in the Arctic
NASA Astrophysics Data System (ADS)
Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.
2014-12-01
PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
Hubble Space Telescope: Faint object camera instrument handbook. Version 2.0
NASA Technical Reports Server (NTRS)
Paresce, Francesco (Editor)
1990-01-01
The Faint Object Camera (FOC) is a long focal ratio, photon counting device designed to take high resolution two dimensional images of areas of the sky up to 44 by 44 arcseconds squared in size, with pixel dimensions as small as 0.0007 by 0.0007 arcseconds squared in the 1150 to 6500 A wavelength range. The basic aim of the handbook is to make relevant information about the FOC available to a wide range of astronomers, many of whom may wish to apply for HST observing time. The FOC, as presently configured, is briefly described, and some basic performance parameters are summarized. Also included are detailed performance parameters and instructions on how to derive approximate FOC exposure times for the proposed targets.
Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.
Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K
2013-11-01
We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.
A one-dimensional model of solid-earth electrical resistivity beneath Florida
Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua
2015-11-19
An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.
Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-10-03
Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.
Webb, Ian K; Londry, Frank A; McLuckey, Scott A
2011-09-15
Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.
The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya.
Thomas, Lian F; de Glanville, William A; Cook, Elizabeth A; Fèvre, Eric M
2013-03-07
In many parts of the developing world, pigs are kept under low-input systems where they roam freely to scavenge food. These systems allow poor farmers the opportunity to enter into livestock keeping without large capital investments. This, combined with a growing demand for pork, especially in urban areas, has led to an increase in the number of small-holder farmers keeping free range pigs as a commercial enterprise. Despite the benefits which pig production can bring to a household, keeping pigs under a free range system increases the risk of the pig acquiring diseases, either production-limiting or zoonotic in nature. This study used Global Positioning System (GPS) technology to track free range domestic pigs in rural western Kenya, in order to understand their movement patterns and interactions with elements of the peri-domestic environment. We found that these pigs travel an average of 4,340 m in a 12 hr period and had a mean home range of 10,343 m(2) (range 2,937-32,759 m(2)) within which the core utilisation distribution was found to be 964 m(2) (range 246-3,289 m(2)) with pigs spending on average 47% of their time outside their homestead of origin. These are the first data available on the home range of domestic pigs kept under a free range system: the data show that pigs in these systems spend much of their time scavenging outside their homesteads, suggesting that these pigs may be exposed to infectious agents over a wide area. Control policies for diseases such as Taenia solium, Trypanosomiasis, Trichinellosis, Toxoplasmosis or African Swine Fever therefore require a community-wide focus and pig farmers require education on the inherent risks of keeping pigs under a free range system. The work presented here will enable future research to incorporate movement data into studies of disease transmission, for example for the understanding of transmission of African Swine Fever between individuals, or in relation to the life-cycle of parasites including Taenia solium.
The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya
2013-01-01
Background In many parts of the developing world, pigs are kept under low-input systems where they roam freely to scavenge food. These systems allow poor farmers the opportunity to enter into livestock keeping without large capital investments. This, combined with a growing demand for pork, especially in urban areas, has led to an increase in the number of small-holder farmers keeping free range pigs as a commercial enterprise. Despite the benefits which pig production can bring to a household, keeping pigs under a free range system increases the risk of the pig acquiring diseases, either production-limiting or zoonotic in nature. This study used Global Positioning System (GPS) technology to track free range domestic pigs in rural western Kenya, in order to understand their movement patterns and interactions with elements of the peri-domestic environment. Results We found that these pigs travel an average of 4,340 m in a 12 hr period and had a mean home range of 10,343 m2 (range 2,937–32,759 m2) within which the core utilisation distribution was found to be 964 m2 (range 246–3,289 m2) with pigs spending on average 47% of their time outside their homestead of origin. Conclusion These are the first data available on the home range of domestic pigs kept under a free range system: the data show that pigs in these systems spend much of their time scavenging outside their homesteads, suggesting that these pigs may be exposed to infectious agents over a wide area. Control policies for diseases such as Taenia solium, Trypanosomiasis, Trichinellosis, Toxoplasmosis or African Swine Fever therefore require a community-wide focus and pig farmers require education on the inherent risks of keeping pigs under a free range system. The work presented here will enable future research to incorporate movement data into studies of disease transmission, for example for the understanding of transmission of African Swine Fever between individuals, or in relation to the life-cycle of parasites including Taenia solium. PMID:23497587
Intralesional curettage of central low-grade chondrosarcoma: A midterm follow-up study.
Chen, Yi-Chou; Wu, Po-Kuei; Chen, Cheng-Fong; Chen, Wei-Ming
2017-03-01
The aim of this study was to review the experience of surgical treatment of low-grade chondrosarcoma and to assess the long-term oncological and functional outcomes between intralesional curettage and wide excision. We included 11 patients with central low-grade chondrosarcoma lesions treated with intralesional curettage or wide excision from 1998 to 2013. Seven patients were treated with intralesional curettage and local adjuvant treatment (Group A), and four patients were treated with wide excision and reconstructive surgery (Group B). The mean age of patients was 43.8±17.6 years (range, 20-71 years), and the mean duration of follow-up was 84.4±47.6 months (range, 48-194 months). Group A had a significantly lower complication rate than Group B; three complications were documented in Group B (0% vs. 75%, p=0.024). The operative time (177.1 hours vs. 366.3 hours, p=0.010) and the hospital stay (6.6 days vs. 12.5 days, p=0.010) were significantly shorter in Group A. There was one local recurrence in Group A without statistical significance. Also, there were no differences between intralesional curettage and wide excision with respect to the blood loss. No metastasis disease occurred in either group during the follow-up period. The Musculoskeletal Tumor Society (MSTS) scores in Groups A and B were 99.0±2.5 and 94.2±4.2, respectively, with statistically significant difference (p=0.048). Extended intralesional curettage has the benefits of good MSTS score, shorter operative time, shorter hospital stay, and lower complication rate without increasing local recurrence in central low-grade chondrosarcoma. For central low-grade chondrosarcoma, we suggest extended curettage to decrease soft tissue damage and surgical risk. Copyright © 2016. Published by Elsevier Taiwan LLC.
A survey of time management and particular tasks undertaken by consultant microbiologists in the UK.
Riordan, Terry; Cartwright, Keith; Cunningham, Richard; Logan, Margaret; Wright, Paul
2007-05-01
Medical microbiology practice encompasses a diverse range of activities. Consultant medical microbiologists (CMMs) attribute widely differing priorities to, and spend differing proportions of time on various components of the job. To obtain a professional consensus on what are high-priority and low-priority activities, and to identify the time spent on low-priority activities. National survey. Many respondents felt that time spent on report authorisation and telephoning of results was excessive, whereas time spent on ward-based work was inadequate. Timesaving could also be achieved through better prioritisation of infection-control activities. CMMs should apportion their time at work focusing on high-priority activities identified through professional consensus.
Takeda, Jun; Ishida, Akihiro; Makishima, Yoshinori; Katayama, Ikufumi
2010-01-01
In this review, we demonstrate a real-time time-frequency two-dimensional (2D) pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation. PMID:22399879
Chirino-Valle, Ivan; Kandula, Diwakar; Littlejohn, Chris; Hill, Robert; Walker, Mark; Shields, Morgan; Cummings, Nicholas; Hettiarachchi, Dilani; Wratten, Stephen
2016-01-01
The sterile hybrid grass Miscanthus x giganteus (Mxg) can produce more than 30 t dry matter/ha/year. This biomass has a range of uses, including animal bedding and a source of heating fuel. The grass provides a wide range of other ecosystem services (ES), including shelter for crops and livestock, a refuge for beneficial arthropods, reptiles and earthworms and is an ideal cellulosic feedstock for liquid biofuels such as renewable (drop-in) diesel. In this study, the effects of different strains of the beneficial fungus Trichoderma on above- and below-ground biomass of Mxg were evaluated in glasshouse and field experiments, the latter on a commercial dairy farm over two years. Other ES benefits of Trichoderma measured in this study included enhanced leaf chlorophyll content as well as increased digestibility of the dried material for livestock. This study shows, for the first time for a biofuel feedstock plant, how Trichoderma can enhance productivity of such plants and complements other recent work on the wide-ranging provision of ES by this plant species. PMID:27117716
Verification of BOUT++ by the method of manufactured solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.
2016-06-15
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less
ICASE/LaRC Symposium on Visualizing Time-Varying Data
NASA Technical Reports Server (NTRS)
Banks, D. C. (Editor); Crockett, T. W. (Editor); Stacy, K. (Editor)
1996-01-01
Time-varying datasets present difficult problems for both analysis and visualization. For example, the data may be terabytes in size, distributed across mass storage systems at several sites, with time scales ranging from femtoseconds to eons. In response to these challenges, ICASE and NASA Langley Research Center, in cooperation with ACM SIGGRAPH, organized the first symposium on visualizing time-varying data. The purpose was to bring the producers of time-varying data together with visualization specialists to assess open issues in the field, present new solutions, and encourage collaborative problem-solving. These proceedings contain the peer-reviewed papers which were presented at the symposium. They cover a broad range of topics, from methods for modeling and compressing data to systems for visualizing CFD simulations and World Wide Web traffic. Because the subject matter is inherently dynamic, a paper proceedings cannot adequately convey all aspects of the work. The accompanying video proceedings provide additional context for several of the papers.
NASA Astrophysics Data System (ADS)
Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Malandraki, O.; Dröge, W.; Kartavykh, Y.
2014-07-01
Context. In February 2011, the two STEREO spacecrafts reached a separation of 180 degrees in longitude, offering a complete view of the Sun for the first time ever. When the full Sun surface is visible, source active regions of solar energetic particle (SEP) events can be identified unambiguously. STEREO, in combination with near-Earth observatories such as ACE or SOHO, provides three well separated viewpoints, which build an unprecedented platform from which to investigate the longitudinal variations of SEP events. Aims: We show an ensemble of SEP events that were observed between 2009 and mid-2013 by at least two spacecrafts and show a remarkably wide particle spread in longitude (wide-spread events). The main selection criterion for these events was a longitudinal separation of at least 80 degrees between active region and spacecraft magnetic footpoint for the widest separated spacecraft. We investigate the events statistically in terms of peak intensities, onset delays, and rise times, and determine the spread of the longitudinal events, which is the range filled by SEPs during the events. Energetic electron anisotropies are investigated to distinguish the source and transport mechanisms that lead to the observed wide particle spreads. Methods: According to the anisotropy distributions, we divided the events into three classes depending on different source and transport scenarios. One potential mechanism for wide-spread events is efficient perpendicular transport in the interplanetary medium that competes with another scenario, which is a wide particle spread that occurs close to the Sun. In the latter case, the observations at 1 AU during the early phase of the events are expected to show significant anisotropies because of the wide injection range at the Sun and particle-focusing during the outward propagation, while in the first case only low anisotropies are anticipated. Results: We find events for both of these scenarios in our sample that match the expected observations and even different events that do not agree with the scenarios. We conclude that probably both an extended source region at the Sun and perpendicular transport in the interplanetary medium are involved for most of these wide-spread events. Appendix A is available in electronic form at http://www.aanda.org
Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip
2016-03-01
Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.
Dead-time compensation for a logarithmic display rate meter
Larson, John A.; Krueger, Frederick P.
1988-09-20
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.
Dead-time compensation for a logarithmic display rate meter
Larson, J.A.; Krueger, F.P.
1987-10-05
An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.
Drought and Heat Waves: The Role of SST and Land Surface Feedbacks
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.
Chemoselective N-arylation of aminobenzamides via copper catalysed Chan-Evans-Lam reactions.
Liu, Shuai; Zu, Weisai; Zhang, Jinli; Xu, Liang
2017-11-15
Chemoselective N-arylation of unprotected aminobenzamides was achieved via Cu-catalysed Chan-Evans-Lam cross-coupling with aryl boronic acids for the first time. Simple copper catalysts enable the selective arylation of amino groups in ortho/meta/para-aminobenzamides under open-flask conditions. The reactions were scalable and compatible with a wide range of functional groups.
Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR
Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...
Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemann, R.H.; /SLAC
Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.
Feature-extracted joint transform correlation.
Alam, M S
1995-12-10
A new technique for real-time optical character recognition that uses a joint transform correlator is proposed. This technique employs feature-extracted patterns for the reference image to detect a wide range of characters in one step. The proposed technique significantly enhances the processing speed when compared with the presently available joint transform correlator architectures and shows feasibility for multichannel joint transform correlation.
Self-Paced Study Time as a Cue for Recall Predictions across School Age
ERIC Educational Resources Information Center
Hoffmann-Biencourt, Anja; Lockl, Kathrin; Schneider, Wolfgang; Ackerman, Rakefet; Koriat, Asher
2010-01-01
Recent work on metacognition indicates that monitoring is sometimes based itself on the feedback from control operations. Evidence for this pattern has not only been shown in adults but also in elementary schoolchildren. To explore whether this finding can be generalized to a wide range of age groups, 160 participants from first to eighth grade…
Historical changes in pool habitats in the Columbia River basin
Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler
1995-01-01
Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
HAL/S language specification. Version IR-542
NASA Technical Reports Server (NTRS)
1980-01-01
The formal HAL/S language specification is documented with particular referral to the essentials of HAL/S syntax and semantics. The language is intended to satisfy virtually all of the flight software requirements of NASA programs. To achieve this, HAL/S incorporates a wide range of features, including applications oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks.
Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy
NASA Astrophysics Data System (ADS)
Fann, Wunshain
1990-01-01
Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.
Young Gifted Children: Meeting Their Needs. Research in Practice Series. Volume 12, Number 3
ERIC Educational Resources Information Center
Porter, Louise
2005-01-01
The "Research in Practice Series" is published four times each year by Early Childhood Australia. The series aims to provide practical, easy to read, up-to-date information and support to a growing national readership of early childhood workers. The books bring together the best information available on wide-ranging topics and are an…
The Effects of Student Employment on Academic Performance in Tatarstan Higher Education Institutions
ERIC Educational Resources Information Center
Yanbarisova, D. M.
2015-01-01
Today, combining academic study with employment is typical for a wide range of students. There are many reasons why students choose to work, from the need to integrate into the job market to the desire to fill spare time. The present article investigates how various study and work combinations affect the academic performance of students in their…
Surface Gravity Waves: Resonance in a Fish Tank
ERIC Educational Resources Information Center
Sinick, Scott J.; Lynch, John J.
2010-01-01
In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…
The making of the mechanical universe
NASA Technical Reports Server (NTRS)
Blinn, James
1989-01-01
The Mechanical Universe project required the production of over 550 different animated scenes, totaling about 7 and 1/2 hours of screen time. The project required the use of a wide range of techniques and motivated the development of several different software packages. A documentation is presented of many aspects of the project, encompassing artistic design issues, scientific simulations, software engineering, and video engineering.
ERIC Educational Resources Information Center
Bailey, Thomas; Calcagno, Juan Carlos; Jenkins, Davis; Leinbach, Timothy; Kienzl, Gregory
2005-01-01
Policymakers, educators, and researchers recognize the importance of community colleges as open door institutions that provide a wide range of students with access to college. At the same time, competing demands for the state funds that would support community colleges have resulted in reduced public allocations and higher student tuition fees.…
Digital Games for Young Children Ages Three to Six: From Research to Design
ERIC Educational Resources Information Center
Lieberman, Debra A.; Fisk, Maria Chesley; Biely, Erica
2009-01-01
Young children ages 3 to 6 play a wide range of digital games, which are now available on large screens, handheld screens, electronic learning systems, and electronic toys, and their time spent with games is growing. This article examines effects of digital games and how they could be designed to best serve children's needs. A small body of…
Bryan A. Endress; Catherine G. Parks; Bridgett J. Naylor; Steven R. Radosevich
2008-01-01
Sulfur cinquefoil is an exotic, perennial forb that invades a wide range of ecosystems in western North America. It forms dense populations and often threatens native plant species and communities. In this study, we address the following questions: (1) what herbicides, rates, and application times are most effective at reducing sulfur cinquefoil abundance while having...
Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells
NASA Astrophysics Data System (ADS)
Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu
2016-01-01
In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.
The diverse utility of ground-based magnetometer data
NASA Astrophysics Data System (ADS)
Love, J. J.
2012-12-01
The global network of magnetic observatories represents a unique collective asset for the scientific community. Since observatory data record a wide range of physical phenomena, they are also used for a wide range of applications. Historically, magnetic observatories were first established in the 19th century to support global magnetic-field mapping projects, and this application continues to be important today. But since the dawn of the space age and the International Geophysical Year, observatory data have become important for research analysis of the ionosphere, the magnetosphere, and, indirectly, the heliosphere. Over the past couple of solar cycles, magnetic observatories have also played an important role in real-time operational monitoring of the changing conditions of space weather and assessment of ground-level geomagnetic hazards. This diversification and expansion of the observatory-data user community has brought demands for data that meet new and more stringent standards. In cooperation with the many institutes that support magnetic observatories, INTERMAGNET has been helping to coordinate and facilitate observatory modernization and improved operation. In this presentation, we give an overview of the diversity of signals recorded in observatory data, including secular, quiet, storm-time, and solar-cycle variations. We discuss future opportunities, especially for global integration and data sharing.
Graphene quantum dot as a green and facile sensor for free chlorine in drinking water.
Dong, Yongqiang; Li, Geli; Zhou, Nana; Wang, Ruixue; Chi, Yuwu; Chen, Guonan
2012-10-02
Free chlorine was found to be able to destroy the passivated surface of the graphene quantum dots (GQDs) obtained by pyrolyzing citric acid, resulting in significant quenching of their fluorescence (FL) signal. After optimizing some experimental conditions (including response time, concentration of GQDs, and pH value of solution), a green and facile sensing system has been developed for the detection of free residual chlorine in water based on FL quenching of GQDs. The sensing system exhibits many advantages, such as short response time, excellent selectivity, wide linear response range, and high sensitivity. The linear response range of free chlorine (R(2) = 0.992) was from 0.05 to 10 μM. The detection limit (S/N = 3) was as low as 0.05 μM, which is much lower than that of the most widely used N-N-diethyl-p-phenylenediamine (DPD) colorimetric method. This sensing system was finally used to detect free residual chlorine in local tap water samples. The result agreed well with that by the DPD colorimetric method, suggesting the potential application of this new, green, sensitive, and facile sensing system in drinking water quality monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xingyu, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu; Chung, Chi-Jui; Pan, Zeyu
2015-11-30
We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-opticmore » switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.« less
Temperature sensors based on multimode chalcogenide fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Zhang, Qian; Zeng, Jianghui; Zhu, Liang; Yang, Dandan; Zhang, Peiqing; Xu, Yinsheng; Wang, Xunsi; Nie, Qiuhua; Dai, Shixun
2018-04-01
In this work, a theoretical study was conducted on temperature sensing in Ge-Sb-Se multimode fibre Bragg grating (MM-FBG). The sensing characteristics of the designed MM-FBGs with different fibre parameters and operating wavelengths were calculated using a coupled model method. The temperature sensitivity of this MM-FBG was found to improve significantly by shifting the operating wavelength from telecom range to mid-infrared (MIR) and utilizing the wide transmission range of Ge-Sb-Se glasses. The temperature sensitivity of the proposed Ge-Sb-Se MM-FBG was calculated to be 0.0758 nm/°C at 1550 nm, which is 7.58 times higher than silica FBGs at 1550 nm, and the temperature sensitivity was calculated to be more than 0.16 nm/°C at 3390 nm, which is 2.2 times higher than that at 1550 nm. In addition, the proposed MM-FBGs provided multi-peak information, and the sensitivity of each peak was calculated to be comparable to the single-mode FBG. The proposed Ge-Sb-Se MM-FBG has great potential for temperature sensing in MIR because of its advantages of simple preparation, high coupling efficiency, multi-peak information and wide working window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less
Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment
NASA Technical Reports Server (NTRS)
Porter, J. W.; Bowell, J. R.; Price, G. E.
1981-01-01
The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated.
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; ...
2013-01-01
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require ( p ) analysis time permore » MPI operation, for p processes. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Statistical regularities of Carbon emission trading market: Evidence from European Union allowances
NASA Astrophysics Data System (ADS)
Zheng, Zeyu; Xiao, Rui; Shi, Haibo; Li, Guihong; Zhou, Xiaofeng
2015-05-01
As an emerging financial market, the trading value of carbon emission trading market has definitely increased. In recent years, the carbon emission allowances have already become a way of investment. They are bought and sold not only by carbon emitters but also by investors. In this paper, we analyzed the price fluctuations of the European Union allowances (EUA) futures in European Climate Exchange (ECX) market from 2007 to 2011. The symmetric and power-law probability density function of return time series was displayed. We found that there are only short-range correlations in price changes (return), while long-range correlations in the absolute of price changes (volatility). Further, detrended fluctuation analysis (DFA) approach was applied with focus on long-range autocorrelations and Hurst exponent. We observed long-range power-law autocorrelations in the volatility that quantify risk, and found that they decay much more slowly than the autocorrelation of return time series. Our analysis also showed that the significant cross correlations exist between return time series of EUA and many other returns. These cross correlations exist in a wide range of fields, including stock markets, energy concerned commodities futures, and financial futures. The significant cross-correlations between energy concerned futures and EUA indicate the physical relationship between carbon emission and energy production process. Additionally, the cross-correlations between financial futures and EUA indicate that the speculation behavior may become an important factor that can affect the price of EUA. Finally we modeled the long-range volatility time series of EUA with a particular version of the GARCH process, and the result also suggests long-range volatility autocorrelations.
Thin Layer Drying Model of Bacterial Cellulose Film
NASA Astrophysics Data System (ADS)
Hadi Jatmiko, Tri; Taufika Rosyida, Vita; Wheni Indrianingsih, Anastasia; Apriyana, Wuri
2017-12-01
The bacterial cellulose film produced by Acetobacter xylinum using coconut water as a carbon source was dried at a temperature of 60 to 100 C. The drying process of bacterial cellulose film occur at falling rate drying period. Increasing drying temperature will shorten the drying time. The drying data fitted with thin layer drying models that widely used, Newton, Page and Henderson and Pabis models. All thin layer drying models describe the experimental data well, but Page model is better than the other models on all various temperature with coefficients of determination (R2) range from 0.9908 to 0.9979, chi square range from 0.000212 to 0.000851 and RMSE range from 0.014307 to 0.0289458.
Short range, ultra-wideband radar with high resolution swept range gate
McEwan, T.E.
1998-05-26
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.
Short range, ultra-wideband radar with high resolution swept range gate
McEwan, Thomas E.
1998-05-26
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.
Crimmins, Michael A.; Gerst, Katharine L.; Rosemartin, Alyssa H.; Weltzin, Jake F.
2017-01-01
Purpose In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species’ ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. Methods We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation—thermal time models with a fixed start date. Results Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the “breaking leaf buds” and “leaves” phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species’ geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Implications Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications. PMID:28829783
LSI-based amperometric sensor for bio-imaging and multi-point biosensing.
Inoue, Kumi Y; Matsudaira, Masahki; Kubo, Reyushi; Nakano, Masanori; Yoshida, Shinya; Matsuzaki, Sakae; Suda, Atsushi; Kunikata, Ryota; Kimura, Tatsuo; Tsurumi, Ryota; Shioya, Toshihito; Ino, Kosuke; Shiku, Hitoshi; Satoh, Shiro; Esashi, Masayoshi; Matsue, Tomokazu
2012-09-21
We have developed an LSI-based amperometric sensor called "Bio-LSI" with 400 measurement points as a platform for electrochemical bio-imaging and multi-point biosensing. The system is comprised of a 10.4 mm × 10.4 mm CMOS sensor chip with 20 × 20 unit cells, an external circuit box, a control unit for data acquisition, and a DC power box. Each unit cell of the chip contains an operational amplifier with a switched-capacitor type I-V converter for in-pixel signal amplification. We successfully realized a wide dynamic range from ±1 pA to ±100 nA with a well-organized circuit design and operating software. In particular, in-pixel signal amplification and an original program to control the signal read-out contribute to the lower detection limit and wide detection range of Bio-LSI. The spacial resolution is 250 μm and the temporal resolution is 18-125 ms/400 points, which depends on the desired current detection range. The coefficient of variance of the current for 400 points is within 5%. We also demonstrated the real-time imaging of a biological molecule using Bio-LSI. The LSI coated with an Os-HRP film was successfully applied to the monitoring of the changes of hydrogen peroxide concentration in a flow. The Os-HRP-coated LSI was spotted with glucose oxidase and used for bioelectrochemical imaging of the glucose oxidase (GOx)-catalyzed oxidation of glucose. Bio-LSI is a promising platform for a wide range of analytical fields, including diagnostics, environmental measurements and basic biochemistry.
Galaxies Grow Their Bulges and Black Holes in Diverse Ways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Eric F.; Harmsen, Benjamin; D’Souza, Richard
Galaxies with Milky Way–like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity–mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18more » Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.« less
Imanishi, K.; Takeo, M.; Ellsworth, W.L.; Ito, H.; Matsuzawa, T.; Kuwahara, Y.; Iio, Y.; Horiuchi, S.; Ohmi, S.
2004-01-01
We use an inversion method based on stopping phases (Imanishi and Takeo, 2002) to estimate the source dimension, ellipticity, and rupture velocity of microearthquakes and investigate the scaling relationships between source parameters. We studied 25 earthquakes, ranging in size from M 1.3 to M 2.7, that occurred between May and August 1999 at the western Nagano prefecture, Japan, which is characterized by a high rate of shallow earthquakes. The data consist of seismograms recorded in an 800-m borehole and at 46 surface and 2 shallow borehole seismic stations whose spacing is a few kilometers. These data were recorded with a sampling frequency of 10 kHz. In particular, the 800-m-borehole data provide a wide frequency bandwidth with greatly reduced ground noise and coda wave amplitudes compared with surface recordings. High-frequency stopping phases appear in the body waves in Hilbert transform pairs and are readily detected on seismograms recorded in the 800-m borehole. After correcting both borehole and surface data for attenuation, we also measure the rise time, which is defined as the interval from the arrival time of the direct wave to the timing of the maximum amplitude in the displacement pulse. The differential time of the stopping phases and the rise times were used to obtain source parameters. We found that several microearthquakes propagated unilaterally, suggesting that all microearthquakes cannot be modeled as a simple circular crack model. Static stress drops range from approximately 0.1 to 2 MPa and do not vary with seismic moment. It seems that the breakdown in stress drop scaling seen in previous studies using surface data is simply an artifact of attenuation in the crust. The average value of rupture velocity does not depend on earthquake size and is similar to those reported for moderate and large earthquakes. It is likely that earthquakes are self-similar over a wide range of earthquake size and that the dynamics of small and large earthquakes are similar.
NASA Astrophysics Data System (ADS)
Subagyo; Daryanto, Yanto; Risnawan, Novan
2018-04-01
The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.
Kılıç, Salih; Çelik, Ahmet; Çakmak, Hüseyin Altuğ; Afşin, Abdülmecit; Tekkeşin, Ahmet İlker; Açıksarı, Gönül; Memetoğlu, Mehmet Erdem; Özpamuk Karadeniz, Fatma; Şahan, Ekrem; Alıcı, Mehmet Hayri; Dereli, Yüksel; Sinan, Ümit Yaşar; Zoghi, Mehdi
2017-08-04
The time in therapeutic range values may vary between different geographical regions of Turkey in patients vitamin K antagonist therapy. To evaluate the time in therapeutic range percentages, efficacy, safety and awareness of warfarin according to the different geographical regions in patients who participated in the WARFARIN-TR study (The Awareness, Efficacy, Safety and Time in Therapeutic Range of Warfarin in the Turkish population) in Turkey. Cross-sectional study. The WARFARIN-TR study includes 4987 patients using warfarin and involved regular international normalized ratio monitoring between January 1, 2014 and December 31, 2014. Patients attended follow-ups for 12 months. The sample size calculations were analysed according to the density of the regional population and according to Turkish Statistical Institute data. The time in therapeutic range was calculated according to F.R. Roosendaal's algorithm. Awareness was evaluated based on the patients' knowledge of the effect of warfarin and food-drug interactions with simple questions developed based on a literature review. The Turkey-wide time in therapeutic range was reported as 49.5%±22.9 in the WARFARIN-TR study. There were statistically significant differences between regions in terms of time in therapeutic range (p>0.001). The highest rate was reported in the Marmara region (54.99%±20.91) and the lowest was in the South-eastern Anatolia region (41.95±24.15) (p>0.001). Bleeding events were most frequently seen in Eastern Anatolia (41.6%), with major bleeding in the Aegean region (5.11%) and South-eastern Anatolia (5.36%). There were statistically significant differences between the regions in terms of awareness (p>0.001). Statistically significant differences were observed in terms of the efficacy, safety and awareness of warfarin therapy according to different geographical regions in Turkey.
18O 16O ratios in cherts associated with the saline lake deposits of East Africa
O'Neil, J.R.; Hay, R.L.
1973-01-01
The cherts formed from sodium silicate precursors in East African saline, alkaline lakes have ??18O values ranging from 31.1 to 44.1. The ??18O values correlate in general with lake salinities as inferred from geologic evidence, indicating that most chert was formed from its precursor in contact with lake water trapped at the time of deposition. A few of the analyzed cherts probably formed in contact with dilute meteoric water. From the widely varying ??18O values we conclude that precursors were transformed to chert in fluids of widely varying salinity and aNa+/aH+ ratio. ?? 1973.
Three brief assessments of math achievement.
Steiner, Eric T; Ashcraft, Mark H
2012-12-01
Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.
Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors.
Mills, Edmund Martin; Kim, Sangtae
2016-12-15
Peukert's equation is widely used to model the rate dependence of battery capacity, and has recently attracted attention for application to supercapacitors. Here we present a newly developed method to readily determine Peukert's constant using impedance spectroscopy. Impedance spectroscopy is ideal for this purpose as it has the capability of probing electrical performance of a device over a wide range of time-scales within a single measurement. We demonstrate that the new method yields consistent results with conventional galvanostatic measurements through applying it to commercially available supercapacitors. Additionally, the novel method is much simpler and more precise, making it an attractive alternative for the determination of Peukert's constant.
Coronary microvascular dysfunction in diabetes mellitus
Selthofer-Relatic, Kristina; Drenjancevic, Ines; Bacun, Tatjana; Bosnjak, Ivica; Kibel, Dijana; Gros, Mario
2017-01-01
The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives. PMID:28643578
The Case of the Missing Mechanism: How Does Temperature Influence Seasonal Timing in Endotherms?
Caro, Samuel P.; Schaper, Sonja V.; Hut, Roelof A.; Ball, Gregory F.; Visser, Marcel E.
2013-01-01
Temperature has a strong effect on the seasonal timing of life-history stages in both mammals and birds, even though these species can regulate their body temperature under a wide range of ambient temperatures. Correlational studies showing this effect have recently been supported by experiments demonstrating a direct, causal relationship between ambient temperature and seasonal timing. Predicting how endotherms will respond to global warming requires an understanding of the physiological mechanisms by which temperature affects the seasonal timing of life histories. These mechanisms, however, remain obscure. We outline a road map for research aimed at identifying the pathways through which temperature is translated into seasonal timing. PMID:23565055
A reservoir of time constants for memory traces in cortical neurons
Bernacchia, Alberto; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing
2011-01-01
According to reinforcement learning theory of decision making, reward expectation is computed by integrating past rewards with a fixed timescale. By contrast, we found that a wide range of time constants is available across cortical neurons recorded from monkeys performing a competitive game task. By recognizing that reward modulates neural activity multiplicatively, we found that one or two time constants of reward memory can be extracted for each neuron in prefrontal, cingulate, and parietal cortex. These timescales ranged from hundreds of milliseconds to tens of seconds, according to a power-law distribution, which is consistent across areas and reproduced by a “reservoir” neural network model. These neuronal memory timescales were weakly but significantly correlated with those of monkey's decisions. Our findings suggest a flexible memory system, where neural subpopulations with distinct sets of long or short memory timescales may be selectively deployed according to the task demands. PMID:21317906
Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.
Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong
2013-08-28
Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.
Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.
Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime
2017-12-05
Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.
Method of Enhancing On-Board State Estimation Using Communication Signals
NASA Technical Reports Server (NTRS)
Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)
2015-01-01
A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.
Lacour, C; Joannis, C; Schuetze, M; Chebbo, G
2011-01-01
This paper compares several real-time control (RTC) strategies for a generic configuration consisting of a storage tank with two overflow facilities. Two of the strategies only make use of flow rate data, while the third also introduces turbidity data in order to exercise dynamic control between two overflow locations. The efficiency of each strategy is compared over a wide range of system setups, described by two parameters. This assessment is performed by simulating the application of control strategies to actual measurements time series recorded on two sites. Adding turbidity measurements into an RTC strategy leads to a significant reduction in the annual overflow pollutant load. The pollutant spills spared by such a control strategy strongly depend on the site and on the flow rate based strategy considered as a reference. With the datasets used in this study, values ranging from 5 to 50% were obtained.
Relaxation of photoexcitations in polaron-induced magnetic microstructures
NASA Astrophysics Data System (ADS)
Köhler, Thomas; Rajpurohit, Sangeeta; Schumann, Ole; Paeckel, Sebastian; Biebl, Fabian R. A.; Sotoudeh, Mohsen; Kramer, Stephan C.; Blöchl, Peter E.; Kehrein, Stefan; Manmana, Salvatore R.
2018-06-01
We investigate the evolution of a photoexcitation in correlated materials over a wide range of time scales. The system studied is a one-dimensional model of a manganite with correlated electron, spin, orbital, and lattice degrees of freedom, which we relate to the three-dimensional material Pr1 -xCaxMnO3 . The ground-state phases for the entire composition range are determined and rationalized by a coarse-grained polaron model. At half doping a pattern of antiferromagnetically coupled Zener polarons is realized. Using time-dependent density-matrix renormalization group (tDMRG), we treat the electronic quantum dynamics following the excitation. The emergence of quasiparticles is addressed, and the relaxation of the nonequilibrium quasiparticle distribution is investigated via a linearized quantum-Boltzmann equation. Our approach shows that the magnetic microstructure caused by the Zener polarons leads to an increase of the relaxation times of the excitation.
Picosecond molecular motions in bacteriorhodopsin from neutron scattering.
Fitter, J; Lechner, R E; Dencher, N A
1997-01-01
The characteristics of internal molecular motions of bacteriorhodopsin in the purple membrane have been studied by quasielastic incoherent neutron scattering. Because of the quasihomogeneous distribution of hydrogen atoms in biological molecules, this technique enables one to study a wide variety of intramolecular motions, especially those occurring in the picosecond to nanosecond time scale. We performed measurements at different energy resolutions with samples at various hydration levels within a temperature range of 10-300 K. The analysis of the data revealed a dynamical transition at temperatures Td between 180 K and 220 K for all motions resolved at time scales ranging from 0.1 to a few hundred picoseconds. Whereas below Td the motions are purely vibrational, they are predominantly diffusive above Td, characterized by an enormously broad distribution of correlation times. The variation of the hydration level, on the other hand, mainly affects motions slower than a few picoseconds. PMID:9336208
Long-term persistence of solar activity
NASA Technical Reports Server (NTRS)
Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul
1994-01-01
We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.
Nanoantenna couplers for metal-insulator-metal waveguide interconnects
NASA Astrophysics Data System (ADS)
Onbasli, M. Cengiz; Okyay, Ali K.
2010-08-01
State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.
Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Buskirk, Caleb Griffith
2017-06-14
Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore,more » in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.« less
Long, Xi; Parks, Joseph W; Stone, Michael D
2016-08-01
Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
Puller, Christian; Rieke, Fred; Neitz, Jay; Neitz, Maureen
2015-01-01
At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell—the wiry cell—in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5–10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception. PMID:26133804
A Monte Carlo model for 3D grain evolution during welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less
New 50-M-Class Single Dish Telescope: Large Submillimeter Telescope (LST)
NASA Astrophysics Data System (ADS)
Kawabe, Ryohei
2018-01-01
We report on the plan to construct a 50 m class millimeter (mm) and sub-mm single dish telescope, the Large Submillimeter Telescope (LST). The telescope is optimized for wide-area imaging and spectroscopic surveys in the 70 to 420 GHz main frequency range, which just covers main atmospheric windows at millimeter and submillimeter wavelengths for good observing sites such as the ALMA site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner part high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time domain science. With exploiting synergy with ALMA and other telescopes, LST can contribute to a wide range of topics in astronomy and astrophysics, e.g., astrochemistry, star formation in the Galaxy and galaxies, evolution of galaxy clusters via SZ effect. We also report the recent progress on the technical study, e.g., the tentative study of the surface error budget and challenges to correction for the wind-load effect.
Long, Xi; Parks, Joseph W.; Stone, Michael D.
2017-01-01
Many enzymes promote structural changes in their nucleic acid substrates via application of piconewton forces over nanometer length scales. Magnetic tweezers (MT) is a single molecule force spectroscopy method widely used for studying the energetics of such mechanical processes. MT permits stable application of a wide range of forces and torques over long time scales with nanometer spatial resolution. However, in any force spectroscopy experiment, the ability to monitor structural changes in nucleic acids with nanometer sensitivity requires the system of interest to be held under high degrees of tension to improve signal to noise. This limitation prohibits measurement of structural changes within nucleic acids under physiologically relevant conditions of low stretching forces. To overcome this challenge, researchers have integrated a spatially sensitive fluorescence spectroscopy method, single molecule-FRET, with MT to allow simultaneous observation and manipulation of nanoscale structural transitions over a wide range of forces. Here, we describe a method for using this hybrid instrument to analyze the mechanical properties of nucleic acids. We expect that this method for analysis of nucleic acid structure will be easily adapted for experiments aiming to interrogate the mechanical responses of other biological macromolecules. PMID:27320203
A Monte Carlo model for 3D grain evolution during welding
Rodgers, Theron M.; Mitchell, John A.; Tikare, Veena
2017-08-04
Welding is one of the most wide-spread processes used in metal joining. However, there are currently no open-source software implementations for the simulation of microstructural evolution during a weld pass. Here we describe a Potts Monte Carlo based model implemented in the SPPARKS kinetic Monte Carlo computational framework. The model simulates melting, solidification and solid-state microstructural evolution of material in the fusion and heat-affected zones of a weld. The model does not simulate thermal behavior, but rather utilizes user input parameters to specify weld pool and heat-affect zone properties. Weld pool shapes are specified by Bezier curves, which allow formore » the specification of a wide range of pool shapes. Pool shapes can range from narrow and deep to wide and shallow representing different fluid flow conditions within the pool. Surrounding temperature gradients are calculated with the aide of a closest point projection algorithm. Furthermore, the model also allows simulation of pulsed power welding through time-dependent variation of the weld pool size. Example simulation results and comparisons with laboratory weld observations demonstrate microstructural variation with weld speed, pool shape, and pulsed-power.« less