Wide-field microscopy using microcamera arrays
NASA Astrophysics Data System (ADS)
Marks, Daniel L.; Youn, Seo Ho; Son, Hui S.; Kim, Jungsang; Brady, David J.
2013-02-01
A microcamera is a relay lens paired with image sensors. Microcameras are grouped into arrays to relay overlapping views of a single large surface to the sensors to form a continuous synthetic image. The imaged surface may be curved or irregular as each camera may independently be dynamically focused to a different depth. Microcamera arrays are akin to microprocessors in supercomputers in that both join individual processors by an optoelectronic routing fabric to increase capacity and performance. A microcamera may image ten or more megapixels and grouped into an array of several hundred, as has already been demonstrated by the DARPA AWARE Wide-Field program with multiscale gigapixel photography. We adapt gigapixel microcamera array architectures to wide-field microscopy of irregularly shaped surfaces to greatly increase area imaging over 1000 square millimeters at resolutions of 3 microns or better in a single snapshot. The system includes a novel relay design, a sensor electronics package, and a FPGA-based networking fabric. Biomedical applications of this include screening for skin lesions, wide-field and resolution-agile microsurgical imaging, and microscopic cytometry of millions of cells performed in situ.
Cryogenic solid Schmidt camera as a base for future wide-field IR systems
NASA Astrophysics Data System (ADS)
Yudin, Alexey N.
2011-11-01
Work is focused on study of capability of solid Schmidt camera to serve as a wide-field infrared lens for aircraft system with whole sphere coverage, working in 8-14 um spectral range, coupled with spherical focal array of megapixel class. Designs of 16 mm f/0.2 lens with 60 and 90 degrees sensor diagonal are presented, their image quality is compared with conventional solid design. Achromatic design with significantly improved performance, containing enclosed soft correcting lens behind protective front lens is proposed. One of the main goals of the work is to estimate benefits from curved detector arrays in 8-14 um spectral range wide-field systems. Coupling of photodetector with solid Schmidt camera by means of frustrated total internal reflection is considered, with corresponding tolerance analysis. The whole lens, except front element, is considered to be cryogenic, with solid Schmidt unit to be flown by hydrogen for improvement of bulk transmission.
NASA Astrophysics Data System (ADS)
Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.
2017-08-01
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Wide-field airborne laser diode array illuminator: demonstration results
NASA Astrophysics Data System (ADS)
Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.
2005-06-01
The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.
The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Lenc, E.; Anderson, C. S.; Barry, N.; Bowman, J. D.; Cairns, I. H.; Farnes, J. S.; Gaensler, B. M.; Heald, G.; Johnston-Hollitt, M.; Kaplan, D. L.; Lynch, C. R.; McCauley, P. I.; Mitchell, D. A.; Morgan, J.; Morales, M. F.; Murphy, Tara; Offringa, A. R.; Ord, S. M.; Pindor, B.; Riseley, C.; Sadler, E. M.; Sobey, C.; Sokolowski, M.; Sullivan, I. S.; O'Sullivan, S. P.; Sun, X. H.; Tremblay, S. E.; Trott, C. M.; Wayth, R. B.
2017-09-01
We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
Searching for optical transients in real-time : the RAPTOR experiment /.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestrand, W. T.; Borozdin, K. N.; Brumby, Steven P.
2002-01-01
A rich, but relatively unexplored, region in optical astronomy is the study of transients with durations of less than a day. We describe a wide-field optical monitoring system, RAPTOR, which is designed to identify and make follow-up observations of optical transients in real-time. The system is composed of an array of telescopes that continuously monitor about 1500 square degrees of the sky for transients down to about 12' magnitude in 60 seconds and a central fovea telescope that can reach 16{approx}m' agnitude in 60 seconds. Coupled to the telescope array is a real-time data analysis pipeline that is designed tomore » identify transients on timescales of seconds. In a manner analogous to human vision, the entire array is mounted on a rapidly slewing robotic mount so that the fovea of the array can be rapidly directed at transients identified by the wide-field system. The goal of the project is to develop a ground-based optical system that can reliably identify transients in real-time and ultimately generate alerts with source locations to enable follow-up observations wilh other, larger, telescopes.« less
A Census of Southern Pulsars at 185 MHz
NASA Astrophysics Data System (ADS)
Xue, Mengyao; Bhat, N. D. R.; Tremblay, S. E.; Ord, S. M.; Sobey, C.; Swainston, N. A.; Kaplan, D. L.; Johnston, Simon; Meyers, B. W.; McSweeney, S. J.
2017-12-01
The Murchison Widefield Array, and its recently developed Voltage Capture System, facilitates extending the low-frequency range of pulsar observations at high-time and -frequency resolution in the Southern Hemisphere, providing further information about pulsars and the ISM. We present the results of an initial time-resolved census of known pulsars using the Murchison Widefield Array. To significantly reduce the processing load, we incoherently sum the detected powers from the 128 Murchison Widefield Array tiles, which yields 10% of the attainable sensitivity of the coherent sum. This preserves the large field-of-view ( 450 deg2 at 185 MHz), allowing multiple pulsars to be observed simultaneously. We developed a WIde-field Pulsar Pipeline that processes the data from each observation and automatically folds every known pulsar located within the beam. We have detected 50 pulsars to date, 6 of which are millisecond pulsars. This is consistent with our expectation, given the telescope sensitivity and the sky coverage of the processed data ( 17 000 deg2). For 10 pulsars, we present the lowest frequency detections published. For a subset of the pulsars, we present multi-frequency pulse profiles by combining our data with published profiles from other telescopes. Since the Murchison Widefield Array is a low-frequency precursor to the Square Kilometre Array, we use our census results to forecast that a survey using the low-frequency component of the Square Kilometre Array Phase 1 can potentially detect around 9 400 pulsars.
Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team
2018-01-01
The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).
Mitić, Jelena; Anhut, Tiemo; Meier, Matthias; Ducros, Mathieu; Serov, Alexander; Lasser, Theo
2003-05-01
Optical sectioning in wide-field microscopy is achieved by illumination of the object with a continuously moving single-spatial-frequency pattern and detecting the image with a smart pixel detector array. This detector performs an on-chip electronic signal processing that extracts the optically sectioned image. The optically sectioned image is directly observed in real time without any additional postprocessing.
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; McElwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Hilton, George; Perrin, Marshall; Sayson, Llop; Domingo, Jorge;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a prototype lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey TelescopeAstrophysics Focused Telescope Assets (WFIRSTAFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC). We will present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the compatibility to upgrade from the current 1k x 1k detector array to 4k x 4k detector array. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
A first look for molecules between 103 and 133 MHz using the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Tremblay, Chenoa D.; Hurley-Walker, Natasha; Cunningham, Maria; Jones, Paul A.; Hancock, Paul J.; Wayth, Randall; Jordan, Christopher H.
2017-11-01
We detail and present results from a pilot study to assess the feasibility of detecting molecular lines at low radio frequencies. We observed a 400 square degree region centred on the Galactic Centre with the Murchison Widefield Array between 103 and 133 MHz targeting 28 known molecular species that have significant transitions. The results of this survey yield tentative detections of nitric oxide (NO) and the mercapto radical (SH). Both of these molecules appear to be associated with evolved stars.
A digital-receiver for the MurchisonWidefield Array
NASA Astrophysics Data System (ADS)
Prabu, Thiagaraj; Srivani, K. S.; Roshi, D. Anish; Kamini, P. A.; Madhavi, S.; Emrich, David; Crosse, Brian; Williams, Andrew J.; Waterson, Mark; Deshpande, Avinash A.; Shankar, N. Udaya; Subrahmanyan, Ravi; Briggs, Frank H.; Goeke, Robert F.; Tingay, Steven J.; Johnston-Hollitt, Melanie; R, Gopalakrishna M.; Morgan, Edward H.; Pathikulangara, Joseph; Bunton, John D.; Hampson, Grant; Williams, Christopher; Ord, Stephen M.; Wayth, Randall B.; Kumar, Deepak; Morales, Miguel F.; deSouza, Ludi; Kratzenberg, Eric; Pallot, D.; McWhirter, Russell; Hazelton, Bryna J.; Arcus, Wayne; Barnes, David G.; Bernardi, Gianni; Booler, T.; Bowman, Judd D.; Cappallo, Roger J.; Corey, Brian E.; Greenhill, Lincoln J.; Herne, David; Hewitt, Jacqueline N.; Kaplan, David L.; Kasper, Justin C.; Kincaid, Barton B.; Koenig, Ronald; Lonsdale, Colin J.; Lynch, Mervyn J.; Mitchell, Daniel A.; Oberoi, Divya; Remillard, Ronald A.; Rogers, Alan E.; Salah, Joseph E.; Sault, Robert J.; Stevens, Jamie B.; Tremblay, S.; Webster, Rachel L.; Whitney, Alan R.; Wyithe, Stuart B.
2015-03-01
An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300 MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.
A New Large-Well 1024x1024 Si:As Detector for the Mid-Infrared
NASA Technical Reports Server (NTRS)
Mainzer, Amanda K.; Hong, John H.; Stapelbroek, M. G.; Hogue, Henry; Molyneux, Dale; Ressler, Michael E.; Watkins, Ernie; Reekstin, John; Werner, Mike; Young, Erick
2005-01-01
We present a description of a new 1024x1024 Si:As array designed for ground-based use from 5 - 28 microns. With a maximum well depth of 5e6 electrons, this device brings large-format array technology to bear on ground-based mid-infrared programs, allowing entry to the mega-pixel realm previously only accessible to the near-IR. The multiplexer design features switchable gain, a 256x256 windowing mode for extremely bright sources, and it is two-edge buttable. The device is currently in its final design phase at DRS in Cypress, CA. We anticipate completion of the foundry run in October 2005. This new array will enable wide field, high angular resolution ground-based follow up of targets found by space-based missions such as the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE).
Wide-field Astronomy Projects at the UKATC
NASA Astrophysics Data System (ADS)
Hawarden, T. G.; Casali, M. M.; Holland, W. S.; Ivison, R. J.; Wright, G. S.
2001-12-01
The UK Astronomy Technology Centre is engaged on a number of projects which are defining the stare of the art in several areas of wide-field astronomy. The most advanced of these will equip the UK Infrared Telescope (UKIRT) with a wide-field NIR (1 - 2.5 um) imager, WFCAM, in 2003. WFCAM will use 4 2k-square HgCdTe arrays to cover 0.19 square degrees in a single exposure. It will have 0."4 pixels and will employ multiple exposures (16 in the basic case) and microstepping to obtain full sampling of the PSF. WFCAM will reach K=19.4 at 5 sigma over 1 sq. deg. in 1 hour. Several deep surveys are planned; details are at http://www.roe.ac.uk/atc/projects/wfcam/science/. The project is in collaboration with the SUBARU telescope of the National Astronomy Observatory of Japan. Major data centres and archives will be established within the UK widefield astronomy groups and at SUBARU. SCUBA, on the JCMT, is currently the most-cited facility in Astronomy after the HST. Plans and technology development are well advanced for its replacement, SCUBA-2. This ambitious instrument is also an imager working at 450 and 850 um, but with greatly enlarged FOV and improved sensitivity. Technical developments at the NIST, Boulder, Co. are aimed at producing 2 6400-pixel arrays of Transition Edge Sensors, covering 8' x 8', with a system NEFD of 30mJy at 850 and 100 mJy at 450um. The 850 um FOV will be fully sampled; the 450 um FOV will be 2X undersampled. SCUBA-2 will be able to make a confusion-limited survey of 1 ° 2 of sky in just 24 hours of observing; indeed it will map large areas of sky up to an order of magnitude faster than ALMA in compact mode; it will make major new contributions to all areas of astronomy, from the solar system to Z=10 galaxies. Lastly, designs are well advanced for a powerful multiple cryogenic Integral Field spectroscopic facility. The design is well suited to VLTs or ELTs and will employ up to 8 unit spectrometers, each with a 2k2 array fed by four cryogenic deployable optical feed arms. These use a simple design to maintain a constant optical path length while placing the input apertures for the Integral Field Units anywhere in a 10' field of view.
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA
NASA Technical Reports Server (NTRS)
Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall;
2015-01-01
Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.
The UV Survey Mission Concept, CETUS
NASA Astrophysics Data System (ADS)
Heap, Sara; and the CETUS Team
2018-01-01
In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).
Research on Wide-field Imaging Technologies for Low-frequency Radio Array
NASA Astrophysics Data System (ADS)
Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.
2017-09-01
Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.
The GRB All-sky Spectrometer Experiment II: Data Collection and Analysis
NASA Astrophysics Data System (ADS)
Voigt, Elana; Martinot, Zachary; Banks, Zachary; Pober, Jonathan; Morales, Miguel F.
2015-01-01
The GRB All-sky Spectrometer Experiment (GASE) is a widefield interferometer radio telescope designed to look for Gamma Ray Bursts in the 30 to 50 MHz range. It is based and operated as a wholly undergraduate experiment at the University of Washington. This poster will focus on data analysis and the relation of data analysis to the commissioning process of our 8 element GASE array.
PAPER: The Precision Array To Probe The Epoch Of Reionization
NASA Astrophysics Data System (ADS)
Backer, Donald C.; Parsons, A.; Bradley, R.; Parashare, C.; Gugliucci, N.; Mastrantonio, E.; Herne, D.; Lynch, M.; Wright, M.; Werhimer, D.; Carilli, C.; Datta, A.; Aguirre, J.
2007-12-01
The Precision Array to Probe the Epoch of Reionization (PAPER) is an experiment that is being designed to detect the faint HI signal from the epoch of reionization. Our instrumentation goals include: the design and building of dipole elements that are optimized for operation from 120-190 MHz with a clean beam response; amplifiers and receivers with good impedance match and overall flat gain response over a large bandpass; and an FPGA correlator capable of producing full Stokes products for the array. The array is being built and evaluated in stages at the Green Bank Observatory in West Virginia with deployment of the full instrument in Western Australia. We present results from an eight-station deployment in Green Bank and four-station deployment in Western Australia, including phase and amplitude calibration, RFI mitigation and removal, full sky maps, and wide-field snapshot imaging. We have discovered new ways to improve our system's stability and sensitivity from these early experiments, and are applying these concepts to a 16-element array in Green Bank in early 2008 and a 32-element array in Western Australia later in 2008.
NASA Technical Reports Server (NTRS)
Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)
2012-01-01
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.
1-Million droplet array with wide-field fluorescence imaging for digital PCR.
Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P
2011-11-21
Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.
NASA Technical Reports Server (NTRS)
Barr, Lawrence D. (Editor)
1990-01-01
The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.
The Murchison Widefield Array: solar science with the low frequency SKA Precursor
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Oberoi, D.; Cairns, I.; Donea, A.; Duffin, R.; Arcus, W.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A.; deSouza, L.; Emrich, D.; Gaensler, B. M.; R, Goeke; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kennewell, J. A.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Ord, S. M.; Pathikulangara, J.; Prabu, T.; Remillard, R. A.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya-Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.
2013-06-01
The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements (known as tiles) distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper concentrates on the capabilities of the MWA for solar science and summarises some of the solar science results to date, in advance of the initial operation of the final instrument in 2013.
NASA Astrophysics Data System (ADS)
Barry, N.; Beardsley, A.; Bowman, J.; Briggs, F.; Byrne, R.; Carroll, P.; Hazelton, B.; Jacobs, D.; Jordan, C.; Kittiwisit, P.; Lanman, A.; Lenc, E.; Li, W.; Line, J.; McKinley, B.; Mitchell, D.; Morales, M.; Murray, S.; Paul, S.; Pindor, B.; Pober, J.; Rahimi, M.; Riding, J.; Sethi, S.; Shankar, U.; Subrahmanyan, R.; Sullivan, I.; Takahashi, K.; Thyagarajan, N.; Tingay, S.; Trott, C.; Wayth, R.; Webster, R.; Wyithe, S.
2017-01-01
The Murchison Widefield Array is designed to measure the fluctuations in the 21cm emission from neutral hydrogen during the Epoch of Reionisation. The new hex configuration is explicitly designed to test the predicted increase in sensitivity of redundant baselines. However the challenge of the new array is to understand calibration with the new configuration. We have developed two new pipelines to reduce the hex data, and will compare the results with previous datasets from the Phase 1 array. We have now processed 80 hours of data refining the data analysis through our two established Phase 1 pipelines. This proposal requests as much observing time as possible in semester 2017-A to (1) obtain a comparable hex dataset to test the sensitivity and systematic limits with redundant arrays, (2) establish the optimal observing strategy for an EoR detection, and (3) continue to explore observational strategies in the three EoR fields to advise the design of SKA-low experiments. Due to the proposed changes in the array during the upcoming semester, we have not requested a specific number of hours, but will optimise our observing program as availability of the telescope becomes clear. We note that this observing proposal implements the key scientific program that can benefit from the new hex configuration.
VizieR Online Data Catalog: MWACS (Hurley-Walker+, 2014)
NASA Astrophysics Data System (ADS)
Hurley-Walker, N.; Morgan, J.; Wayth, R. B.; Hancock, P. J.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Hazelton, B. J.; Hindson, L.; Jacobs, D. C.; Kaplan, D. L.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Pindor, B.; Procopio, P.; Oberoi, D.; Offringa, A.; Ord, S.; Riding, J.; Bowman, J. D.; Cappallo, R.; Corey, B.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L.; Hewitt, J.; Johnston-Hollitt, M.; Kasper, J.; Kratzenberg, E.; Lonsdale, C.; Lynch, M.; McWhirter, R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A.; Roshi, A.; Shankar, U.; Srivani, K.; Subrahmanyan, R.; Tingay, S.; Waterson, M.; Webster, R.; Whitney, A.; Williams, A.; Williams, C.
2014-10-01
The Murchison Widefield Array Commissioning Survey (MWACS) is a ~6100deg2 104-196MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December. The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The data were combined in the visibility plane before being imaged, and then mosaicked. The survey covers approximately 20.5h
Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation
NASA Astrophysics Data System (ADS)
Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan
2015-08-01
Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection.
NASA Astrophysics Data System (ADS)
Jordan, C. H.; Murray, S.; Trott, C. M.; Wayth, R. B.; Mitchell, D. A.; Rahimi, M.; Pindor, B.; Procopio, P.; Morgan, J.
2017-11-01
We detail new techniques for analysing ionospheric activity, using Epoch of Reionization data sets obtained with the Murchison Widefield Array, calibrated by the `real-time system' (RTS). Using the high spatial- and temporal-resolution information of the ionosphere provided by the RTS calibration solutions over 19 nights of observing, we find four distinct types of ionospheric activity, and have developed a metric to provide an `at a glance' value for data quality under differing ionospheric conditions. For each ionospheric type, we analyse variations of this metric as we reduce the number of pierce points, revealing that a modest number of pierce points is required to identify the intensity of ionospheric activity; it is possible to calibrate in real-time, providing continuous information of the phase screen. We also analyse temporal correlations, determine diffractive scales, examine the relative fractions of time occupied by various types of ionospheric activity and detail a method to reconstruct the total electron content responsible for the ionospheric data we observe. These techniques have been developed to be instrument agnostic, useful for application on LOw Frequency ARray and Square Kilometre Array-Low.
NASA Astrophysics Data System (ADS)
Moon, Dae-Sik; Kim, Sang Chul; Lee, Jae-Joon; Pak, Mina; Park, Hong Soo; He, Matthias Y.; Antoniadis, John; Ni, Yuan Qi; Lee, Chung-Uk; Kim, Seung-Lee; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Gonzalez, Santiago
2016-08-01
The Korea Microlensing Telescope Network (KMTNet) is a network of three new 1.6-m, wide-field telescopes spread over three different sites in Chile, South Africa and Australia. Each telescope is equipped with a four square degree wide-field CCD camera, making the KMTNet an ideal facility for discovering and monitoring early supernovae and other rapidly evolving optical transients by providing 24-hour continuous sky coverage. We describe our inaugurating program of observing supernovae and optical transients using about 20% of the KMTNet time in 2015-2019. Our early results include detection of infant supernovae, novae and peculiar transients as well as numerous variable stars and low surface brightness objects such as dwarf galaxies.
VizieR Online Data Catalog: 180MHz Murchison Commissioning Survey (MWACS) (Hurley-Walker+, 2014)
NASA Astrophysics Data System (ADS)
Hurley-Walker, N.; Morgan, J.; Wayth, R. B.; Hancock, P. J.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Hazelton, B. J.; Hindson, L.; Jacobs, D. C.; Kaplan, D. L.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Pindor, B.; Procopio, P.; Oberoi, D.; Offringa, A.; Ord, S.; Riding, J.; Bowman, J. D.; Cappallo, R.; Corey, B.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L.; Hewitt, J.; Johnston-Hollitt, M.; Kasper, J.; Kratzenberg, E.; Lonsdale, C.; Lynch, M.; McWhirter, R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A.; Roshi, A.; Shankar, U.; Srivani, K.; Subrahmanyan, R.; Tingay, S.; Waterson, M.; Webster, R.; Whitney, A.; Williams, A.; Williams, C.
2014-10-01
The Murchison Widefield Array Commissioning Survey (MWACS) is a ~6100deg2 104-196MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December. The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The data were combined in the visibility plane before being imaged, and then mosaicked. The survey covers approximately 20.5h
NASA Astrophysics Data System (ADS)
Ichikawa, Takashi; Obata, Tomokazu
2016-08-01
A design of the wide-field infrared camera (AIRC) for Antarctic 2.5m infrared telescope (AIRT) is presented. The off-axis design provides a 7'.5 ×7'. 5 field of view with 0".22 pixel-1 in the wavelength range of 1 to 5 μm for the simultaneous three-color bands using cooled optics and three 2048×2048 InSb focal plane arrays. Good image quality is obtained over the entire field of view with practically no chromatic aberration. The image size corresponds to the refraction limited for 2.5 m telescope at 2 μm and longer. To enjoy the stable atmosphere with extremely low perceptible water vapor (PWV), superb seeing quality, and the cadence of the polar winter at Dome Fuji on the Antarctic plateau, the camera will be dedicated to the transit observations of exoplanets. The function of a multi-object spectroscopic mode with low spectra resolution (R 50-100) will be added for the spectroscopic transit observation at 1-5 μm. The spectroscopic capability in the environment of extremely low PWV of Antarctica will be very effective for the study of the existence of water vapor in the atmosphere of super earths.
NASA Astrophysics Data System (ADS)
Villalobos, Joel; Fallon, James B.; Nayagam, David A. X.; Shivdasani, Mohit N.; Luu, Chi D.; Allen, Penelope J.; Shepherd, Robert K.; Williams, Chris E.
2014-08-01
Objective. The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. Approach. A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. Main results. The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm-2). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. Significance. Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.
NASA Astrophysics Data System (ADS)
Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.
2017-11-01
The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.
Configuration Considerations for Low Frequency Arrays
NASA Astrophysics Data System (ADS)
Lonsdale, C. J.
2005-12-01
The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.
The future of Canada's radio astronomy
NASA Astrophysics Data System (ADS)
Gaensler, Bryan M.
2017-11-01
Through involvement in CHIME, ALMA, the Jansky VLA and the Murchison Widefield Array, Canada is well placed in current radio astronomy facilities and the future looks even brighter, with strategic interest in the SKA and the Next Generation VLA.
THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Daniel C.; Beardsley, A. P.; Bowman, Judd D.
2016-07-10
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed,more » accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.« less
Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications
Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K.
2016-01-01
Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm2), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm2. Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications. PMID:27231630
High-speed particle tracking in microscopy using SPAD image sensors
NASA Astrophysics Data System (ADS)
Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.
2018-02-01
Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.
A 50W@170K pulse tube cryocooler used in wide-field survey telescope
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua; Wu, Yinong
2018-05-01
In this paper, a pulse tube cryocooler used in a wide-field survey telescope is described, this telescope is going to be launched in 2020 in China. And in the telescope, large focal plane array (FPA) detectors working at 188K generate 100W heat which need to be cooled. In order to cool the detectors, three 50W@170K pulse tube cryocoolers are used, with designed life-time of l0 years. To decrease the vibration and electromagnetic interference to the detectors to the minimal limit, two cryogenic loop heat pipes (LHPs) are used to transfer heat from the detectors to the cold tips of the pulse tube cryocoolers. And each cold tip is specified to match the condensers of the LHPs. The cryolooer is driven by a dual-opposed piston compressor with a pair of moving magnet linear motors, one of the motors is also used as the adaptive active vibration suppressor. The cryocooler reaches 16.6% Carnot efficiency at cooling power of 50W@170K with 230Wac input power.
Foreground Characterization for the Murchison Widefield Array Using the Jansky Very Large Array
NASA Astrophysics Data System (ADS)
Busch, Michael P.; Bowman, Judd D.; Kittiwisit, Piyanat; Jacobs, Danny
2016-01-01
One of the most compelling questions in astrophysics today is how the process of galaxy formation unfolded during the Epoch of Reionization (EoR). A new generation of radio telescopes, including the Murchison Widefield Array (MWA) and others, are attempting to capture the redshifted 21cm signal from neutral hydrogen during the EoR. Mapping the reionization of the intergalactic medium (IGM) is one of the core objectives of 21 cm observatories. A pressing concern of these observations is the bright foreground sources in the telescope's sidelobes outside the primary beam of the MWA. These sources, including AGN, radio galaxies and local Galactic sources, are numerous and difficult to deal with. These foreground contaminants are five orders of magnitude brighter than the redshifted 21 cm emission expected from the IGM during the EoR. The Jansky Very Large Array (JVLA) in New Mexico can provide sensitive characterization of these sources in the MWA's northern sidelobe. We observed 100 bright radio sources using the JVLA in P-band and characterized these sources by extracting the spectral fits and fluxes for each source. By creating a foreground model for these data, the MWA will be able to better subtract these sources from future EoR measurements. We report the current status of the creation of the foreground model.
Astrobo: Towards a new observatory control system for the Garching Observatory 0.6m
NASA Astrophysics Data System (ADS)
Schweyer, T.; Jarmatz, P.; Burwitz, V.
2016-12-01
The recently installed Campus Observatory Garching (COG) 0.6m telescope features a wide array of instruments, including a wide-field imager and a variety of spectrographs. To support all these different instruments and improve time usage, it was decided to develop a new control system from scratch, that will be able to safely observe autonomously as well as manually (for student lab courses). It is built using an hierarchical microservice architecture, which allows well-specified communication between its components regardless of the programming language used. This modular design allows for fast prototyping of components as well as easy implementation of complex instrumentation control software.
Space infrared telescope facility wide field and diffraction limited array camera (IRAC)
NASA Technical Reports Server (NTRS)
Fazio, Giovanni G.
1988-01-01
The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.
Alali, Sanaz; Gribble, Adam; Vitkin, I Alex
2016-03-01
A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.
NASA Astrophysics Data System (ADS)
Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.
2017-03-01
Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.
VizieR Online Data Catalog: Extragalactic peaked-spectrum radio sources (Callingham+, 2017)
NASA Astrophysics Data System (ADS)
Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapinska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2017-09-01
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) extragalactic catalog represents a significant advance in selecting peaked-spectrum sources, since it is constituted of sources that were contemporaneously surveyed with the widest fractional radio bandwidth to date, with 20 flux density measurements between 72 and 231MHz. We also use the NRAO VLA Sky Survey (NVSS; Condon+ 1998, VIII/65) and the Sydney University Molonglo Sky Survey (SUMSS; See Mauch+ 2008, VIII/81). Since the combination of NVSS and SUMSS cover the entire GLEAM survey and are an order of magnitude more sensitive, this study is sensitive to peaked-spectrum sources that peak anywhere between 72MHz and 843MHz/1.4GHz. The GLEAM survey was formed from observations conducted by the Murchison Widefield Array (MWA), which surveyed the sky between 72 and 231MHz from 2013 August to 2014 July (Wayth+ 2015PASA...32...25W - see also VIII/100). (5 data files).
Optical Design of WFIRST-AFTA Wide-Field Instrument
NASA Technical Reports Server (NTRS)
Pasquale, Bert; Content, Dave; Kruk, Jeffrey; Vaughn, David; Gong, Qian; Howard, Joseph; Jurling, Alden; Mentzell, Eric; Armani, Nerses; Kuan, Gary
2014-01-01
The WFIRSTAFTA Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq FOV at 0.11 pixel scale, operating between 0.6 2.4m, including a spectrograph mode (1.3-1.95m.) An IFU provides a discrete 3x3.15 field at 0.15 sampling.
Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE
NASA Technical Reports Server (NTRS)
Stern, Theodore G.; Lyons, John
2000-01-01
A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.
The NOAO NEWFIRM Data Handling System
NASA Astrophysics Data System (ADS)
Zárate, N.; Fitzpatrick, M.
2008-08-01
The NOAO Extremely Wide-Field IR Mosaic (NEWFIRM) is a new 1-2.4 micron IR camera that is now being commissioned for the 4m Mayall telescope at Kitt Peak. The focal plane consists of a 2x2 mosaic of 2048x2048 arrays offerring a field-of-view of 27.6' on a side. The use of dual MONSOON array controllers permits very fast readout, a scripting interface allows for highly efficient observing modes. We describe the Data Handling System (DHS) for the NEWFIRM camera which is designed to meet the performance requirements of the instrument as well as the observing environment in which in operates. It is responsible for receiving the data stream from the detector and instrument software, rectifying the image geometry, presenting a real-time display of the image to the user, final assembly of a science-grade image with complete headers, as well as triggering automated pipeline and archival functions. The DHS uses an event-based messaging system to control multiple processes on a distributed network of machines. The asynchronous nature of this processing means the DHS operates independently from the camera readout and the design of the system is inherently scalable to larger focal planes that use a greater number of array controllers. Current status and future plans for the DHS are also discussed.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
FAME: freeform active mirror experiment
NASA Astrophysics Data System (ADS)
Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars
2016-07-01
FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.
The Wide-Field Imaging Interferometry Testbed: Recent Progress
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.
DMD-based programmable wide field spectrograph for Earth observation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean
2015-03-01
In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.
2013-04-01
liquid nitrogen cooled mercury cadmium telluride ( MCT ) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the...telluride ( MCT ) detector (InfraRed Associates, Stuart, FL), and in a second widefield imaging configuration, we employed a cooled focal plane array (FPA...experiment, a cooled focal plane array (FPA) was substituted for the bolometer. (b) A cooled single-element MCT detector is utilized with an adjustable
LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinley, B.; Briggs, F.; Kaplan, D. L.
2013-01-01
A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of themore » Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.« less
VizieR Online Data Catalog: VLBA observations of the COSMOS field (Herrera Ruiz+, 2017)
NASA Astrophysics Data System (ADS)
Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R. P.; Best, P. N.; Brisken, W.; Schinnerer, E.; Smolcic, V.; Delvecchio, I.; Momjian, E.; Bomans, D.; Scoville, N. Z.; Carilli, C.
2017-07-01
Wide-field Very Long Baseline Interferometry observations were made of all known radio sources in the COSMOS field at 1.4GHz using the Very Long Baseline Array (VLBA). We also collected complementary multiwavelength information from the literature for the VLBA detected sources. (2 data files).
Deciphering Debris Disk Structure with the Submillimeter Array
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann
2018-01-01
More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.
Discovery of KPS-1b, a Transiting Hot-Jupiter, with an Amateur Telescope Setup (Abstract)
NASA Astrophysics Data System (ADS)
Benni, P.; Burdanov, A.; Krushinsky, V.; Sokov, E.
2018-06-01
(Abstract only) Using readily available amateur equipment, a wide-field telescope (Celestron RASA, 279 mm f/2.2) coupled with a SBIG ST-8300M camera was set up at a private residence in a fairly light polluted suburban town thirty miles outside of Boston, Massachusetts. This telescope participated in the Kourovka Planet Search (KPS) prototype survey, along with a MASTER-II Ural wide field telescope near Yekaterinburg, Russia. One goal was to determine if higher resolution imaging ( 2 arcsec/pixel) with much lower sky coverage can practically detect exoplanet transits compared to the successful very wide-field exoplanet surveys (KELT, XO, WASP, HATnet, TrES, Qatar, etc.) which used an array of small aperture telescopes coupled to CCDs.
NASA Technical Reports Server (NTRS)
Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.
4MOST systems engineering: from conceptual design to preliminary design review
NASA Astrophysics Data System (ADS)
Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland
2016-08-01
The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.
Solid state optical microscope
Young, I.T.
1983-08-09
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.
Solid-state optical microscope
Young, I.T.
1981-01-07
A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Solid state optical microscope
Young, Ian T.
1983-01-01
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Artist's Concept of Wide-field Infrared Survey Explorer (WISE)
NASA Technical Reports Server (NTRS)
2004-01-01
Artist's concept of Wide-field Infrared Survey Explorer. A new NASA mission will scan the entire sky in infrared light in search of nearby cool stars, planetary construction zones and the brightest galaxies in the universe. Called the Wide-field Infrared Survey Explorer, the mission has been approved to proceed into the preliminary design phase as the next in NASA's Medium-class Explorer program of lower cost, highly focused, rapid-development scientific spacecraft. It is scheduled to launch in 2008.Construction of an instant structured illumination microscope
Curd, Alistair; Cleasby, Alexa; Makowska, Katarzyna; York, Andrew; Shroff, Hari; Peckham, Michelle
2015-01-01
A challenge in biological imaging is to capture high-resolution images at fast frame rates in live cells. The “instant structured illumination microscope” (iSIM) is a system designed for this purpose. Similarly to standard structured illumination microscopy (SIM), an iSIM provides a twofold improvement over widefield microscopy, in x, y and z, but also allows much faster image acquisition, with real-time display of super-resolution images. The assembly of an iSIM is reasonably complex, involving the combination and alignment of many optical components, including three micro-optics arrays (two lenslet arrays and an array of pinholes, all with a pitch of 222 μm) and a double-sided scanning mirror. In addition, a number of electronic components must be correctly controlled. Construction of the system is therefore not trivial, but is highly desirable, particularly for live-cell imaging. We report, and provide instructions for, the construction of an iSIM, including minor modifications to a previous design in both hardware and software. The final instrument allows us to rapidly acquire fluorescence images at rates faster than 100 fps, with approximately twofold improvement in resolution in both x–y and z; sub-diffractive biological features have an apparent size (full width at half maximum) of 145 nm (lateral) and 320 nm (axial), using a 1.49 NA objective and 488 nm excitation. PMID:26210400
Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy
Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.
2017-01-01
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.
2016-03-20
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in themore » sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.« less
Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection
NASA Astrophysics Data System (ADS)
Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu
2017-09-01
We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.
Cosmic Dawn Intensity Mapper (CDIM): Instrument and Mission Design
NASA Astrophysics Data System (ADS)
Unwin, Stephen C.; CDIM Team
2018-01-01
CDIM is the Cosmic Dawn Intensity Mapper, one of the probe-class missions currently under study for NASA. A detailed Report from the study will be submitted to NASA and for consideration by the Decadal Survey. The flight system will comprise a wide-field cryogenic telescope with a large focal plane array providing complete coverage from optical through mid-IR. The system will be deployed to L2 or Earth-trailing orbit, to provide a stable thermal environment and allow extended observations of fields selected to be cross-correlated with deep surveys in other wavebands. Spectra with will be measured for every point in each target field, using linear variable filters (LVFs). These filters eliminate the need for a spectrometer in the focal plane. Spectra are built up through simple imaging of a series of telescope pointings separated by small angular offsets. This poster presents the initial concept for the instrument and mission design.
NASA Astrophysics Data System (ADS)
Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd
2017-09-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
NASA Astrophysics Data System (ADS)
Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting
2018-01-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
Progress Report on Optimizing X-ray Optical Prescriptions for Wide-Field Applications
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2011-01-01
We report on the present status of our continuing efforts to develop a method for optimizing wide-field nested x-ray telescope mirror prescriptions. Utilizing extensive Monte-Carlo ray trace simulations, we find an analytic form for the root-mean-square dispersion of rays from a Wolter I optic on the surface of a flat focal plane detector as a function of detector tilt away from the nominal focal plane and detector displacement along the optical axis. The configuration minimizing the ray dispersion from a nested array of Wolter I telescopes is found by solving a linear system of equations for tilt and individual mirror pair displacement. Finally we outline our initial efforts at expanding this method to include higher order polynomial terms in the mirror prescriptions.
A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744
NASA Astrophysics Data System (ADS)
Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.
2018-03-01
We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.
2009-08-17
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft is situated on a work stand. At left on the spacecraft is the fixed panel solar array. In front, the square is the HGA Slotted Array (Ku-Band). The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 10. Photo credit: NASA/Moore, VAFB
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging.
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R
2015-12-15
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A , 1985, 2 .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging
NASA Astrophysics Data System (ADS)
Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.
2015-12-01
Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.
The LUVOIR Surveyor: Design Update and Technology Needs
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.
2017-01-01
The Large UV/Optical/Infrared (LUVOIR) Surveyor is one of four large mission concepts being studied by NASA in preparation for the 2020 Decadal Study in Astrophysics. LUVOIR builds upon the legacy of the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST) in that it is a large, segmented aperture space telescope spanning the Far-UV to Near-IR wavelength range, and will perform a broad array of general astrophysics as well as directly detect and characterize habitable exoplanets around nearby sun-like stars. In this talk, we present an overview of the LUVOIR Architecture, a 15-m class telescope with four serviceable instruments. We highlight technologies needed to enable this mission, as well as technologies that may potentially enhance LUVOIR science mission.
NASA Astrophysics Data System (ADS)
Guzman, J. C.; Bennett, T.
2008-08-01
The Convergent Radio Astronomy Demonstrator (CONRAD) is a collaboration between the computing teams of two SKA pathfinder instruments, MeerKAT (South Africa) and ASKAP (Australia). Our goal is to produce the required common software to operate, process and store the data from the two instruments. Both instruments are synthesis arrays composed of a large number of antennas (40 - 100) operating at centimeter wavelengths with wide-field capabilities. Key challenges are the processing of high volume of data in real-time as well as the remote mode of operations. Here we present the software architecture for CONRAD. Our design approach is to maximize the use of open solutions and third-party software widely deployed in commercial applications, such as SNMP and LDAP, and to utilize modern web-based technologies for the user interfaces, such as AJAX.
NASA Astrophysics Data System (ADS)
Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R. M.; Dailey, J.; Eisenhardt, P.; McMillan, R. S.; Wright, E.; Walker, R.; Jedicke, R.; Spahr, T.; Tholen, D.; Alles, R.; Beck, R.; Brandenburg, H.; Conrow, T.; Evans, T.; Fowler, J.; Jarrett, T.; Marsh, K.; Masci, F.; McCallon, H.; Wheelock, S.; Wittman, M.; Wyatt, P.; DeBaun, E.; Elliott, G.; Elsbury, D.; Gautier, T., IV; Gomillion, S.; Leisawitz, D.; Maleszewski, C.; Micheli, M.; Wilkins, A.
2011-04-01
The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations.
An Opportunistic Search for Extraterrestrial Intelligence (SETI) with the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Tremblay, C.; Walsh, A.; Urquhart, R.
2016-08-01
A spectral line image cube generated from 115 minutes of MWA data that covers a field of view of 400 sq, deg. around the Galactic Center is used to perform the first Search for ExtraTerrestrial Intelligence (SETI) with the Murchison Widefield Array (MWA). Our work constitutes the first modern SETI experiment at low radio frequencies, here between 103 and 133 MHz, paving the way for large-scale searches with the MWA and, in the future, the low-frequency Square Kilometre Array. Limits of a few hundred mJy beam-1 for narrowband emission (10 kHz) are derived from our data, across our 400 sq. deg. field of view. Within this field, 45 exoplanets in 38 planetary systems are known. We extract spectra at the locations of these systems from our image cube to place limits on the presence of narrow line emission from these systems. We then derive minimum isotropic transmitter powers for these exoplanets; a small handful of the closest objects (10 s of pc) yield our best limits of order 1014 W (Equivalent Isotropic Radiated Power). These limits lie above the highest power directional transmitters near these frequencies currently operational on Earth. A SETI experiment with the MWA covering the full accessible sky and its full frequency range would require approximately one month of observing time. The MWA frequency range, its southern hemisphere location on an extraordinarily radio quiet site, its very large field of view, and its high sensitivity make it a unique facility for SETI.
Development of Tiled Imaging CZT Detectors for Sensitive Wide-Field Hard X-Ray Surveys to EXIST
NASA Technical Reports Server (NTRS)
Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.
2011-01-01
Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.
NASA Astrophysics Data System (ADS)
Clemens, D. P.; Sarcia, D.; Tollestrup, E. V.; Grabau, A.; Bosh, A.; Buie, M.; Taylor, B.; Dunham, E.
2004-12-01
The Mimir instrument completed its 5-year development in our Boston University lab and was delivered this past July to Flagstaff, Arizona and the Perkins telescope for commissioning. Mimir is a "facility-class" multi-function near-infrared imager, spectrometer, and polarimeter developed under a joint program by Boston University and Lowell Observatory scientists, staff, and engineers. It fully covers the wavelength range 1-5 microns onto its 1024x1024 Aladdin III InSb array detector. In its wide-field imaging mode, a 10x10 arcmin field is sampled at 0.6 arcsec per pixel. In its narrow-field mode, the field is 3x3 arcmin, sampled at 0.2 arcsec per pixel. A full complement of JHKsL'M' broad-band filters are present in its four filter wheels. Spectroscopy is accomplished using a matched slit-plate and selector system, three grisms, and special spectroscopy filters (for order suppression). Polarimetry is accomplished using rotating half-wave plates and a fixed wire grid. All of these modes were certified in the lab; all have been certified at the Perkins telescope during the August/September commissioning run. Mode switches are accomplished in a matter of only seconds, making Mimir exceedingly versatile. The poster highlights the designs and components of Mimir as well as examples of images, spectra, and polarimetry from the commissioning telescope runs this past fall. Internal, shared-risk observations with Mimir begin this quarter. Mimir design and development has been funded by NASA, NSF, and the W.M. Keck Foundation.
Argus+: The Future of Wide-Field, Spectral-Line Imaging at 3-mm with the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Maddalena, Ronald; Frayer, David; Lockman, Felix; O'Neil, Karen; White, Steven; Argus+ Collaboration
2018-01-01
The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. Observers also have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz, including CO, 13CO, C18O, SiO, HCN, HCO+, HNC, N2H+, and CS. The small number of pixels in Argus limits its ability to map many of the most interesting objects whose extent exceeds many arc-minutes. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. We present our plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5’x5’, and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects.
The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey
NASA Astrophysics Data System (ADS)
Bannister, K. W.; Shannon, R. M.; Macquart, J.-P.; Flynn, C.; Edwards, P. G.; O'Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; D'Addario, L. R.; Dodson, R.; Hall, P. J.; Jameson, A.; Jones, D.; Navarro, R.; Trinh, J. T.; Allison, J.; Anderson, C. S.; Bell, M.; Chippendale, A. P.; Collier, J. D.; Heald, G.; Heywood, I.; Hotan, A. W.; Lee-Waddell, K.; Madrid, J. P.; Marvil, J.; McConnell, D.; Popping, A.; Voronkov, M. A.; Whiting, M. T.; Allen, G. R.; Bock, D. C.-J.; Brodrick, D. P.; Cooray, F.; DeBoer, D. R.; Diamond, P. J.; Ekers, R.; Gough, R. G.; Hampson, G. A.; Harvey-Smith, L.; Hay, S. G.; Hayman, D. B.; Jackson, C. A.; Johnston, S.; Koribalski, B. S.; McClure-Griffiths, N. M.; Mirtschin, P.; Ng, A.; Norris, R. P.; Pearce, S. E.; Phillips, C. J.; Roxby, D. N.; Troup, E. R.; Westmeier, T.
2017-05-01
We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly’s-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg2, and achieve an exposure totaling 13200 deg2 hr . We constrain the position of FRB 170107 to a region 8\\prime × 8\\prime in size (90% containment) and its fluence to be 58 ± 6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be due to either scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (> 20 Jy ms) population of FRBs.
Brute-force mapmaking with compact interferometers: a MITEoR northern sky map from 128 to 175 MHz
NASA Astrophysics Data System (ADS)
Zheng, H.; Tegmark, M.; Dillon, J. S.; Liu, A.; Neben, A. R.; Tribiano, S. M.; Bradley, R. F.; Buza, V.; Ewall-Wice, A.; Gharibyan, H.; Hickish, J.; Kunz, E.; Losh, J.; Lutomirski, A.; Morgan, E.; Narayanan, S.; Perko, A.; Rosner, D.; Sanchez, N.; Schutz, K.; Valdez, M.; Villasenor, J.; Yang, H.; Zarb Adami, K.; Zelko, I.; Zheng, K.
2017-03-01
We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with the simulations for two very different low-frequency interferometers, the Murchison Widefield Array and the MIT Epoch of Reionization (MITEoR) experiment. We then apply the method to the MITEoR data set collected in 2013 July to obtain the first northern sky map from 128 to 175 MHz at ∼2° resolution and find an overall spectral index of -2.73 ± 0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as Hydrogen Epoch of Reionization Array. Both the MITEoR interferometric data and the 150 MHz sky map are available at http://space.mit.edu/home/tegmark/omniscope.html.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, Munetake; Hiramatsu, Masaaki; Tsukagoshi, Takashi
2009-08-05
We carried out an imaging survey of dust continuum emissions toward the Chamaeleon and Lupus regions. Observations were made with the 144-element bolometer array camera AzTEC mounted on the 10-meter sub-millimeter telescope ASTE during 2007-2008. The preliminary results of disk search and the cloud structure of Lupus III are presented.
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Tremblay, C. D.; Croft, S.
2018-03-01
Following the results of the first systematic modern low-frequency search for extraterrestrial intelligence using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a Galactic Anticenter field. Using the MWA in the frequency range 99–122 MHz over a three-hour period, a 625 deg2 field centered on Orion KL (in the general direction of the Galactic Anticenter) was observed with a frequency resolution of 10 kHz. Within this field, 22 exoplanets are known. At the positions of these exoplanets, we searched for narrowband signals consistent with radio transmissions from intelligent civilizations. No such signals were found with a 5σ detection threshold. Our sample is significantly different to the 45 exoplanets previously studied with the MWA toward the Galactic Center, since the Galactic Center sample is dominated by exoplanets detected using microlensing, and hence at much larger distances than the exoplanets toward the Anticenter, found via radial velocity and transit detection methods. Our average effective sensitivity to extraterrestrial transmitter power is therefore much improved for the Anticenter sample. Added to this, our data processing techniques have improved, reducing our observational errors, leading to our best detection limit being reduced by approximately a factor of four compared to our previously published results.
Prospects for the Detection of Fast Radio Bursts with the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B.
2013-10-01
Fast radio bursts (FRBs) are short timescale (Lt1 s) astrophysical radio signals, presumed to be a signature of cataclysmic events of extragalactic origin. The discovery of six high-redshift events at ~1400 MHz from the Parkes radio telescope suggests that FRBs may occur at a high rate across the sky. The Murchison Widefield Array (MWA) operates at low radio frequencies (80-300 MHz) and is expected to detect FRBs due to its large collecting area (~2500 m2) and wide field-of-view (FOV, ~ 1000 deg2 at ν = 200 MHz). We compute the expected number of FRB detections for the MWA assuming a source population consistent with the reported detections. Our formalism properly accounts for the frequency-dependence of the antenna primary beam, the MWA system temperature, and unknown spectral index of the source population, for three modes of FRB detection: coherent; incoherent; and fast imaging. We find that the MWA's sensitivity and large FOV combine to provide the expectation of multiple detectable events per week in all modes, potentially making it an excellent high time resolution science instrument. Deviations of the expected number of detections from actual results will provide a strong constraint on the assumptions made for the underlying source population and intervening plasma distribution.
Wide-field FTIR microscopy using mid-IR pulse shaping
Serrano, Arnaldo L.; Ghosh, Ayanjeet; Ostrander, Joshua S.; Zanni, Martin T.
2015-01-01
We have developed a new table-top technique for collecting wide-field Fourier transform infrared (FTIR) microscopic images by combining a femtosecond pulse shaper with a mid-IR focal plane array. The pulse shaper scans the delay between a pulse pair extremely rapidly for high signal-to-noise, while also enabling phase control of the individual pulses to under-sample the interferograms and subtract background. Infrared absorption images were collected for a mixture of W(CO)6 or Mn2(CO)10 absorbed polystyrene beads, demonstrating that this technique can spatially resolve chemically distinct species. The images are sub-diffraction limited, as measured with a USAF test target patterned on CaF2 and verified with scalar wave simulations. We also find that refractive, rather than reflective, objectives are preferable for imaging with coherent radiation. We discuss this method with respect to conventional FTIR microscopes. PMID:26191843
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Mining the Sky for Explosive Optical Transients with Both Eyes Open
NASA Astrophysics Data System (ADS)
Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Davidoff, S.; Davis, H.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.
2004-09-01
While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as a minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution ``fovea'' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the ``fovea'' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the ``forest'' of false positives.
Mining the Sky for Explosive Optical Transients with Both Eyes Open
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestrand, W.T.; Casperson, D.J.; Davis, H.
2004-09-28
While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as amore » minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution 'fovea' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the 'fovea' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the 'forest' of false positives.« less
AN OPPORTUNISTIC SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE (SETI) WITH THE MURCHISON WIDEFIELD ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingay, S. J.; Tremblay, C.; Walsh, A.
A spectral line image cube generated from 115 minutes of MWA data that covers a field of view of 400 sq, deg. around the Galactic Center is used to perform the first Search for ExtraTerrestrial Intelligence (SETI) with the Murchison Widefield Array (MWA). Our work constitutes the first modern SETI experiment at low radio frequencies, here between 103 and 133 MHz, paving the way for large-scale searches with the MWA and, in the future, the low-frequency Square Kilometre Array. Limits of a few hundred mJy beam{sup −1} for narrowband emission (10 kHz) are derived from our data, across our 400more » sq. deg. field of view. Within this field, 45 exoplanets in 38 planetary systems are known. We extract spectra at the locations of these systems from our image cube to place limits on the presence of narrow line emission from these systems. We then derive minimum isotropic transmitter powers for these exoplanets; a small handful of the closest objects (10 s of pc) yield our best limits of order 10{sup 14} W (Equivalent Isotropic Radiated Power). These limits lie above the highest power directional transmitters near these frequencies currently operational on Earth. A SETI experiment with the MWA covering the full accessible sky and its full frequency range would require approximately one month of observing time. The MWA frequency range, its southern hemisphere location on an extraordinarily radio quiet site, its very large field of view, and its high sensitivity make it a unique facility for SETI.« less
Wide-field ultraviolet imager for astronomical transient studies
NASA Astrophysics Data System (ADS)
Mathew, Joice; Ambily, S.; Prakash, Ajin; Sarpotdar, Mayuresh; Nirmal, K.; G. Sreejith, A.; Safonova, Margarita; Murthy, Jayant; Brosch, Noah
2018-04-01
Though the ultraviolet (UV) domain plays a vital role in the studies of astronomical transient events, the UV time-domain sky remains largely unexplored. We have designed a wide-field UV imager that can be flown on a range of available platforms, such as high-altitude balloons, CubeSats, and larger space missions. The major scientific goals are the variability of astronomical sources, detection of transients such as supernovae, novae, tidal disruption events, and characterizing active galactic nuclei variability. The instrument has a 80 mm aperture with a circular field of view of 10.8 degrees, an angular resolution of ˜22 arcsec, and a 240 - 390 nm spectral observation window. The detector for the instrument is a Microchannel Plate (MCP)-based image intensifier with both photon counting and integration capabilities. An FPGA-based detector readout mechanism and real time data processing have been implemented. The imager is designed in such a way that its lightweight and compact nature are well fitted for the CubeSat dimensions. Here we present various design and developmental aspects of this UV wide-field transient explorer.
NASA Technical Reports Server (NTRS)
Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan;
2016-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.
Update on the Wide-field Infrared Survey Explorer (WISE)
NASA Technical Reports Server (NTRS)
Mainzer, Amanda K.; Eisenhardt, Peter; Wright, Edward L.; Liu, Feng-Chuan; Irace, William; Heinrichsen, Ingolf; Cutri, Roc; Duval, Valerie
2006-01-01
The Wide-field Infrared Survey Explorer (WISE), a NASA MIDEX mission, will survey the entire sky in four bands from 3.3 to 23 microns with a sensitivity 1000 times greater than the IRAS survey. The WISE survey will extend the Two Micron All Sky Survey into the thermal infrared and will provide an important catalog for the James Webb Space Telescope. Using 1024(sup 2) HgCdTe and Si:As arrays at 3.3, 4.7, 12 and 23 microns, WISE will find the most luminous galaxies in the universe, the closest stars to the Sun, and it will detect most of the main belt asteroids larger than 3 km. The single WISE instrument consists of a 40 cm diamond-turned aluminum afocal telescope, a two-stage solid hydrogen cryostat, a scan mirror mechanism, and reimaging optics giving 5 resolution (full-width-half-maximum). The use of dichroics and beamsplitters allows four color images of a 47' x47' field of view to be taken every 8.8 seconds, synchronized with the orbital motion to provide total sky coverage with overlap between revolutions. WISE will be placed into a Sun-synchronous polar orbit on a Delta 7320-10 launch vehicle. The WISE survey approach is simple and efficient. The three-axis-stabilized spacecraft rotates at a constant rate while the scan mirror freezes the telescope line of sight during each exposure. WISE has completed its mission Preliminary Design Review and its NASA Confirmation Review, and the project is awaiting confirmation from NASA to proceed to the Critical Design phase. Much of the payload hardware is now complete, and assembly of the payload will occur over the next year. WISE is scheduled to launch in late 2009; the project web site can be found at www.wise.ssl.berkeley.edu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannathan, P.; Bhatnagar, S.; Rau, U.
Next generation radio telescope arrays are being designed and commissioned to accurately measure polarized intensity and rotation measures (RMs) across the entire sky through deep, wide-field radio interferometric surveys. Radio interferometer dish antenna arrays are affected by direction-dependent (DD) gains due to both instrumental and atmospheric effects. In this paper, we demonstrate the effect of DD errors of the parabolic dish antenna array on the measured polarized intensities of radio sources in interferometric images. We characterize the extent of polarimetric image degradation due to the DD gains through wide-band VLA simulations of representative point-source simulations of the radio sky atmore » L band (1–2 GHz). We show that at the 0.5 gain level of the primary beam there is significant flux leakage from Stokes I to Q , U amounting to 10% of the total intensity. We further demonstrate that while the instrumental response averages down for observations over large parallactic angle intervals, full-polarization DD correction is required to remove the effects of DD leakage. We also explore the effect of the DD beam on the RM signals and show that while the instrumental effect is primarily centered around 0 rad-m{sup −2}, the effect is significant over a broad range of RM requiring full polarization DD correction to accurately reconstruct the RM synthesis signal.« less
First results from HAWC: monitoring the TeV gamma-ray sky
NASA Astrophysics Data System (ADS)
Lauer, Robert J.
2015-03-01
The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field gamma-ray detector sensitive to primary energies between 100 GeV and 100 TeV. The array is being built at an altitude of 4100 m a.s.l. on the Sierra Negra volcano near Puebla, Mexico. Data taking has already started while construction continues, with the completion projected for early 2015. The design is optimized to detect extended air showers induced by gamma rays that pass through the array and to reconstruct the directions and energies of the primary photons. With a duty cycle close to 100% and a daily coverage of ~8 sr of the sky, HAWC will perform a survey of TeV emissions from many different sources. The northern active galactic nuclei will be monitored for up to 6 hours each day, providing unprecedented light curve coverage at energies comparable to those of imaging air Cherenkov telescopes. HAWC has been in scientific operation with more than 100 detector modules since August 2013. Here we present a preliminary look at the first results and discuss the efforts to integrate HAWC in multi-wavelength studies of extragalactic jets.
Muldoon, Timothy J; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex J; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2012-01-01
Background Confocal endomicroscopy has revolutionized endoscopy by offering sub-cellular images of gastrointestinal epithelium; however, field-of-view is limited. There is a need for multi-scale endoscopy platforms that use widefield imaging to better direct placement of high-resolution probes. Design Feasibility Study Objective This study evaluates the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high resolution imaging to characterize morphologic changes associated with a variety of gastrointestinal conditions. Setting U.T. M.D. Anderson Cancer Center (Houston, TX) and Mount Sinai Medical Center (New York, NY) Patients, Interventions, and Main Outcome Measurements Surgical specimens were obtained from 15 patients undergoing esophagectomy/colectomy. Proflavine, a vital fluorescent dye, was applied topically. Specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. Images were compared to histopathology. Results Widefield-fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy and crowding. High-resolution imaging of widefield-abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with histopathology. Limitations This imaging approach must be validated in vivo with a larger sample size. Conclusions Multi-scale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of gastrointestinal conditions. Distorted glandular features seen with widefield imaging could serve as a critical ‘bridge’ to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital-dye may facilitate point-of-care decision-making by providing real-time, in vivo diagnoses. PMID:22301343
WFIRST: Project Overview and Status
NASA Astrophysics Data System (ADS)
Kruk, Jeffrey; WFIRST Formulation Science Working Group, WFIRST Project Team
2018-01-01
The Wide-Field InfraRed Survey Telescope (WFIRST) will be the next Astrophysics flagship mission to follow JWST. The observatory payload consists of a Hubble-size telescope aperture with a wide-field NIR instrument and a coronagraph operating at visible wavelengths and employing state-of-the-art wavefront sensing and control. The Wide-field instrument is optimized for large area NIR imaging and spectroscopic surveys, with performance requirements driven by programs to study cosmology and exoplanet detection via gravitational microlensing. All data will be public immediately, and a substantial guest observer program will be supported.The WFIRST Project is presently in Phase A, with a transition to Phase B expected in early to mid 2018. Candidate observing programs are under detailed study in order to inform the mission design, but the actual science investigations will not be selected until much closer to launch. We will present an overview of the present mission design and expected performance, a summary of Project status, and plans for selecting the observing programs.
SPHEREx: Instrument and Science Implementation
NASA Astrophysics Data System (ADS)
Korngut, Phillip; SPHEREx Science Team
2018-01-01
SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division. SPHEREx has a simple, high heritage design with large optical throughput to maximize spectral mapping speed, ideal for an all-sky spectral survey. The aluminum telescope is based on a wide-field off-axis reflective triplet design imaged by two mosaics of H2RG focal plane arrays. SPHEREx produces spectra without the use of any dispersive elements. Instead, it uses linear variable filters (LVFs) placed above the detectors to probe the wavelength range between 0.75 and 4.2 um at R=41.4 and 4.2 to 5 um at R=135. Spectra are constructed by stepping the telescope boresight across the sky, modulating the location of an object within the FOV and varying the observation wavelength in each image. The telescope is cooled by a series of three V-groove radiators to < 80K, with the two long-wavelength focal planes to < 55K. The design has ample technical margins on detector, optical, thermal, and pointing performance, and carries additional large margin on point source sensitivity.
Sensarn, Steven; Zavaleta, Cristina L; Segal, Ehud; Rogalla, Stephan; Lee, Wansik; Gambhir, Sanjiv S; Bogyo, Matthew; Contag, Christopher H
2016-12-01
Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes. We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice. This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (p < 0.004) in the murine colon carcinoma model. The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection.
The ArTéMiS wide-field sub-millimeter camera: preliminary on-sky performance at 350 microns
NASA Astrophysics Data System (ADS)
Revéret, Vincent; André, Philippe; Le Pennec, Jean; Talvard, Michel; Agnèse, Patrick; Arnaud, Agnès.; Clerc, Laurent; de Breuck, Carlos; Cigna, Jean-Charles; Delisle, Cyrille; Doumayrou, Eric; Duband, Lionel; Dubreuil, Didier; Dumaye, Luc; Ercolani, Eric; Gallais, Pascal; Groult, Elodie; Jourdan, Thierry; Leriche, Bernadette; Maffei, Bruno; Lortholary, Michel; Martignac, Jérôme; Rabaud, Wilfried; Relland, Johan; Rodriguez, Louis; Vandeneynde, Aurélie; Visticot, François
2014-07-01
ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 μm). A preliminary version of the instrument equipped with the 350 μm focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 austral winters. This instrument is developed by CEA (Saclay and Grenoble, France), IAS (France) and University of Manchester (UK) in collaboration with ESO. We introduce the mechanical and optical design, as well as the cryogenics and electronics of the ArTéMiS camera. ArTeMiS detectors consist in Si:P:B bolometers arranged in 16×18 sub-arrays operating at 300 mK. These detectors are similar to the ones developed for the Herschel PACS photometer but they are adapted to the high optical load encountered at APEX site. Ultimately, ArTeMiS will contain 4 sub-arrays at 200 μm and 2×8 sub-arrays at 350 and 450 μm. We show preliminary lab measurements like the responsivity of the instrument to hot and cold loads illumination and NEP calculation. Details on the on-sky commissioning runs made in 2013 and 2014 at APEX are shown. We used planets (Mars, Saturn, Uranus) to determine the flat-field and to get the flux calibration. A pointing model was established in the first days of the runs. The average relative pointing accuracy is 3 arcsec. The beam at 350 μm has been estimated to be 8.5 arcsec, which is in good agreement with the beam of the 12 m APEX dish. Several observing modes have been tested, like "On- The-Fly" for beam-maps or large maps, spirals or raster of spirals for compact sources. With this preliminary version of ArTeMiS, we concluded that the mapping speed is already more than 5 times better than the previous 350 μm instrument at APEX. The median NEFD at 350 μm is 600 mJy.s1/2, with best values at 300 mJy.s1/2. The complete instrument with 5760 pixels and optimized settings will be installed during the first half of 2015.
WHAT? A Large Reflective Schmidt Telescope for the Antarctic Plateau
NASA Astrophysics Data System (ADS)
Saunders, W.; McGrath, A. J.
We present a design concept for WHAT the Wide-field Antarctic Horizontal Telescope to take advantage of the unique possibilities of Antarctica for both optical and near infrared astronomy. The design is an 8 metre, wide-field, fixed-axis, all-reflective, f/4 Schmidt telescope. Prime and Cassegrain (or Gregorian) foci are provided, giving plate scales 150-1500 μ m/'', over fields of view 3'-3circ. Diffraction limited, NGSAO-corrected K_dark images are possible over arc-minute sized fields, over most of the sky. The sensitivity, resolution, field of view and cost all compare favourably with current or proposed space or ground-based telescopes.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
2009-08-17
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft is situated on a work stand. At right is the fixed panel solar array. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 10. Photo credit: NASA/Moore, VAFB
2009-08-17
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, workers secure NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft onto a work stand. At right is seen the fixed panel solar array. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 10. Photo credit: NASA/Moore, VAFB
2009-08-17
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft is situated on a work stand. In front is the fixed panel solar array. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 10. Photo credit: NASA/Moore, VAFB
Sensarn, Steven; Zavaleta, Cristina L.; Segal, Ehud; Rogalla, Stephan; Lee, Wansik; Gambhir, Sanjiv S.; Bogyo, Matthew; Contag, Christopher H.
2017-01-01
Purpose Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes. Procedures We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice. Results This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (p < 0.004) in the murine colon carcinoma model. Conclusions The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection. PMID:27154508
Final Optical Design of PANIC, a Wide-Field Infrared Camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Gómez, J. Rodríguez; Lenzen, R.; Sánchez-Blanco, E.
We present the Final Optical Design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Ritchey-Chrtien focus of the Calar Alto 2.2 m telescope. This will be the first instrument built under the German-Spanish consortium that manages the Calar Alto observatory. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. The optical design produces a well defined internal pupil available to reducing the thermal background by a cryogenic pupil stop. A mosaic of four detectors Hawaii 2RG of 2 k ×2 k, made by Teledyne, will give a field of view of 31.9 arcmin ×31.9 arcmin.
NASA Astrophysics Data System (ADS)
Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick
2004-09-01
Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.
The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback
NASA Astrophysics Data System (ADS)
McKinley, B.; Tingay, S. J.; Carretti, E.; Ellis, S.; Bland-Hawthorn, J.; Morganti, R.; Line, J.; McDonald, M.; Veilleux, S.; Wahl Olsen, R.; Sidonio, M.; Ekers, R.; Offringa, A. R.; Procopio, P.; Pindor, B.; Wayth, R. B.; Hurley-Walker, N.; Bernardi, G.; Gaensler, B. M.; Haverkorn, M.; Kesteven, M.; Poppi, S.; Staveley-Smith, L.
2018-03-01
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ˜5 kpc (˜5 arcmin) scales of the northern inner lobe (NIL) to the ˜30 kpc (˜30 arcmin) scales of the northern middle lobe (NML). Our Murchison Widefield Array observations at 154 MHz and our Parkes radio telescope observations at 2.3 GHz show diffuse radio emission connecting the NIL to the NML, in agreement with previous Australia Telescope Compact Array observations at 1.4 GHz. Comparison of these radio data with our wide-field optical emission-line images show the relationship between the NML radio emission and the ionized filaments that extend north from the NIL, and reveal a new ionized filament to the east, possibly associated with a galactic wind. Our deep optical images show clear evidence for a bipolar outflow from the central galaxy extending to intermediate scales, despite the non-detection of a southern radio counterpart to the NML. Thus, our observational overview of Centaurus A reveals a number of features proposed to be associated with active galactic nucleus feedback mechanisms, often cited as likely to have significant effects in galaxy evolution models. As one of the closest galaxies to us, Centaurus A therefore provides a unique laboratory to examine feedback mechanisms in detail.
NASA Astrophysics Data System (ADS)
Marchiori, Gianpietro; Busatta, Andrea; Giacomel, Stefano; Folla, Ivan; Valsecchi, Marco; Canestrari, Rodolfo; Bonnoli, Giacomo; Cascone, Enrico; Conconi, Paolo; Fiorini, Mauro; Giro, Enrico; La Palombara, Nicola; Pareschi, Giovanni; Perri, Luca; Rodeghiero, Gabriele; Sironi, Giorgia; Stringhetti, Luca; Toso, Giorgio; Tosti, Gino; Pellicciari, Carlo
2014-07-01
The Cherenkov Telescope Array (CTA) observatory will represent the next generation of Imaging Atmospheric Cherenkov Telescope. Using a combination of large-, medium-, and small-scale telescopes (LST, MST, SST, respectively), it will explore the Very High Energy domain from a few tens of GeVup to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. In this framework, the Italian ASTRI program, led by the Italian National Institute of Astrophysics (INAF) developed a 4-meter class telescope, which will adopt an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild- Couder configuration. Within this program INAF assigned to the consortium between Galbiati Group and EIE Group the construction, assembly and tests activities of the prototype named ASTRI SST-2M. On the basis of the lesson learnt from the prototype, other telescopes will be produced, starting from a re-design phase, in order to optimize performances and the overall costs and production schedule for the CTA-SST telescope. This paper will firstly give an overview of the concept for the SST prototype mount structure. In this contest, the technologies adopted for the design, manufacturing and tests of the entire system will be presented. Moreover, a specific focus on the challenges of the prototype and the strategies associated with it will be provided, in order to outline the near future performance goals for this type of Cherenkov telescopes employed for Gamma ray science.
The signature of the first stars in atomic hydrogen at redshift 20.
Visbal, Eli; Barkana, Rennan; Fialkov, Anastasia; Tseliakhovich, Dmitriy; Hirata, Christopher M
2012-07-05
Dark and baryonic matter moved at different velocities in the early Universe, which strongly suppressed star formation in some regions. This was estimated to imprint a large-scale fluctuation signal of about two millikelvin in the 21-centimetre spectral line of atomic hydrogen associated with stars at a redshift of 20, although this estimate ignored the critical contribution of gas heating due to X-rays and major enhancements of the suppression. A large velocity difference reduces the abundance of haloes and requires the first stars to form in haloes of about a million solar masses, substantially greater than previously expected. Here we report a simulation of the distribution of the first stars at redshift 20 (cosmic age of around 180 million years), incorporating all these ingredients within a 400-megaparsec box. We find that the 21-centimetre hydrogen signature of these stars is an enhanced (ten millikelvin) fluctuation signal on the hundred-megaparsec scale, characterized by a flat power spectrum with prominent baryon acoustic oscillations. The required sensitivity to see this signal is achievable with an integration time of a thousand hours with an instrument like the Murchison Wide-field Array or the Low Frequency Array but designed to operate in the range of 50-100 megahertz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.
2016-03-01
In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing amore » foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k{sub ∥} modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.« less
Spectral performance of Square Kilometre Array Antennas - II. Calibration performance
NASA Astrophysics Data System (ADS)
Trott, Cathryn M.; de Lera Acedo, Eloy; Wayth, Randall B.; Fagnoni, Nicolas; Sutinjo, Adrian T.; Wakley, Brett; Punzalan, Chris Ivan B.
2017-09-01
We test the bandpass smoothness performance of two prototype Square Kilometre Array (SKA) SKA1-Low log-periodic dipole antennas, SKALA2 and SKALA3 ('SKA Log-periodic Antenna'), and the current dipole from the Murchison Widefield Array (MWA) precursor telescope. Throughout this paper, we refer to the output complex-valued voltage response of an antenna when connected to a low-noise amplifier, as the dipole bandpass. In Paper I, the bandpass spectral response of the log-periodic antenna being developed for the SKA1-Low was estimated using numerical electromagnetic simulations and analysed using low-order polynomial fittings, and it was compared with the HERA antenna against the delay spectrum metric. In this work, realistic simulations of the SKA1-Low instrument, including frequency-dependent primary beam shapes and array configuration, are used with a weighted least-squares polynomial estimator to assess the ability of a given prototype antenna to perform the SKA Epoch of Reionisation (EoR) statistical experiments. This work complements the ideal estimator tolerances computed for the proposed EoR science experiments in Trott & Wayth, with the realized performance of an optimal and standard estimation (calibration) procedure. With a sufficient sky calibration model at higher frequencies, all antennas have bandpasses that are sufficiently smooth to meet the tolerances described in Trott & Wayth to perform the EoR statistical experiments, and these are primarily limited by an adequate sky calibration model and the thermal noise level in the calibration data. At frequencies of the Cosmic Dawn, which is of principal interest to SKA as one of the first next-generation telescopes capable of accessing higher redshifts, the MWA dipole and SKALA3 antenna have adequate performance, while the SKALA2 design will impede the ability to explore this era.
Development and tests of x-ray multifoil optical system for 1D imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pína, Ladislav; Hudec, René; Inneman, Adolf J.; Baca, Tomas; Blazek, M.; Platkevic, M.; Sieger, Ladislav; Doubravova, Daniela; McEntaffer, Randall L.; Schultz, Ted B.; Dániel, Vladimír.
2016-09-01
The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2011-01-01
We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.
NASA Technical Reports Server (NTRS)
Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin
2011-01-01
We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.
NASA astronomical findings highlighted on This Week @NASA – January 8, 2016
2016-01-08
New NASA astrophysics findings were highlighted at the 227th American Astronomical Society meeting, Jan. 4-8 in Kissimmee, Florida. The findings, which ranged from runaway stars to a burping galaxy, were made with the help of several NASA observation instruments, including the Spitzer Space Telescope, the Wide-field Infrared Survey Explorer, the Chandra X-ray Observatory, the Nuclear Spectroscopic Telescope Array and others. Also, Next space station crew preparing for mission, Economical new era of aviation, A new level of coral reef studies and more!
Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)
NASA Technical Reports Server (NTRS)
Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke
2004-01-01
The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.
Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A
2017-02-01
We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH 4 NO 3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm 2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm 2 for PETN and AN films under these experimental conditions.
MeerLICHT and BlackGEM: custom-built telescopes to detect faint optical transients
NASA Astrophysics Data System (ADS)
Bloemen, Steven; Groot, Paul; Woudt, Patrick; Klein Wolt, Marc; McBride, Vanessa; Nelemans, Gijs; Körding, Elmar; Pretorius, Margaretha L.; Roelfsema, Ronald; Bettonvil, Felix; Balster, Harry; Bakker, Roy; Dolron, Peter; van Elteren, Arjen; Elswijk, Eddy; Engels, Arno; Fender, Rob; Fokker, Marc; de Haan, Menno; Hagoort, Klaas; de Hoog, Jasper; ter Horst, Rik; van der Kevie, Giel; Kozłowski, Stanisław; Kragt, Jan; Lech, Grzegorz; Le Poole, Rudolf; Lesman, Dirk; Morren, Johan; Navarro, Ramon; Paalberends, Willem-Jelle; Paterson, Kerry; Pawłaszek, Rafal; Pessemier, Wim; Raskin, Gert; Rutten, Harrie; Scheers, Bart; Schuil, Menno; Sybilski, Piotr W.
2016-07-01
We present the MeerLICHT and BlackGEM telescopes, which are wide-field optical telescopes that are currently being built to study transient phenomena, gravitational wave counterparts and variable stars. The telescopes have 65 cm primary mirrors and a 2.7 square degree field-of-view. The MeerLICHT and BlackGEM projects have different science goals, but will use identical telescopes. The first telescope, MeerLICHT, will be commissioned at Sutherland (South Africa) in the first quarter of 2017. It will co-point with MeerKAT to collect optical data commensurate with the radio observations. After careful analysis of MeerLICHT's performance, three telescopes of the same type will be commissioned in La Silla (Chile) in 2018 to form phase I of the BlackGEM array. BlackGEM aims at detecting and characterizing optical counterparts of gravitational wave events detected by Advanced LIGO and Virgo. In this contribution we present an overview of the science goals, the design and the status of the two projects.
Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.
The Galaxy Menagerie from WISE
2011-05-25
A colorful collection of galaxy specimens from NASA Wide-field Infrared Survey Explorer mission showcases galaxies of several types, from elegant grand design spirals to more patchy flocculent spirals.
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...
2016-04-01
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giroletti, M.; Massaro, F.; D’Abrusco, R.
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array
NASA Astrophysics Data System (ADS)
Eastwood, Michael W.; Hallinan, Gregg
2018-05-01
21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.
NASA Astrophysics Data System (ADS)
Chhetri, R.; Ekers, R. D.; Morgan, J.; Macquart, J.-P.; Franzen, T. M. O.
2018-06-01
We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point (<0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above ˜3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.
The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept
NASA Astrophysics Data System (ADS)
Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking
2018-01-01
CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.
NASA Astrophysics Data System (ADS)
Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In
2016-08-01
We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.
SCUBA-2: The next generation wide-field imager for the James Clerk Maxwell Telescope
NASA Astrophysics Data System (ADS)
Holland, W. S.; Duncan, W. D.; Kelly, B. D.; Peacocke, T.; Robson, E. I.; Irwin, K. D.; Hilton, G.; Rinehart, S.; Ade, P. A. R.; Griffin, M. J.
2000-12-01
We describe SCUBA-2 - the next generation continuum imaging camera for the James Clerk Maxwell Telescope. The instrument will capitalise on the success of the current SCUBA camera, by having a much larger field-of- view and improved sensitivity. SCUBA-2 will be able to map the submillimetre sky several hundred times faster than SCUBA to the same noise level. Many areas of astronomy are expected to benefit - from large scale cosmological surveys to probe galaxy formation and evolution to studies of the earliest stages of star formation in our own Galaxy. Perhaps the most exciting prospect that SCUBA-2 will offer is in the statistical significance of wide-field surveys. The key science requirements of the new camera are the ability to make very deep images - reaching background confusion levels in only a couple of hours; to generate high fidelity images at two wavelengths simultaneously; to map large areas of sky (tens of degrees) to a reasonable depth in only a few hours; carry out photometry of known-position point-sources to a high accuracy. The technical design of SCUBA-2 will incorporate new technology transition-edge sensors as the detecting element, with signals being read out using multiplexed SQUID amplifiers. As in SCUBA there will be two arrays operating at 450 and 850 microns simultaneously. Fully-sampling a field-of-voew of 8 arcminutes square will require 25,600 and 6,400 pixels at 450 and 850 microns respectively (cf 91 and 37 pixels with SCUBA!). Each pixel will have diffraction-limited resolution on the sky and a sensitivity dominated by the background photon noise. SCUBA-2 is a collaboration between a number of institutions. We anticipate delivery of the final instrument to the telescope before the end of 2005.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
Transient Astrophysics Observatory (TAO)
NASA Astrophysics Data System (ADS)
Racusin, J. L.; TAO Team
2016-10-01
The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.
The Australian SKA Pathfinder: project update and initial operations
NASA Astrophysics Data System (ADS)
Schinckel, Antony E. T.; Bock, Douglas C.-J.
2016-08-01
The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.
Wide-field in vivo oral OCT imaging
Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine; Lane, Pierre
2015-01-01
We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm2 field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions. PMID:26203389
Current developments and tests of small x-ray optical systems for space applications
NASA Astrophysics Data System (ADS)
Pina, L.; Hudec, R.; Inneman, A.; Doubravová, D.; Marsikova, V.
2017-05-01
The paper addresses the X-ray monitoring for astrophysical applications. A novel approach based on the use of 1D and 2D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV was further studied. Wide-field optical system of this type has not been used in space yet. Designed wide-field optical system combined with Timepix X-ray detector is described together with latest experimental results obtained during laboratory tests. Proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases where intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system is considered to be used in a student rocket experiment.
Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo
NASA Astrophysics Data System (ADS)
McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.
2013-04-01
In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Prochaska, Travis; Shectman, Stephen A.; Hammond, Randolph P.; Barkhouser, Robert H.; DePoy, D. L.; Marshall, J. L.
2012-09-01
We describe the conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). GMACS is a candidate first-light instrument for the GMT and will be one of several instruments housed in the Gregorian Instrument Rotator (GIR) located at the Gregorian focus. The instrument samples a 9 arcminute x 18 arcminute field of view providing two resolution modes (i.e, low resolution, R ~ 2000, and moderate resolution, R ~ 4000) over a 3700 Å to 10200 Å wavelength range. To minimize the size of the optics, four fold mirrors at the GMT focal plane redirect the full field into four individual "arms", that each comprises a double spectrograph with a red and blue channel. Hence, each arm samples a 4.5 arcminute x 9 arcminute field of view. The optical layout naturally leads to three separate optomechanical assemblies: a focal plane assembly, and two identical optics modules. The focal plane assembly contains the last element of the telescope's wide-field corrector, slit-mask, tent-mirror assembly, and slit-mask magazine. Each of the two optics modules supports two of the four instrument arms and houses the aft-optics (i.e. collimators, dichroics, gratings, and cameras). A grating exchange mechanism, and articulated gratings and cameras facilitate multiple resolution modes. In this paper we describe the details of the GMACS optomechanical design, including the requirements and considerations leading to the design, mechanism details, optics mounts, and predicted flexure performance.
Project MINERVA's Follow-up on Wide-Field, Small Telescope Photometry to Identify Exoplanets
NASA Astrophysics Data System (ADS)
Houghton, Audrey; Henderson, Morgan; Johnson, Samson; Sergi, Anthony; Eastman, Jason D.; Beatty, Thomas G.; McCrady, Nate
2017-01-01
MINERVA is an array of four 0.7-m telescopes equipped for high precision photometry and spectroscopy dedicated to exoplanet observations. During the first 18 months of science operations, MINERVA engaged in a program of photometric follow-up of potential transiting exoplanet targets identified by the Kilodegree Extremely Little Telescope (KELT). Robotically-obtained observations are passed through our data reduction pipeline and we extract light curves via differential photometry. We seek transit signals via a Markov chain Monte Carlo fit using BATMAN. We discuss results for over 100 target stars analyzed to date.
Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders.
Işil, Çağatay; Yorulmaz, Mustafa; Solmaz, Berkan; Turhan, Adil Burak; Yurdakul, Celalettin; Ünlü, Selim; Ozbay, Ekmel; Koç, Aykut
2018-04-01
Wide-field interferometric microscopy is a highly sensitive, label-free, and low-cost biosensing imaging technique capable of visualizing individual biological nanoparticles such as viral pathogens and exosomes. However, further resolution enhancement is necessary to increase detection and classification accuracy of subdiffraction-limited nanoparticles. In this study, we propose a deep-learning approach, based on coupled deep autoencoders, to improve resolution of images of L-shaped nanostructures. During training, our method utilizes microscope image patches and their corresponding manual truth image patches in order to learn the transformation between them. Following training, the designed network reconstructs denoised and resolution-enhanced image patches for unseen input.
Fabrication of a wide-field NIR integral field unit for SWIMS using ultra-precision cutting
NASA Astrophysics Data System (ADS)
Kitagawa, Yutaro; Yamagata, Yutaka; Morita, Shin-ya; Motohara, Kentaro; Ozaki, Shinobu; Takahashi, Hidenori; Konishi, Masahiro; Kato, Natsuko M.; Kobayakawa, Yutaka; Terao, Yasunori; Ohashi, Hirofumi
2016-07-01
We describe overview of fabrication methods and measurement results of test fabrications of optical surfaces for an integral field unit (IFU) for Simultaneous color Wide-field Infrared Multi-object Spectrograph, SWIMS, which is a first-generation instrument for the University of Tokyo Atacama Observatory 6.5-m telescope. SWIMS-IFU provides entire near-infrared spectrum from 0.9 to 2.5 μm simultaneously covering wider field of view of 17" × 13" compared with current near-infrared IFUs. We investigate an ultra-precision cutting technique to monolithically fabricate optical surfaces of IFU optics such as an image slicer. Using 4- or 5-axis ultra precision machine we compare the milling process and shaper cutting process to find the best way of fabrication of image slicers. The measurement results show that the surface roughness almost satisfies our requirement in both of two methods. Moreover, we also obtain ideal surface form in the shaper cutting process. This method will be adopted to other mirror arrays (i.e. pupil mirror and slit mirror, and such monolithic fabrications will also help us to considerably reduce alignment procedure of each optical elements.
Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2016-06-20
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc –1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less
Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal
NASA Astrophysics Data System (ADS)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
2016-06-01
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ˜ 10-15 only extends to < {{Δ }}{T}B> ˜ -25 {{mK}}, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%-50% at scales k ˜ 0.1-1h Mpc-1. This scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.
Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaurov, Alexander A.; Gnedin, Nickolay Y.
We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc –1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less
Safari: instrument design of the far-infrared imaging spectrometer for spica
NASA Astrophysics Data System (ADS)
Jellema, W.; Pastor, C.; Naylor, D.; Jackson, B.; Sibthorpe, B.; Roelfsema, P.
2017-11-01
The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (<6K), the SAFARI instrument on SPICA is a highly sensitive wide-field imaging photometer and spectrometer operating in the 34-210 μm wavelength range. Utilizing Nyquist-sampled focal-plane arrays of very sensitive Transition Edge Sensors (TES), SAFARI will offer a photometric imaging (R ≍ 2), and a low (R = 100) and medium resolution (R = 2000 at 100 μm) imaging spectroscopy mode in three photometric bands within a 2'x2' instantaneous FoV by means of a cryogenic Mach-Zehnder Fourier Transform Spectrometer. In this paper we will provide an overview of the SAFARI instrument design and system architecture. We will describe the reference design of the SAFARI focal- plane unit, the implementation of the various optical instrument functions designed around the central large-stroke FTS system, the photometric band definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.
NASA Technical Reports Server (NTRS)
Barthelmy, Scott
2011-01-01
I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.
A modified S-DIMM+: applying additional height grids for characterizing daytime seeing profiles
NASA Astrophysics Data System (ADS)
Wang, Zhiyong; Zhang, Lanqiang; Kong, Lin; Bao, Hua; Guo, Youming; Rao, Xuejun; Zhong, Libo; Zhu, Lei; Rao, Changhui
2018-07-01
Characterization of daytime atmospheric turbulence profiles is needed for the design of a multi-conjugate adaptive optical system. S-DIMM+ (solar differential image motion monitor+) is a technique to measure vertical seeing profiles. However, the number of height grids will be limited by the lenslet array of the wide-field Shack-Hartmann wavefront sensor (SHWFS). A small number of subaperture lenslet arrays will lead to a coarse height grid over the atmosphere, which can result in difficulty in finding the location of strong-turbulence layers and overestimates of the turbulence strength for the measured layers. To address this problem, we propose a modified S-DIMM+ method to measure seeing profiles iteratively with decreasing altitude range for a given number of height grids; finally they will be combined as a new seeing profile, with a denser and more uniform distribution of height grids. This method is tested with simulations and recovers the input height and contribution perfectly. Furthermore, this method is applied to the 102 data-sequences recorded from the 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory, 55 of which were recorded at local time between 13:40 and 14:35 on 2016 October 6, and the other 47 between 12:50 and 13:40 on 2017 October 5. A 7x7 lenslet array of SHWFS is used to generate a 16-layer height grid to 15 km, each with 1 km height separation. The experimental results show that the turbulence has three origins in the lower (0-2 km) layers, the higher (3-6 km) layers and the uppermost (≥7 km) layers.
2010-01-23
The red dot at the center of this image is the first near-Earth asteroid discovered by NASA Wide-Field Infrared Survey Explorer, or WISE -- an all-sky mapping infrared mission designed to see all sorts of cosmic objects.
2011-07-21
A large spiral galaxy dominates this view from NASA Wide-field Infrared Survey Explorer. The galaxy, often called the Pinwheel galaxy, was designated object 101 in astronomer Charles Messier catalog of fuzzy things in the sky that are not comets.
Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis.
Ferlauto, Laura; Airaghi Leccardi, Marta Jole Ildelfonsa; Chenais, Naïg Aurelia Ludmilla; Gilliéron, Samuel Charles Antoine; Vagni, Paola; Bevilacqua, Michele; Wolfensberger, Thomas J; Sivula, Kevin; Ghezzi, Diego
2018-03-08
Retinal prostheses have been developed to fight blindness in people affected by outer retinal layer dystrophies. To date, few hundred patients have received a retinal implant. Inspired by intraocular lenses, we have designed a foldable and photovoltaic wide-field epiretinal prosthesis (named POLYRETINA) capable of stimulating wireless retinal ganglion cells. Here we show that within a visual angle of 46.3 degrees, POLYRETINA embeds 2215 stimulating pixels, of which 967 are in the central area of 5 mm, it is foldable to allow implantation through a small scleral incision, and it has a hemispherical shape to match the curvature of the eye. We demonstrate that it is not cytotoxic and respects optical and thermal safety standards; accelerated ageing shows a lifetime of at least 2 years. POLYRETINA represents significant progress towards the improvement of both visual acuity and visual field with the same device, a current challenging issue in the field.
HERA: Illuminating Our Early Universe
NASA Astrophysics Data System (ADS)
DeBoer, David
2014-06-01
The Hydrogen Epoch of Reionization Arrays (HERA) roadmap is a staged plan for using the unique properties of the 21cm line from neutral hydrogen to probe our cosmic dawn, from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER), US-Murchison Widefield Array (MWA), and MIT Epoch of Reionization (MITEOR) teams.The first phase of the HERA roadmap entailed the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of radio continuum foreground emission some four orders of magnitude brighter. Studies with PAPER and the MWA have led to a new understanding of the interplay of foreground and instrumental systematics in the context of a three-dimensional cosmological intensity-mapping experiment. We are now able to remove foregrounds to the limits of our sensitivity with these instruments, culminating in the first physically meaningful upper limits on the power spectrum of 2 cm emission from reionization.Building on this understanding, the next stage of HERA entails a new 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. The HERA phase II will be located in the radio quiet environment of the SKA site in Karoo, South Africa, and have a sensitivity close to two orders of magnitude better than PAPER and the MWA, with broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the end of the Dark Ages.This paper will present a summary of the current understanding of the signal characteristics and measurements and describe this planned HERA telescope to be built to detect and characterize the EoR power spectrum.
The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications
NASA Astrophysics Data System (ADS)
Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.
2016-02-10
Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less
THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less
The NASA probe-class mission concept, CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy)
NASA Astrophysics Data System (ADS)
Heap, Sara; Danchi, William; Burge, James; Dodson, Kelly; Hull, Anthony; Kendrick, Steven; McCandliss, Stephan; Mehle, Gregory; Purves, Lloyd; Sheikh, David; Valente, Martin; Woodruff, Robert A.
2017-09-01
We report on the early phases of a NASA-sponsored study of CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy), a Probe-class mission concept. By definition, the full lifecycle cost of a Probe mission is greater than 400M (i.e. Explorer missions) and less than 1.00B ("Flagship" missions). The animating idea behind our study is that CETUS can help answer fundamental questions about galaxy evolution by carrying out a massive UV imaging and spectroscopic survey of galaxies and combining its findings with data obtained by other survey telescopes of the 2020's. The CETUS mission concept comprises a 1.5-m wide-field telescope and three scientific instruments: a near-UV multi-object slit spectrograph with a micro-shutter array as the slit device; a near-UV and far-UV camera with angular resolution of 0.42" (near-UV) or 0.55" (far-UV); and a near-UV or far-UV single-object spectrograph aimed at providing access to the UV after Hubble is gone. We describe the scientific rationale for CETUS and the telescope and instruments in their early design phase.
NOAO's next-generation optical spectrograph
NASA Astrophysics Data System (ADS)
Barden, Samuel C.; Harmer, Charles F.; Blakley, Rick D.; Parks, Rachel J.
2000-08-01
The National Optical Astronomy Observatory is developing a new, wide-field, imaging spectrograph for use on its existing 4-meter telescopes. This Next Generation Optical Spectrograph (NGOS) will utilize volume-phase holographic grating technology and will have a mosaiced detector array to image the spectra over a field of view that will be something like 10.5 by 42 arc-minutes on the sky. The overall efficiency of the spectrograph should be quite high allowing it to outperform the current RC spectrograph by factors of 10 to 20 and the Hydra multi-fiber instrument by a facto of fiber to ten per object. The operational range of the instrument will allow observations within the optical and near-IR regions. Spectral resolutions will go from R equals 1000 to at least R equals 5000 with 1.4 arc-second slits. The large size of this instrument, with a beam diameter of 200 mm and an overall length of nearly 3 meters, presents a significant challenge in mounting it at the Cassegrain location of the telescope. Design trades and options that allow it to fit are discussed.
RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211
NASA Astrophysics Data System (ADS)
Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.
2004-10-01
We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.
NASA Astrophysics Data System (ADS)
Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand
SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.
Soto, Juan M; Rodrigo, José A; Alieva, Tatiana
2018-01-01
Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.
Wide-field and high-resolution optical imaging for early detection of oral neoplasia
NASA Astrophysics Data System (ADS)
Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca
2010-02-01
Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.
Implementation of a direct-imaging and FX correlator for the BEST-2 array
NASA Astrophysics Data System (ADS)
Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.
2014-04-01
A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.
The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory
NASA Technical Reports Server (NTRS)
Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen;
2012-01-01
The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.
Hydrogen Epoch of Reionization Array (HERA)
NASA Astrophysics Data System (ADS)
DeBoer, David R.; HERA
2015-01-01
The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the end of the Dark Ages.This paper will present a summary of the current understanding of the signal characteristics and measurements and describe the funded and planned HERA telescope to be built to detect and characterize the EoR power spectrum.
NASA Astrophysics Data System (ADS)
Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana
2016-07-01
Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc-1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.
Cosmic Extremes: Probing Energetic Transients with Radio Observations
NASA Astrophysics Data System (ADS)
Denham Alexander, Kate
2018-01-01
With the advent of sensitive facilities like the Karl G. Jansky Very Large Array (VLA) and planning well underway for vastly more powerful wide-field interferometers like the Square Kilometer Array, the study of radio astrophysical transients is poised for dramatic growth. Radio observations provide a unique window into a wide variety of transient events, from gamma-ray bursts (GRBs) to supernovae to tidal disruption events (TDEs) in which a star is torn apart by a supermassive black hole. In particular, GRBs and TDEs have emerged as valuable probes of some of the most extreme physics in the Universe. In these high-energy laboratories, the longer timescale of radio emission allows for extensive followup and characterization of the event energies and the densities of surrounding material. I will present high-cadence broadband radio studies of GRB afterglows and TDEs undertaken with the goal of learning more about their physical properties, the physics underlying the formation and growth of relativistic jets and outflows, and the environments in which these events occur. Our observations confirm that only a small fraction of TDEs produce relativistic jets but reveal low-luminosity, non-relativistic outflows in two nearby TDEs, allowing us to begin constraining the bulk of the TDE population. Our GRB radio observations reveal both intrinsic variability (reverse shocks) and extrinsic variability (interstellar scintillation). The insights derived from these studies will be invaluable for designing and interpreting the results from future radio transient surveys.
Magneto-optical imaging of thin magnetic films using spins in diamond
NASA Astrophysics Data System (ADS)
Simpson, David A.; Tetienne, Jean-Philippe; McCoey, Julia M.; Ganesan, Kumaravelu; Hall, Liam T.; Petrou, Steven; Scholten, Robert E.; Hollenberg, Lloyd C. L.
2016-03-01
Imaging the fields of magnetic materials provides crucial insight into the physical and chemical processes surrounding magnetism, and has been a key ingredient in the spectacular development of magnetic data storage. Existing approaches using the magneto-optic Kerr effect, x-ray and electron microscopy have limitations that constrain further development, and there is increasing demand for imaging and characterisation of magnetic phenomena in real time with high spatial resolution. Here we show how the magneto-optical response of an array of negatively-charged nitrogen-vacancy spins in diamond can be used to image and map the sub-micron stray magnetic field patterns from thin ferromagnetic films. Using optically detected magnetic resonance, we demonstrate wide-field magnetic imaging over 100 × 100 μm2 with sub-micron spatial resolution at video frame rates, under ambient conditions. We demonstrate an all-optical spin relaxation contrast imaging approach which can image magnetic structures in the absence of an applied microwave field. Straightforward extensions promise imaging with sub-μT sensitivity and sub-optical spatial and millisecond temporal resolution. This work establishes practical diamond-based wide-field microscopy for rapid high-sensitivity characterisation and imaging of magnetic samples, with the capability for investigating magnetic phenomena such as domain wall and skyrmion dynamics and the spin Hall effect in metals.
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan
2011-09-07
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.
Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results
NASA Technical Reports Server (NTRS)
Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas;
2016-01-01
The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.
Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M
2017-12-01
Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical Design of the WFIRST Phase-A Wide Field Instrument
NASA Technical Reports Server (NTRS)
Pasquale, Bert A.; Marx, Catherine T.; Gao, Guangjun; Armani, Nerses; Casey, Thomas
2017-01-01
The WFIRST Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq degrees FOV at 0.11” pixel scale to the Wide Field Instrument, operating between 0.48-2.0 micrometers, including a spectrograph mode (1.0-2.0 micrometers). An Integral Field Channel provides 2-D discrete spectroscopy at 0.15” & 0.3” sampling.
Limits on radio emission from meteors using the MWA
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua
2018-04-01
Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.
Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters
NASA Technical Reports Server (NTRS)
Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.
NASA Astrophysics Data System (ADS)
Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai
2016-01-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
Calibration strategies for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher
2014-08-01
The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.
NASA Astrophysics Data System (ADS)
Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.
2015-10-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
Structured illumination for wide-field Raman imaging of cell membranes
NASA Astrophysics Data System (ADS)
Chen, Houkai; Wang, Siqi; Zhang, Yuquan; Yang, Yong; Fang, Hui; Zhu, Siwei; Yuan, Xiaocong
2017-11-01
Although the diffraction limit still restricts their lateral resolution, conventional wide-field Raman imaging techniques offer fast imaging speeds compared with scanning schemes. To extend the lateral resolution of wide-field Raman microscopy using filters, standing-wave illumination technique is used, and an improvement of lateral resolution by a factor of more than two is achieved. Specifically, functionalized surface enhanced Raman scattering nanoparticles are employed to strengthen the desired scattering signals to label cell membranes. This wide-field Raman imaging technique affords various significant opportunities in the biological applications.
Ultra-widefield retinal imaging through a black intraocular lens.
Yusuf, Imran H; Fung, Timothy H M; Patel, Chetan K
2015-09-01
To evaluate the feasibility of ultra-widefield retinal imaging in patients with near infrared (IR)-transmitting black intraocular lenses (IOLs). Oxford Eye Hospital, Oxford, United Kingdom. Laboratory evaluation of a diagnostic technology with interventional case report. The field of retinal imaging through a Morcher poly(methyl methacrylate) (PMMA) black IOL was determined in a purpose-built adult schematic model eye with the HRA2 Spectralis confocal scanning laser ophthalmoscope using standard imaging, Staurenghi retina lens-assisted imaging, and ultra-widefield noncontact imaging. Retinal imaging using each modality was then performed on a patient implanted with another Morcher PMMA black IOL model. Ultra-widefield noncontact imaging and lens-assisted imaging captured up to 150 degrees of field (versus 40 degrees with a standard confocal scanning laser ophthalmoscope). Ultra-widefield retinal images were successfully acquired in a patient eye with a black IOL. This study has identified the first ultra-widefield retinal imaging modalities for patients with near IR-transmitting black IOLs. Should larger studies confirm this finding, noncontact ultra-widefield confocal scanning laser ophthalmoscopy might be considered the gold standard imaging technique for retinal surveillance in patients with near IR-transmitting black IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Detection limits of intraoperative near infrared imaging for tumor resection.
Thurber, Greg M; Figueiredo, Jose-Luiz; Weissleder, Ralph
2010-12-01
The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and light scattering simulations to determine detection thresholds. Widefield epifluorescence imaging can provide sufficient contrast to visualize tumor margins and detect tumor deposits 3-5 mm deep based on labeled monoclonal antibodies at low objective magnification. At higher magnification, surface tumor deposits at cellular resolution are detectable at TBR ratios achieved with highly expressed antigens. A widefield illumination system with the capability for macroscopic surveying and microscopic imaging provides the greatest utility for varying surgical goals. These results have implications for system and agent designs, which ultimately should aid complete resection in most surgical beds and provide real-time feedback to obtain clean margins. © 2010 Wiley-Liss, Inc.
From Asteroids to Space Debris
NASA Astrophysics Data System (ADS)
Benkhaldoun, Zouhair; Moon, Hong-Kyu; Daassou, Ahmed; Park, Jang-Hyun; Lazrek, Mohamed
2016-01-01
Since 2011, Oukaimeden Observatory (OUCA) has become one of the active NEO search facilities in the word. Its discovery statistics shows that the MOSS (Morocco Oukaimeden Sky Survey) project received credits for more than 2,145 new designations, including 3 NEOs and 4 comets. Its excellent astro-climactic characteristics are partly behind the success. The average number of observable nights is around 280 nights per year, while median seeing is 0.8-0.9 arcsec. We completed construction of a new telescope at the site in March 2015. It is Optical Wide-field Patrol (OWL) facility designed and built by Korea Space Science Institute (KASI). The primary objective of this facility is to monitor national space assets of Korea; either wide-field imaging- or fast data acquisition- capabilities enable the 0.5m telescope to conduct observation programs to catalog and follow-up various transient events in the night sky. We present the seeing condition, the OWL system and preliminary results obtained at OWL@Oukaimeden during the past several months.
PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors
NASA Astrophysics Data System (ADS)
Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny
2016-08-01
BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust technical interface. In this contribution, we present the design of the BlackGEM cryostats and of the PLC-based control system.
Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2010-09-25
commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design. SolidWorks is a computer aided design package, which as a live...interface to COMSOL. COMSOL is a finite element analysis/partial differential equation solver. ZEMAX is an optical design package. Both COMSOL and... ZEMAX have live interfaces to MatLab. Our initial investigations have enabled a model in SolidWorks to be updated in COMSOL, an FEA calculation
Hyper Suprime-Cam: System design and verification of image quality
NASA Astrophysics Data System (ADS)
Miyazaki, Satoshi; Komiyama, Yutaka; Kawanomoto, Satoshi; Doi, Yoshiyuki; Furusawa, Hisanori; Hamana, Takashi; Hayashi, Yusuke; Ikeda, Hiroyuki; Kamata, Yukiko; Karoji, Hiroshi; Koike, Michitaro; Kurakami, Tomio; Miyama, Shoken; Morokuma, Tomoki; Nakata, Fumiaki; Namikawa, Kazuhito; Nakaya, Hidehiko; Nariai, Kyoji; Obuchi, Yoshiyuki; Oishi, Yukie; Okada, Norio; Okura, Yuki; Tait, Philip; Takata, Tadafumi; Tanaka, Yoko; Tanaka, Masayuki; Terai, Tsuyoshi; Tomono, Daigo; Uraguchi, Fumihiro; Usuda, Tomonori; Utsumi, Yousuke; Yamada, Yoshihiko; Yamanoi, Hitomi; Aihara, Hiroaki; Fujimori, Hiroki; Mineo, Sogo; Miyatake, Hironao; Oguri, Masamune; Uchida, Tomohisa; Tanaka, Manobu M.; Yasuda, Naoki; Takada, Masahiro; Murayama, Hitoshi; Nishizawa, Atsushi J.; Sugiyama, Naoshi; Chiba, Masashi; Futamase, Toshifumi; Wang, Shiang-Yu; Chen, Hsin-Yo; Ho, Paul T. P.; Liaw, Eric J. Y.; Chiu, Chi-Fang; Ho, Cheng-Lin; Lai, Tsang-Chih; Lee, Yao-Cheng; Jeng, Dun-Zen; Iwamura, Satoru; Armstrong, Robert; Bickerton, Steve; Bosch, James; Gunn, James E.; Lupton, Robert H.; Loomis, Craig; Price, Paul; Smith, Steward; Strauss, Michael A.; Turner, Edwin L.; Suzuki, Hisanori; Miyazaki, Yasuhito; Muramatsu, Masaharu; Yamamoto, Koei; Endo, Makoto; Ezaki, Yutaka; Ito, Noboru; Kawaguchi, Noboru; Sofuku, Satoshi; Taniike, Tomoaki; Akutsu, Kotaro; Dojo, Naoto; Kasumi, Kazuyuki; Matsuda, Toru; Imoto, Kohei; Miwa, Yoshinori; Suzuki, Masayuki; Takeshi, Kunio; Yokota, Hideo
2018-01-01
The Hyper Suprime-Cam (HSC) is an 870 megapixel prime focus optical imaging camera for the 8.2 m Subaru telescope. The wide-field corrector delivers sharp images of 0{^''.}2 (FWHM) in the HSC-i band over the entire 1.5° diameter field of view. The collimation of the camera with respect to the optical axis of the primary mirror is done with hexapod actuators, the mechanical accuracy of which is a few microns. Analysis of the remaining wavefront error in off-focus stellar images reveals that the collimation of the optical components meets design specifications. While there is a flexure of mechanical components, it also is within the design specification. As a result, the camera achieves its seeing-limited imaging on Maunakea during most of the time; the median seeing over several years of observing is 0.67" (FWHM) in the i band. The sensors use p-channel, fully depleted CCDs of 200 μm thickness (2048 × 4176 15 μm square pixels) and we employ 116 of them to pave the 50 cm diameter focal plane. The minimum interval between exposures is 34 s, including the time to read out arrays, to transfer data to the control computer, and to save them to the hard drive. HSC on Subaru uniquely features a combination of a large aperture, a wide field of view, sharp images and a high sensitivity especially at longer wavelengths, which makes the HSC one of the most powerful observing facilities in the world.
Feasibility and clinical utility of ultra-widefield indocyanine green angiography.
Klufas, Michael A; Yannuzzi, Nicolas A; Pang, Claudine E; Srinivas, Sowmya; Sadda, Srinivas R; Freund, K Bailey; Kiss, Szilárd
2015-03-01
To evaluate the feasibility and clinical utility of a novel noncontact scanning laser ophthalmoscope-based ultra-widefield indocyanine green angiographic system. Ultra-widefield indocyanine green angiographic images were captured using a modified Optos P200Tx that produced high-resolution images of the choroidal vasculature with up to a 200° field. Ultra-widefield indocyanine green angiography was performed on patients with a variety of retinal conditions to assess utility of this imaging technique for diagnostic purposes and disease treatment monitoring. Ultra-widefield indocyanine green angiography was performed on 138 eyes of 69 patients. Mean age was 58 ± 16.9 years (range, 24-85 years). The most common ocular pathologies imaged included central serous chorioretinopathy (24 eyes), uveitis (various subtypes, 16 eyes), age-related macular degeneration (12 eyes), and polypoidal choroidal vasculopathy (4 eyes). In all eyes evaluated with ultra-widefield indocyanine green angiography, high-resolution images of choroidal and retinal circulation were obtained with sufficient detail out to 200° of the fundus. In this series of 138 eyes, scanning laser ophthalmoscope-based ultra-widefield indocyanine green angiography was clinically practical and provided detailed images of both the central and peripheral choroidal circulation. Future studies are needed to refine the clinical value of this imaging modality and the significance of peripheral choroidal vascular changes in the diagnosis, monitoring, and treatment of ocular diseases.
Radiometric calibration of wide-field camera system with an application in astronomy
NASA Astrophysics Data System (ADS)
Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika
2017-09-01
Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.
Lee, Won June; Na, Kyeong Ik; Kim, Young Kook; Jeoung, Jin Wook; Park, Ki Ho
2017-06-01
To evaluate the diagnostic ability of wide-field retinal nerve fiber layer (RNFL) maps with swept-source optical coherence tomography (SS-OCT) for detection of preperimetric (PPG) and early perimetric glaucoma (EG). One hundred eighty-four eyes, including 67 healthy eyes, 43 eyes with PPG, and 74 eyes with EG, were analyzed. Patients underwent a comprehensive ocular examination including red-free RNFL photography, visual field testing and wide-field SS-OCT scanning (DRI-OCT-1 Atlantis; Topcon, Tokyo, Japan). SS-OCT provides a wide-field RNFL thickness map and a SuperPixel map, which are composed of the RNFL deviation map of the peripapillary area and the deviation map of the composition of the ganglion cell layer with the inner plexiform layer and RNFL (GC-IPL+RNFL) in the macular area. The ability to discriminate PPG and EG from healthy eyes was assessed using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for all parameters and criteria provided by the wide-field SS-OCT scan. The wide-field RNFL thickness map using SS-OCT showed the highest sensitivity of PPG-diagnostic and EG-diagnostic performance compared with the other SS-OCT criteria based on the internal normative base (93.0 and 97.3%, respectively). Among the SS-OCT continuous parameters, the RFNL thickness of the 7 clock-hour, inferior and inferotemporal macular ganglion cell analyses showed the largest AUC of PPG-diagnostic and EG-diagnostic performance (AUC=0.809 to 0.865). The wide-field RNFL thickness map using SS-OCT performed well in distinguishing eyes with PPG and EG from healthy eyes. In the clinical setting, wide-field RNFL maps of SS-OCT can be useful tools for detection of early-stage glaucoma.
Wide-field two-photon microscopy with temporal focusing and HiLo background rejection
NASA Astrophysics Data System (ADS)
Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.
2011-03-01
Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.
Wide-Field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2011-03-25
COMSOL Multiphysics, and ZEMAX optical design. The multiphysics design tool is nearing completion. We have demonstrated the ability to create a model in...and mechanical modeling to calculate the deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via...MatLab. From ZEMAX , various analyses can be conducted to determine important parameters such as focal point, aberrations, and wavefront distortion
New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging
Michalet, X.; Colyer, R. A.; Scalia, G.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Villa, F.; Guerrieri, F.; Rech, I.; Gulinatti, A.; Tisa, S.; Zappa, F.; Ghioni, M.; Cova, S.
2013-01-01
Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain. PMID:24729836
New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging.
Michalet, X; Colyer, R A; Scalia, G; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Villa, F; Guerrieri, F; Rech, I; Gulinatti, A; Tisa, S; Zappa, F; Ghioni, M; Cova, S
2011-05-13
Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain.
Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.
2012-01-01
Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).
Infrared Luminosities and Dust Properties of z ≈ 2 Dust-obscured Galaxies
NASA Astrophysics Data System (ADS)
Bussmann, R. S.; Dey, Arjun; Borys, C.; Desai, V.; Jannuzi, B. T.; Le Floc'h, E.; Melbourne, J.; Sheth, K.; Soifer, B. T.
2009-11-01
We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24 μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Boötes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ≈3 × 108 M sun. In comparison to other dusty z ~ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 × 1013 L sun versus 6 × 1012 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ~30 K) and lower inferred dust masses (3 × 108 M sun versus 3 × 109 M sun). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ~ 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 μm bright, warm-dust and AGN-dominated phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may bemore » tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.« less
Using low-frequency pulsar observations to study the 3-D structure of the Galactic magnetic field
NASA Astrophysics Data System (ADS)
Sobey, C.; LOFAR Collaboration; MWA Collaboration
2018-05-01
The Galactic magnetic field (GMF) plays a role in many astrophysical processes and is a significant foreground to cosmological signals, such as the Epoch of Reionization (EoR), but is not yet well understood. Dispersion and Faraday rotation measurements (DMs and RMs, respectively) towards a large number of pulsars provide an efficient method to probe the three-dimensional structure of the GMF. Low-frequency polarisation observations with large fractional bandwidth can be used to measure precise DMs and RMs. This is demonstrated by a catalogue of RMs (corrected for ionospheric Faraday rotation) from the Low Frequency Array (LOFAR), with a growing complementary catalogue in the southern hemisphere from the Murchison Widefield Array (MWA). These data further our knowledge of the three-dimensional GMF, particularly towards the Galactic halo. Recently constructed or upgraded pathfinder and precursor telescopes, such as LOFAR and the MWA, have reinvigorated low-frequency science and represent progress towards the construction of the Square Kilometre Array (SKA), which will make significant advancements in studies of astrophysical magnetic fields in the future. A key science driver for the SKA-Low is to study the EoR, for which pulsar and polarisation data can provide valuable insights in terms of Galactic foreground conditions.
Wide-field absolute transverse blood flow velocity mapping in vessel centerline
NASA Astrophysics Data System (ADS)
Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang
2018-02-01
We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.
Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
So, Peter T.
2016-03-01
Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.
Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications
NASA Technical Reports Server (NTRS)
Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.
2012-01-01
Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.
A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners
Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.
2016-01-01
We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392
NASA Astrophysics Data System (ADS)
Shirahata, Mai; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Enokuchi, Akito; Hristov, Viktor; Kanai, Yoshikazu; Kim, Min Gyu; Korngut, Phillip; Lanz, Alicia; Lee, Dae-Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Ohnishi, Yosuke; Park, Won-Kee; Sano, Kei; Takeyama, Norihide; Tsumura, Kohji; Wada, Takehiko; Wang, Shiang-Yu; Zemcov, Michael
2016-07-01
We present the current status of the Cosmic Infrared Background ExpeRiment-2 (CIBER-2) project, whose goal is to make a rocket-borne measurement of the near-infrared Extragalactic Background Light (EBL), under a collaboration with U.S.A., Japan, South Korea, and Taiwan. The EBL is the integrated light of all extragalactic sources of emission back to the early Universe. At near-infrared wavelengths, measurement of the EBL is a promising way to detect the diffuse light from the first collapsed structures at redshift z˜10, which are impossible to detect as individual sources. However, recently, the intra-halo light (IHL) model is advocated as the main contribution to the EBL, and our new result of the EBL fluctuation from CIBER-1 experiment is also supporting this model. In this model, EBL is contributed by accumulated light from stars in the dark halo regions of low- redshift (z<2) galaxies, those were tidally stripped by the interaction of satellite dwarf galaxies. Thus, in order to understand the origin of the EBL, both the spatial fluctuation observations with multiple wavelength bands and the absolute spectroscopic observations for the EBL are highly required. After the successful initial CIBER- 1 experiment, we are now developing a new instrument CIBER-2, which is comprised of a 28.5-cm aluminum telescope and three broad-band, wide-field imaging cameras. The three wide-field (2.3×2.3 degrees) imaging cameras use the 2K×2K HgCdTe HAWAII-2RG arrays, and cover the optical and near-infrared wavelength range of 0.5-0.9 μm, 1.0-1.4 μm and 1.5-2.0 μm, respectively. Combining a large area telescope with the high sensitivity detectors, CIBER-2 will be able to measure the spatial fluctuations in the EBL at much fainter levels than those detected in previous CIBER-1 experiment. Additionally, we will use a linear variable filter installed just above the detectors so that a measurement of the absolute spectrum of the EBL is also possible. In this paper, the scientific motivation and the expected performance for CIBER-2 will be presented. The detailed designs of the telescope and imaging cameras will also be discussed, including the designs of the mechanical, cryogenic, and electrical systems.
Ultra-widefield imaging for the management of pediatric retinal diseases.
Kang, Kai B; Wessel, Matthew M; Tong, Jianping; D'Amico, Donald J; Chan, R V Paul
2013-01-01
To describe the utility of using ultra-widefield digital fundus photography and ultra-widefield fluorescein angiography (UWFA) in the pediatric patient population to evaluate peripheral retinal pathology and to manage Coats' disease and familial exudative vitreoretinopathy (FEVR). Retrospective review of pediatric retinal patients with FEVR or Coats' disease who underwent ultra-widefield fundus photography and UWFA. Eight patients were included in this case series. Five patients had the clinical diagnosis of FEVR, and two eyes of two patients with FEVR received UWFA-guided laser photocoagulation. Three patients were diagnosed as having Coats' disease and received UWFA-guided laser photocoagulation. Ultra-widefield fundus photography and UWFA can be used successfully as an outpatient procedure in the pediatric patient population without the necessity of examination under anesthesia and can aid the physician in the documentation and evaluation of peripheral retinal pathology. UWFA can also assist in directing laser photocoagulation in the treatment of pediatric retinal diseases. Copyright 2013, SLACK Incorporated.
Wide-Field Raman Imaging of Dental Lesions
Yang, Shan; Li, Bolan; Akkus, Anna; Akkus, Ozan; Lang, Lisa
2014-01-01
Detection of dental caries at the onset remains as a great challenge in dentistry. Raman spectroscopy could be successfully applied towards detecting caries since it is sensitive to the amount of the Raman active mineral crystals, the most abundant component of enamel. Effective diagnosis requires full examination of a tooth surface via a Raman mapping. Point-scan Raman mapping is not clinically relevant (feasible) due to lengthy data acquisition time. In this work, a wide-field Raman imaging system was assembled based on a high-sensitivity 2D CCD camera for imaging the mineralization status of teeth with lesions. Wide-field images indicated some lesions to be hypomineralized and others to be hypermineralized. The observations of wide-field Raman imaging were in agreement with point-scan Raman mapping. Therefore, sound enamel and lesions can be discriminated by Raman imaging of the mineral content. In conclusion, wide-field Raman imaging is a potentially useful tool for visualization of dental lesions in the clinic. PMID:24781363
Verveer, P. J; Gemkow, M. J; Jovin, T. M
1999-01-01
We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.
Motion Adaptation, its Role in Motion Detection Under Natural Image Conditions and Target Detection
2005-06-02
Ibbotson, M.R. & Goodman, L.J. (1990) “Response characteristics of four wide-field motion sensitive descending interneurons in Apis mellifera ,” J. Exp...libraries (in particular a module, PyGame, original designed as an API for computer games applications). Andrew’s contribution to this effort was a
Pang, Claudine E; Shah, Vinnie P; Sarraf, David; Freund, K Bailey
2014-08-01
To describe the spectrum of ultra-widefield autofluorescence (AF) and indocyanine green (ICG) angiographic findings in central serous chorioretinopathy (CSC). Retrospective observational case series. In 37 patients, 65 eyes with CSC from 2 vitreoretinal clinical practices were imaged using ultra-widefield AF and 24 of these eyes with ultra-widefield ICG angiography. Images were correlated with clinical findings and spectral-domain optical coherence tomography (OCT). In 37 (57%) eyes, a variety of altered AF patterns, including gravitational tracts, extended beyond the posterior 50 degrees of retina. Hyper-AF corresponded to areas of subretinal fluid (SRF) on spectral-domain OCT and was found to persist in 44 (70%) eyes for up to 8 years despite resolution of SRF. These areas corresponded to outer retinal atrophy with viable retinal pigment epithelium (RPE) on spectral-domain OCT and may be explained by the unmasking of normal background RPE AF. Ultra-widefield ICG angiography revealed dilated choroidal vessels and choroidal hyperpermeability in areas corresponding to altered AF on ultra-widefield AF in all 24 eyes. In 20 (83.3%) eyes, dilated vessels were observed in association with 1 or more congested vortex veins ampullas, suggesting that outflow congestion may be a contributing factor to the pathogenesis of CSC. Ultra-widefield AF and ICG angiography in CSC revealed more widespread disease in a single image than with standard field imaging and may be useful for identifying peripheral areas of previous or ongoing SRF and choroidal hyperpermeability that can assist in the diagnosis of CSC, surveillance of recurrent disease and treatment of active disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Enabling a high throughput real time data pipeline for a large radio telescope array with GPUs
NASA Astrophysics Data System (ADS)
Edgar, R. G.; Clark, M. A.; Dale, K.; Mitchell, D. A.; Ord, S. M.; Wayth, R. B.; Pfister, H.; Greenhill, L. J.
2010-10-01
The Murchison Widefield Array (MWA) is a next-generation radio telescope currently under construction in the remote Western Australia Outback. Raw data will be generated continuously at 5 GiB s-1, grouped into 8 s cadences. This high throughput motivates the development of on-site, real time processing and reduction in preference to archiving, transport and off-line processing. Each batch of 8 s data must be completely reduced before the next batch arrives. Maintaining real time operation will require a sustained performance of around 2.5 TFLOP s-1 (including convolutions, FFTs, interpolations and matrix multiplications). We describe a scalable heterogeneous computing pipeline implementation, exploiting both the high computing density and FLOP-per-Watt ratio of modern GPUs. The architecture is highly parallel within and across nodes, with all major processing elements performed by GPUs. Necessary scatter-gather operations along the pipeline are loosely synchronized between the nodes hosting the GPUs. The MWA will be a frontier scientific instrument and a pathfinder for planned peta- and exa-scale facilities.
Improving MWA/HERA Calibration Using Extended Radio Source Models
NASA Astrophysics Data System (ADS)
Cunningham, Devin; Tasker, Nicholas; University of Washington EoR Imaging Team
2018-01-01
The formation of the first stars and galaxies in the universe is among the greatest mysteries in astrophysics. Using special purpose radio interferometers, it is possible to detect the faint 21 cm radio line emitted by neutral hydrogen in order to characterize the Epoch of Reionization (EoR) and the formation of the first stars and galaxies. We create better models of extended radio sources by reducing component number of deconvolved Murchison Widefield Array (MWA) data by up to 90%, while preserving real structure and flux information. This real structure is confirmed by comparisons to observations of the same extended radio sources from the TIFR GMRT Sky Survey (TGSS) and NRAO VLA Sky Survey (NVSS), which detect at a similar frequency range as the MWA. These sophisticated data reduction techniques not only offer improvements to the calibration of the MWA, but also hold applications for the future sky-based calibration of the Hydrogen Epoch of Reionization Array (HERA). This has the potential to reduce noise in the power spectra from these instruments, and consequently provide a deeper view into the window of EoR.
Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan
2011-04-07
We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.
Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR
NASA Astrophysics Data System (ADS)
Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.
2016-09-01
Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.
Detection of a Double Relic in the Torpedo Cluster: SPT-CL J0245-5302
NASA Astrophysics Data System (ADS)
Zheng, Q.; Johnston-Hollitt, M.; Duchesne, S. W.; Li, W. T.
2018-06-01
The Torpedo cluster, SPT-CL J0245-5302 (S0295) is a massive, merging cluster at a redshift of z = 0.300, which exhibits a strikingly similar morphology to the Bullet cluster 1E 0657-55.8 (z = 0.296), including a classic bow shock in the cluster's intra-cluster medium revealed by Chandra X-ray observations. We present Australia Telescope Compact Array data centred at 2.1 GHz and Murchison Widefield Array data at frequencies between 72 MHz and 231 MHz which we use to study the properties of the cluster. We characterise a number of discrete and diffuse radio sources in the cluster, including the detection of two previously unknown radio relics on the cluster periphery. The average spectral index of the diffuse emission between 70 MHz and 3.1 GHz is α =-1.63_{-0.10}^{+0.10} and a radio-derived Mach number for the shock in the west of the cluster is calculated as M = 2.04. The Torpedo cluster is thus a double relic system at moderate redshift.
Witmer, Matthew T; Parlitsis, George; Patel, Sarju; Kiss, Szilárd
2013-01-01
To compare ultra-widefield fluorescein angiography imaging using the Optos(®) Optomap(®) and the Heidelberg Spectralis(®) noncontact ultra-widefield module. Five patients (ten eyes) underwent ultra-widefield fluorescein angiography using the Optos(®) panoramic P200Tx imaging system and the noncontact ultra-widefield module in the Heidelberg Spectralis(®) HRA+OCT system. The images were obtained as a single, nonsteered shot centered on the macula. The area of imaged retina was outlined and quantified using Adobe(®) Photoshop(®) C5 software. The total area and area within each of four visualized quadrants was calculated and compared between the two imaging modalities. Three masked reviewers also evaluated each quadrant per eye (40 total quadrants) to determine which modality imaged the retinal vasculature most peripherally. Optos(®) imaging captured a total retinal area averaging 151,362 pixels, ranging from 116,998 to 205,833 pixels, while the area captured using the Heidelberg Spectralis(®) was 101,786 pixels, ranging from 73,424 to 116,319 (P = 0.0002). The average area per individual quadrant imaged by Optos(®) versus the Heidelberg Spectralis(®) superiorly was 32,373 vs 32,789 pixels, respectively (P = 0.91), inferiorly was 24,665 vs 26,117 pixels, respectively (P = 0.71), temporally was 47,948 vs 20,645 pixels, respectively (P = 0.0001), and nasally was 46,374 vs 22,234 pixels, respectively (P = 0.0001). The Heidelberg Spectralis(®) was able to image the superior and inferior retinal vasculature to a more distal point than was the Optos(®), in nine of ten eyes (18 of 20 quadrants). The Optos(®) was able to image the nasal and temporal retinal vasculature to a more distal point than was the Heidelberg Spectralis(®), in ten of ten eyes (20 of 20 quadrants). The ultra-widefield fluorescein angiography obtained with the Optos(®) and Heidelberg Spectralis(®) ultra-widefield imaging systems are both excellent modalities that provide views of the peripheral retina. On a single nonsteered image, the Optos(®) Optomap(®) covered a significantly larger total retinal surface area, with greater image variability, than did the Heidelberg Spectralis(®) ultra-widefield module. The Optos(®) captured an appreciably wider view of the retina temporally and nasally, albeit with peripheral distortion, while the ultra-widefield Heidelberg Spectralis(®) module was able to image the superior and inferior retinal vasculature more peripherally. The clinical significance of these findings as well as the area imaged on steered montaged images remains to be determined.
Trajectory Design Tools for Libration and Cis-Lunar Environments
NASA Technical Reports Server (NTRS)
Folta, David C.; Webster, Cassandra M.; Bosanac, Natasha; Cox, Andrew; Guzzetti, Davide; Howell, Kathleen C.
2016-01-01
Innovative trajectory design tools are required to support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration of propulsion influences. Two distinctive tools, Adaptive Trajectory Design and the General Mission Analysis Tool have been developed and certified to provide the astrodynamics community with the ability to design multi-body trajectories. In this paper we discuss the multi-body design process and the capabilities of both tools. Demonstrable applications to confirmed missions, the Lunar IceCube Cubesat lunar mission and the Wide-Field Infrared Survey Telescope (WFIRST) Sun-Earth L2 mission, are presented.
Chew, Avenell L.; Sampson, Danuta M.; Kashani, Irwin; Chen, Fred K.
2017-01-01
Purpose We compared cone density measurements derived from the center of gaze-directed single images with reconstructed wide-field montages using the rtx1 adaptive optics (AO) retinal camera. Methods A total of 29 eyes from 29 healthy subjects were imaged with the rtx1 camera. Of 20 overlapping AO images acquired, 12 (at 3.2°, 5°, and 7°) were used for calculating gaze-directed cone densities. Wide-field AO montages were reconstructed and cone densities were measured at the corresponding 12 loci as determined by field projection relative to the foveal center aligned to the foveal dip on optical coherence tomography. Limits of agreement in cone density measurement between single AO images and wide-field AO montages were calculated. Results Cone density measurements failed in 1 or more gaze directions or retinal loci in up to 58% and 33% of the subjects using single AO images or wide-field AO montage, respectively. Although there were no significant overall differences between cone densities derived from single AO images and wide-field AO montages at any of the 12 gazes and locations (P = 0.01–0.65), the limits of agreement between the two methods ranged from as narrow as −2200 to +2600, to as wide as −4200 to +3800 cones/mm2. Conclusions Cone density measurement using the rtx1 AO camera is feasible using both methods. Local variation in image quality and altered visibility of cones after generating montages may contribute to the discrepancies. Translational Relevance Cone densities from single AO images are not interchangeable with wide-field montage derived–measurements. PMID:29285417
Vital-dye enhanced fluorescence imaging of GI mucosa: metaplasia, neoplasia, inflammation.
Thekkek, Nadhi; Muldoon, Timothy; Polydorides, Alexandros D; Maru, Dipen M; Harpaz, Noam; Harris, Michael T; Hofstettor, Wayne; Hiotis, Spiros P; Kim, Sanghyun A; Ky, Alex Jenny; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2012-04-01
Confocal endomicroscopy has revolutionized endoscopy by offering subcellular images of the GI epithelium; however, the field of view is limited. Multiscale endoscopy platforms that use widefield imaging are needed to better direct the placement of high-resolution probes. Feasibility study. This study evaluated the feasibility of a single agent, proflavine hemisulfate, as a contrast medium during both widefield and high-resolution imaging to characterize the morphologic changes associated with a variety of GI conditions. The University of Texas MD Anderson Cancer Center, Houston, Texas, and Mount Sinai Medical Center, New York, New York. PATIENTS, INTERVENTIONS, AND MAIN OUTCOME MEASUREMENTS: Resected specimens were obtained from 15 patients undergoing EMR, esophagectomy, or colectomy. Proflavine hemisulfate, a vital fluorescent dye, was applied topically. The specimens were imaged with a widefield multispectral microscope and a high-resolution microendoscope. The images were compared with histopathologic examination. Widefield fluorescence imaging enhanced visualization of morphology, including the presence and spatial distribution of glands, glandular distortion, atrophy, and crowding. High-resolution imaging of widefield abnormal areas revealed that neoplastic progression corresponded to glandular heterogeneity and nuclear crowding in dysplasia, with glandular effacement in carcinoma. These widefield and high-resolution image features correlated well with the histopathologic features. This imaging approach must be validated in vivo with a larger sample size. Multiscale proflavine-enhanced fluorescence imaging can delineate epithelial changes in a variety of GI conditions. Distorted glandular features seen with widefield imaging could serve as a critical bridge to high-resolution probe placement. An endoscopic platform combining the two modalities with a single vital dye may facilitate point-of-care decision making by providing real-time, in vivo diagnoses. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Wide-Field Infrared Survey Telescope (WFIRST) Interim Report
NASA Technical Reports Server (NTRS)
Green, J.; Schechter, P.; Baltay, C.; Bean, R.; Bennett, D.; Brown, R.; Conselice, C.; Donahue, M.; Gaudi, S.; Lauer, T.;
2011-01-01
The New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey prioritized the community consensus for ground-based and space-based observatories. Recognizing that many of the community s key questions could be answered with a wide-field infrared survey telescope in space, and that the decade would be one of budget austerity, WFIRST was top ranked in the large space mission category. In addition to the powerful new science that could be accomplished with a wide-field infrared telescope, the WFIRST mission was determined to be both technologically ready and only a small fraction of the cost of previous flagship missions, such as HST or JWST. In response to the top ranking by the community, NASA formed the WFIRST Science Definition Team (SDT) and Project Office. The SDT was charged with fleshing out the NWNH scientific requirements to a greater level of detail. NWNH evaluated the risk and cost of the JDEM-Omega mission design, as submitted by NASA, and stated that it should serve as the basis for the WFIRST mission. The SDT and Project Office were charged with developing a mission optimized for achieving the science goals laid out by the NWNH re-port. The SDT and Project Office opted to use the JDEM-Omega hardware configuration as an initial start-ing point for the hardware implementation. JDEM-Omega and WFIRST both have an infrared imager with a filter wheel, as well as counter-dispersed moderate resolution spectrometers. The primary advantage of space observations is being above the Earth's atmosphere, which absorbs, scatters, warps and emits light. Observing from above the atmosphere enables WFIRST to obtain precision infrared measurements of the shapes of galaxies for weak lensing, infrared light-curves of supernovae and exoplanet microlensing events with low systematic errors, and infrared measurements of the H hydrogen line to be cleanly detected in the 1
NASA Astrophysics Data System (ADS)
Castander, F. J.
The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmological probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, and cluster counts. Besides its observational cosmology goals, the mission capabilities of DUNE allow the study of galaxy evolution, galactic structure and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands. The final data of the DUNE mission will form a unique legacy for the astronomy community. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept which combines wide-field deep imaging with low resolution multi-object spectroscopy.
NASA Technical Reports Server (NTRS)
Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.
2017-01-01
Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.
Optical design of a Michelson wide-field multiple-aperture telescope
NASA Astrophysics Data System (ADS)
Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David
2004-02-01
Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.
Wide-field three-photon excitation in biological samples
Rowlands, Christopher J; Park, Demian; Bruns, Oliver T; Piatkevich, Kiryl D; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Boyden, Edward S; So, Peter TC
2017-01-01
Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two- and three-photon microscopy. Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown, and a penetration depth of more than 700 μm into fixed scattering brain tissue is achieved, approximately twice as deep as that achieved using two-photon wide-field excitation. Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse; a complete focal stack was obtained without any evidence of photodamage. As an additional validation of the utility of wide-field three-photon excitation, functional excitation is demonstrated by performing three-photon optogenetic stimulation of cultured mouse hippocampal neurons expressing a channelrhodopsin; action potentials could reliably be excited without causing photodamage. PMID:29152380
Engineering aspects of the Large Binocular Telescope Observatory adaptive optics systems
NASA Astrophysics Data System (ADS)
Brusa, Guido; Ashby, Dave; Christou, Julian C.; Kern, Jonathan; Lefebvre, Michael; McMahon, Tom J.; Miller, Douglas; Rahmer, Gustavo; Sosa, Richard; Taylor, Gregory; Vogel, Conrad; Zhang, Xianyu
2016-07-01
Vertical profiles of the atmospheric optical turbulence strength and velocity is of critical importance for simulating, designing, and operating the next generation of instruments for the European Extremely Large Telescope. Many of these instruments are already well into the design phase meaning these profies are required immediately to ensure they are optimised for the unique conditions likely to be observed. Stereo-SCIDAR is a generalised SCIDAR instrument which is used to characterise the profile of the atmospheric optical turbulence strength and wind velocity using triangulation between two optical binary stars. Stereo-SCIDAR has demonstrated the capability to resolve turbulent layers with the required vertical resolution to support wide-field ELT instrument designs. These high resolution atmospheric parameters are critical for design studies and statistical evaluation of on-sky performance under real conditions. Here we report on the new Stereo-SCIDAR instrument installed on one of the Auxillary Telescope ports of the Very Large Telescope array at Cerro Paranal. Paranal is located approximately 20 km from Cerro Armazones, the site of the E-ELT. Although the surface layer of the turbulence will be different for the two sites due to local geography, the high-altitude resolution profiles of the free atmosphere from this instrument will be the most accurate available for the E-ELT site. In addition, these unbiased and independent profiles are also used to further characterise the site of the VLT. This enables instrument performance calibration, optimisation and data analysis of, for example, the ESO Adaptive Optics facility and the Next Generation Transit Survey. It will also be used to validate atmospheric models for turbulence forecasting. We show early results from the commissioning and address future implications of the results.
Witmer, Matthew T; Parlitsis, George; Patel, Sarju; Kiss, Szilárd
2013-01-01
Purpose To compare ultra-widefield fluorescein angiography imaging using the Optos® Optomap® and the Heidelberg Spectralis® noncontact ultra-widefield module. Methods Five patients (ten eyes) underwent ultra-widefield fluorescein angiography using the Optos® panoramic P200Tx imaging system and the noncontact ultra-widefield module in the Heidelberg Spectralis® HRA+OCT system. The images were obtained as a single, nonsteered shot centered on the macula. The area of imaged retina was outlined and quantified using Adobe® Photoshop® C5 software. The total area and area within each of four visualized quadrants was calculated and compared between the two imaging modalities. Three masked reviewers also evaluated each quadrant per eye (40 total quadrants) to determine which modality imaged the retinal vasculature most peripherally. Results Optos® imaging captured a total retinal area averaging 151,362 pixels, ranging from 116,998 to 205,833 pixels, while the area captured using the Heidelberg Spectralis® was 101,786 pixels, ranging from 73,424 to 116,319 (P = 0.0002). The average area per individual quadrant imaged by Optos® versus the Heidelberg Spectralis® superiorly was 32,373 vs 32,789 pixels, respectively (P = 0.91), inferiorly was 24,665 vs 26,117 pixels, respectively (P = 0.71), temporally was 47,948 vs 20,645 pixels, respectively (P = 0.0001), and nasally was 46,374 vs 22,234 pixels, respectively (P = 0.0001). The Heidelberg Spectralis® was able to image the superior and inferior retinal vasculature to a more distal point than was the Optos®, in nine of ten eyes (18 of 20 quadrants). The Optos® was able to image the nasal and temporal retinal vasculature to a more distal point than was the Heidelberg Spectralis®, in ten of ten eyes (20 of 20 quadrants). Conclusion The ultra-widefield fluorescein angiography obtained with the Optos® and Heidelberg Spectralis® ultra-widefield imaging systems are both excellent modalities that provide views of the peripheral retina. On a single nonsteered image, the Optos® Optomap® covered a significantly larger total retinal surface area, with greater image variability, than did the Heidelberg Spectralis® ultra-widefield module. The Optos® captured an appreciably wider view of the retina temporally and nasally, albeit with peripheral distortion, while the ultra-widefield Heidelberg Spectralis® module was able to image the superior and inferior retinal vasculature more peripherally. The clinical significance of these findings as well as the area imaged on steered montaged images remains to be determined. PMID:23458976
NIR camera and spectrograph SWIMS for TAO 6.5m telescope: array control system and its performance
NASA Astrophysics Data System (ADS)
Terao, Yasunori; Motohara, Kentaro; Konishi, Masahiro; Takahashi, Hidenori; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Ohashi, Hirofumi; Tateuchi, Ken; Todo, Soya
2016-08-01
SWIMS (Simultaneous-color Wide-field Infrared Multi-object Spectrograph) is a near-infrared imager and multi-object spectrograph as one of the first generation instruments for the University of Tokyo Atacama Observatory (TAO) 6.5m telescope. In this paper, we describe an array control system of SWIMS and results of detector noise performance evaluation. SWIMS incorporates four (and eight in future) HAWAII-2RG focal plane arrays for detectors, each driven by readout electronics components: a SIDECAR ASIC and a JADE2 Card. The readout components are controlled by a HAWAII-2RG Testing Software running on a virtual Windows machine on a Linux PC called array control PC. All of those array control PCs are then supervised by a SWIMS control PC. We have developed an "array control software system", which runs on the array control PC to control the HAWAII-2RG Testing Software, and consists of a socket client and a dedicated server called device manager. The client runs on the SWIMS control PC, and the device manager runs on the array control PC. An exposure command, issued by the client on the SWIMS control PC, is sent to the multiple device managers on the array control PCs, and then multiple HAWAII-2RGs are driven simultaneously. Using this system, we evaluate readout noise performances of the detectors, both in a test dewar and in a SWIMS main dewar. In the test dewar, we confirm the readout noise to be 4.3 e- r.m.s. by 32 times multiple sampling when we operate only a single HAWAII-2RG, whereas in the case of simultaneous driving of two HAWAII-2RGs, we still obtain sufficiently low readout noise of 10 e- r.m.s. In the SWIMS main dewar, although there are some differences between the detectors, the readout noise is measured to be 4:1-4:6 e- r.m.s. with simultaneous driving by 64 times multiple sampling, which meets the requirement for background-limited observations in J band of 14 e- r.m.s..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu
Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in themore » reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.« less
Fast Infrared Chemical Imaging with a Quantum Cascade Laser
2015-01-01
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm–1) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues. PMID:25474546
Fast infrared chemical imaging with a quantum cascade laser.
Yeh, Kevin; Kenkel, Seth; Liu, Jui-Nung; Bhargava, Rohit
2015-01-06
Infrared (IR) spectroscopic imaging systems are a powerful tool for visualizing molecular microstructure of a sample without the need for dyes or stains. Table-top Fourier transform infrared (FT-IR) imaging spectrometers, the current established technology, can record broadband spectral data efficiently but requires scanning the entire spectrum with a low throughput source. The advent of high-intensity, broadly tunable quantum cascade lasers (QCL) has now accelerated IR imaging but results in a fundamentally different type of instrument and approach, namely, discrete frequency IR (DF-IR) spectral imaging. While the higher intensity of the source provides a higher signal per channel, the absence of spectral multiplexing also provides new opportunities and challenges. Here, we couple a rapidly tunable QCL with a high performance microscope equipped with a cooled focal plane array (FPA) detector. Our optical system is conceptualized to provide optimal performance based on recent theory and design rules for high-definition (HD) IR imaging. Multiple QCL units are multiplexed together to provide spectral coverage across the fingerprint region (776.9 to 1904.4 cm(-1)) in our DF-IR microscope capable of broad spectral coverage, wide-field detection, and diffraction-limited spectral imaging. We demonstrate that the spectral and spatial fidelity of this system is at least as good as the best FT-IR imaging systems. Our configuration provides a speedup for equivalent spectral signal-to-noise ratio (SNR) compared to the best spectral quality from a high-performance linear array system that has 10-fold larger pixels. Compared to the fastest available HD FT-IR imaging system, we demonstrate scanning of large tissue microarrays (TMA) in 3-orders of magnitude smaller time per essential spectral frequency. These advances offer new opportunities for high throughput IR chemical imaging, especially for the measurement of cells and tissues.
First Demonstration of ECHO: an External Calibrator for Hydrogen Observatories
NASA Astrophysics Data System (ADS)
Jacobs, Daniel C.; Burba, Jacob; Bowman, Judd D.; Neben, Abraham R.; Stinnett, Benjamin; Turner, Lauren; Johnson, Kali; Busch, Michael; Allison, Jay; Leatham, Marc; Serrano Rodriguez, Victoria; Denney, Mason; Nelson, David
2017-03-01
Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21 cm hydrogen line for redshifts ranging from ˜1 to 25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work at low frequencies has focused on model verification and does not address the need of 21 cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles at 137 MHz and compare ECHO measurements to an established beam-mapping system based on transmissions from the Orbcomm satellite constellation. We create beam maps of two dipoles at a 9° resolution and find sample noise ranging from 1% at the zenith to 100% in the far sidelobes. Assuming this sample noise represents the error in the measurement, the higher end of this range is not yet consistent with the desired requirement but is an improvement on Orbcomm. The overall performance of ECHO suggests that the desired precision and angular coverage is achievable in practice with modest improvements. We identify the main sources of systematic error and uncertainty in our measurements and describe the steps needed to overcome them.
Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude
2016-01-01
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.
Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude
2016-01-01
Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005
A Molecular Line Survey around Orion at Low Frequencies with the MWA
NASA Astrophysics Data System (ADS)
Tremblay, C. D.; Jones, P. A.; Cunningham, M.; Hurley-Walker, N.; Jordan, C. H.; Tingay, S. J.
2018-06-01
The low-frequency sky may reveal some of the secrets yet to be discovered. Until recently, molecules had never been detected within interstellar clouds at frequencies below 700 MHz. Following the pilot survey toward the Galactic center at 103–133 MHz with the Murchison Widefield Array, we surveyed 400 deg2 centered on the Orion KL nebula from 99 to 170 MHz. Orion is a nearby region of active star formation and known to be a chemically rich environment. In this paper, we present tentative detections of nitric oxide and its isotopologues, singularly deuterated formic acid, molecular oxygen, and several unidentified transitions. The three identified molecules are particularly interesting, as laboratory experiments have suggested that these molecules are precursors to the formation of amines.
The Wide Field Imager for Athena
NASA Astrophysics Data System (ADS)
Rau, A.; Nandra, K.; Meidinger, N.; Plattner, M.
2017-10-01
The Wide Field Imager (WFI) is one of the two scientific instruments of Athena, ESA's next large X-ray Observatory with launch in 2028. The instrument will provide two defining capabilities to the mission sensitive wide-field imaging spectroscopy and excellent high-count rate performance. It will do so with the use of two separate detectors systems, the Large Detector Array (LDA) optimized for its field of view (40'×40') with a 100 fold survey speed increase compared to existing X-ray missions, and the Fast Detector (FD) tweaked for high throughput and low pile-up for point sources as bright as the Crab. In my talk I will present the key performance parameters of the instrument and their links to the scientific goals of Athena and summarize the status of the ongoing development activities.
Science highlights from high-sensitivity pulsar observations with the MWA
NASA Astrophysics Data System (ADS)
McSweeney, Samuel; Bhat, Ramesh; Tremblay, Steven; Ord, Stephen
2016-01-01
Pulsars are exquisite probes of the turbulent interstellar medium (ISM), capable of resolving structures down to tens of thousands of kilometres. Understanding the ISM is important for many areas of astrophysics, such as galactic dynamics, the chemical evolution of the galaxy, and the identification of timing noise in the search for gravitational waves using pulsar timing arrays. Low frequency observations of pulsars are key, because the strength of propagation effects scales strongly with frequency.We present the Murchison Widefield Array (MWA) as a key science tool for making high quality observations of pulsars at low frequencies (~80-300 MHz). Recently commissioned software for making tied-array beams and the MWA's high time resolution voltage capture system (VCS) allow an order of magnitude increase in sensitivity, vital for pulsar and other time-domain science. A pipeline has now been developed for observing the scintillation patterns of important pulsars at low frequencies, including a new computational technique for measuring the curvature of parabolic arcs in noisy secondary spectra. A program of MWA observations is being undertaken to sample a large number of millisecond pulsars. We present recent highlights including PSR J0437-4715, which yielded a new measurement of scattering screen distance of ~120 pc from Earth, consistent with a Parkes observation at ~730 MHz, and matching the predicted perimeter of the Local Bubble.
NASA Astrophysics Data System (ADS)
Chatterjee, Abhijit; Verma, Anurag
2016-05-01
The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.
Spectral ageing in the era of big data: integrated versus resolved models
NASA Astrophysics Data System (ADS)
Harwood, Jeremy J.
2017-04-01
Continuous injection models of spectral ageing have long been used to determine the age of radio galaxies from their integrated spectrum; however, many questions about their reliability remain unanswered. With various large area surveys imminent (e.g. LOw Frequency ARray, MeerKAT, Murchison Widefield Array) and planning for the next generation of radio interferometers are well underway (e.g. next generation VLA, Square Kilometre Array), investigations of radio galaxy physics are set to shift away from studies of individual sources to the population as a whole. Determining if and how integrated models of spectral ageing can be applied in the era of big data is therefore crucial. In this paper, I compare classical integrated models of spectral ageing to recent well-resolved studies that use modern analysis techniques on small spatial scales to determine their robustness and validity as a source selection method. I find that integrated models are unable to recover key parameters and, even when known a priori, provide a poor, frequency-dependent description of a source's spectrum. I show a disparity of up to a factor of 6 in age between the integrated and resolved methods but suggest, even with these inconsistencies, such models still provide a potential method of candidate selection in the search for remnant radio galaxies and in providing a cleaner selection of high redshift radio galaxies in z - α selected samples.
IAU Working Group on Wide-Field Imaging.
NASA Astrophysics Data System (ADS)
MacGillivray, H. T.
1991-01-01
Contents: 1. Introduction - The IAU Working Group on Wide-Field Imaging (R. M. West). 2. Reports from the Sub-Sections of the Working Group - a. Sky surveys and patrols (R. M. West). b. Photographic techniques (D. F. Malin). c. Digitization techniques (H. T. MacGillivray). d. Archival and retrieval of wide-field data (B. Lasker). 3. Meeting of the Organising Committee (R. M. West). 4. Wide-field plate archives (M. Tsvetkov). 5. Reproduction of the Palomar Observatory Sky Surveys (R. J. Brucato). 6. Status of the St ScI scan-distribution program (B. Lasker). 7. Pixel addition - pushing Schmidt plates to B = 25 (M. R. S. Hawkins). 8. Photometry from Estar film (S. Phillipps, Q. Parker). 9. ASCHOT - Astrophysical Schmidt Orbital Telescope (H. Lorenz). 10. The Hitchhiker parallel CCD camera (J. Davies, M. Disney, S. Driver, I. Morgan, S. Phillipps).
Preliminary optical design of PANIC, a wide-field infrared camera for CAHA
NASA Astrophysics Data System (ADS)
Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.
2008-07-01
In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.
Wide-field Infrared Survey Explorer Artist Concept
2009-05-18
NASA Wide-field Infrared Survey Explorer mission will survey the entire sky in a portion of the electromagnetic spectrum called the mid-infrared with far greater sensitivity than any previous mission or program ever has.
INFRARED LUMINOSITIES AND DUST PROPERTIES OF z approx 2 DUST-OBSCURED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.
We present SHARC-II 350 mum imaging of twelve 24 mum bright (F{sub 24m}u{sub m} > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 mum imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 mum flux density. The 350 mum upper limits for the 8 non-detected DOGsmore » are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T{sub dust} > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of approx3 x 10{sup 8} M{sub sun}. In comparison to other dusty z approx 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10{sup 13} L{sub sun} versus 6 x 10{sup 12} L{sub sun} for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus approx30 K) and lower inferred dust masses (3 x 10{sup 8} M{sub sun} versus 3 x 10{sup 9} M{sub sun}). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 mum bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z approx 2 involves a submillimeter bright, cold-dust, and star-formation-dominated phase followed by a 24 mum bright, warm-dust and AGN-dominated phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Daniel C.; Bowman, Judd; Aguirre, James E., E-mail: daniel.c.jacobs@asu.edu
As observations of the Epoch of Reionization (EoR) in redshifted 21 cm emission begin, we assess the accuracy of the early catalog results from the Precision Array for Probing the Epoch of Reionization (PAPER) and the Murchison Wide-field Array (MWA). The MWA EoR approach derives much of its sensitivity from subtracting foregrounds to <1% precision, while the PAPER approach relies on the stability and symmetry of the primary beam. Both require an accurate flux calibration to set the amplitude of the measured power spectrum. The two instruments are very similar in resolution, sensitivity, sky coverage, and spectral range and havemore » produced catalogs from nearly contemporaneous data. We use a Bayesian Markov Chain Monte Carlo fitting method to estimate that the two instruments are on the same flux scale to within 20% and find that the images are mostly in good agreement. We then investigate the source of the errors by comparing two overlapping MWA facets where we find that the differences are primarily related to an inaccurate model of the primary beam but also correlated errors in bright sources due to CLEAN. We conclude with suggestions for mitigating and better characterizing these effects.« less
Wide-Field Infrared Survey Telescope (WFIRST) Integrated Modeling
NASA Technical Reports Server (NTRS)
Liu, Kuo-Chia; Blaurock, Carl
2017-01-01
Contents: introduction to WFIRST (Wide-Field Infrared Survey Telescope) and integrated modeling; WFIRST stability requirement summary; instability mitigation strategies; dynamic jitter results; STOP (structural-thermal-optical performance) (thermal distortion) results; STOP and jitter capability limitations; model validation philosophy.
On the Design of Wide-Field X-ray Telescopes
NASA Technical Reports Server (NTRS)
Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.
2009-01-01
X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.
Point symmetric design approach to a wide-field wide-wavelength cat's eye retro-reflector anastigmat
NASA Astrophysics Data System (ADS)
Liepmann, Till W.
2009-08-01
A point symmetric design approach for creating a practical cat's eye retro-reflector (CERR) anastigmat lens with a wide field of regard (FOR), uniform reflectance and wide wavelength range is described. An anastigmat design is presented that demonstrates the performance capability of the design approach. The lens design is diffraction limited in double pass at F/3, has a "working distance" between lens and reflector, wide wavelength range of operation, and uniform reflectivity over a 120 deg FOR. An anastigmat fabricated from the design is presented; however, the design approach is generally useful for any application requiring a high performance retro-reflector. The design uses only spherical surfaces, thereby avoiding the fabrication expense of aspheric surfaces.
Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer
NASA Astrophysics Data System (ADS)
Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.
2018-02-01
Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.
Wide-Field Imaging Using Nitrogen Vacancies
NASA Technical Reports Server (NTRS)
Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)
2017-01-01
Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.
Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H
2017-07-28
Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.
MALS–NOT: Identifying Radio-bright Quasars for the MeerKAT Absorption Line Survey
NASA Astrophysics Data System (ADS)
Krogager, J.-K.; Gupta, N.; Noterdaeme, P.; Ranjan, A.; Fynbo, J. P. U.; Srianand, R.; Petitjean, P.; Combes, F.; Mahabal, A.
2018-03-01
We present a preparatory spectroscopic survey to identify radio-bright, high-redshift quasars for the MeerKAT Absorption Line Survey. The candidates have been selected on the basis of a single flux density limit at 1.4 GHz (>200 mJy), together with mid-infrared color criteria from the Wide-field Infrared Survey Explorer. Through spectroscopic observations using the Nordic Optical Telescope, we identify 72 quasars out of 99 candidates targeted. We measure the spectroscopic redshifts based on characteristic, broad emission lines present in the spectra. Of these 72 quasars, 64 and 48 objects are at sufficiently high redshift (z > 0.6 and z > 1.4) to be used for the L-band and UHF-band spectroscopic follow-up with the Square Kilometre Array precursor in South Africa: the MeerKAT.
Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy
NASA Astrophysics Data System (ADS)
Sencan, Ikbal; Coskun, Ahmet F.; Sikora, Uzair; Ozcan, Aydogan
2014-01-01
Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.
Sekiyama, Juliana Y; Camargo, Cintia Z; Eduardo, Luís; Andrade, C; Kayser, Cristiane
2013-11-01
To analyze the diagnostic performance and reliability of different parameters evaluated by widefield nailfold capillaroscopy (NFC) with those obtained by video capillaroscopy in patients with Raynaud’s phenomenon (RP). Two hundred fifty-two individuals were assessed, including 101 systemic sclerosis (SSc; scleroderma) patients,61 patients with undifferentiated connective tissue disease, 37 patients with primary RP, and 53 controls. Widefield NFC was performed using a stereomicroscope under 10–25 x magnification and direct measurement of all parameters. Video capillaroscopy was performed under 200 x magnification, with the acquirement of 32 images per individual (4 fields per finger in 8 fingers). The following parameters were analyzed in 8 fingers of the hands (excluding thumbs) by both methods: number of capillaries/mm, number of enlarged and giant capillaries, microhemorrhages, and avascular score.Intra- and interobserver reliability was evaluated by performing both examinations in 20 individuals on 2 different days and by 2 long-term experienced observers. There was a significant correlation (P < 0.000) between widefield NFC and video capillaroscopy in the comparison of all parameters. Kappa values and intraclass correlation coefficient analysis showed excellent intra- and interobserver reproducibility for all parameters evaluated by widefield NFC and video capillaroscopy. Bland-Altman analysis showed high agreement of all parameters evaluated in both methods. According to receiver operating characteristic curve analysis, both methods showed a similar performance in discriminating SSc patients from controls. Widefield NFC and video capillaroscopy are reliable and accurate methods and can be used equally for assessing peripheral microangiopathy in RP and SSc patients. Nonetheless, the high reliability obtained may not be similar for less experienced examiners.
NASA Astrophysics Data System (ADS)
Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick
2005-12-01
Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.
A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226
NASA Astrophysics Data System (ADS)
Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.
2018-04-01
We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.
Deconvolving the wedge: maximum-likelihood power spectra via spherical-wave visibility modelling
NASA Astrophysics Data System (ADS)
Ghosh, A.; Mertens, F. G.; Koopmans, L. V. E.
2018-03-01
Direct detection of the Epoch of Reionization (EoR) via the red-shifted 21-cm line will have unprecedented implications on the study of structure formation in the infant Universe. To fulfil this promise, current and future 21-cm experiments need to detect this weak EoR signal in the presence of foregrounds that are several orders of magnitude larger. This requires extreme noise control and improved wide-field high dynamic-range imaging techniques. We propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere, or equivalently in the uvw-domain. The method uses the one-to-one relation between spherical waves and spherical harmonics (SpH). It consistently handles signals from the entire sky, and does not require a w-term correction. The SpH coefficients represent the sky-brightness distribution and the visibilities in the uvw-domain, and provide a direct estimate of the spatial power spectrum. Using these spectrally smooth SpH coefficients, bright foregrounds can be removed from the signal, including their side-lobe noise, which is one of the limiting factors in high dynamics-range wide-field imaging. Chromatic effects causing the so-called `wedge' are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥, k∥) power spectrum, compared to a power spectrum computed directly from the images of the foreground visibilities where the wedge is clearly present. We illustrate our method using simulated Low-Frequency Array observations, finding an excellent reconstruction of the input EoR signal with minimal bias.
Chasing Low Frequency Radio Bursts from Magnetically Active Stars
NASA Astrophysics Data System (ADS)
Lynch, Christene; Murphy, Tara; Kaplan, David
2017-05-01
Flaring activity is a common characteristic of magnetically active stars. These events produce emission throughout the electromagnetic spectrum, implying a range of physical processes. A number of objects exhibit short-duration, narrow band, and highly circularly polarised (reaching 100%) radio bursts. The observed polarisation and frequency-time structure of these bursts points to a coherent emission mechanism such as the electron cyclotron maser. Due to the stochastic nature of these bursts and the sensitivity of current instruments, the number of stars where coherent emission has been detected is few, with numbers limited to a few tens of objects. Observations of a wider sample of active stars are necessary in order to establish the percentage that exhibit coherent radio bursts and to relate the observed emission characteristics to stellar magnetic properties. New wide-field, low frequency radio telescopes will probe a frequency regime that is mostly unexplored for many magnetically active stars and where coherent radio emissions are expected to be more numerous. M dwarf stars are of particular interest as they are currently favoured as most likely to host habitable planets. Yet the extreme magnetic activity observed for some M dwarf stars places some doubt on the ability of orbiting planets to host life. This presentation reports the first results from a targeted Murchison Widefield Array survey of M dwarf stars that were previously detected at 100 - 200 MHz using single dish telescopes. We will discuss robust flare-rate measurements over a high dynamic range of flare properties, as well as investigate the physical mechanism(s) behind the flares.
Hybrid reflecting objectives for functional multiphoton microscopy in turbid media
Vučinić, Dejan; Bartol, Thomas M.; Sejnowski, Terrence J.
2010-01-01
Most multiphoton imaging of biological specimens is performed using microscope objectives optimized for high image quality under wide-field illumination. We present a class of objectives designed de novo without regard for these traditional constraints, driven exclusively by the needs of fast multiphoton imaging in turbid media: the delivery of femtosecond pulses without dispersion and the efficient collection of fluorescence. We model the performance of one such design optimized for a typical brain-imaging setup and show that it can greatly outperform objectives commonly used for this task. PMID:16880851
Artist Concept of Wide-field Infrared Survey Explorer WISE
2004-10-08
Artist concept of Wide-field Infrared Survey Explorer. A new NASA mission will scan the entire sky in infrared light in search of nearby cool stars, planetary construction zones and the brightest galaxies in the universe. http://photojournal.jpl.nasa.gov/catalog/PIA06927
Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy.
Oishi, Akio; Oishi, Maho; Ogino, Ken; Morooka, Satoshi; Yoshimura, Nagahisa
2016-01-01
Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal diseases characterized by the progressive loss of rod and/or cone photoreceptors. To evaluate the status of rod/cone photoreceptors and visual function, visual acuity and visual field tests, electroretinogram, and optical coherence tomography are typically used. In addition to these examinations, fundus autofluorescence (FAF) has recently garnered attention. FAF visualizes the intrinsic fluorescent material in the retina, which is mainly lipofuscin contained within the retinal pigment epithelium. While conventional devices offer limited viewing angles in FAF, the recently developed Optos machine enables recording of wide-field FAF. With wide-field analysis, an association between abnormal FAF areas and visual function was demonstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence of "patchy" hypoautofluorescent areas was found to be correlated with symptom duration. Although physicians should be cautious when interpreting wide-field FAF results because the peripheral parts of the image are magnified significantly, this examination method provides previously unavailable information.
The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.
2008-01-01
Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.
Ultra-widefield fluorescein angiography reveals retinal phlebitis in Susac's syndrome.
Klufas, Michael A; Dinkin, Marc J; Bhaleeya, Swetangi D; Chapman, Kristin O; Riley, Claire S; Kiss, Szilárd
2014-01-01
A 23-year-old woman with history of headaches and auditory changes presented with acute-onset visual field loss in the right eye. The combination of multiple retinal branch artery occlusions of the right eye on funduscopic examination, characteristic white matter lesions in the corpus callosum on magnetic resonance imaging, and hearing loss on audiometric testing led to a diagnosis of Susac's syndrome. Ultra-widefield fluorescein angiography revealed involvement of the retinal veins, which has not been previously reported with this condition. Additionally, ultra-widefield indocyanine green angiography demonstrated changes in the choroidal circulation, which are controversial in this syndrome. Copyright 2014, SLACK Incorporated.
Widefield fluorescence sectioning with HiLo microscopy.
Mertz, Jerome; Lim, Daryl; Chu, Kengyeh K; Bozinovic, Nenad; Ford, Timothy
2009-01-01
HiLo microscopy is a widefield fluorescence imaging technique that provides depth discrimination by combining two images, one with non-uniform illumination and one with uniform illumination. We discuss the theory of this technique and a variety of practical implementations in brain-tissue imaging and fluorescence endomicroscopy.
Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)
2010-12-24
The modeling tools are based on interaction between three commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design...deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via MatLab. From ZEMAX , various analyses can...results to extract from ZEMAX to support the optimization remains to be determined. Figure 1 shows the deformation calculated using a model of an
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Design and performance of a production-worthy excimer-laser-based stepper
NASA Astrophysics Data System (ADS)
Unger, Robert; Sparkes, Christopher; Disessa, Peter A.; Elliott, David J.
1992-06-01
Excimer-laser-based steppers have matured to a production-worthy state. Widefield high-NA lenses have been developed and characterized for imaging down to 0.35 micron and below. Excimer lasers have attained practical levels of performance capability and stability, reliability, safety, and operating cost. Excimer stepper system integration and control issues such as focus, exposure, and overlay stability have been addressed. Enabling support technologies -- resist systems, resist processing, metrology and conventional mask making -- continue to progress and are becoming available. This paper discusses specific excimer stepper design challenges, and presents characterization data from several field installations of XLSTM deep-UV steppers configured with an advanced lens design.
Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light.
Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan
2017-03-09
Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm 2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.
Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light
NASA Astrophysics Data System (ADS)
Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan
2017-03-01
Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.
Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope
NASA Technical Reports Server (NTRS)
Scott, Nic J.; Howell, Steve; Horch, Elliott
2016-01-01
Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.
High Resolution Energetic X-ray Imager (HREXI)
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan
We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a nIR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.
Foreground mitigation strategy for measuring the 21 cm-LAE cross-correlation
NASA Astrophysics Data System (ADS)
Yoshiura, Shintaro; Line, Jack L. B.; Kubota, Kenji; Hasegawa, Kenji; Takahashi, Keitaro
2018-05-01
The cross power spectrum of the 21 cm signal and Lyman-α emitters (LAEs) is a probe of the Epoch of Reionization. Astrophysical foregrounds do not correlate with the LAE distribution, though the foregrounds contribute to the error. To study the impact of foregrounds on the measurement, we assume realistic observation by the Murchison Widefield Array using a catalogue of radio galaxies, a LAE survey by the Subaru Hyper Supreme-Cam and the redshift of LAEs is determined by the Prime Focus Spectrograph. The HI distribution is estimated from a radiative transfer simulation with models based on results of radiation hydrodynamics simulation. Using these models, we found that the error of cross power spectrum is dominated by foreground terms. Furthermore, we estimate the effects of foreground removal, and find 99% of the foreground removal is required to detect the 21 cm-LAE signal at k ~ 0.4 h Mpc-1.
VizieR Online Data Catalog: Proper motions and photometry of stars in NGC 3201 (Sariya+, 2017)
NASA Astrophysics Data System (ADS)
Sariya, D. P.; Jiang, I.-G.; Yadav, R. K. S.
2017-07-01
To determine the PMs of the stars in this work, we used archive images (http://archive.eso.org/eso/esoarchivemain.html) from observations made with the 2.2m ESO/MPI telescope at La Silla, Chile. This telescope contains a mosaic camera called the Wide-Field Imager (WFI), consisting of 4*2 (i.e., 8 CCD chips). Since each CCD has an array of 2048*4096 pixels, WFI ultimately produces images with a 34*33arcmin2 field of view. The observational run of the first epoch contains two images in B,V and I bands, each with 240s exposure time observed on 1999 December 05. In the second epoch, we have 35 images with 40s exposure time each in V filter observed during the period of 2014 April 02-05. Thus the epoch gap between the data is ~14.3 years. (2 data files).
Monitoring ion-channel function in real time through quantum decoherence
Hall, Liam T.; Hill, Charles D.; Cole, Jared H.; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C. L.
2010-01-01
In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery. PMID:20937908
Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging
NASA Astrophysics Data System (ADS)
Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ
2015-01-01
Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)
Monitoring ion-channel function in real time through quantum decoherence.
Hall, Liam T; Hill, Charles D; Cole, Jared H; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C L
2010-11-02
In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.
NASA Astrophysics Data System (ADS)
Noroozian, Omid
2018-01-01
The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.
Widefield compressive multiphoton microscopy.
Alemohammad, Milad; Shin, Jaewook; Tran, Dung N; Stroud, Jasper R; Chin, Sang Peter; Tran, Trac D; Foster, Mark A
2018-06-15
A single-pixel compressively sensed architecture is exploited to simultaneously achieve a 10× reduction in acquired data compared with the Nyquist rate, while alleviating limitations faced by conventional widefield temporal focusing microscopes due to scattering of the fluorescence signal. Additionally, we demonstrate an adaptive sampling scheme that further improves the compression and speed of our approach.
STARL -- a Program to Correct CCD Image Defects
NASA Astrophysics Data System (ADS)
Narbutis, D.; Vanagas, R.; Vansevičius, V.
We present a program tool, STARL, designed for automatic detection and correction of various defects in CCD images. It uses genetic algorithm for deblending and restoring of overlapping saturated stars in crowded stellar fields. Using Subaru Telescope Suprime-Cam images we demonstrate that the program can be implemented in the wide-field survey data processing pipelines for production of high quality color mosaics. The source code and examples are available at the STARL website.
Ogura, Shuntaro; Yasukawa, Tsutomu; Kato, Aki; Usui, Hideaki; Hirano, Yoshio; Yoshida, Munenori; Ogura, Yuichiro
2014-11-01
To study the correlation between the visual fields (VF) and wide-field fundus autofluorescence (FAF) in patients with retinitis pigmentosa (RP). Retrospective, observational, consecutive case series. Twenty-four eyes of 12 patients diagnosed with RP were enrolled. The VFs measured by Goldmann perimetry and wide-field FAF images were compared for each eye. The relationship between the areas of hypoautofluorescence on the wide-field FAF images and scotoma on Goldmann perimetry were evaluated. The VF and FAF images in the central 60 degrees were trimmed and superimposed to calculate the percentage agreement between the hypoautofluorescence and the scotomas and between the isoautofluorescence and hyperautofluorescence and the remaining VFs. The areas of hypoautofluorescence on the FAF images were correlated significantly (R = 0.86, P < .001) with the areas of the VF defects on Goldmann perimetry. The mean percentage agreement between the hypoautofluorescence and the scotomas was 91.0% ± 7.7% and that of the isoautofluorescence and hyperautofluorescence with the remaining VFs was 84.5% ± 7.4%. The areas of geographic hypoautofluorescence with or without hyperautofluorescent bands reflected the VF defects, while nummular or mottled hypoautofluorescence without VF defects was seen in 7 eyes. These results suggested that wide-field FAF imaging is useful to evaluate the remaining retinal function in patients with RP. Abnormal fundus autofluorescence precedes loss of retinal function and is helpful for monitoring disease progression. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nunhokee, C. D.; Bernardi, G.; Kohn, S. A.; Aguirre, J. E.; Thyagarajan, N.; Dillon, J. S.; Foster, G.; Grobler, T. L.; Martinot, J. Z. E.; Parsons, A. R.
2017-10-01
A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc-1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.
Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram
2015-11-01
Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.
Spectral Flattening at Low Frequencies in Crab Giant Pulses
NASA Astrophysics Data System (ADS)
Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.
2017-12-01
We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.
Widefield High Frame Rate Single-Photon SPAD Imagers for SPIM-FCS.
Buchholz, Jan; Krieger, Jan; Bruschini, Claudio; Burri, Samuel; Ardelean, Andrei; Charbon, Edoardo; Langowski, Jörg
2018-05-22
Photon-counting sensors based on standard complementary metal-oxide-semiconductor single-photon avalanche diodes (SPADs) represent an emerging class of imagers that enable the counting and/or timing of single photons at zero readout noise (better than high-speed electron-multiplying charge-coupling devices) and over large arrays. They have seen substantial progress over the last 15 years, increasing their spatial resolution, timing accuracy, and sensitivity while reducing spurious signals such as afterpulsing and dark counts. They are increasingly being applied for time-resolved applications with the added advantage of enabling real-time options such as autocorrelation. We report in this study on the use of such a state-of-the-art 512 × 128 SPAD array, capable of a time resolution of 10 -5 -10 -6 s for full frames while retaining acceptable photosensitivity thanks to the use of dedicated microlenses, in a selective plane illumination-fluorescence correlation spectroscopy setup. The latter allows us to perform thousands of fluorescence-correlation spectroscopy measurements simultaneously in a two-dimensional slice of the sample. This high-speed SPAD imager enables the measurement of molecular motion of small fluorescent particles such as single chemical dye molecules. Inhomogeneities in the molecular detection efficiency were compensated for by means of a global fit of the auto- and cross-correlation curves, which also made a calibration-free measurement of various samples possible. The afterpulsing effect could also be mitigated, making the measurement of the diffusion of Alexa-488 possible, and the overall result quality was further improved by spatial binning. The particle concentrations in the focus tend to be overestimated by a factor of 1.7 compared to a confocal setup; a calibration is thus required if absolute concentrations need to be measured. The first high-speed selective plane illumination-fluorescence correlation spectroscopy in vivo measurements to our knowledge were also recorded: although two-component fit models could not be employed because of noise, the diffusion of eGFP oligomers in HeLa cells could be measured. Sensitivity and noise will be further improved in the next generation of SPAD-based widefield sensors, which are currently under testing. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Low-frequency radio constraints on the synchrotron cosmic web
NASA Astrophysics Data System (ADS)
Vernstrom, T.; Gaensler, B. M.; Brown, S.; Lenc, E.; Norris, R. P.
2017-06-01
We present a search for the synchrotron emission from the synchrotron cosmic web by cross-correlating 180-MHz radio images from the Murchison Widefield Array with tracers of large-scale structure (LSS). We use two versions of the radio image covering 21.76° × 21.76° with point sources brighter than 0.05 Jy subtracted, with and without filtering of Galactic emission. As tracers of the LSS, we use the Two Micron All-Sky Survey and the Wide-field InfraRed Explorer redshift catalogues to produce galaxy number density maps. The cross-correlation functions all show peak amplitudes at 0°, decreasing with varying slopes towards zero correlation over a range of 1°. The cross-correlation signals include components from point source, Galactic, and extragalactic diffuse emission. We use models of the diffuse emission from smoothing the density maps with Gaussians of sizes 1-4 Mpc to find limits on the cosmic web components. From these models, we find surface brightness 99.7 per cent upper limits in the range of 0.09-2.20 mJy beam-1 (average beam size of 2.6 arcmin), corresponding to 0.01-0.30 mJy arcmin-2. Assuming equipartition between energy densities of cosmic rays and the magnetic field, the flux density limits translate to magnetic field strength limits of 0.03-1.98 μG, depending heavily on the spectral index. We conclude that for a 3σ detection of 0.1 μG magnetic field strengths via cross-correlations, image depths of sub-mJy to sub-μJy are necessary. We include discussion on the treatment and effect of extragalactic point sources and Galactic emission, and next steps for building on this work.
Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy.
Heinrich, Christoph; Hofer, Alexander; Ritsch, Andreas; Ciardi, Christian; Bernet, Stefan; Ritsch-Marte, Monika
2008-02-18
Wide-field Coherent Anti-Stokes Raman Scattering (CARS) microscopy is employed to identify saturated and unsaturated fatty acids in micro-emulsions and cells, using the ratio between the strong -C-H CARS signal at 2850 cm(-1) and the weak signal of the =C-H vibration around 3015 cm(-1) for distinction. Quantitative CARS imaging at the =C-H resonance is challenging, since it yields only a low CARS signal, and small differences on the order of 5% in the concentration of polyunsaturated fatty lipids have to be detected. For this purpose we draw advantage of the high signal-to-noise ratio of wide-field CARS microscopy that is achieved by an excitation geometry involving a "sheet-of-light"-type illumination.
Xu, Lucy T.; Courtney, Robert J.; Ehlers, Justis P
2015-01-01
Waldenstrom’s macroglobulinemia (WM) is associated with retinal findings of hyperviscosity such as venous dilation, and findings of immunogammopathy maculopathy such as serous macular detachment. The report describes a case of bilateral serous macular detachment with intraretinal schisis-like fluid in a patient with WM. Enhanced depth imaging OCT revealed a thickened choroid with hyper-reflective accumulations in the RPE layer. The ultra-widefield fundus autofluorescence demonstrated a central area of hyperautofluorescence corresponding to the area of serous macular detachment. Ultra-widefield fluorescein angiography was characteristically silent. Intravitreal bevacizumab therapy resulted in significant reduction in intraretinal fluid, but minimal change in subretinal fluid. Long-term follow-up demonstrated alterations in retinal architecture and improved serous detachments. PMID:25707055
NASA Astrophysics Data System (ADS)
Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael
2014-08-01
Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including detailed designs of the mechanical, cryogenic, and electrical systems. Plans for the future will also be presented.
NASA Astrophysics Data System (ADS)
Rau, U.; Bhatnagar, S.; Owen, F. N.
2016-11-01
Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1-2 GHz)) and 46-pointing mosaic (D-array, C-Band (4-8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μJy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Optical Design for a Survey X-Ray Telescope
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.
2014-01-01
Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.
NASA Astrophysics Data System (ADS)
Parsons, Aaron Robert
Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the Epoch of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view. Finally, I describe PAPER's overall architecture and summarize two PAPER deployments: a 4-antenna array in of Western Australia and an 8-antenna array in Green Bank, WV. After reporting on system characterization and data analysis techniques, I present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. I calculate angular power spectra (Cℓ) in a cold patch and determine them to be dominated by point sources. Although the sample variance of foregrounds dominates errors in these power spectra, I measure a thermal noise level of 310 mK at ℓ = 100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the expected level of 21cm fluctuations associated with reionization.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2011-01-01
We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more complete description appears in our paper in these proceedings.
From Asteroids to Space Debris
NASA Astrophysics Data System (ADS)
Benkhaldoun, Zouhair; Moon, Hong-Kyu; Daassou, Ahmed; Jang-Hyun, Park; Lazrek, Mohamed
2015-08-01
Since 2011, the Oukaimeden Observatory (OUCA) located on the mountains of the Moroccan High Atlas has become one of the successful contributors in asteroid discovery in the world. The discovery statistics of the MOSS (Morocco Oukaimeden Sky Survey) telescope represents more than 2145 new designations to date for their credits. Its discoveries include three new NEOs and four new comets. The exceptional astro-climatic conditions in terms not only of number of clear nights, but also of atmospheric seeing are partly behind this success. Indeed the average number of observable nights is around 280 nights per year, while the average seeing is about 0.8 to 0.9 arcsec.In the meanwhile, the OUCA achieved construction and installation of a new facility in March 2015. It is a compact, 0.5 m aperture fast optics robotic telescope designed and implemented by the Optical Wide-field Patrol (OWL) team of Korea Astronomy and Space Science Institute (KASI). The primary object of the OWL project is to monitor national space-based assets, howevr either wide-field imaging- or fast data acquisition- capabilities enable to undertake observational program to catalog and follow-up various transient events in the night sky. We will brief future plan for this joint project between the OUCA and KASI.Our presentation aims to share the details of instrumentation implemented and cooperation opportunities it can arouse within the community for the data analysis and interpretation.
NASA Astrophysics Data System (ADS)
Dickensheets, David L.; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind
2016-02-01
Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.
Noninvasive Quantification of Retinal Microglia Using Widefield Autofluorescence Imaging.
Kokona, Despina; Schneider, Nadia; Giannakaki-Zimmermann, Helena; Jovanovic, Joel; Ebneter, Andreas; Zinkernagel, Martin
2017-04-01
To validate widefield autofluorescence (AF) in vivo imaging of the retina in mice expressing green fluorescent protein (gfp) in microglia, and to monitor retinal microglia reconstitution in vivo after lethal irradiation and bone marrow transplantation. Transgenic Cx3cr1gfp/gfp and wildtype Balb/c mice were used in this study. A confocal scanning laser ophthalmoscope was used for AF imaging with a 55° and a widefield 102° lens. Intrasession reproducibility was assessed for each lens. To investigate reconstitution in vivo, bone marrow from Cx3cr1gfp/gfp mice was used to rescue lethally irradiated wildtype mice. Data were compared to confocal microscopy of retinal flat mounts. Both the 55° and the 102° lens produced high resolution images of retinal microglia with similar microglia density. However, compared to the 55° lens, the widefield 102° lens captured approximately 3.6 times more microglia cells (1515 ± 123 cells versus 445 ± 76 cells [mean ± SD], for 102° and 55°, respectively, P < 0.001). No statistical difference in the number of gfp positive cells within corresponding areas was observed within the same imaging session. Imaging of microglia reconstitution showed a similar time course compared to flat mount preparations with an excellent correlation between microglia cell numbers in AF and gfp-stained flat mounts (R = 0.92, P < 0.0001). Widefield AF imaging of mice with gfp expressing microglia can be used to quantify retinal microglia. In vivo microglia counts corresponded very well with ex vivo counts on retinal flat mounts. As such, AF imaging can largely replace ex vivo quantification.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Dickensheets, David L; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind
2016-02-01
Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.
Design and fabrication of microstrip antenna arrays
NASA Technical Reports Server (NTRS)
1978-01-01
A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.
Extended axial imaging range, widefield swept source optical coherence tomography angiography.
Liu, Gangjun; Yang, Jianlong; Wang, Jie; Li, Yan; Zang, Pengxiao; Jia, Yali; Huang, David
2017-11-01
We developed a high-speed, swept source OCT system for widefield OCT angiography (OCTA) imaging. The system has an extended axial imaging range of 6.6 mm. An electrical lens is used for fast, automatic focusing. The recently developed split-spectrum amplitude and phase-gradient angiography allow high-resolution OCTA imaging with only two B-scan repetitions. An improved post-processing algorithm effectively removed trigger jitter artifacts and reduced noise in the flow signal. We demonstrated high contrast 3 mm×3 mm OCTA image with 400×400 pixels acquired in 3 seconds and high-definition 8 mm×6 mm and 12 mm×6 mm OCTA images with 850×400 pixels obtained in 4 seconds. A widefield 8 mm×11 mm OCTA image is produced by montaging two 8 mm×6 mm scans. An ultra-widefield (with a maximum of 22 mm along both vertical and horizontal directions) capillary-resolution OCTA image is obtained by montaging six 12 mm×6 mm scans. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A large-format imager for the SkyMapper Survey Telescope
NASA Astrophysics Data System (ADS)
Granlund, A.; Conroy, P. G.; Keller, S. C.; Oates, A. P.; Schmidt, B.; Waterson, M. F.; Kowald, E.; Dawson, M. I.
2006-06-01
The Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) at Mt Stromlo Observatory is developing a wide-field Cassegrain Imager for the new 1.3m SkyMapper Survey Telescope under construction for Siding Spring Observatory, NSW, Australia. The Imager features a fast-readout, low-noise 268 Million pixel CCD mosaic that provides a 5.7 square degree field of view. Given the close relative sizes of the telescope and Imager, the work is proceeding in close collaboration with the telescope's manufacturer, Electro Optics Systems Pty Ltd (Canberra, Australia). The design of the SkyMapper Imager focal plane is based on E2V (Chelmsford, UK) deep depletion CCDs. These devices have 2048 x 4096 15 micron pixels, and provide a 91% filling factor in our mosaic configuration of 4 x 8 chips. In addition, the devices have excellent quantum efficiency from 300nm-950nm, near perfect cosmetics, and low-read noise, making them well suited to the all-sky ultraviolet through near-IR Southern Sky Survey to be conducted by the telescope. The array will be controlled using modified versions of the new IOTA controllers being developed for Pan-STARRS by Onaka and Tonry et al. These controllers provide a cost effective, low-volume, high speed solution for our detector read-out requirements. The system will have an integrated 6-filter exchanger, and Shack-Hartmann optics, and will be cooled by closed-cycle helium coolers. This paper will present the specifications, and opto-mechanical and detector control design of the SkyMapper Imager, including the test results of the detector characterisation and manufacturing progress.
IDENTIFYING IONIZED REGIONS IN NOISY REDSHIFTED 21 cm DATA SETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malloy, Matthew; Lidz, Adam, E-mail: mattma@sas.upenn.edu
One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signalmore » during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which {approx}20% of the volume of the universe is neutral at z {approx} 7, we find that a 500-tile MWA may directly identify as many as {approx}150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.« less
NASA Astrophysics Data System (ADS)
van der Avoort, Casper
2006-05-01
Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will treat related subjects, being experimental work on beam combination optics, a description of a novel formalism for aberration retrieval and experimental work on nulling interferometry. The Chapters on interferometric imaging are organized in such a way that not only the physical principles behind a stellar interferometer are clear, but these chapters also form a basis for the method of analysis applied to the interferometers - -or rather beam combination methods- under consideration. The imaging process in a stellar interferometer will be treated as the inversion of a linear system of equations. The definition of interferometric imaging in this thesis can be stated to be the reconstruction of a luminosity distribution function on the sky, that is, in angular measure, larger than the angular diffraction limited spot size -or Point-Spread Function (PSF)- of a single telescope in the array and that contains, again in angular measure, spatial structure that is much smaller than the PSF of a single telescope. This reconstruction has to be based on knowledge of the dimensions of the telescope array and the detector. The detector collects intensity data that is formed by observation of the polychromatic luminosity distribution on the sky and is deteriorated by the quantum-nature of light and an imperfect electronic detection process. Therefore, the imaging study presented in this thesis can be regarded to be a study on the signal characteristics of various interferometers while imaging a polychromatic wide-field stellar source. The collection of beam combination methods under consideration consists of four types. Among these are two well-known types, having either co-axially combined beams as in the Michelson-Morley experiment to demonstrate the existence of ether, or beams that follow optical paths as if an aperture mask were placed in front of a telescope, making the beams combine in the focus of that telescope, as suggested by Fizeau. For separated apertures rather than an aperture mask, these optical paths are stated to be homothetic. In short, these two types will be addressed as the Michelson or the Homothetic type. The other two types are addressed as Densified and Staircase. The first one is short for densified pupil imaging, an imaging technique very similar to the Homothetic type, be it that the natural course of light after the aperture mask is altered. However, the combination of the beams of light is again in focus. The Staircase method is an alternative to the co-axial Michelson method and lends its name from the fact that a staircase-shaped mirror is placed in an intermediate focal plane after each telescope in the array, before combining the beams of light co-axially. This addition allows stellar imaging as with the Michelson type, with the advantage of covering a large field-of-view. The details of these methods will intensively be discussed in this thesis, but the introduction of them at this point allows a short list of results, found by comparing them for equal imaging tasks. Homothetic imagers are best suited for covering a wide field-of-view, considering the information content of the interferometric signals these arrays produce. The large number of detectors does not seem to limit the imaging performance in the presence of noise, due to the high ratio of coherent versus incoherent information in the detector signal. The imaging efficiency of a Michelson type array is also high, although -considering only polychromatic wide-field imaging tasks- the ratio of coherent versus incoherent information in the detected signals is very low. This results in very large observation times needed to produce images comparable to those obtained with a Homothetic array. A detailed presentation of the characteristics of the detected signals in a co-axial Michelson array reveal that such signals, obtained by polychromatic observation of extended sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain high-resolution spectroscopic information about such a source. For the Densified case, it is found that this method can indeed provide an interferometric PSF that is more favorable than a homothetic PSF, but only for narrow-angle observations. For polychromatic wide-field observations, the Densified-PSF is field-dependent, for which the image reconstruction process can account. Wide-field imaging using the favorable properties of the Densified-PSF can be performed, by using special settings of the delay or optical path length difference between interferometer arms and including observations with several settings of delay in the observation data. The Staircase method is the second best method for the imaging task under consideration. The discontinuous nature of the staircase-shaped mirrors does not give rise to a discontinuous reconstructed luminosity distribution or non-uniformly covered spatial frequencies. The intrinsic efficiency of the interferometric signal in this type of interferometer is worse than that of the other co-axial method, although the ratio of coherent versus incoherent signal in the data -the length of the fringe packet in one intensity trace-e- is nearly ultimate. The inefficiency is overwhelmingly compensated for by the very short observation time needed. Besides numerical studies of interferometer arrays, one interferometric imager was also studied experimentally. A homothetic imager was built, comprising three telescopes with fully separated beam relay optics. The pointing direction, the location and the optical path length of two of the three beams are electronically controllable. The beams can be focused together to interfere, via a beam combiner consisting of curved surfaces. This set-up allows to measure the required accuracies at which certain optical elements have to be positioned. Moreover, this set-up demonstrates that without knowledge of the initial pointing directions, locations and optical path lengths of the beams, the situation of homothesis can be attained, solely based on information from the focal plane of the set-up. Further experiments show that the approximation of exact homothesis is limited by the optical quality of the beam combiner optics. Parallel to the experiments on homothesis, a study was performed to evaluate the use of the Extended Nijboer-Zernike (ENZ) formalism for analysis of multiple aperture optical systems. It is envisaged that an aberration retrieval algorithm, provided with the common focus of a homothetic array, can be used to detect misalignment of or even aberrations in the sub-apertures of the sparse synthetic aperture. The ENZ formalism is a powerful tool to describe the focal intensity profile in an optical imaging system, imaging a monochromatic point source through a pupil that is allowed to have a certain transmission profile and phase aberration function over the pupil. Moreover, the formalism allows calculation of intensity profiles outside the best-focus plane. With the intensity information of several through-focus planes, enough information is available to reconstruct the pupil function from it. The formalism is described, including the reconstruction algorithm. Although very good results are obtained for general pupil functions, the results for synthetic pupil functions are not very promising. The detailed description of the ENZ-aberration retrieval reveals the origin of the breakdown of the retrieval process. Finally, a description of experiments on nulling interferometry is given, starting with the presentation of an experimental set-up for three-beam nulling. A novel strategy for polychromatic nulling is treated here, with the goal of relieving the tight phase constraint on the spectra in the individual beams. This theoretically allows broad band-nulling with a high rejection ratio without using achromatic phase shifters. The disappointing results led to an investigation of the spectra of the individual beams. The origin of the unsatisfactory level of the rejection ratio is found in the spectral unbalance of the beams. Before branching off, the beams have an equal spectrum. Then, the encounter of different optical elements with individually applied coatings, the control of beam-power per beam and finally the beam coupling into a single-mode fiber, apparently alter the spectra in such a way that the theoretically achievable level of the rejection ratio cannot be reached. The research described in this thesis provides onsets for research in several areas of interest related to aperture synthesis and guidelines concerning the design of synthetic telescopes for imaging. As such, this research contributes to the improvement of instrumentation for observational astronomy, in particular for stellar interferometry. While nulling interferometry is the detection technique that allows a space telescope array such as ESA-Darwin to identify exoplanets, optical aperture synthesis imaging is the technique that can make images of the planetary systems to which these exoplanets belong. Moreover, many objects can be observed that represent earlier versions of our planetary system, our Sun and even our galaxy, the Milky Way. Observing these objects might answer questions about the origins of the Earth itself and the life on it.
Multi-Modal Ultra-Widefield Imaging Features in Waardenburg Syndrome
Choudhry, Netan; Rao, Rajesh C.
2015-01-01
Background Waardenburg syndrome is characterized by a group of features including; telecanthus, a broad nasal root, synophrys of the eyebrows, piedbaldism, heterochromia irides, and deaf-mutism. Hypopigmentation of the choroid is a unique feature of this condition examined with multi-modal Ultra-Widefield Imaging in this report. Material/Methods Report of a single case. Results Bilateral symmetric choroidal hypopigmentation was observed with hypoautofluorescence in the region of hypopigmentation. Fluorescein angiography revealed a normal vasculature, however a thickened choroid was seen on Enhanced-Depth Imaging Spectral-Domain OCT (EDI SD-OCT). Conclusion(s) Choroidal hypopigmentation is a unique feature of Waardenburg syndrome, which can be visualized with ultra-widefield fundus autofluorescence. The choroid may also be thickened in this condition and its thickness measured with EDI SD-OCT. PMID:26114849
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.
2013-04-01
We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.
NASA Astrophysics Data System (ADS)
Hayes, Richard; Beets, Tim; Beno, Joseph; Booth, John; Cornell, Mark; Good, John; Heisler, James; Hill, Gary; Kriel, Herman; Penney, Charles; Rafal, Marc; Savage, Richard; Soukup, Ian; Worthington, Michael; Zierer, Joseph
2012-09-01
In support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the Center for Electromechanics at The University of Texas at Austin was tasked with developing the new Tracker and control system to support the HETDEX Wide-Field Upgrade. The tracker carries the 3,100 kg Prime Focus Instrument Package and Wide Field Corrector approximately 13 m above the 10 m diameter primary mirror. Its safe and reliable operation by a sophisticated control system, over a 20 year life time is a paramount requirement for the project. To account for all potential failures and potential hazards, to both the equipment and personnel involved, an extensive Failure Modes and Effects Analysis (FMEA) was completed early in the project. This task required participation of all the stakeholders over a multi-day meeting with numerous follow up exchanges. The event drove a number of significant design decisions and requirements that might not have been identified this early in the project without this process. The result is a system that has multiple layers of active and passive safety systems to protect the tens of millions of dollars of hardware involved and the people who operate it. This paper will describe the background of the FMEA process, how it was utilized on HETDEX, the critical outcomes, how the required safety systems were implemented, and how they have worked in operation. It should be of interest to engineers, designers, and managers engaging in complex multi-disciplinary and parallel engineering projects that involve automated hardware and control systems with potentially hazardous operating scenarios.
Optimizing X-Ray Optical Prescriptions for Wide-Field Applications
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2010-01-01
X-ray telescopes with spatial resolution optimized over the field of view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the x-ray sky, and for solar x-ray observations. Here we report on the present status of an on-going study of the properties of Wolter I and polynominal grazing incidence designs with a view to gain a deeper insight into their properties and simply the design process. With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I x-ray optics and polynominal x-ray optic ray tracing. Of crucial importance for the design of wide-field x-ray optics is the optimization criteria. Here we have adopted the minimization of a merit function, M, which measures the spatial resolution averaged over the FOV: M= ((integral of d phi) between the limits of 0 and 2 pi) (integral of d theta theta w(theta) sigma square (theta,phi) between the limits of 0 and theta(sub FOV)) (integral of d phi between the limits of 0 and phi/4) (Integral of d theta theta w(theta) between the limits of 0 and theta(sub FOV) where w(theta(sub 1) is a weighting function and Merit function: sigma-square (theta, phi) = summation of (x,y,z) [
Design and installation of a multimode microscopy system
NASA Astrophysics Data System (ADS)
Helm, Johannes P.; Haug, Finn-Mogens S.; Storm, Johan F.; Ottersen, Ole-Petter
2001-04-01
We describe design and installation of a multi-mode microscopy core facility in an environment of varied research activity in life-sciences. The experimentators can select any combination of a) microscopes (upright, upright fixed-stage, inverted), b) microscopy modes (widefield, DIC, IRDIC, widefield epifluorescence, transmission LSM, reflection and fluorescence CLSM, MPLSM), c) imaging techniques (direct observation, video observation, photography, quantitative camera-recording, flying spot scanning), d) auxiliary systems (equipment for live specimen imaging, electrophysiology, time-coordinated laser-scanning and electrophysiology, patch-clamp). The equipment is installed on one large vibration-isolating optical table (3m X 1.5m X 0.3m). Electronics, auxiliary equipment, and a fiber-coupled, remotely controlled Ar+-Kr+ laser are mounted in a rack system fixed to the ceiling. The design of the shelves allows the head of the CSLM to be moved to any of the microscopes without increasing critical cable lengths. At the same time easy access to all the units is preserved. The beam of a Titanium-Sapphire laser, controlled by means of an EOM and a prism GVD, is coupled directly to the microscopes. Three mirrors mounted on a single precision translation table are integrated into the beam steering system so that the beam can easily be redirected to any of the microscopes. All the available instruments can be operated by the educated and trained user. The system is popular among researchers in neuroanatomy, embryology, cell biology, molecular biology - including the study of protein interactions, e.g. by means of FRET, and electrophysiology. Its colocalization with an EM facility promises to provide considerable synergy effects.
PISCES: An Integral Field Spectrograph Technology Demonstration for the WFIRST Coronagraph
NASA Technical Reports Server (NTRS)
McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.;
2016-01-01
We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field Infra Red Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.
PISCES: an integral field spectrograph technology demonstration for the WFIRST coronagraph
NASA Astrophysics Data System (ADS)
McElwain, Michael W.; Mandell, Avi M.; Gong, Qian; Llop-Sayson, Jorge; Brandt, Timothy; Chambers, Victor J.; Grammer, Bryan; Greeley, Bradford; Hilton, George; Perrin, Marshall D.; Stapelfeldt, Karl R.; Demers, Richard; Tang, Hong; Cady, Eric
2016-07-01
We present the design, integration, and test of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) integral field spectrograph (IFS). The PISCES design meets the science requirements for the Wide-Field InfraRed Survey Telescope (WFIRST) Coronagraph Instrument (CGI). PISCES was integrated and tested in the integral field spectroscopy laboratory at NASA Goddard. In June 2016, PISCES was delivered to the Jet Propulsion Laboratory (JPL) where it was integrated with the Shaped Pupil Coronagraph (SPC) High Contrast Imaging Testbed (HCIT). The SPC/PISCES configuration will demonstrate high contrast integral field spectroscopy as part of the WFIRST CGI technology development program.
NASA Technical Reports Server (NTRS)
1983-01-01
The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.
Karampelas, Michael; Sim, Dawn A; Chu, Colin; Carreno, Ester; Keane, Pearse A; Zarranz-Ventura, Javier; Westcott, Mark; Lee, Richard W J; Pavesio, Carlos E
2015-06-01
To investigate the relationships between peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography (FA). Cross-sectional, consecutive case series. Consecutive ultra-widefield FA images were collected from 82 uveitis patients (82 eyes) in a single center. The extent of peripheral vasculitis, capillary nonperfusion, and vessel leakage were quantified. Parameters included: (1) foveal avascular zone area and macular leakage, (2) peripheral diffuse capillary leakage and ischemia, (3) peripheral vasculitis, and (4) leakage from neovascularization. Central macular thickness measurements were derived with optical coherence tomography. Main outcome measures were correlations between central and peripheral fluorangiographic changes as well as associations between visual function, ultra-widefield FA-derived metrics, and central macular thickness. Although central leakage was associated with peripheral leakage (r = 0.553, P = .001), there was no association between foveal avascular zone size and peripheral ischemia (r = 0.114, P = .324), regardless of the underlying uveitic diagnosis. Peripheral ischemia was, however, correlated to neovascularization-related leakage (r = 0.462, P = .001) and focal vasculitis (r = 0.441, P = .001). Stepwise multiple regression analysis revealed that a poor visual acuity was independently associated with foveal avascular zone size and central macular thickness (R(2)-adjusted = 0.45, P = .001). We present a large cohort of patients with uveitis imaged with ultra-widefield FA and further describe novel methods for quantification of peripheral vascular pathology, in an attempt to identify visually significant parameters. Although we observed that relationships exist between peripheral vessel leakage, vasculitis, and ischemia, it was only macular ischemia and increased macular thickness that were independently associated with a reduced visual acuity. Copyright © 2015 Elsevier Inc. All rights reserved.
New 50-m-class single-dish telescope: Large Submillimeter Telescope (LST)
NASA Astrophysics Data System (ADS)
Kawabe, Ryohei; Kohno, Kotaro; Tamura, Yoichi; Takekoshi, Tatsuya; Oshima, Tai; Ishii, Shun
2016-08-01
We report on a plan to construct a 50-m-class single-dish telescope, the Large Submillimeter Telescope (LST). The conceptual design and key science behind the LST are presented, together with its tentative specifications. This telescope is optimized for wide-area imaging and spectroscopic surveys in the 70-420 GHz frequency range, which spans the main atmospheric windows at millimeter and submillimeter wavelengths for good observation sites such as the Atacama Large Millimeter/submillimeter Array (ALMA) site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface, and will be useful for correction of the wind-load deformation. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time-domain science. Through exploitation of its synergy with ALMA and other telescopes, the LST will contribute to research on a wide range of topics in the fields of astronomy and astrophysics, e.g., astrochemistry, star formation in our Galaxy and galaxies, the evolution of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, the search for transients such as γ-ray burst reverse shocks produced during the epoch of re-ionization, electromagnetic follow up of detected gravitational wave sources, and examination of general relativity in the vicinity of super massive black holes via submillimeter very-long-baseline interferometry (VLBI).
Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery
Jermyn, Michael; Gosselin, Yoann; Valdes, Pablo A.; Sibai, Mira; Kolste, Kolbein; Mercier, Jeanne; Angulo, Leticia; Roberts, David W.; Paulsen, Keith D.; Petrecca, Kevin; Daigle, Olivier; Wilson, Brian C.; Leblond, Frederic
2015-01-01
In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX sensitivity in wide-field fluorescence imaging may improve the residual tumor detection during surgery with consequent impact on survival. PMID:26713218
Differential speckle and wide-field imaging for the Gemini-North and WIYN telescopes
NASA Astrophysics Data System (ADS)
Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.
2016-07-01
Two new instruments are currently being built for the Gemini-North and WIYN telescopes. They are based on the existing DSSI (Differential Speckle Survey Instrument), but the new dual-channel instruments will have both speckle and "wide-field" imaging capabilities. Nearly identical copies of the instrument will be installed as a public access permanent loan at the Gemini-N and WIYN telescopes. Many exoplanet targets will come from the NASA K2 and TESS missions. The faint limiting magnitude, for speckle observations, will remain around 16 to 17th magnitude depending on observing conditions, while wide-field, high speed imaging should be able to go to 21+. For Gemini, the instrument will be remotely operable from either the mid-level facility at Hale Pohaku or the remote operations base in Hilo.
The HYDICE instrument design and its application to planetary instruments
NASA Technical Reports Server (NTRS)
Basedow, R.; Silverglate, P.; Rappoport, W.; Rockwell, R.; Rosenberg, D.; Shu, K.; Whittlesey, R.; Zalewski, E.
1993-01-01
The Hyperspectral Digital Imagery Collection Experiment (HYDICE) instrument represents a significant advance in the state of the art in hyperspectral sensors. It combines a higher signal-to-noise ratio (SNR) and significantly better spatial and spectral resolution and radio metric accuracy than systems flying on aircraft today. The need for 'clean' data, i.e., data free of sampling artifacts and excessive spatial or spectral noise, is a key driver behind the difficult combination of performance requirements laid out for HYDICE. Most of these involve the sensor optics and detector. This paper presents an optimized approach to those requirements, one that comprises push broom scanning, a single, mechanically cooled focal plane, a double-pass prism spectrometer, and an easily fabricated yet wide-field telescope. Central to the approach is a detector array that covers the entire spectrum from 0.4 to 2.5 microns. Among the major benefits conferred by such a design are optical and mechanical simplicity, low polarization sensitivity, and coverage of the entire spectrum without suffering the spectral gaps caused by beam splitters. The overall system minimizes interfaces to the C-141 aircraft on which it will be flown, can be calibrated on the ground and in flight to accuracies better than those required, and is designed for simple, push-button operation. Only unprocessed data are recorded during flight. A ground data processing station provides quick-look, calibration correction, and archiving capabilities, with a throughput better than the requirements. Overall performance of the system is expected to provide the solid database required to evaluate the potential of hyperspectral imagery in a wide variety of applications. HYDICE can be regarded as a test bed for future planetary instruments. The ability to spectrally image a wide field of view over multiple spectral octaves offers obvious advantages and is expected to maximize science return for the required cost and weight.
Casswell, Edward J; Abou Ltaif, Sleiman; Carr, Thomas; Keane, Pearse A; Charteris, David G; Wickham, Louisa
2018-03-02
To describe the widefield spectral-domain optical coherence tomography features of peripheral round retinal holes, with or without associated retinal detachment (RD). Retrospective, observational study of 28 eyes with peripheral round retinal holes, with and without RD. Patients underwent imaging with a widefield 50-degree spectral-domain optical coherence tomography (Heidelberg Engineering, Germany) and Optos ultra-widefield imaging systems (Optos, United Kingdom). Vitreous attachment at the site of the retinal hole was detected in 27/28 (96.4%) cases. Cases were split into three groups: RHs with RD (n = 12); RHs with subretinal fluid (n = 5), and flat RHs (n = 11), with minimal or no subretinal fluid. 91.6% retinal holes associated with subretinal fluid or RD had vitreous attachment at the site of the hole. Eighty percent had vitreous attachment at both edges of the retinal hole, in a U-shape configuration, which appeared to exert traction. By contrast, flat retinal holes had visible vitreous attachment only at one edge of the retinal hole in 45.4%. Vitreous attachment was commonly seen at the site of round retinal holes. Vitreous attachment at both edges of the retinal hole in a U-shape configuration was more commonly seen at holes associated with subretinal fluid or RD.
A practical implementation of multi-frequency widefield frequency-domain FLIM
Chen, Hongtao
2013-01-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945
Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy
Reznicek, Lukas; Kolb, Jan P.; Klein, Thomas; Mohler, Kathrin J.; Huber, Robert; Kernt, Marcus; Märtz, Josef; Neubauer, Aljoscha S.
2015-01-01
Purpose. To evaluate the feasibility of wide-field Megahertz (MHz) OCT imaging in patients with diabetic retinopathy. Methods. A consecutive series of 15 eyes of 15 patients with diagnosed diabetic retinopathy were included. All patients underwent Megahertz OCT imaging, a close clinical examination, slit lamp biomicroscopy, and funduscopic evaluation. To acquire densely sampled, wide-field volumetric datasets, an ophthalmic 1050 nm OCT prototype system based on a Fourier-domain mode-locked (FDML) laser source with 1.68 MHz A-scan rate was employed. Results. We were able to obtain OCT volume scans from all included 15 patients. Acquisition time was 1.8 seconds. Obtained volume datasets consisted of 2088 × 1044 A-scans of 60° of view. Thus, reconstructed en face images had a resolution of 34.8 pixels per degree in x-axis and 17.4 pixels per degree. Due to the densely sampled OCT volume dataset, postprocessed customized cross-sectional B-frames through pathologic changes such as an individual microaneurysm or a retinal neovascularization could be imaged. Conclusions. Wide-field Megahertz OCT is feasible to successfully image patients with diabetic retinopathy at high scanning rates and a wide angle of view, providing information in all three axes. The Megahertz OCT is a useful tool to screen diabetic patients for diabetic retinopathy. PMID:26273665
Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy.
Reznicek, Lukas; Kolb, Jan P; Klein, Thomas; Mohler, Kathrin J; Wieser, Wolfgang; Huber, Robert; Kernt, Marcus; Märtz, Josef; Neubauer, Aljoscha S
2015-01-01
To evaluate the feasibility of wide-field Megahertz (MHz) OCT imaging in patients with diabetic retinopathy. A consecutive series of 15 eyes of 15 patients with diagnosed diabetic retinopathy were included. All patients underwent Megahertz OCT imaging, a close clinical examination, slit lamp biomicroscopy, and funduscopic evaluation. To acquire densely sampled, wide-field volumetric datasets, an ophthalmic 1050 nm OCT prototype system based on a Fourier-domain mode-locked (FDML) laser source with 1.68 MHz A-scan rate was employed. RESULTS. We were able to obtain OCT volume scans from all included 15 patients. Acquisition time was 1.8 seconds. Obtained volume datasets consisted of 2088 × 1044 A-scans of 60° of view. Thus, reconstructed en face images had a resolution of 34.8 pixels per degree in x-axis and 17.4 pixels per degree. Due to the densely sampled OCT volume dataset, postprocessed customized cross-sectional B-frames through pathologic changes such as an individual microaneurysm or a retinal neovascularization could be imaged. Wide-field Megahertz OCT is feasible to successfully image patients with diabetic retinopathy at high scanning rates and a wide angle of view, providing information in all three axes. The Megahertz OCT is a useful tool to screen diabetic patients for diabetic retinopathy.
NASA Astrophysics Data System (ADS)
Morgan, J. S.; Macquart, J. P.; Ekers, R.; Bisi, M. M.; Jackson, B. V.; Tokumaru, M.; Manoharan, P. K.; Chhetri, R.
2016-12-01
Interplanetary scintillation (IPS) is a phenomenon which can be used to probe both the heliospheric plasma and the structure of compact astrophysical radio sources. It is a vital tool for near-real-time monitoring of space weather. Previous IPS studies have generally relied on single concentrated collecting areas (either phased arrays or dishes). The Murchison Widefield Array (MWA) by contrast is a new-generation instrument consisting of a 128-element interferometer with an extremely wide field of view, and outstanding instantaneous imaging capability. This enables IPS studies of 1000 sources simultaneously, increasing the number of daily measurements that can be made by a factor of two or more. Here we report on progress from an ongoing IPS survey with the MWA where observations are made simultaneously at 80MHz and 150MHz. Dual-frequency observations allow solar wind velocities to be determined even with a single station, more accurately than from the analyses of a single-frequency IPS spectrum alone. Furthermore, the different refractive indices at different wavelengths leads to a lag in the cross correlation of the two frequency bands. This allows the bulk density of the outer solar corona to be probed along multiple lines of sight. We will discuss recent results and how they might be integrated into international Space Weather Prediction efforts such as the Worldwide IPS Stations (WIPSS) Network.
Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI
NASA Astrophysics Data System (ADS)
Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff
2013-12-01
We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 ' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm × 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Lenc, E.; Anderson, C. S.; Gaensler, B. M.; Murphy, T.
2018-04-01
We present a low-frequency, broad-band polarization study of the FRII radio galaxy PKS J0636-2036 (z = 0.0551), using the Murchison Widefield Array (MWA) from 70 to 230 MHz. The northern and southern hotspots (separated by ˜14.5 arcmin on the sky) are resolved by the MWA (3.3 arcmin resolution) and both are detected in linear polarization across the full frequency range. A combination of Faraday rotation measure (RM) synthesis and broad-band polarization model fitting is used to constrain the Faraday depolarization properties of the source. For the integrated southern hotspot emission, two-RM-component models are strongly favoured over a single RM component, and the best-fitting model requires Faraday dispersions of approximately 0.7 and 1.2 rad m-2 (with a mean RM of ˜50 rad m-2). High-resolution imaging at 5 arcsec with the Australia Telescope Compact Array shows significant sub-structure in the southern hotspot and highlights some of the limitations in the polarization modelling of the MWA data. Based on the observed depolarization, combined with extrapolations of gas density scaling relations for group environments, we estimate magnetic field strengths in the intergalactic medium between ˜0.04 and 0.5 μG. We also comment on future prospects of detecting more polarized sources at low frequencies.
NASA Astrophysics Data System (ADS)
Scowen, Paul A.; SDT, HORUS
2013-01-01
The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class UV-optical space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. To do so, HORUS will provide 100 times greater imaging efficiency and more than 10 times greater UV spectroscopic sensitivity than has existed on the Hubble Space Telescope (HST). The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-UV/visible (200-1075nm) wide-field, diffraction-limited imaging; and high-sensitivity, high-resolution UV (100-170nm) spectroscopy. The core HORUS design will provide wide field of view imagery and high efficiency point source FUV spectroscopy using a novel combination of spectral selection and field sharing. The HORUS Optical Telescope Assembly (OTA) design is based on modern light weight mirror technology with a faster primary mirror to shorten the overall package and thereby reduce mass. The OTA uses a three-mirror anastigmat configuration to provide excellent imagery over a large FOV - and is exactly aligned to use one of the recently released f/1.2 NRO OTAs as part of its design. The UV/optical Imaging Cameras use two 21k x 21k Focal Plane Arrays (FPAs). The FUV spectrometer uses cross strip anode based MCPs. This poster presents results from a 2010 design update requested by the NRC Decadal Survey, and reflects updated costs and technology to the original 2004 study. It is now one of the most mature 2.4m UVOIR observatory designs in NASA’s portfolio.
Multi-kW solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
1985-01-01
The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.
Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays
NASA Astrophysics Data System (ADS)
Goodrick, L.
2015-03-01
Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.
Sobieranski, Antonio C; Inci, Fatih; Tekin, H Cumhur; Yuksekkaya, Mehmet; Comunello, Eros; Cobra, Daniel; von Wangenheim, Aldo; Demirci, Utkan
2017-01-01
In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing. The samples are illuminated by a nearly coherent illumination system, where the hologram shadows are projected into a complementary metal-oxide semiconductor-based imaging sensor. To increase the resolution, a multi-frame pixel resolution approach is employed to produce a single holographic image from multiple frame observations of the scene, with small planar displacements. Displacements are resolved by a hybrid approach: (i) alignment of the LR images by a fast feature-based registration method, and (ii) fine adjustment of the sub-pixel information using a continuous optimization approach designed to find the global optimum solution. Numerical method for phase-retrieval is applied to decode the signal and reconstruct the morphological details of the analyzed sample. The presented approach was evaluated with various biological samples including sperm and platelets, whose dimensions are in the order of a few microns. The obtained results demonstrate a spatial resolution of 1.55 µm on a field-of-view of ≈30 mm2. PMID:29657866
Report of the Working Design Group
NASA Technical Reports Server (NTRS)
1992-01-01
The engineering study group in the LOUISA workshop was responsible for producing a preliminary general design for an optical synthetic aperture telescope on the Moon. This design is intended to be a test case for focusing continuing design studies. The scope of the design included consideration of the array geometry, individual telescopes, metrology, site attributes, and construction. However, no attempt was made to go into further depth in the design than to cover the essential characteristics of the instrument. The starting point for the array design was the lunar optical array discussed by Burke (1985). His array geometry followed the design and correlation procedure of the 27-element Very Large Array (VLA) radio telescopes near Socorro, New Mexico.
Brückner, Michael; Becker, Katja; Popp, Jürgen; Frosch, Torsten
2015-09-24
A new setup for Raman spectroscopic wide-field imaging is presented. It combines the advantages of a fiber array based spectral translator with a tailor-made laser illumination system for high-quality Raman chemical imaging of sensitive biological samples. The Gaussian-like intensity distribution of the illuminating laser beam is shaped by a square-core optical multimode fiber to a top-hat profile with very homogeneous intensity distribution to fulfill the conditions of Koehler. The 30 m long optical fiber and an additional vibrator efficiently destroy the polarization and coherence of the illuminating light. This homogeneous, incoherent illumination is an essential prerequisite for stable quantitative imaging of complex biological samples. The fiber array translates the two-dimensional lateral information of the Raman stray light into separated spectral channels with very high contrast. The Raman image can be correlated with a corresponding white light microscopic image of the sample. The new setup enables simultaneous quantification of all Raman spectra across the whole spatial area with very good spectral resolution and thus outperforms other Raman imaging approaches based on scanning and tunable filters. The unique capabilities of the setup for fast, gentle, sensitive, and selective chemical imaging of biological samples were applied for automated hemozoin analysis. A special algorithm was developed to generate Raman images based on the hemozoin distribution in red blood cells without any influence from other Raman scattering. The new imaging setup in combination with the robust algorithm provides a novel, elegant way for chemical selective analysis of the malaria pigment hemozoin in early ring stages of Plasmodium falciparum infected erythrocytes. Copyright © 2015 Elsevier B.V. All rights reserved.
Single LED-based device to perform widefield fluorescence imaging and photodynamic therapy
NASA Astrophysics Data System (ADS)
Grecco, Clovis; Buzzá, Hilde H.; Stringasci, Mirian D.; Andrade, Cintia T.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Zanchin, Anderson L.; Tuboy, Aparecida M.; Bagnato, Vanderlei S.
2015-06-01
Photodynamic therapy (PDT) is a treatment modality that can be indicated for several cancer types and pre-cancer lesions. One of the main applications of PDT is the treatment of superficial skin lesions such as basal cell carcinoma, Bowen's disease and actinic keratosis. Three elements are necessary in PDT, a photosensitizer (PS); light at specific wavelength to be absorbed by the PS, and molecular oxygen. A typical PS used for skin lesion is protoporphyrin IX (PpIX), which is an intrinsic PS; its production is stimulated by a pro-drug, such as 5-aminolevulinic acid (ALA). Before starting a treatment, it is very important to follow up the PpIX production (to ensure that enough PS was produced prior to a PDT application) and, during a PDT session, to monitor its photodegradation (as it is evidence of the photodynamic effect taking place). The aim of this paper is to present a unique device, LINCE (MMOptics - São Carlos, Brazil), that brings together two probes that can, respectively, allow for fluorescence imaging and work as a light source for PDT treatment. The fluorescence probe of the system is optically based on 400 nm LED (light emitting diodes) arrays that allow observing the fluorescence emission over 450 nm. The PDT illumination probe options are constituted of 630 nm LED arrays for small areas and, for large areas, of both 630 nm and 450 nm LED arrays. Joining both functions at the same device makes PDT treatment simpler, properly monitorable and, hence, more clinically feasible. LINCE has been used in almost 1000 PDT treatments of superficial skin lesions in Brazil, with 88.4% of clearance of superficial BCC.
Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.
Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan
2018-05-16
Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Southern HII Region Discovery Survey: The Bright Catalog
NASA Astrophysics Data System (ADS)
Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine
2018-01-01
HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.
NASA Astrophysics Data System (ADS)
Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2016-07-01
We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.
The Nuclear Astrophysics Explorer
NASA Technical Reports Server (NTRS)
Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.
1989-01-01
The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.
NASA Astrophysics Data System (ADS)
Camp, Jordan; Transient Astrophysics Probe Team
2018-01-01
The Transient Astrophysics Probe (TAP) is a wide-field multi-wavelength transient mission proposed for flight starting in the late 2020s. The mission instruments include unique “Lobster-eye” imaging soft X-ray optics that allow a ~1600 deg2 FoV; a high sensitivity, 1 deg2 FoV soft X-ray telescope; a 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of 8 NaI gamma-ray detectors. TAP’s most exciting capability will be the observation of tens per year of X-ray and IR counterparts of GWs involving stellar mass black holes and neutron stars detected by LIGO/Virgo/KAGRA/LIGO-India, and possibly several per year X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays. TAP will also discover hundreds of X-ray transients related to compact objects, including tidal disruption events, supernova shock breakouts, and Gamma-Ray Bursts from the epoch of reionization.
The Southern HII Region Discovery Survey
NASA Astrophysics Data System (ADS)
Wenger, Trey; Miller Dickey, John; Jordan, Christopher; Bania, Thomas M.; Balser, Dana S.; Dawson, Joanne; Anderson, Loren D.; Armentrout, William P.; McClure-Griffiths, Naomi
2016-01-01
HII regions are zones of ionized gas surrounding recently formed high-mass (OB-type) stars. They are among the brightest objects in the sky at radio wavelengths. HII regions provide a useful tool in constraining the Galactic morphological structure, chemical structure, and star formation rate. We describe the Southern HII Region Discovery Survey (SHRDS), an Australia Telescope Compact Array (ATCA) survey that discovered ~80 new HII regions (so far) in the Galactic longitude range 230 degrees to 360 degrees. This project is an extension of the Green Bank Telescope HII Region Discovery Survey (GBT HRDS), Arecibo HRDS, and GBT Widefield Infrared Survey Explorer (WISE) HRDS, which together discovered ~800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees. Similar to those surveys, candidate HII regions were chosen from 20 micron emission (from WISE) coincident with 10 micron (WISE) and 20 cm (SGPS) emission. By using the ATCA to detect radio continuum and radio recombination line emission from a subset of these candidates, we have added to the population of known Galactic HII regions.
IOT Overview: Wide-Field Imaging
NASA Astrophysics Data System (ADS)
Selman, F. J.
The Wide Field Imager (WFI) instrument at La Silla has been the workhorse of wide-field imaging instruments at ESO for several years. In this contribution I will summarize the issues relating to its productivity for the community both in terms of the quality and quantity of data that has come out of it. Although only surveys of limited scope have been completed using WFI, it is ESO's stepping-stone to the new generation of survey telescopes.
Babu, Kalpana; Kumaradas, Mrinalini
2017-12-28
We read with great interest the article by Laovirojjanakul et al. on ultra-widefield fluorescein angiography in intermediate uveitis. We would like to share a similar case of chronic intermediate uveitis highlighting a fern-like pattern of diffuse vascular leakage on fluorescein angiography, with good visual acuity, absence of clinically active inflammation, and a similar fluorescein angiography picture over a follow-up of 4 years.
Widefield Imaging: Selected Strategies for Processing Light-Contaminated Data
NASA Astrophysics Data System (ADS)
Cannistra, Stephen A.
The beauty of nebulae, galaxies, and star clusters takes on new meaning when portrayed in a widefield view, where familiar objects that are commonly seen in isolation are now shown in relation to one another. Through the use of high quality, short focal length optics combined with large, commercially available CCD chips, it is possible to capture broad regions of sky that an older generation of astrophotographers could only dream of.
Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Wong, Alexander
2016-12-01
Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.
Update on wide- and ultra-widefield retinal imaging
Shoughy, Samir S; Arevalo, J Fernando; Kozak, Igor
2015-01-01
The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF) imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice. PMID:26458474
Mitigating fluorescence spectral overlap in wide-field endoscopic imaging
Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.
2013-01-01
Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226
Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection
Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo
2016-01-01
We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944
Wide-field optical coherence tomography based microangiography for retinal imaging
Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.
2016-01-01
Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261
Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.
Kazemzadeh, Farnoud; Wong, Alexander
2016-12-13
Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.
Wide-field optical coherence tomography based microangiography for retinal imaging
NASA Astrophysics Data System (ADS)
Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.
2016-02-01
Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.
Wide-field optical coherence tomography based microangiography for retinal imaging.
Zhang, Qinqin; Lee, Cecilia S; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N; Wang, Ruikang K
2016-02-25
Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.
Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern
NASA Astrophysics Data System (ADS)
Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan
2017-02-01
We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
Three basic module design concepts were analyzed with respect to both production and installation costs. The results of this evaluation were used to synthesize a fourth design which incorporates the best features of these initial concepts to produce a module/array design approach which offers the promise of a substantial reduction in the installed cost of a residential array. A unique waterproofing and mounting scheme was used to reduce the cost of installing an integral array while still maintaining a high probability that the installed array will be watertight for the design lifetime of the system. This recommended concept will also permit the array to be mounted as a direct or stand-off installation with no changes to the module design.
Design and economics of a photovoltaic concentrator array for off-grid applications
NASA Astrophysics Data System (ADS)
Maish, A. B.; Rios, M., Jr.
1982-09-01
The array design and expected operation of a photovoltaic concentrator are discussed. A second generation stand alone 680 W/sub p/ photovoltaic (PV) concentrating array for low power, nongrid connected applications was designed. The array consists of six passive cooled point focus Fresnel lens concentrating modules on a two axis polar mount tracking structure. The new array design incorporates several major improvements to the first generation design. These include 50% more array area and a control system which allows unattended, fully automatic operation. The life cycle energy costs are calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and an equivalent flat panel PV system.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
Evaluation of solar cells and arrays for potential solar power satellite applications
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K.; Gaudet, A. D.
1978-01-01
Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.
Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems
NASA Astrophysics Data System (ADS)
Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.
1982-09-01
Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.
SOAR Telescope Progress Report
NASA Astrophysics Data System (ADS)
Sebring, T.; Cecil, G.; Krabbendam, V.
1999-12-01
The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science operations will begin in late 2002. The telescope will deliver an f/16 tip/tilt/focus stabilized image. Optical spectrographs (5' field and IFU) using volume-phase holographic gratings for high efficiency, and wide-field optical and near-IR imagers are under development at partner institutions and at partner expense. These instruments are being designed to exploit the excellent image quality of the telescope. SOAR is participating in consortia for Rockwell 2x2K HgCdTe arrays, and MIT/Lincoln Labs 2x4K CCD's. Most detectors will be run with SDSU-2 array controllers, and custom LabVIEW software. CTIO is also responsible for CCD integration.
Piffer, Anne-Laure Le; Boissonnot, Michèle; Gobert, Frédéric; Zenger, Anita; Wolf, Sebastian; Wolf, Ute; Korobelnik, Jean-François; Rougier, Marie-Bénédicte
2014-09-01
To study and classify retinal lesions in patients with birdshot disease using wide-field autofluorescence imaging and correlate them according to patients' visual status. A multicentre study was carried out on 76 eyes of 39 patients with birdshot disease, analysing colour images and under autofluorescence using the wide-field Optomap(®) imaging system. This was combined with a complete clinical exam and analysis of the macula with OCT. In over 80% of the eyes, a chorioretinal lesion has been observed under autofluorescence with a direct correlation between the extent of the lesion and visual status. The presence of macular hypo-autofluorescence was correlated with a decreased visual acuity, due to the presence of a macular oedema, active clinical inflammation or an epiretinal membrane. The hypo-autofluorescence observed correlated with the duration of the disease and the degree of inflammation in the affected eye, indicating a secondary lesion in the pigment epithelium in relation to the choroid. The pigment epithelium was affected in a diffuse manner, as in almost 50% of the eyes the wider peripheral retina was affected. Wide-field autofluorescence imaging could appear to be a useful examination when monitoring patients, to look for areas of macular hypo-autofluorescence responsible for an irreversible loss of vision. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.
The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.
Moriyama, Muka; Cao, Kejia; Ogata, Satoko; Ohno-Matsui, Kyoko
2017-09-01
To analyse the characteristics of posterior vortex veins detected in highly myopic eyes by wide-field indocyanine green angiography (ICGA). One hundred and fifty-eight consecutive patients (302 eyes) with high myopia (myopic refractive error >8.0 dioptres (D) or axial length ≥26.5 mm) were studied. Wide-field ICGA was performed with the Spectralis HRA module. Posterior vortex veins were found in 80 eyes (26%). The prevalence of posterior staphyloma was significantly higher in eyes in which posterior vortex vein was detected than in eyes without posterior vortex vein. The posterior vortex veins were classified into five types according to the site of exit from the eye; around the optic nerve in 28%, in the macular area in 17%, along the border of staphyloma in 6%, along the margin of macular atrophy or large peripapillary conus in 21%, and elsewhere in 28%. In one eye, two posterior vortex veins collected the choroidal venous blood from the entire fundus. Wide-field ICGA can analyse the characteristic features of choroidal blood outflow system through posterior vortex veins in highly myopic eyes. They may play an important role as routes of choroidal outflow in highly myopic eyes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang
2016-01-01
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.
NASA Technical Reports Server (NTRS)
Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.
2004-01-01
CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.
Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D
2014-10-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.
TAUKAM: a new prime-focus camera for the Tautenburg Schmidt Telescope
NASA Astrophysics Data System (ADS)
Stecklum, Bringfried; Eislöffel, Jochen; Klose, Sylvio; Laux, Uwe; Löwinger, Tom; Meusinger, Helmut; Pluto, Michael; Winkler, Johannes; Dionies, Frank
2016-08-01
TAUKAM stands for "TAUtenburg KAMera", which will become the new prime-focus imager for the Tautenburg Schmidt telescope. It employs an e2v 6kx6k CCD and is under manufacture by Spectral Instruments Inc. We describe the design of the instrument and the auxiliary components, its specifications as well as the concept for integrating the device into the telescope infrastructure. First light is foreseen in 2017. TAUKAM will boost the observational capabilities of the telescope for what concerns optical wide-field surveys.
Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.
2016-01-01
Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114
NASA Technical Reports Server (NTRS)
Gilbrech, Richard J.; McManamen, John P.; Wilson, Timmy R.; Robinson, Frank; Schoren, William R.
2005-01-01
CALIPSO is a joint science mission between the CNES, LaRC and GSFC. It was selected as an Earth System Science Pathfinder satellite mission in December 1998 to address the role of clouds and aerosols in the Earth's radiation budget. The spacecraft includes a NASA light detecting and ranging (LIDAR) instrument, a NASA wide-field camera and a CNES imaging infrared radiometer. The scope of this effort was a review of the Proteus propulsion bus design and an assessment of the potential for personnel exposure to hydrazine propellant.
Advanced photovoltaic solar array - Design and performance
NASA Technical Reports Server (NTRS)
Kurland, Richard; Stella, Paul
1992-01-01
This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.
NASA Technical Reports Server (NTRS)
Tsou, P.; Stolte, W.
1978-01-01
The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.
MILSTAR's flexible substrate solar array: Lessons learned, addendum
NASA Technical Reports Server (NTRS)
Gibb, John
1990-01-01
MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.
Feasibility Study of Solar Dome Encapsulation of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
1978-01-01
The technical and economic advantages of using air-supported plastic enclosures to protect flat plate photovoltaic arrays are described. Conceptual designs for a fixed, latitude-tilt array and a fully tracking array were defined. Detailed wind loads and strength analyses were performed for the fixed array. Detailed thermal and power output analyses provided array performance for typical seasonal and extreme temperature conditions. Costs of each design as used in a 200 MWe central power station were defined from manufacturing and material cost estimates. The capital cost and cost of energy for the enclosed fixed-tilt array were lower than for the enclosed tracking array. The enclosed fixed-tilt array capital investment was 38% less, and the levelized bus bar energy cost was 26% less than costs for a conventional, glass-encapsulated array design. The predicted energy cost for the enclosed fixed array was 79 mills/kW-h for direct current delivered to the power conditioning units.
Concentrator enhanced solar arrays design study
NASA Technical Reports Server (NTRS)
Lott, D. R.
1978-01-01
The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.
Efficient Array Design for Sonotherapy
Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine
2008-01-01
New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for high time-averaged power output suitable for mild hyperthermia applications. The “thermal therapy” design produces more than 4 Watts of acoustic power from the low frequency arrays with only a 10.5 °C internal rise in temperature after 100 seconds of continuous use with an unmodified conventional imaging system, or substantially longer operation at lower acoustic power. The low frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to tissue load. Laboratory verification was successfully performed for the KLM derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating respectively. PMID:18591737
On analytic design of loudspeaker arrays with uniform radiation characteristics
Aarts; Janssen
2000-01-01
Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.
Mamede, Joao I.; Hope, Thomas J.
2016-01-01
Summary Live cell imaging is a valuable technique that allows the characterization of the dynamic processes of the HIV-1 life-cycle. Here, we present a method of production and imaging of dual-labeled HIV viral particles that allows the visualization of two events. Varying release of the intravirion fluid phase marker reveals virion fusion and the loss of the integrity of HIV viral cores with the use of live wide-field fluorescent microscopy. PMID:26714704
Design and fabrication of a high temperature leading edge heating array, phase 1
NASA Technical Reports Server (NTRS)
1972-01-01
Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
NASA Astrophysics Data System (ADS)
Kulkarni, S. R.
2012-04-01
One of the principal motivations of wide-field and synoptic surveys is the search for, and study of, transients. By transients I mean those sources that arise from the background, are detectable for some time, and then fade away to oblivion. Transients in distant galaxies need to be sufficiently bright as to be detectable, and in almost all cases those transients are catastrophic events, marking the deaths of stars. Exemplars include supernovæ and gamma-ray bursts. In our own Galaxy, the transients are strongly variable stars, and in almost all cases are at best cataclysmic rather than catastrophic. Exemplars include flares from M dwarfs, novæ of all sorts (dwarf novæ, recurrent novæ, classical novæ, X-ray novæ) and instabilities in the surface layers of stars such as S Dor or η Carina. In the nearby Universe (say out to the Virgo cluster) we have sufficient sensitivity to see novæ. In 1 I review the history of transients (which is intimately related to the advent of wide-field telescopic imaging). In 2 I summarize wide-field imaging projects, and I then review the motivations that led to the design of the Palomar Transient Factory (PTF). Next comes a summary of the astronomical returns from PTF (3), and that is followed by lessons that I have learnt from PTF (4). I conclude that, during this decade, the study of optical transients will continue to flourish (and may even accelerate as surveys at other wavelengths-notably radio, UV and X-ray-come on-line). Furthermore, it is highly likely that there will be a proliferation of highly-specialized searches for transients. Those searches may well remain active even in the era of LSST (5). I end the article by discussing the importance of follow-up telescopes for transient object studies-a topical issue, given the Portfolio Review that is being undertaken in the US.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
Design of a 7kW power transfer solar array drive mechanism
NASA Technical Reports Server (NTRS)
Sheppard, J. G.
1982-01-01
With the availability of the Shuttle and the European launcher, Ariane, there will be a continuing trend towards large payload satellite missions requiring high-power, high-inertia, flexible solar arrays. The need arises for a solar array drive with a large power transfer capability which can rotate these solar arrays without disturbing the satellite body pointing. The modular design of such a Solar Array Drive Mechanism (SADM) which is capable of transferring 7kW of power or more is described. Total design flexibility has been achieved, enabling different spacecraft power requirements to be accommodated within the SADM design.
KWIC: A Widefield Mid-Infrared Array Camera/Spectrometer for the KAO
NASA Technical Reports Server (NTRS)
Stacey, Gordon J.
1999-01-01
This grant covered a one year data analysis period for the data we obtained with the Kuiper Widefield Infrared Camera (KWIC) on the KAO during CY94 and CY95. A fairly complete list of scientific papers produced, or soon to be produced under this award is contained at the end of this report. Below we summarize some of the highlights of the work we did under this grant. KWIC Imaging of the Orion Nebula. KWIC was successfully developed under the KAO grants program (NASA grant NAG2-800). First funding arrived in November of 1992, and we flew our first two flights in February of 1994 -just 15 months later. These flights were very successful. We imaged the Orion Nebula in the 37.7 micron continuum and [SiII] 35 micron line and imaged M82 and Arp299 in the 37.7 micron continuum. Our Orion image demonstrates that the 37.7 micron continuum arises in the warm dust associated with the photodissociated surfaces (photodissociation regions, or PDRs) of molecular clouds. We use the brightness and color temperature distribution to ascertain the morphology of the Orion PDR. The [SiII] image of Orion encompassed the entire Orion A HII region and its enveloping PDR. Most of the emission in the PDR regions of the map appears to coincide very well with our 37.7 micron continuum map indicating a PDR origin for the [SiII] in agreement with theoretical predictions. The [SiII] line emission is very clumpy in the PDR directly imaging the clump spectrum indirectly ascertained by examining the distribution and flux ratios of [CII] and [0I] far-IR fine structure line, and high J CO emission. We also detected very strong [SiII] line emission from the embedded BN-KL star formation region tracing the morphology and physical conditions of the high velocity shock from these very young stars.
Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.
Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette
2009-03-16
We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America
Combinatorial algorithms for design of DNA arrays.
Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A
2002-01-01
Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.
Ji, Jin; Yang, Jiun-Chan; Larson, Dale N.
2009-01-01
We demonstrate using nanohole arrays of mixed designs and a microwriting process based on dip-pen nanolithography to monitor multiple, different protein binding events simultaneously in real time based on the intensity of Extraordinary Optical Transmission of nanohole arrays. The microwriting process and small footprint of the individual nanohole arrays enabled us to observe different binding events located only 16μm apart, achieving high spatial resolution. We also present a novel concept that incorporates nanohole arrays of different designs to improve confidence and accuracy of binding studies. For proof of concept, two types of nanohole arrays, designed to exhibit opposite responses to protein bindings, were fabricated on one transducer. Initial studies indicate that the mixed designs could help to screen out artifacts such as protein intrinsic signals, providing improved accuracy of binding interpretation. PMID:19297143
NASA Astrophysics Data System (ADS)
Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu
2016-01-01
We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.
Laser scanning saturated structured illumination microscopy based on phase modulation
NASA Astrophysics Data System (ADS)
Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu
2017-08-01
Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.
NASA Astrophysics Data System (ADS)
Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen
2012-10-01
Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.
Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
Cheng, Li-Chung; Chang, Chia-Yuan; Lin, Chun-Yu; Cho, Keng-Chi; Yen, Wei-Chung; Chang, Nan-Shan; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen
2012-04-09
In this study, a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. Key features of this microscope are the integrations of a 10 kHz repetition rate ultrafast amplifier featuring high instantaneous peak power (maximum 400 μJ/pulse at a 90 fs pulse width) and a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled camera into a spatiotemporal focusing microscope. This configuration can produce multiphoton images with an excitation area larger than 200 × 100 μm² at a frame rate greater than 100 Hz (current maximum of 200 Hz). Brownian motions of fluorescent microbeads as small as 0.5 μm were observed in real-time with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Furthermore, second harmonic images of chicken tendons demonstrate that the developed widefield multiphoton microscope can provide high resolution z-sectioning for bioimaging.
NASA Astrophysics Data System (ADS)
Hinsdale, Taylor; Malik, Bilal H.; Rico-Jimenez, Jose J.; Jo, Javier A.; Maitland, Kristen C.
2016-03-01
We present a wide-field fluorescence lifetime imaging (FLIM) system with optical sectioning by structured illumination microscopy (SIM). FLIM measurements were made using a time gated ICCD camera in conjunction with a pulsed nitrogen dye laser operating at 450 nm. Intensity images were acquired at multiple time delays from a trigger initiated by a laser pulse to create a wide-field FLIM image, which was then combined with three phase SIM to provide optical sectioning. Such a mechanism has the potential to increase the reliability and accuracy of the FLIM measurements by rejecting background intensity. SIM also provides the opportunity to create volumetric FLIM images with the incorporation of scanning mechanisms for the sample plane. We present multiple embodiments of such a system: one as a free space endoscope and the other as a fiber microendoscope enabled by the introduction of a fiber bundle. Finally, we demonstrate the efficacy of such an imaging system by imaging dyes embedded in a tissue phantom.
Design structure for in-system redundant array repair in integrated circuits
Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.
2008-11-25
A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.
R&D at JIVE: transforming the way VLBI is done
NASA Astrophysics Data System (ADS)
Szomoru, Arpad; van Langevelde, Huib
2015-08-01
Arpad Szomoru, Huib van Langevelde and the JIVE staffFor many years, the heart of operations at JIVE has been the MkIV hardware correlator, a custom-built high-performance data processor. At this time the MkIV has been replaced by the locally developed EVN software correlator (SFXC).This development has vastly improved the science capacity of the EVN, by providing higher spectral resolution and polarization accuracy, but most notably, by enabling completely new observing modes. Observing multiple simultaneous field centers has enabled wide-field imaging, while a phased-array mode has made it possible to do pulsar time series with the EVN. New algorithms have been developed for near-field VLBI, making it possible to focus on objects within our solar system. This has been used to track the RadioAstron satellite, and by applying the derived orbital parameters to improve subsequent space VLBI observations.New digital baseband convertors will allow higher observing bandwidths in the EVN. In anticipation of this, and of the even higher bandwidths of future mm-VLBI observations, added to the deployment of much larger arrays (including the AVN, the SKA precursors and the SKA itself), we are investigating more powerful and economical solutions. The JIVE UniBoard Correlator is the first FPGA-based EVN correlator; its scalability and flexibility are now under assessment. The new UniBoard2 project, also sponsored by the EC, will skip two generations of FPGA technology and deliver enormous processing power at lower power consumption.Maybe just as importantly, research is ongoing into software tools to enable the efficient handling of the vast data sets that the EVN and other current and future instruments will produce. New data processing pipelines are being designed that will be able to cache intermediate products, and upon changing parameters only re-calculate what is needed, as opposed to re-starting every time from scratch.Finally, we will discuss the development of time and frequency transfer via public networks, in the context of a new H2020 project aimed at the astronomy, astrophysics and astroparticle physics faciclities within the ESFRI roadmap .
Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission
NASA Technical Reports Server (NTRS)
Sequeira, E. A.; Patterson, R. E.
1974-01-01
The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.
Mobile flow cytometer for mHealth.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2015-01-01
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
NASA Technical Reports Server (NTRS)
Zawadzki, Mark; Rengarajan, Sembiam; Hodges, Richard E.
2005-01-01
While the design of waveguide slot arrays in not new, this particular design effort shows that very good results can be achieved on a first attempt using established slot array design techniques and commercial software for the waveguide power divider network. The presentation will discuss this design process in detail.
Oishi, Maho; Oishi, Akio; Ogino, Ken; Makiyama, Yukiko; Gotoh, Norimoto; Kurimoto, Masafumi; Yoshimura, Nagahisa
2014-05-20
To evaluate the clinical utility of wide-field fundus autofluorescence (FAF) in patients with cone dystrophy and cone-rod dystrophy. Sixteen patients with cone dystrophy (CD) and 41 patients with cone-rod dystrophy (CRD) were recruited at one institution. The right eye of each patient was included for analysis. We obtained wide-field FAF images using a ultra-widefield retinal imaging device and measured the area of abnormal FAF. The association between the area of abnormal FAF and the results of visual acuity measurements, kinetic perimetry, and electroretinography (ERG) were investigated. The mean age of the participants was 51.4 ± 17.4 years, and the mean logarithm of the minimum angle of resolution was 1.00 ± 0.57. The area of abnormal FAF correlated with the scotoma measured by the Goldman perimetry I/4e isopter (ρ = 0.79, P < 0.001). The area also correlated with amplitudes of the rod ERG (ρ = -0.63, P < 0.001), combined ERG a-wave (ρ = -0.72, P < 0.001), combined ERG b-wave (ρ = -0.66, P < 0.001), cone ERG (ρ = -0.44, P = 0.001), and flicker ERG (ρ = -0.47, P < 0.001). The extent of abnormal FAF reflects the severity of functional impairment in patients with cone-dominant retinal dystrophies. Fundus autofluorescence measurements are useful for predicting retinal function in these patients. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
SHOK—The First Russian Wide-Field Optical Camera in Space
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.
2018-02-01
Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan
2016-06-01
Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.
Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan
2016-01-01
Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625
WFIRST: Science from the Guest Investigator and Parallel Observation Programs
NASA Astrophysics Data System (ADS)
Postman, Marc; Nataf, David; Furlanetto, Steve; Milam, Stephanie; Robertson, Brant; Williams, Ben; Teplitz, Harry; Moustakas, Leonidas; Geha, Marla; Gilbert, Karoline; Dickinson, Mark; Scolnic, Daniel; Ravindranath, Swara; Strolger, Louis; Peek, Joshua; Marc Postman
2018-01-01
The Wide Field InfraRed Survey Telescope (WFIRST) mission will provide an extremely rich archival dataset that will enable a broad range of scientific investigations beyond the initial objectives of the proposed key survey programs. The scientific impact of WFIRST will thus be significantly expanded by a robust Guest Investigator (GI) archival research program. We will present examples of GI research opportunities ranging from studies of the properties of a variety of Solar System objects, surveys of the outer Milky Way halo, comprehensive studies of cluster galaxies, to unique and new constraints on the epoch of cosmic re-ionization and the assembly of galaxies in the early universe.WFIRST will also support the acquisition of deep wide-field imaging and slitless spectroscopic data obtained in parallel during campaigns with the coronagraphic instrument (CGI). These parallel wide-field imager (WFI) datasets can provide deep imaging data covering several square degrees at no impact to the scheduling of the CGI program. A competitively selected program of well-designed parallel WFI observation programs will, like the GI science above, maximize the overall scientific impact of WFIRST. We will give two examples of parallel observations that could be conducted during a proposed CGI program centered on a dozen nearby stars.
VizieR Online Data Catalog: Morphologies of selected AGN (Griffith+, 2010)
NASA Astrophysics Data System (ADS)
Griffith, R. L.; Stern, D.
2012-06-01
The cornerstone data set for the COSMOS survey is its wide-field HST Advanced Camera for Surveys (ACS) imaging (Scoville et al. 2007ApJS..172...38S). With 583 single-orbit HST ACS F814W (I band; hereafter I814) observations, it is the largest contiguous HST imaging survey to date. The VLA-COSMOS large project (Schinnerer et al., 2007, Cat. J/ApJS/172/46) acquired deep, uniform 1.4GHz data over the entire COSMOS field using the A-array configuration of the Very Large Array (VLA). The XMM-Newton COSMOS survey (Hasinger et al., 2007, Cat. J/ApJS/172/29; Cappelluti et al., 2009, Cat. J/A+A/497/635) acquired deep X-ray data over the entire COSMOS HST ACS field. The S-COSMOS survey (Sanders et al., 2007ApJS..172...86S) is a Spitzer Legacy program which carried out a uniformly deep survey of the full COSMOS field in seven mid-IR bands (3.6, 4.5, 5.8, 8.0, 24, 70, and 160um). The Advanced Camera for Surveys General Catalog2 (ACS-GC) data (R.L. Griffith et al., 2012ApJS..200....9G) was constructed to study the evolution of galaxy morphologies over a wide range of look-back times. The ACS-GC uniformly analyzes the largest HST ACS imaging surveys (AEGIS, GEMS, GOODS-S, GOODS-N, and COSMOS) using the GALAPAGOS code. (3 data files).
Gravitational Microlensing Events as a Target for the SETI project
NASA Astrophysics Data System (ADS)
Rahvar, Sohrab
2016-09-01
The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbiting around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.
A Serendipitous MWA Search for Narrowband Signals from ‘Oumuamua
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Kaplan, D. L.; Lenc, E.; Croft, S.; McKinley, B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Trott, C. M.; Walker, M.; Wayth, R. B.; Williams, A.; Wu, C.
2018-04-01
We examine data from the Murchison Widefield Array (MWA) in the frequency range 72–102 MHz for a field of view that serendipitously contained the interstellar object ‘Oumuamua on 2017 November 28. Observations took place with a time resolution of 0.5 s and a frequency resolution of 10 kHz. Based on the interesting but highly unlikely suggestion that ‘Oumuamua is an interstellar spacecraft, due to some unusual orbital and morphological characteristics, we examine our data for signals that might indicate the presence of intelligent life associated with ‘Oumuamua. We searched our radio data for (1) impulsive narrowband signals, (2) persistent narrowband signals, and (3) impulsive broadband signals. We found no such signals with nonterrestrial origins and make estimates of the upper limits on equivalent isotropic radiated power (EIRP) for these three cases of approximately 7 kW, 840 W, and 100 kW, respectively. These transmitter powers are well within the capabilities of human technologies, and are therefore plausible for alien civilizations. While the chances of positive detection in any given search for extraterrestrial intelligence (SETI) experiment are vanishingly small, the characteristics of new generation telescopes such as the MWA (and, in the future, the Square Kilometre Array) make certain classes of SETI experiments easy, or even a trivial by-product of astrophysical observations. This means that the future costs of SETI experiments are very low, allowing large target lists to partially balance the low probability of a positive detection.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
Flat-plate photovoltaic array design optimization
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1980-01-01
An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.
NASA Astrophysics Data System (ADS)
Benni, P.
2017-06-01
(Abstract only) GPX is designed to search high density star fields where other surveys, such as WASP, HATNet, XO, and KELT would find challenging due to blending of transit like events. Using readily available amateur equipment, a survey telescope (Celestron RASA, 279 mm f/2.2, based in Acton, Massachusetts) was configured first with a SBIG ST-8300M camera then later upgraded to an FLI ML16200 camera and tested under different sampling scenarios with multiple image fields to obtain a 9- to 11-minute cadence per field. The resultant image resolution of GPX is about 2 arcsec/pixel compared to 13.7±23 arcsec/pixel of the aforementioned surveys and the future TESS space telescope exoplanet survey.
A 7T Spine Array Based on Electric Dipole Transmitters
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut
2015-01-01
Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585
Design and Fabrication of Aspheric Microlens Array for Optical Read-Only-Memory Card System
NASA Astrophysics Data System (ADS)
Kim, Hongmin; Jeong, Gibong; Kim, Young‑Joo; Kang, Shinill
2006-08-01
An optical head based on the Talbot effect with an aspheric microlens array for an optical read-only-memory (ROM) card system was designed and fabricated. The mathematical expression for the wavefield diffracted by a periodic microlens array showed that the amplitude distribution at the Talbot plane from the focal plane of the microlens array was identically equal to that at the focal plane. To use a reflow microlens array as a master pattern of an ultraviolet-imprinted (UV-imprinted) microlens array, the reflow microlens was defined as having an aspheric shape. To obtain optical probes with good optical qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. The reflow condition was optimized to realize the master pattern of a microlens with a designed aspheric shape. The intensity distribution of the optical probes at the Talbot plane from the focal plane showed a diffraction-limited shape.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
Quasi-optical antenna-mixer-array design for terahertz frequencies
NASA Technical Reports Server (NTRS)
Guo, Yong; Potter, Kent A.; Rutledge, David B.
1992-01-01
A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Seven-panel solar wing deployment and on-orbit maneuvering analyses
NASA Astrophysics Data System (ADS)
Hwang, Earl
2005-05-01
BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.
Assessment of SEPS solar array technology for orbital service module application
NASA Technical Reports Server (NTRS)
1978-01-01
Work performed in the following assessment areas on the SEPS solar array is reported: (1) requirements definition, (2) electrical design evaluation, (3) mechanical design evaluation, and (4) design modification analysis. General overall assessment conclusions are summarized. There are no known serious design limitations involved in the implementation of the recommended design modifications. A section of orbiter and array engineering drawings is included.
Design of 3x3 Focusing Array for Heavy Ion Driver Final Report on CRADA TC-02082-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martovetsky, N.
This memo presents a design of a 3x3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-03-15
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-01-01
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996
ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Lipson, Jerold
2012-01-01
The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.
SAAO's new robotic telescope and WiNCam (Wide-field Nasmyth Camera)
NASA Astrophysics Data System (ADS)
Worters, Hannah L.; O'Connor, James E.; Carter, David B.; Loubser, Egan; Fourie, Pieter A.; Sickafoose, Amanda; Swanevelder, Pieter
2016-08-01
The South African Astronomical Observatory (SAAO) is designing and manufacturing a wide-field camera for use on two of its telescopes. The initial concept was of a Prime focus camera for the 74" telescope, an equatorial design made by Grubb Parsons, where it would employ a 61mmx61mm detector to cover a 23 arcmin diameter field of view. However, while in the design phase, SAAO embarked on the process of acquiring a bespoke 1-metre robotic alt-az telescope with a 43 arcmin field of view, which needs a homegrown instrument suite. The Prime focus camera design was thus adapted for use on either telescope, increasing the detector size to 92mmx92mm. Since the camera will be mounted on the Nasmyth port of the new telescope, it was dubbed WiNCam (Wide-field Nasmyth Camera). This paper describes both WiNCam and the new telescope. Producing an instrument that can be swapped between two very different telescopes poses some unique challenges. At the Nasmyth port of the alt-az telescope there is ample circumferential space, while on the 74 inch the available envelope is constrained by the optical footprint of the secondary, if further obscuration is to be avoided. This forces the design into a cylindrical volume of 600mm diameter x 250mm height. The back focal distance is tightly constrained on the new telescope, shoehorning the shutter, filter unit, guider mechanism, a 10mm thick window and a tip/tilt mechanism for the detector into 100mm depth. The iris shutter and filter wheel planned for prime focus could no longer be accommodated. Instead, a compact shutter with a thickness of less than 20mm has been designed in-house, using a sliding curtain mechanism to cover an aperture of 125mmx125mm, while the filter wheel has been replaced with 2 peripheral filter cartridges (6 filters each) and a gripper to move a filter into the beam. We intend using through-vacuum wall PCB technology across the cryostat vacuum interface, instead of traditional hermetic connector-based wiring. This has advantages in terms of space saving and improved performance. Measures are being taken to minimise the risk of damage during an instrument change. The detector is cooled by a Stirling cooler, which can be disconnected from the cooler unit without risking damage. Each telescope has a dedicated cooler unit into which the coolant hoses of WiNCam will plug. To overcome an inherent drawback of Stirling coolers, an active vibration damper is incorporated. During an instrument change, the autoguider remains on the telescope, and the filter magazines, shutter and detector package are removed as a single unit. The new alt-az telescope, manufactured by APM-Telescopes, is a 1-metre f/8 Ritchey-Chrétien with optics by LOMO. The field flattening optics were designed by Darragh O'Donoghue to have high UV throughput and uniform encircled energy over the 100mm diameter field. WiNCam will be mounted on one Nasmyth port, with the second port available for SHOC (Sutherland High-speed Optical Camera) and guest instrumentation. The telescope will be located in Sutherland, where an existing dome is being extensively renovated to accommodate it. Commissioning is planned for the second half of 2016.
DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stonkutė, Rima; Narbutis, Donatas; Vansevičius, Vladas
2014-10-01
We have surveyed a complete extent of Leo A—an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ∼0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' × 24') photometry catalog of 38,856 objects (V ∼ 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.
The First Hundred Brown Dwarfs Discovered by the Wide-Field Infrared Survey Explorer (WISE)
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Mainzer, Amanda K.; Eisenhardt, Peter R.; McLean, Ian S.;
2011-01-01
We present ground-based spectroscopic verification of six Y dwarfs also Cushing et al.), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types > or =T6, six of which have been announced earlier in Mainzer et al. and I3urgasser et al. We present color-color and colortype diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. "
NASA Astrophysics Data System (ADS)
Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.
2011-10-01
We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very encouraging for the future development of the advanced CZT imaging detectors (ProtoEXIST2, with 0.6 mm pixels), which will take advantage of the modularization architecture employed in ProtoEXIST1.
(abstract) Scaling Nominal Solar Cell Impedances for Array Design
NASA Technical Reports Server (NTRS)
Mueller, Robert L; Wallace, Matthew T.; Iles, Peter
1994-01-01
This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.
2018-03-01
offset designs . Particularly, the proposed CA-CFO is compared with uniform linear array and uniform frequency offset (ULA-UFO). Uniform linear array...and Aperture Design for HF Surveillance, Wideband Radar Imaging, and Nonstationary Array Processing (Grant No. N00014-13-1-0061) Submitted to...Contents 1. Executive Summary …………………………………………………………………………. 1 1.1. Generalized Co-Prime Array Design ………………………………………………… 1 1.2. Wideband
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
Predictive Array Design. A method for sampling combinatorial chemistry library space.
Lipkin, M J; Rose, V S; Wood, J
2002-01-01
A method, Predictive Array Design, is presented for sampling combinatorial chemistry space and selecting a subarray for synthesis based on the experimental design method of Latin Squares. The method is appropriate for libraries with three sites of variation. Libraries with four sites of variation can be designed using the Graeco-Latin Square. Simulated annealing is used to optimise the physicochemical property profile of the sub-array. The sub-array can be used to make predictions of the activity of compounds in the all combinations array if we assume each monomer has a relatively constant contribution to activity and that the activity of a compound is composed of the sum of the activities of its constitutive monomers.
The design and fabrication of microstrip omnidirectional array antennas for aerospace applications
NASA Technical Reports Server (NTRS)
Campbell, T. G.; Appleton, M. W.; Lusby, T. K.
1976-01-01
A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.
A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto
1987-01-01
A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.
Morgenstern, Hai; Rafaely, Boaz; Noisternig, Markus
2017-03-01
Spherical microphone arrays (SMAs) and spherical loudspeaker arrays (SLAs) facilitate the study of room acoustics due to the three-dimensional analysis they provide. More recently, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have been proposed due to the added spatial diversity they facilitate. The literature provides frameworks for designing SMAs and SLAs separately, including error analysis from which the operating frequency range (OFR) of an array is defined. However, such a framework does not exist for the joint design of a SMA and a SLA that comprise a MIMO system. This paper develops a design framework for MIMO systems based on a model that addresses errors and highlights the importance of a matched design. Expanding on a free-field assumption, errors are incorporated separately for each array and error bounds are defined, facilitating error analysis for the system. The dependency of the error bounds on the SLA and SMA parameters is studied and it is recommended that parameters should be chosen to assure matched OFRs of the arrays in MIMO system design. A design example is provided, demonstrating the superiority of a matched system over an unmatched system in the synthesis of directional room impulse responses.
A phoswich detector design for improved spatial sampling in PET
NASA Astrophysics Data System (ADS)
Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.
2018-02-01
Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.
Fabrication and Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Adams, James S.; Bandler, Simon R.; Busch, Sara E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, Jan-Patrick;
2012-01-01
We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron pitch and smaller arrays of devices up to 600 micron pitch. We discuss the fabrication techniques used for each type of array focusing on unique aspects where processes vary to achieve the particular designs and required device parameters. For example, we evaluate various material combinations in the production of the thick metal heatsinking, including superconducting and normal metal adhesion layers. We also evaluate the impact of added heatsinking on the membrane isolated devices as it relates to basic device parameters. Arrays can be characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Device parameters can be measured simultaneously so that environmental events such as thermal drifts or changes in magnetic fields can be controlled. For some designs, we will evaluate the uniformity of parameters impacting the intrinsic performance of the microcalorimeters under bias in these arrays and assess the level of thermal crosstalk.
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.
Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H
2017-01-01
A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.
Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification
Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried
2017-01-01
A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723
Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P
2016-07-01
The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.
NuSTAR Observations of Heavily Obscured Quasars Selected by WISE
NASA Astrophysics Data System (ADS)
Yan, Wei
2017-08-01
A key goal of the Nuclear Spectroscopic Telescope Array (NuSTAR) program is to find and characterize heavily obscured quasars, luminous accreting supermassive black holes hidden by gas and dust. Based on mid-infrared (IR) photometry from Wide-Field Infrared Survey Explorer (WISE) and optical photometry from the Sloan Digital Sky Surveys, we have selected a large population of obscured quasars; here we report the NuSTAR observations of four WISE-selected heavily obscured quasars for which we have optical spectroscopy from the Southern African Large Telescope and KECK Telescope. Three of four objects are undetected with NuSTAR, while the fourth has only a marginal detection. We confirm our objects have observed hard X-ray (10-40 keV) luminosities at or below ~1043 erg s-1. We compare IR and X-ray luminosities to obtain estimates of hydrogen column NH based on the suppression of the hard X-ray emission. We estimate NH to be at or greater than 1025 cm-2, confirming that WISE and optical selection can identify very heavily obscured quasars that may be missed in X-ray surveys.
GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies
NASA Astrophysics Data System (ADS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd
2014-11-01
One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.
GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd
2013-01-01
One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.
Exploring three faint source detections methods for aperture synthesis radio images
NASA Astrophysics Data System (ADS)
Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.
2015-04-01
Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.
A 7T spine array based on electric dipole transmitters.
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut
2015-10-01
The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Designing of a small wearable conformal phased array antenna for wireless communications
NASA Astrophysics Data System (ADS)
Roy, Sayan
In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.
Design, optimization, and analysis of a self-deploying PV tent array
NASA Astrophysics Data System (ADS)
Collozza, Anthony J.
1991-06-01
A tent shaped PV array was designed and the design was optimized for maximum specific power. In order to minimize output power variation a tent angle of 60 deg was chosen. Based on the chosen tent angle an array structure was designed. The design considerations were minimal deployment time, high reliability, and small stowage volume. To meet these considerations the array was chosen to be self-deployable, form a compact storage configuration, using a passive pressurized gas deployment mechanism. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both lunar and Martian environmental conditions. Other factors such as PV blanket types, structural material, and wind velocity (for Mars array), were varied to determine what influence they had on the design point. The performance specifications for the array at both locations and with each type of PV blanket were determined. These specifications were calculated using the Arimid fiber composite as the structural material. The four PV blanket types considered were silicon, GaAs/Ge, GaAsCLEFT, and amorphous silicon. The specifications used for each blanket represented either present day or near term technology. For both the Moon and Mars the amorphous silicon arrays produced the highest specific power.
NASA Technical Reports Server (NTRS)
Park, Jung- Ho; Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.
1994-01-01
We report the design of multilayer reflective filters for the self-filtering cameras of the NUVIEWS project. Wide angle self-filtering cameras were designed to image the C IV (154.9 nm) line emission, and H2 Lyman band fluorescence (centered at 161 nm) over a 20 deg x 30 deg field of view. A key element of the filter design includes the development of pi-multilayers optimized to provide maximum reflectance at 154.9 nm and 161 nm for the respective cameras without significant spectral sensitivity to the large cone angle of the incident radiation. We applied self-filtering concepts to design NUVIEWS telescope filters that are composed of three reflective mirrors and one folding mirror. The filters with narrowband widths of 6 and 8 rim at 154.9 and 161 nm, respectively, have net throughputs of more than 50 % with average blocking of out-of-band wavelengths better than 3 x 10(exp -4)%.
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-01-01
Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays. PMID:18811969
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-09-23
Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.
Optimization of Focusing by Strip and Pixel Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, G J; White, D A; Thompson, C A
Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting stripsmore » and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.« less
SimArray: a user-friendly and user-configurable microarray design tool
Auburn, Richard P; Russell, Roslin R; Fischer, Bettina; Meadows, Lisa A; Sevillano Matilla, Santiago; Russell, Steven
2006-01-01
Background Microarrays were first developed to assess gene expression but are now also used to map protein-binding sites and to assess allelic variation between individuals. Regardless of the intended application, efficient production and appropriate array design are key determinants of experimental success. Inefficient production can make larger-scale studies prohibitively expensive, whereas poor array design makes normalisation and data analysis problematic. Results We have developed a user-friendly tool, SimArray, which generates a randomised spot layout, computes a maximum meta-grid area, and estimates the print time, in response to user-specified design decisions. Selected parameters include: the number of probes to be printed; the microtitre plate format; the printing pin configuration, and the achievable spot density. SimArray is compatible with all current robotic spotters that employ 96-, 384- or 1536-well microtitre plates, and can be configured to reflect most production environments. Print time and maximum meta-grid area estimates facilitate evaluation of each array design for its suitability. Randomisation of the spot layout facilitates correction of systematic biases by normalisation. Conclusion SimArray is intended to help both established researchers and those new to the microarray field to develop microarray designs with randomised spot layouts that are compatible with their specific production environment. SimArray is an open-source program and is available from . PMID:16509966
KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories
NASA Astrophysics Data System (ADS)
Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo
2016-02-01
The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.
Naysan, Jonathan; Pang, Claudine E; Klein, Robert W; Freund, K Bailey
2016-01-01
Bilateral diffuse uveal melanocytic proliferation (BDUMP) is a rare, paraneoplastic syndrome characterized by bilateral painless visual loss and proliferation of choroidal melanocytes in association with an underlying systemic malignancy. We report a case of bilateral diffuse uveal melanocytic proliferation associated with an underlying gynecological malignancy that also features the infrequent finding of an iris mass lesion, using multimodal imaging including ultra-widefield imaging, spectral domain and swept-source optical coherence tomography. A 59-year-old white female with a prior history of gynecological malignancy in remission presented with progressive bilateral visual loss over several weeks. The patient was noted to have a focal iris mass lesion in her right eye. Ultra-widefield color fundus photography showed a characteristic bilateral 'giraffe pattern' of pigmentary changes extending into the periphery as well as multiple discrete deeply pigmented lesions. Ultra-widefield autofluorescence was useful for visualizing the full extent of involvement. Indocyanine green angiography helped to demarcate the discrete pigmented choroidal lesions. Swept-source OCT clearly delineated the alternating zones of retinal pigment epithelium (RPE) thickening and RPE loss, as well as the prominent choroidal infiltration and thickening. BDUMP is an important diagnosis to consider in the presence of multiple discrete melanocytic choroidal lesions, diffuse choroidal thickening, characteristic RPE changes, iris mass lesions and exudative retinal detachment. Ultra-widefield imaging may demonstrate more extensive lesions than that detected on clinical examination or standard field imaging. Imaging with SS-OCT shows choroidal and RPE characteristics that correlate well with known histopathology of this entity.
Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging
Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.
2014-01-01
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321
Spacecraft level impacts of integrating concentrator solar arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Piszczor, M.F. Jr.
1994-12-31
The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less
Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart
2017-04-24
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
PhylArray: phylogenetic probe design algorithm for microarray.
Militon, Cécile; Rimour, Sébastien; Missaoui, Mohieddine; Biderre, Corinne; Barra, Vincent; Hill, David; Moné, Anne; Gagne, Geneviève; Meier, Harald; Peyretaillade, Eric; Peyret, Pierre
2007-10-01
Microbial diversity is still largely unknown in most environments, such as soils. In order to get access to this microbial 'black-box', the development of powerful tools such as microarrays are necessary. However, the reliability of this approach relies on probe efficiency, in particular sensitivity, specificity and explorative power, in order to obtain an image of the microbial communities that is close to reality. We propose a new probe design algorithm that is able to select microarray probes targeting SSU rRNA at any phylogenetic level. This original approach, implemented in a program called 'PhylArray', designs a combination of degenerate and non-degenerate probes for each target taxon. Comparative experimental evaluations indicate that probes designed with PhylArray yield a higher sensitivity and specificity than those designed by conventional approaches. Applying the combined PhyArray/GoArrays strategy helps to optimize the hybridization performance of short probes. Finally, hybridizations with environmental targets have shown that the use of the PhylArray strategy can draw attention to even previously unknown bacteria.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, Earl A.; Lipshutz, Robert J.; Morris, Macdonald S.; Winkler, James L.
1997-01-01
An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks.
Ultrasound therapy transducers with space-filling non-periodic arrays.
Raju, Balasundar I; Hall, Christopher S; Seip, Ralf
2011-05-01
Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.
Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo
NASA Technical Reports Server (NTRS)
Gehrels, N.; Spergel, D.
2015-01-01
The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.
Practical three color live cell imaging by widefield microscopy
Xia, Jianrun; Kim, Song Hon H.; Macmillan, Susan
2006-01-01
Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope. PMID:16909160
Hooley, E N; Tilley, A J; White, J M; Ghiggino, K P; Bell, T D M
2014-04-21
Both pendant and main chain conjugated MEH-PPV based polymers have been studied at the level of single chains using confocal and widefield fluorescence microscopy techniques. In particular, defocused widefield fluorescence is applied to reveal the extent of energy transfer in these polymers by identifying whether they act as single emitters. For main chain conjugated MEH-PPV, molecular weight and the surrounding matrix play a primary role in determining energy transport processes and whether single emitter behaviour is observed. Surprisingly in polymers with a saturated backbone but containing the same pendant MEH-PPV oligomer on each repeating unit, intra-chain energy transfer to a single emitter is also apparent. The results imply there is chromophore heterogeneity that can facilitate energy funneling to the emitting site. Both main chain conjugated and pendant MEH-PPV polymers exhibit changes in orientation of the emission dipole during a fluorescence trajectory of many seconds, whereas a model MEH-PPV oligomer does not. The results suggest that, in the polymers, the nature of the emitting chromophores can change during the time trajectory.
Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G.; Koronyo, Yosef; Medina-Kauwe, Lali K.; Gross, Zeev; Gray, Harry B.; Farkas, Daniel L.
2011-01-01
We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications. PMID:21339880
Advanced photovoltaic solar array design assessment
NASA Technical Reports Server (NTRS)
Stella, Paul; Scott-Monck, John
1987-01-01
The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.
Thruster array design approaches for a solar electric propulsion Encke Flyby mission
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1973-01-01
Design approaches are described and evaluated for a mercury electron-bombardment ion thruster array. Such an array might be used on a solar electric interplanetary spacecraft that obtains electrical energy from large solar panels. Thruster array designs are described and evaluated as they would apply to an Encke Flyby mission. Besides several well known approaches, a new concept utilizing individual two-axis gimbal actuators on each thruster is described and shown to have many structural and thermal advantages.
The FIREBall fiber-fed UV spectrograph
NASA Astrophysics Data System (ADS)
Tuttle, Sarah E.; Schiminovich, David; Milliard, Bruno; Grange, Robert; Martin, D. Christopher; Rahman, Shahinur; Deharveng, Jean-Michel; McLean, Ryan; Tajiri, Gordon; Matuszewski, M.
2008-07-01
FIREBall (Faint Intergalactic Redshifted Emission Balloon) had a successful first engineering flight in July of 2007 from Palestine, Texas. Here we detail the design and construction of the spectrograph. FIREBall consists of a 1m telescope coupled to a fiber-fed ultraviolet spectrograph flown on a short duration balloon. The spectrograph is designed to map hydrogen and metal line emission from the intergalactic medium at several redshifts below z=1, exploiting a small window in atmospheric oxygen absorption at balloon altitudes. The instrument is a wide-field IFU fed by almost 400 fibers. The Offner mount spectrograph is designed to be sensitive in the 195-215nm window accessible at our altitudes of 35-40km. We are able to observe Lyα, as well as OVI and CIV doublets, from 0.3 < z < 0.9. Observations of UV bright B stars and background measurements allow characterization of throughput for the entire system and will inform future flights.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, Earl A.; Morris, MacDonald S.; Winkler, James L.
1999-01-05
An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system (100) is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files (104) to design and/or generate lithographic masks (110).
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, Earl A.; Morris, MacDonald S.; Winkler, James L.
1996-01-01
An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system (100) is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files (104) to design and/or generate lithographic masks (110).
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, E.A.; Morris, M.S.; Winkler, J.L.
1999-01-05
An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, E.A.; Lipshutz, R.J.; Morris, M.S.; Winkler, J.L.
1997-01-14
An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.
Computer-aided engineering system for design of sequence arrays and lithographic masks
Hubbell, E.A.; Morris, M.S.; Winkler, J.L.
1996-11-05
An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.
Precision Pointing for the Wide-Field Infrared Survey Telescope (WFIRST)
NASA Technical Reports Server (NTRS)
Stoneking, Eric; Hsu, Oscar; Welter, Gary
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to ad-dress the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the GNC subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.
Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.; Hsu, Oscar C.; Welter, Gary
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.
Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone
Zhu, Hongying; Ozcan, Aydogan
2013-01-01
Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. ~ 10 μm over a very large field-of-view of ~ 81 mm2. This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water. PMID:23603893
Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.
Zhu, Hongying; Ozcan, Aydogan
2013-04-11
Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.
Commercial Optics for Space Surveillance and Astronomy
NASA Astrophysics Data System (ADS)
Ackermann, M.; Kopit, E.; McGraw, J.; Zimmer, P.
Since the first days of the space program, there have been both amateur and government satellite watchers. Large, expensive government systems with custom optics are still the most capable, but with modern sensors and high speed computers, amateur trackers are easily pushing the limits of what government systems achieved only a decade ago. A very recent trend in the space world is the emergence of commercial space operations centers. Once the exclusive purview of governments, corporations are now providing orbital environment awareness services to the operators of commercial satellites. The requirement for synoptic satellite observations has led to corporations developing world-wide observing networks. A problem facing both amateur and corporate observers is the limited availability of suitable optical systems. Most observing efforts rely on long focus (f/8 or greater) optical systems with focal reducers, and a somewhat limited field of view. Often, the cameras in use are not ideally matched to the optical system. While there are a few exceptions, the choices are not many. Celestron recently introduced the C-11 RASA optical system, with an 11-inch aperture and an f/2.2 focal ratio. This optical system is designed for dedicated imaging and is ideally suited for both wide-field astronomy and the detection and tracking of satellites. The larger C-14 RASA, to be introduced later this year, was specifically designed for wide-field imaging with large commercial CCDs. It offers greater sensitivity and a wider field of view than the smaller C-11 RASA and should prove to be the instrument of choice for both amateur and corporate satellite observers. We present data from satellite observations with a production model C-11 RASA and estimated performance for the new C-14 RASA.
Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.
2016-12-01
Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station
NASA Technical Reports Server (NTRS)
Camp, Jordan
2012-01-01
The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.
Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy
Greenbaum, Alon; Luo, Wei; Su, Ting-Wei; Göröcs, Zoltán; Xue, Liang; Isikman, Serhan O; Coskun, Ahmet F; Mudanyali, Onur; Ozcan, Aydogan
2012-01-01
We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of ~0.8–0.9 across a field of view (FOV) of more than 20 mm2 or an NA of ~0.1 across a FOV of ~18 cm2, which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications. PMID:22936170
The Wide-Field Imaging Interferometry Testbed: Recent Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2006-01-01
We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Fallows, R. A.; Jackson, B. V.; Tokumaru, M.; Gonzalez-Esparza, A.; Morgan, J.; Chashei, I. V.; Mejia-Ambriz, J.; Tyul'bashev, S. A.; Manoharan, P. K.; De la Luz, V.; Aguilar-Rodriguez, E.; Yu, H. S.; Barnes, D.; Chang, O.; Odstrcil, D.; Fujiki, K.; Shishov, V.
2017-12-01
Interplanetary Scintillation (IPS) allows for the determination of velocity and a proxy for plasma density to be made throughout the corona and inner heliosphere. Where sufficient observations are undertaken, the results can be used as input to the University of California, San Diego (UCSD) three-dimensional (3-D) time-dependent tomography suite to allow for the full 3-D reconstruction of both velocity and density throughout the inner heliosphere. By combining IPS results from multiple observing locations around the planet, we can increase both the temporal and spatial coverage across the whole of the inner heliosphere and hence improve forecast capability. During October 2016, a unique opportunity arose whereby the European-based LOw Frequency ARray (LOFAR) radio telescope was used to make nearly four weeks of continuous observations of IPS as a heliospheric space-weather trial campaign. This was expanded into a global effort to include observations of IPS from the Murchison Widefield Array (MWA) in Western Australia and many more observations from various IPS-dedicated WIPSS Network systems. LOFAR is a next-generation low-frequency radio interferometer capable of observing in the radio frequency range 10-250 MHz, nominally with up to 80 MHz bandwidth at a time. MWA in Western Australia is capable of observing in the 80-300 MHz frequency range nominally using up to 32 MHz of bandwidth. IPS data from LOFAR, ISEE, the MEXican Array Radio Telescope (MEXART), and, where possible, other WIPSS Network systems (such as LPI-BSA and Ooty), will be used in this study and we will present some initial findings for these data sets. We also make a first attempt at the 3-D reconstruction of multiple pertinent WIPSS results in the UCSD tomography. We will also try to highlight some of the potential future tools that make LOFAR a very unique system to be able to test and validate a whole plethora of IPS analysis methods with the same set of IPS data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jingwen; Wright, Edward L.; Bussmann, R. Shane
The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ∼1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limitsmore » to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 10{sup 8} M {sub ☉} for W0149+2350 and 3.9 × 10{sup 8} M {sub ☉} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 10{sup 10} M {sub ☉} and 2.3 × 10{sup 10} M {sub ☉} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.« less
Radio Continuum Surveys with Square Kilometre Array Pathfinders
NASA Astrophysics Data System (ADS)
Norris, Ray P.; Afonso, J.; Bacon, D.; Beck, Rainer; Bell, Martin; Beswick, R. J.; Best, Philip; Bhatnagar, Sanjay; Bonafede, Annalisa; Brunetti, Gianfranco; Budavári, Tamás; Cassano, Rossella; Condon, J. J.; Cress, Catherine; Dabbech, Arwa; Feain, I.; Fender, Rob; Ferrari, Chiara; Gaensler, B. M.; Giovannini, G.; Haverkorn, Marijke; Heald, George; Van der Heyden, Kurt; Hopkins, A. M.; Jarvis, M.; Johnston-Hollitt, Melanie; Kothes, Roland; Van Langevelde, Huib; Lazio, Joseph; Mao, Minnie Y.; Martínez-Sansigre, Alejo; Mary, David; Mcalpine, Kim; Middelberg, E.; Murphy, Eric; Padovani, P.; Paragi, Zsolt; Prandoni, I.; Raccanelli, A.; Rigby, Emma; Roseboom, I. G.; Röttgering, H.; Sabater, Jose; Salvato, Mara; Scaife, Anna M. M.; Schilizzi, Richard; Seymour, N.; Smith, Dan J. B.; Umana, Grazia; Zhao, G.-B.; Zinn, Peter-Christian
2013-03-01
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
Jin, Hee; Jeon, Seulgi; Kang, Ga-Young; Lee, Hae-June; Cho, Jaeho; Lee, Yun-Sil
2017-02-01
The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, β-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.
SPATIALLY EXTENDED 21 cm SIGNAL FROM STRONGLY CLUSTERED UV AND X-RAY SOURCES IN THE EARLY UNIVERSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyungjin; Xu, Hao; Norman, Michael L.
2015-03-20
We present our prediction for the local 21 cm differential brightness temperature (δT{sub b}) from a set of strongly clustered sources of Population III (Pop III) and II (Pop II) objects in the early universe, by a numerical simulation of their formation and radiative feedback. These objects are located inside a highly biased environment, which is a rare, high-density peak (“Rarepeak”) extending to ∼7 comoving Mpc. We study the impact of ultraviolet and X-ray photons on the intergalactic medium (IGM) and the resulting δT{sub b}, when Pop III stars are assumed to emit X-ray photons by forming X-ray binaries verymore » efficiently. We parameterize the rest-frame spectral energy distribution of X-ray photons, which regulates X-ray photon-trapping, IGM-heating, secondary Lyα pumping and the resulting morphology of δT{sub b}. A combination of emission (δT{sub b} > 0) and absorption (δT{sub b} < 0) regions appears in varying amplitudes and angular scales. The boost of the signal by the high-density environment (δ ∼ 0.64) and on a relatively large scale combines to make Rarepeak a discernible, spatially extended (θ ∼ 10′) object for 21 cm observation at 13 ≲ z ≲ 17, which is found to be detectable as a single object by SKA with integration time of ∼1000 hr. Power spectrum analysis by some of the SKA precursors (Low Frequency Array, Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization) of such rare peaks is found to be difficult due to the rarity of these peaks, and the contribution only by these rare peaks to the total power spectrum remains subdominant compared to that by all astrophysical sources.« less
Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Filik, T.; Tuncer, T. E.
2009-10-01
In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.
GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronn, M.T.; Miyada, C.G.; Fucini, R.V.
1994-09-01
GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by amore » sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.« less
Design of a Ferroelectric Programmable Logic Gate Array
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Ho, Fat Duen
2003-01-01
A programmable logic gate array has been designed utilizing ferroelectric field effect transistors. The design has only a small number of gates, but this could be scaled up to a more useful size. Using FFET's in a logic array gives several advantages. First, it allows real-time programmability to the array to give high speed reconfiguration. It also allows the array to be configured nearly an unlimited number of times, unlike a FLASH FPGA. Finally, the Ferroelectric Programmable Logic Gate Array (FPLGA) can be implemented using a smaller number of transistors because of the inherent logic characteristics of an FFET. The device was only designed and modeled using Spice models of the circuit, including the FFET. The actual device was not produced. The design consists of a small array of NAND and NOR logic gates. Other gates could easily be produced. They are linked by FFET's that control the logic flow. Timing and logic tables have been produced showing the array can produce a variety of logic combinations at a real time usable speed. This device could be a prototype for a device that could be put into imbedded systems that need the high speed of hardware implementation of logic and the complexity to need to change the logic algorithm. Because of the non-volatile nature of the FFET, it would also be useful in situations that needed to program a logic array once and use it repeatedly after the power has been shut off.
Highly Directive Reflect Array Antenna Design for Wireless Power Transfer
2017-04-14
AFRL-AFOSR-JP-TR-2017-0033 Highly Directive Reflect Array Antenna Design for Wireless Power Transfer Siddhartha Prakash Duttagupta INDIAN INSTITUTE...Directive Reflect Array Antenna Design for Wireless Power Transfer 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4076 5c. PROGRAM ELEMENT NUMBER...Antenna Design for Wireless Power Principal Investigator: SP Duttagupta Email: sdgupta@ee.iitb.ac.in Institution: Indian Institute of Technology
APRON: A Cellular Processor Array Simulation and Hardware Design Tool
NASA Astrophysics Data System (ADS)
Barr, David R. W.; Dudek, Piotr
2009-12-01
We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.
Application of field dependent polynomial model
NASA Astrophysics Data System (ADS)
Janout, Petr; Páta, Petr; Skala, Petr; Fliegel, Karel; Vítek, Stanislav; Bednář, Jan
2016-09-01
Extremely wide-field imaging systems have many advantages regarding large display scenes whether for use in microscopy, all sky cameras, or in security technologies. The Large viewing angle is paid by the amount of aberrations, which are included with these imaging systems. Modeling wavefront aberrations using the Zernike polynomials is known a longer time and is widely used. Our method does not model system aberrations in a way of modeling wavefront, but directly modeling of aberration Point Spread Function of used imaging system. This is a very complicated task, and with conventional methods, it was difficult to achieve the desired accuracy. Our optimization techniques of searching coefficients space-variant Zernike polynomials can be described as a comprehensive model for ultra-wide-field imaging systems. The advantage of this model is that the model describes the whole space-variant system, unlike the majority models which are partly invariant systems. The issue that this model is the attempt to equalize the size of the modeled Point Spread Function, which is comparable to the pixel size. Issues associated with sampling, pixel size, pixel sensitivity profile must be taken into account in the design. The model was verified in a series of laboratory test patterns, test images of laboratory light sources and consequently on real images obtained by an extremely wide-field imaging system WILLIAM. Results of modeling of this system are listed in this article.
Design and optimization of a self-deploying PV tent array
NASA Astrophysics Data System (ADS)
Colozza, Anthony J.
A study was performed to design a self-deploying tent shaped PV (photovoltaic) array and optimize the design for maximum specific power. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both Lunar and Martian environmental conditions. The performance specifications for the array at both locations and with various PV blankets were determined.
The design of low cost structures for extensive ground arrays
NASA Technical Reports Server (NTRS)
Franklin, H. A.; Leonard, R. S.
1980-01-01
The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.
The impact of solar cell technology on planar solar array performance
NASA Technical Reports Server (NTRS)
Mills, Michael W.; Kurland, Richard M.
1989-01-01
The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.
NASA Technical Reports Server (NTRS)
1983-01-01
A preliminary design effort directed toward a low concentration ratio photovoltaic array system capable of delivering multihundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of .25 sq. m. The structural analysis and design trades leading to the baseline design are discussed. It describes the configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.
Damage imaging using Lamb waves for SHM applications
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz; Ambroziński, Łukasz; Uhl, Tadeusz
2015-03-01
2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.
Double biprism arrays design using for stereo-photography of mobile phone camera
NASA Astrophysics Data System (ADS)
Sun, Wen-Shing; Chu, Pu-Yi; Chao, Yu-Hao; Pan, Jui-Wen; Tien, Chuen-Lin
2016-11-01
Generally, mobile phone use one camera to catch the image, and it is hard to get stereo image pair. Adding a biprism array can help that get the image pair easily. So users can use their mobile phone to catch the stereo image anywhere by adding a biprism array, and if they want to get a normal image just remove it. Using biprism arrays will induce chromatic aberration. Therefore, we design a double biprism arrays to reduce chromatic aberration.
NASA Technical Reports Server (NTRS)
Fowler, A. M.; Joyce, R. R.
1990-01-01
The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
An improved method for polarimetric image restoration in interferometry
NASA Astrophysics Data System (ADS)
Pratley, Luke; Johnston-Hollitt, Melanie
2016-11-01
Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.
GRAVITATIONAL MICROLENSING EVENTS AS A TARGET FOR THE SETI PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahvar, Sohrab, E-mail: rahvar@sharif.edu
2016-09-01
The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbitingmore » around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.« less
NASA Astrophysics Data System (ADS)
Carozzi, T. D.; Woan, G.
2009-05-01
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
VST project: distributed control system overview
NASA Astrophysics Data System (ADS)
Mancini, Dario; Mazzola, Germana; Molfese, C.; Schipani, Pietro; Brescia, Massimo; Marty, Laurent; Rossi, Emilio
2003-02-01
The VLT Survey Telescope (VST) is a co-operative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are responsibility of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The control hardware is based on a large utilization of distributed embedded specialized controllers specifically designed, prototyped and manufactured by the Technology Working Group for VST project. The use of a field bus improves the whole system reliability in terms of high level flexibility, control speed and allow to reduce drastically the plant distribution in the instrument. The paper describes the philosophy and the architecture of the VST control HW with particular reference to the advantages of this distributed solution for the VST project.
Comet Hunters: A Citizen Science Project to Search for Comets in the Main Asteroid Belt
NASA Astrophysics Data System (ADS)
Hsieh, Henry H.; Schwamb, Megan Elizabeth; Zhang, Zhi-Wei; Chen, Ying-Tung; Wang, Shiang-Yu; Lintott, Chris
2016-10-01
Fully automated detection of comets in wide-field surveys remains a challenge, as even highly successful comet-finding surveys like Pan-STARRS rely on a combination of both automated flagging algorithms and vetting by human eyes. To take advantage of the long-noted superiority of the human eye over computer algorithms in certain types of pattern recognition, particularly when dealing with a range of target morphologies of interest, we have created a citizen science website with the aim of allowing the general public to aid in the search for active asteroids, which are objects that occupy dynamically asteroidal orbits yet exhibit comet-like dust emission due to sublimation, impact disruption, rotational destabilization, or other effects. Located at comethunters.org, the Comet Hunters website was built using the Zooniverse Project Builder (https://www.zooniverse.org/lab), and displays images of known asteroids obtained either from archival data obtained between 1999 and 2014 by the Suprime-Cam wide-field imager mounted on the 8-m Subaru telescope on Mauna Kea in Hawaii, or more contemporary data obtained by the Hyper Suprime-Cam (HSC) wide-field imager also on the Subaru Telescope as part of the ongoing HSC Subaru Strategic Program (SSP) survey. By using observations from such a large-aperture telescope, most of which have never been searched for solar system objects, much less cometary ones, we expect that volunteers should be able to make genuinely scientifically significant discoveries, and also provide valuable insights into the potential and challenges of searching for comets in the LSST era. To date, over 13,000 registered volunteers have contributed 350,000 classifications. We will discuss the design and construction of the Comet Hunters website, and also discuss early results from the project.This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation.The HSC SSP collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University. Instrumentation and software for HSC were developed by NAOJ, Kavli IPMU, the University of Tokyo, KEK, ASIAA, and Princeton University.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
Fuel bundle design for enhanced usage of plutonium fuel
Reese, Anthony P.; Stachowski, Russell E.
1995-01-01
A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.
Fuel bundle design for enhanced usage of plutonium fuel
Reese, A.P.; Stachowski, R.E.
1995-08-08
A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.
Microwave power transmitting phased array antenna research project
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1978-01-01
An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.
NASA Technical Reports Server (NTRS)
Kellogg, James W.
1993-01-01
The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.
Glare effect for three types of street lamps based on White LEDs
NASA Astrophysics Data System (ADS)
Sun, Ching-Cherng; Jiang, Chong-Jhih; Chen, Yi-Chun; Yang, Tsung-Hsun
2014-05-01
This study is aimed to assess the glare effect from LED-based street lamps with three general optical designs, which are cluster LEDs with a single lens, a LED array accompany with a lens array, and a tilted LED array, respectively. Observation conditions were simulated based on various locations and viewing axes. Equivalent luminance calculations were used to reveal the glare levels of the three designs. The age effect for the calculated equivalent luminance was also examined for human eyes of people at the age of 40 or 60. The results demonstrate that among the three design types, a LED array accompany with a lens array causes relatively smaller glare for most viewing conditions.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Demonstration of Uncued Optical Surveillance of LEO
NASA Astrophysics Data System (ADS)
Zimmer, P.; Ackermann, M.; McGraw, J.
2014-09-01
J.T. McGraw and Associates, LLC, in collaboration with the University of New Mexico (UNM), has built and is operating two proof-of-concept wide-field imaging systems to test novel techniques for uncued surveillance of LEO. The imaging systems are built from off-the-shelf optics and detectors resulting in a 350mm aperture and a 6 square degree field of view. For streak detection, field of view is of critical importance because the maximum exposure time on the object is limited by its crossing time and measurements of apparent angular motion are better constrained with longer streaks. The current match of the detector to the optical system is optimized for detection of objects at altitudes above 450km, which for a circular orbit, corresponds to apparent motions of approximately 1 deg./sec. Using our GPU-accelerated detection scheme, the proof-of-concept systems have detected objects fainter than V=12.3, which approximately corresponds to a 24 cm object at 1000 km altitude at better than 6 sigma significance, from sites near and within Albuquerque, NM. This work demonstrates scalable optical systems designed for near real time detection of fast moving objects, which can be then handed off to other instruments capable of tracking and characterizing them. The two proof-of-concept systems, separated by ~30km, work together by taking simultaneous images of the same orbital volume to constrain the orbits of detected objects using parallax measurements. These detections are followed-up by photometric observations taken at UNM to independently assess the objects and the quality of the derived orbits. We believe this demonstrates the potential of small telescope arrays for detecting and cataloguing heretofore unknown LEO objects.
NASA Astrophysics Data System (ADS)
Ward, Jonathan; Advanced ACT Collaboration, NASA Space Technology Research Fellowship
2017-06-01
The Atacama Cosmology Telescope is a six-meter diameter telescope located at 17,000 feet (5,200 meters) on Cerro Toco in the Andes Mountains of northern Chile. The next generation Advanced ACT (AdvACT) experiment is currently underway and will consist of three multichroic TES bolometer arrays operating together, totaling 5800 detectors on the sky. Each array will be sensitive to two frequency bands: a high frequency (HF) array at 150 and 230 GHz, two middle frequency (MF) arrays at 90 and 150 GHz, and a low frequency (LF) array at 28 and 41 GHz. The AdACT detector arrays will feature a revamped design when compared to ACTPol, including a transition to 150mm wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors consists of a feedhorn array of stacked silicon wafers which form a corrugated profile leading to each pixel. This is then followed by a four-piece detector stack assembly of silicon wafers which includes a waveguide interface plate, detector wafer, backshort cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured out of gold-plated, high purity copper. In addition to the detector array assembly, the array package also encloses the majority of our readout electronics. We present the full mechanical design of the AdvACT HF and MF detector array packages along with a detailed look at the detector array assemblies. We also highlight the use of continuously rotating warm half-wave plates (HWPs) at the front of the AdvACT receiver. We review the design of the rotation system and also early pipeline data analysis results. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT instruments with pre-existing ACTPol infrastructure.
NASA Technical Reports Server (NTRS)
Clancy, Daniel J.; Oezguener, Uemit; Graham, Ronald E.
1994-01-01
The potential for excessive plume impingement loads on Space Station Freedom solar arrays, caused by jet firings from an approaching Space Shuttle, is addressed. An artificial neural network is designed to determine commanded solar array beta gimbal angle for minimum plume loads. The commanded angle would be determined dynamically. The network design proposed involves radial basis functions as activation functions. Design, development, and simulation of this network design are discussed.
Large Ka-Band Slot Array for Digital Beam-Forming Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.
2011-01-01
This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.
NASA Astrophysics Data System (ADS)
Namin, Frank Farhad A.
Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.