Nonlinear dynamic range transformation in visual communication channels.
Alter-Gartenberg, R
1996-01-01
The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.
Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices
NASA Astrophysics Data System (ADS)
Zhang, Ying-Qian; Wang, Xing-Yuan; Liu, Li-Yan; He, Yi; Liu, Jia
2017-11-01
We investigate a new spatiotemporal dynamics with fractional order differential logistic map and spatial nonlinear coupling. The spatial nonlinear coupling features such as the higher percentage of lattices in chaotic behaviors for most of parameters and none periodic windows in bifurcation diagrams are held, which are more suitable for encryptions than the former adjacent coupled map lattices. Besides, the proposed model has new features such as the wider parameter range and wider range of state amplitude for ergodicity, which contributes a wider range of key space when applied in encryptions. The simulations and theoretical analyses are developed in this paper.
Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V
2003-10-01
Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.
Scanning Shack-Hartmann wavefront sensor
NASA Astrophysics Data System (ADS)
Molebny, Vasyl V.
2004-09-01
Criss-crossing of focal images is the cause of a narrow dynamic range in Shack-Hartmann sensors. Practically, aberration range wider than +/-3 diopters can not be measured. A method has been proposed for ophthalmologic applications using a rarefied lenslet array through which a wave front is projected with the successive step-by-step changing of the global tilt. The data acquired in each step are accumulated and processed. In experimental setup, a doubled dynamic range was achieved with four steps of wave front tilting.
Application of TOPEX/Poseidon altimetry to ocean dynamics and geophysics
NASA Technical Reports Server (NTRS)
Douglas, Bruce; Cheney, R.; Miller, L.; Mcadoo, D.; Leetmaa, A.; Schopf, P.; Schwiderski, E. W.
1991-01-01
We will analyze the TOPEX/POSEIDON data using techniques developed for Geosat, although the more accurate TOPEX/POSEIDON data will enable a wider range of problems to be addressed. Our proposed investigations will have five distinct areas: (1) a description of global sea level variability; (2) tropical ocean dynamics; (3) coupled models for El Nino prediction; (4) structure of the lithosphere; and (5) global tide model improvement.
Dynamical complexity changes during two forms of meditation
NASA Astrophysics Data System (ADS)
Li, Jin; Hu, Jing; Zhang, Yinhong; Zhang, Xiaofeng
2011-06-01
Detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meaning. We use the base-scale entropy method to analyze dynamical complexity changes for heart rate variability (HRV) series during specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques in healthy young adults. The results show that dynamical complexity decreases in meditation states for two forms of meditation. Meanwhile, we detected changes in probability distribution of m-words during meditation and explained this changes using probability distribution of sine function. The base-scale entropy method may be used on a wider range of physiologic signals.
NASA Astrophysics Data System (ADS)
Li, Xin; Liang, Ji; Zhang, Hongxiang; Yang, Xing; Zhang, Hao; Pang, Wei; Zhang, Menglun
2017-06-01
This paper reports an uncooled infrared (IR) detector based on a micromachined piezoelectric resonator operating in resonant and resistive dual-modes. The two sensing modes achieved IR responsivities of 2.5 Hz/nW and 900 μdB/nW, respectively. Compared with the single mode operation, the dual-mode measurement improves the limit of detection by two orders of magnitude and meanwhile maintains high linearity and responsivity in a higher IR intensity range. A combination of the two sensing modes compensates for its own shortcomings and provides a much larger dynamic range, and thus, a wider application field of the proposed detector is realized.
Implication of high dynamic range and wide color gamut content distribution
NASA Astrophysics Data System (ADS)
Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt
2015-09-01
High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.
Smith, Stephen; Grima, Ramon
2018-05-21
Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.
Cine CT technique for dynamic airway studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ell, S.R.; Jolles, H.; Keyes, W.D.
1985-07-01
The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.
Evaluation of color encodings for high dynamic range pixels
NASA Astrophysics Data System (ADS)
Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania
2015-03-01
Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.
Darius M. Adams; Ralph J. Alig; J.M. Callaway; Bruce A. McCarl; Steven M. Winnett
1996-01-01
The Forest and Agricultural Sector Optimization Model (FASOM) is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States. The FASOM model initially was developed to evaluate welfare and market impacts of alternative policies for sequestering carbon in trees but also has been applied to a wider range of forest and agricultural...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
Noise facilitates transcriptional control under dynamic inputs.
Kellogg, Ryan A; Tay, Savaş
2015-01-29
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments. Copyright © 2015 Elsevier Inc. All rights reserved.
Operation and tests of a DDC101 A/D
NASA Astrophysics Data System (ADS)
Nguyen, H.
1994-11-01
For the KTeV PMT laser monitoring system, one needs a high resolution device with a large dynamic range to be used for digitizing PIN photodiodes. The dynamic range should be wider than or comparable to the KTeV digitizer (17-bits). The Burr-Brown DDC101 is a precision, wide dynamic range, charge digitizing A/D converter with 20-bit resolution, packaged in a 28-pin plastic, double-wide DP. Low level current output devices such as photosensors can be directly connected to its input. The digital output can be clocked-out serially from the pins. For typical operations, a relatively wide gate of 1 msec should be used. The full scale charge is 500 pC for unipolar mode. The bipolar mode scale is +/- 250 pC. The advertised integral nonlinearity is 0.003% of FSR. This document describes only the basic DDC101 operations since full detail can be found in the DDC101 manual. Tests results are given in section 3.
Spectral Gap Estimates in Mean Field Spin Glasses
NASA Astrophysics Data System (ADS)
Ben Arous, Gérard; Jagannath, Aukosh
2018-05-01
We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.
Thermostatic Valves Containing Silicone-Oil Actuators
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard
2009-01-01
Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.
Computational modeling of peripheral pain: a commentary.
Argüello, Erick J; Silva, Ricardo J; Huerta, Mónica K; Avila, René S
2015-06-11
This commentary is intended to find possible explanations for the low impact of computational modeling on pain research. We discuss the main strategies that have been used in building computational models for the study of pain. The analysis suggests that traditional models lack biological plausibility at some levels, they do not provide clinically relevant results, and they cannot capture the stochastic character of neural dynamics. On this basis, we provide some suggestions that may be useful in building computational models of pain with a wider range of applications.
Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto
2018-06-04
In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.
ICESAT GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Borsa, Adrian A.; Fricker, Helen Amanda; Yi, Donghui; Dimarzio, John P.; Paolo, Fernando S.; Brunt, Kelly M.; Harding, David J.; Neumann, Gregory A.
2017-01-01
NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earths ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as approximately 50 cm for ice- and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.
Sotiropoulos, Stamatios N.; Brookes, Matthew J.; Woolrich, Mark W.
2018-01-01
Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP. PMID:29474352
Daly, Ryan; Froneman, Pierre W; Smale, Malcolm J
2013-01-01
As apex predators, sharks play an important role shaping their respective marine communities through predation and associated risk effects. Understanding the predatory dynamics of sharks within communities is, therefore, necessary to establish effective ecologically based conservation strategies. We employed non-lethal sampling methods to investigate the feeding ecology of bull sharks (Carcharhinus leucas) using stable isotope analysis within a subtropical marine community in the southwest Indian Ocean. The main objectives of this study were to investigate and compare the predatory role that sub-adult and adult bull sharks play within a top predatory teleost fish community. Bull sharks had significantly broader niche widths compared to top predatory teleost assemblages with a wide and relatively enriched range of δ(13)C values relative to the local marine community. This suggests that bull sharks forage from a more diverse range of δ(13)C sources over a wider geographical range than the predatory teleost community. Adult bull sharks appeared to exhibit a shift towards consistently higher trophic level prey from an expanded foraging range compared to sub-adults, possibly due to increased mobility linked with size. Although predatory teleost fish are also capable of substantial migrations, bull sharks may have the ability to exploit a more diverse range of habitats and appeared to prey on a wider diversity of larger prey. This suggests that bull sharks play an important predatory role within their respective marine communities and adult sharks in particular may shape and link ecological processes of a variety of marine communities over a broad range.
Daly, Ryan; Froneman, Pierre W.; Smale, Malcolm J.
2013-01-01
As apex predators, sharks play an important role shaping their respective marine communities through predation and associated risk effects. Understanding the predatory dynamics of sharks within communities is, therefore, necessary to establish effective ecologically based conservation strategies. We employed non-lethal sampling methods to investigate the feeding ecology of bull sharks (Carcharhinus leucas) using stable isotope analysis within a subtropical marine community in the southwest Indian Ocean. The main objectives of this study were to investigate and compare the predatory role that sub-adult and adult bull sharks play within a top predatory teleost fish community. Bull sharks had significantly broader niche widths compared to top predatory teleost assemblages with a wide and relatively enriched range of δ13C values relative to the local marine community. This suggests that bull sharks forage from a more diverse range of δ13C sources over a wider geographical range than the predatory teleost community. Adult bull sharks appeared to exhibit a shift towards consistently higher trophic level prey from an expanded foraging range compared to sub-adults, possibly due to increased mobility linked with size. Although predatory teleost fish are also capable of substantial migrations, bull sharks may have the ability to exploit a more diverse range of habitats and appeared to prey on a wider diversity of larger prey. This suggests that bull sharks play an important predatory role within their respective marine communities and adult sharks in particular may shape and link ecological processes of a variety of marine communities over a broad range. PMID:24205168
Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi
2016-05-01
The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gordon, John
2013-04-01
Geodiversity delivers or underpins many key ecosystem processes and services that deliver valuable benefits for society. With a growing recognition of the wider economic, social and environmental relevance of geodiversity, it is timely to consider the research requirements and priorities that are necessary to underpin a broader interdisciplinary approach to geodiversity that incorporates the links between natural and human systems in a changing world. A key challenge is to develop the scientific framework of geodiversity and at the same time to enhance the protection of geoheritage. Research that helps to support environmental policy and meet the wider needs of society for sustainable development and improved human wellbeing is fundamental both to improve the recognition of geodiversity and to demonstrate the wider relevance and value of geoheritage and geoconservation. Within this wider context, priorities for research include: 1) assessment of geoheritage and best-practice management of geosites for multiple uses including science, education and tourism; 2) evaluation of geodiversity and the ecosystem services it provides, both in economic and non-economic terms, to help build policy support and public awareness; 3) understanding the functional links between geodiversity and biodiversity across a range of spatial and temporal scales to help assess ecosystem sensitivity and inform management adaptations to climate change, particularly in dynamic environments such as the coast, river catchments and mountain areas; 4) providing a longer time perspective on ecosystem trends and services from palaeoenvironmental records; 5) applications of geodiversity in terrestrial and marine spatial planning.
NASA Astrophysics Data System (ADS)
Gonzales, Kalim
It is argued that infants build a foundation for learning about the world through their incidental acquisition of the spatial and temporal regularities surrounding them. A challenge is that learning occurs across multiple contexts whose statistics can greatly differ. Two artificial language studies with 12-month-olds demonstrate that infants come prepared to parse statistics across contexts using the temporal and perceptual features that distinguish one context from another. These results suggest that infants can organize their statistical input with a wider range of features that typically considered. Possible attention, decision making, and memory mechanisms are discussed.
Growth-direction dependence of steady-state Saffman-Taylor flow in an anisotropic Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloud, K.V.; Maher, J.V.
1996-08-01
Selection of steady-state fingers has been measured in a Hele-Shaw cell perturbed by having a square lattice etched onto one of the plates. Flows at different orientations {theta} between the direction of flow and the lattice axes have been studied, in a wide range of observable tip velocities where the perturbation was made microscopic in the sense that the capillary length of the flow was much greater than the etched lattice cell size. The full range of dynamically interesting angles for the square lattice was examined, and above a threshold, the microscopic perturbation always results in wider fingers than aremore » selected in the unperturbed case. There is some dependence of the width of the fingers on the orientation of the flow, with fingers at {theta}=0{degree} being the widest with respect to the unperturbed fingers, and fingers at 45{degree} being the least wide, although still wider than the unperturbed fingers. All observed solutions are symmetric, centered in the channel, and have the relation between tip-curvature and finger width expected of members of the Saffman-Taylor family of solutions. Selected solutions narrow again at tip velocities where the perturbation can no longer be considered microscopic. {copyright} {ital 1996 The American Physical Society.}« less
New feature of the neutron color image intensifier
NASA Astrophysics Data System (ADS)
Nittoh, Koichi; Konagai, Chikara; Noji, Takashi; Miyabe, Keisuke
2009-06-01
We developed prototype neutron color image intensifiers with high-sensitivity, wide dynamic range and long-life characteristics. In the prototype intensifier (Gd-Type 1), a terbium-activated Gd 2O 2S is used as the input-screen phosphor. In the upgraded model (Gd-Type 2), Gd 2O 3 and CsI:Na are vacuum deposited to form the phosphor layer, which improved the sensitivity and the spatial uniformity. A europium-activated Y 2O 2S multi-color scintillator, emitting red, green and blue photons with different intensities, is utilized as the output screen of the intensifier. By combining this image intensifier with a suitably tuned high-sensitive color CCD camera, higher sensitivity and wider dynamic range could be simultaneously attained than that of the conventional P20-phosphor-type image intensifier. The results of experiments at the JRR-3M neutron radiography irradiation port (flux: 1.5×10 8 n/cm 2/s) showed that these neutron color image intensifiers can clearly image dynamic phenomena with a 30 frame/s video picture. It is expected that the color image intensifier will be used as a new two-dimensional neutron sensor in new application fields.
The wave attenuation mechanism of the periodic local resonant metamaterial
NASA Astrophysics Data System (ADS)
Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying
2018-01-01
This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.
Complex Networks/Foundations of Information Systems
2013-03-06
the benefit of feedback or dynamic correlations in coding and protocol. Using Renyi correlation analysis and entropy to model this wider class of...dynamic heterogeneous conditions. Lizhong Zheng, MIT Renyi Channel Correlation Analysis (connected to geometric curvature) Network Channel
Scaling participation in payments for ecosystem services programs
Donlan, C. Josh; Boyle, Kevin J.; Xu, Weibin; Gelcich, Stefan
2018-01-01
Payments for ecosystem services programs have become common tools but most have failed to achieve wide-ranging conservation outcomes. The capacity for scale and impact increases when PES programs are designed through the lens of the potential participants, yet this has received little attention in research or practice. Our work with small-scale marine fisheries integrates the social science of PES programs and provides a framework for designing programs that focus a priori on scaling. In addition to payments, desirable non-monetary program attributes and ecological feedbacks attract a wider range of potential participants into PES programs, including those who have more negative attitudes and lower trust. Designing programs that draw individuals into participating in PES programs is likely the most strategic path to reaching scale. Research should engage in new models of participatory research to understand these dynamics and to design programs that explicitly integrate a broad range of needs, values, and modes of implementation. PMID:29522554
Strong Field Theories beyond Dipole Approximations in Nonrelativistic Regimes
NASA Astrophysics Data System (ADS)
He, Pei-Lun; Lao, Di; He, Feng
2017-04-01
The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found, based on which a strong field theory beyond the dipole approximation is built for describing the nondipole effects in nonrelativistic laser driven electron dynamics. This theory is applied to investigate momentum partition laws for multiphoton and tunneling ionization and explicitly shows that the complex interplay of a laser field and Coulomb action may reverse the expected photoelectron momentum along the laser propagation direction. The magnetic-spin coupling does not bring observable effects on the photoelectron momentum distribution and can be neglected. Compared to the strong field approximation within the dipole approximation, this theory works in a much wider range of laser parameters and lays a solid foundation for describing nonrelativistic electron dynamics in both short wavelength and midinfrared regimes where nondipole effects are unavoidable.
de Lacy, N; Doherty, D; King, B H; Rachakonda, S; Calhoun, V D
2017-01-01
Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity , in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition.
Hysteresis compensation for piezoelectric actuators in single-point diamond turning
NASA Astrophysics Data System (ADS)
Wang, Haifeng; Hu, Dejin; Wan, Daping; Liu, Hongbin
2006-02-01
In recent years, interests have been growing for fast tool servo (FTS) systems to increase the capability of existing single-point diamond turning machines. Although piezoelectric actuator is the most universal base of FTS system due to its high stiffness, accuracy and bandwidth, nonlinearity in piezoceramics limits both the static and dynamic performance of piezoelectric-actuated control systems evidently. To compensate the nonlinear hysteresis behavior of piezoelectric actuators, a hybrid model coupled with Preisach model and feedforward neural network (FNN) has been described. Since the training of FNN does not require a special calibration sequence, it is possible for on-line identification and real-time implementation with general operating data of a specific piezoelectric actuator. To describe the rate dependent behavior of piezoelectric actuators, a hybrid dynamic model was developed to predict the response of piezoelectric actuators in a wider range of input frequency. Experimental results show that a maximal error of less than 3% was accomplished by this dynamic model.
Going global: the transnationalization of care.
Yeates, Nicola
2011-01-01
This article critically examines the contours of ‘care transnationalization’ as an ongoing social process and a field of enquiry. Care transnationalization scholarship combines structural understandings of global power relations with an emphasis on social interactions between defined actors in ways that keep sight of human agency, material welfare and wider social development. It has, however, tended to privilege particular forms, dynamics and sites of care transnationalization over others. The body of research on care labour migration, which is otherwise the most developed literature on care transnationalization to date, contains a number of biases and omissions in its coverage of border-spanning relations and their mediation across country contexts. At the same time, other significant forms of care transnationalization, such as those involving consumer-based care migration, corporate restructuring and the formation of care policy, have suffered from comparative neglect. Working towards an integrated agenda that addresses these diverse expressions of care transnationalization and how they ‘touch down’ in a range of sectoral, social and country contexts is of prime importance to policy research agendas directed at understanding the wider development impacts of processes of social and economic restructuring.
Hyperspectral remote sensing of plant pigments.
Blackburn, George Alan
2007-01-01
The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.
NASA Astrophysics Data System (ADS)
Heyes, David M.
1988-04-01
This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.
Cascadia, an ultracompact seismic instrument with over 200dB of dynamic range
NASA Astrophysics Data System (ADS)
Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce
2017-04-01
Integration of geophysical instrumentation is clearly a way to lower overall station cost, make installations less complex, reduce installation time, increase station utility and value to a wider group of researchers, data miners and monitoring groups. Initiatives to expand early earthquake warning networks and observatories can use these savings for increasing station density. Integration of mature instrument systems such as broadband sensors and accelerometers used in strong motion studies has to be done with care to preserve the low noise and low frequency performance while providing over 200dB of dynamic range. Understanding the instrument complexities and deployment challenges allows the engineering teams to optimize the packaging to make installation and servicing cost effective, simple, routine and ultimately more reliable. We discuss early results from testing both in the lab and in the field of a newly released instrument called the Cascadia that integrates a broadband seismometer with a class A (USGS rating) accelerometer in a small stainless steel sonde suited for dense arrays in either ad hoc direct bury field deployments or in observatory quality shallow boreholes.
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
NASA Astrophysics Data System (ADS)
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
ERIC Educational Resources Information Center
Gornitzka, Ase
2010-01-01
This article presents a horizontal perspective on the dynamics of governance sites currently active for the European of Knowledge and places the Bologna process in this wider European level context. It introduces two dynamics of change in political organisation: (a) institutional differentiation and specialisation and (b) the interaction between…
Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)
NASA Astrophysics Data System (ADS)
Nasir, Qassim
2018-01-01
This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.
Membrane tension controls the assembly of curvature-generating proteins
Simunovic, Mijo; Voth, Gregory A.
2015-01-01
Proteins containing a Bin/Amphiphysin/Rvs (BAR) domain regulate membrane curvature in the cell. Recent simulations have revealed that BAR proteins assemble into linear aggregates, strongly affecting membrane curvature and its in-plane stress profile. Here, we explore the opposite question: do mechanical properties of the membrane impact protein association? By using coarse-grained molecular dynamics simulations, we show that increased surface tension significantly impacts the dynamics of protein assembly. While tensionless membranes promote a rapid formation of long-living linear aggregates of N-BAR proteins, increase in tension alters the geometry of protein association. At high tension, protein interactions are strongly inhibited. Increasing surface density of proteins leads to a wider range of protein association geometries, promoting the formation of meshes, which can be broken apart with membrane tension. Our work indicates that surface tension may play a key role in recruiting proteins to membrane-remodelling sites in the cell. PMID:26008710
The harmonic oscillator and nuclear physics
NASA Technical Reports Server (NTRS)
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
Temporal processing and adaptation in the songbird auditory forebrain.
Nagel, Katherine I; Doupe, Allison J
2006-09-21
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
NASA Astrophysics Data System (ADS)
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.; Martínez-Serrano, F. J.; Serna, A.
2017-09-01
Recent determinations of the radial distributions of mono-metallicity populations (MMPs, I.e., stars in narrow bins in [Fe/H] within wider [α/Fe] ranges) by the SDSS-III/APOGEE DR12 survey cast doubts on the classical thin- and thick-disk dichotomy. The analysis of these observations led to the non-[α /Fe] enhanced populations splitting into MMPs with different surface densities according to their [Fe/H]. By contrast, [α /Fe] enhanced (I.e., old) populations show a homogeneous behavior. We analyze these results in the wider context of disk formation within non-isolated halos embedded in the Cosmic Web, resulting in a two-phase mass assembly. By performing hydrodynamical simulations in the context of the ΛCDM model, we have found that the two phases of halo mass assembly (an early fast phase, followed by a slow phase with low mass-assembly rates) are very relevant to determine the radial structure of MMP distributions, while radial mixing only plays a secondary role, depending on the coeval dynamical and/or destabilizing events. Indeed, while the frequent dynamical violent events occuring at high redshift remove metallicity gradients and imply efficient stellar mixing, the relatively quiescent dynamics after the transition keeps [Fe/H] gaseous gradients and prevents newly formed stars from suffering strong radial mixing. By linking the two-component disk concept with the two-phase halo mass-assembly scenario, our results set halo virialization (the event marking the transition from the fast to the slow phases) as the separating event that marks periods that are characterized by different physical conditions under which thick- and thin-disk stars were born.
NASA Astrophysics Data System (ADS)
Vessella, Federico; Simeone, Marco Cosimo; Schirone, Bartolomeo
2015-07-01
Ecological Niche Modelling (ENM) is widely used to depict species potential occurrence according to environmental variables under different climatic scenarios. We tested the ENM approach to infer past range dynamics of cork oak, a keystone species of the Mediterranean Biome, from 130 ka to the present time. Hindcasting implications would deal with a better species risk assessment and conservation management for the future. We modelled present and past occurrence of cork oak using seven ENM algorithms, starting from 63,733 spatially unique presence points at 30 arc-second resolution. Fourteen environmental variables were used and four time slices were considered (Last Interglacial, Last Glacial Maximum, mid-Holocene and present time). A threshold-independent evaluation of the goodness-of-fit of the models was evaluated by means of ROC curve and fossil or historical evidences were used to validate the results. Four weighted average maps depicted the dynamics of area suitability for cork oak in the last 130 ka. The derived species autoecology allowed its long-term occurrence in the Mediterranean without striking range reduction or shifting. Fossil and historical post-processing validation support the modelled past spatial extension and a neglected species presence at Levantine until the recent time. Despite the severe climatic oscillation since the Last Glacial Maximum, cork oak potential distribution area experienced limited range changes, confirming its strong link with the Mediterranean Basin. The ecological amplitude of Quercus suber could be therefore adopted as a reference to trace the Mediterranean bioclimate area. A better knowledge of the past events of Mediterranean vegetation, a wider range of study species and environmental determinants are essential to inform us about its current state, its sensitivity to human impact and the potential responses to future changes.
A dynamic method for magnetic torque measurement
NASA Technical Reports Server (NTRS)
Lin, C. E.; Jou, H. L.
1994-01-01
In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.
Optical double-locked semiconductor lasers
NASA Astrophysics Data System (ADS)
AlMulla, Mohammad
2018-06-01
Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system
Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods
NASA Astrophysics Data System (ADS)
Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua
2010-03-01
This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.
An 1.4 ppm/°C bandgap voltage reference with automatic curvature-compensation technique
NASA Astrophysics Data System (ADS)
Zhou, Zekun; Yu, Hongming; Shi, Yue; Zhang, Bo
2017-12-01
A high-precision Bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. Firstly, an exponential curvature compensation method is adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Experiment results of the BGR proposed in this paper, which is implemented in 0.35-μm BCD process, illustrate that the TC of 1.4ppm/°C is realized under the power supply voltage of 3.6V and the power supply rejection of the proposed circuit is -67dB.
Heuveline, Patrick
2015-01-01
Estimates of excess deaths under Pol Pot's rule of Cambodia (1975-79) range from under one million to over three million. The more plausible among those, methodologically, still vary from one to two million deaths, but this range of independent point estimates has no particular statistical meaning. Stochastically reconstructing population dynamics in Cambodia from extant historical and demographic data yields interpretable distributions of the death toll and other demographic indicators. The resulting 95-percent simulation interval (1.2 to 2.8 million excess deaths) demonstrates substantial uncertainty with regards to the exact scale of mortality, yet still excludes nearly half of the previous death-toll estimates. The 1.5 to 2.25 million interval contains 69 per cent of the simulations for the actual number of excess death, more than the wider (one to two million) range of previous plausible estimates. The median value of 1.9 million excess deaths represents 21 percent of the population at risk. PMID:26218856
Method for enhancing the resolving power of ion mobility separations over a limited mobility range
Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D
2014-09-23
A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.
Distributed and dynamic intracellular organization of extracellular information.
Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S
2018-06-05
Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.
Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters
NASA Astrophysics Data System (ADS)
Selyutina, N. S.; Petrov, Yu. V.
2018-02-01
The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.
Lloyd, John D.; Slater, Gary L.; Snyder, James R.
2012-01-01
Standing dead trees, or snags, are an important habitat element for many animal species. In many ecosystems, fire is a primary driver of snag population dynamics because it can both create and consume snags. The objective of this study was to examine how variation in two key components of the fire regime—fire-return interval and season of burn—affected population dynamics of snags. Using a factorial design, we exposed 1 ha plots, located within larger burn units in a south Florida slash pine (Pinus elliottii var. densa Little and Dorman) forest, to prescribed fire applied at two intervals (approximately 3-year intervals vs. approximately 6-year intervals) and during two seasons (wet season vs. dry season) over a 12- to 13-year period. We found no consistent effect of fire season or frequency on the density of lightly to moderately decayed or heavily decayed snags, suggesting that variation in these elements of the fire regime at the scale we considered is relatively unimportant in the dynamics of snag populations. However, our confidence in these findings is limited by small sample sizes, potentially confounding effects of unmeasured variation in fire behavior and effects (e.g., intensity, severity, synergy with drought cycles) and wide variation in responses within a treatment level. The generalizing of our findings is also limited by the narrow range of treatment levels considered. Future experiments incorporating a wider range of fire regimes and directly quantifying fire intensity would prove useful in identifying more clearly the role of fire in shaping the dynamics of snag populations.
NASA Astrophysics Data System (ADS)
Kopec, Wojciech; Khandelia, Himanshu
2014-02-01
Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations of thioridazine with zwitterionic and negatively charged model lipid membranes. Thioridazine partitions into the interfacial region of membranes and modifies their structural and dynamic properties, however dissimilarly so at the highest membrane-occurring concentration, that appears to be obtainable only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug-membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds.
Anazawa, Takashi; Yamazaki, Motohiro
2017-12-05
Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).
A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback
NASA Astrophysics Data System (ADS)
Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki
Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.
As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less
Dynamic multicast routing scheme in WDM optical network
NASA Astrophysics Data System (ADS)
Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin
2007-11-01
During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.
Logic Dynamics for Deductive Inference -- Its Stability and Neural Basis
NASA Astrophysics Data System (ADS)
Tsuda, Ichiro
2014-12-01
We propose a dynamical model that represents a process of deductive inference. We discuss the stability of logic dynamics and a neural basis for the dynamics. We propose a new concept of descriptive stability, thereby enabling a structure of stable descriptions of mathematical models concerning dynamic phenomena to be clarified. The present theory is based on the wider and deeper thoughts of John S. Nicolis. In particular, it is based on our joint paper on the chaos theory of human short-term memories with a magic number of seven plus or minus two.
Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel
NASA Astrophysics Data System (ADS)
Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie
2017-10-01
The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.
Roadmap for Scaling and Multifractals in Geosciences: still a long way to go ?
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Lovejoy, Shaun
2010-05-01
The interest in scale symmetries (scaling) in Geosciences has never lessened since the first pioneering EGS session on chaos and fractals 22 years ago. The corresponding NP activities have been steadily increasing, covering a wider and wider diversity of geophysical phenomena and range of space-time scales. Whereas interest was initially largely focused on atmospheric turbulence, rain and clouds at small scales, it has quickly broadened to much larger scales and to much wider scale ranges, to include ocean sciences, solid earth and space physics. Indeed, the scale problem being ubiquitous in Geosciences, it is indispensable to share the efforts and the resulting knowledge as much as possible. There have been numerous achievements which have followed from the exploration of larger and larger datasets with finer and finer resolutions, from both modelling and theoretical discussions, particularly on formalisms for intermittency, anisotropy and scale symmetry, multiple scaling (multifractals) vs. simple scaling,. We are now way beyond the early pioneering but tentative attempts using crude estimates of unique scaling exponents to bring some credence to the fact that scale symmetries are key to most nonlinear geoscience problems. Nowadays, we need to better demonstrate that scaling brings effective solutions to geosciences and therefore to society. A large part of the answer corresponds to our capacity to create much more universal and flexible tools to multifractally analyse in straightforward and reliable manners complex and complicated systems such as the climate. Preliminary steps in this direction are already quite encouraging: they show that such approaches explain both the difficulty of classical techniques to find trends in climate scenarios (particularly for extremes) and resolve them with the help of scaling estimators. The question of the reliability and accuracy of these methods is not trivial. After discussing these important, but rather short term issues, we will point out more general questions, which can be put together into the following provocative question: how to convert the classical time evolving deterministic PDE's into dynamical multifractal systems? We will argue that this corresponds to an already active field of research, which include: multifractals as generic solutions of nonlinear PDE (exact results for 1D Burgers equation and a few other caricatures of Navier-Stokes equations, prospects for 3D Burgers equations), cascade structures of numerical weather models, links between multifractal processes and random dynamical systems, and the challenging debate on the most relevant stochastic multifractal formalism, whereas there is already a rather general consent about the deterministic one.
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition
2017-01-01
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user’s location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively. PMID:28817094
Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition.
Choi, Hyo-Rim; Kim, TaeYong
2017-08-17
Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user's location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively.
Ontology for customer centric digital services and analytics
NASA Astrophysics Data System (ADS)
Keat, Ng Wai; Shahrir, Mohammad Shazri
2017-11-01
In computer science research, ontologies are commonly utilised to create a unified abstract across many rich and different fields. In this paper, we apply the concept to the customer centric domain of digital services analytics and present an analytics solution ontology. The essence is based from traditional Entity Relationship Diagram (ERD), which then was abstracted out to cover wider areas on customer centric digital services. The ontology we developed covers both static aspects (customer identifiers) and dynamic aspects (customer's temporal interactions). The structure of the customer scape is modeled with classes that represent different types of customer touch points, ranging from digital and digital-stamps which represent physical analogies. The dynamic aspects of customer centric digital service are modeled with a set of classes, with the importance is represented in different associations involving establishment and termination of the target interaction. The realized ontology can be used in development of frameworks for customer centric applications, and for specification of common data format used by cooperating digital service applications.
Interfacial mixing in high energy-density matter with a multiphysics kinetic model
NASA Astrophysics Data System (ADS)
Haack, Jeff; Hauck, Cory; Murillo, Michael
2017-10-01
We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.
NASA Astrophysics Data System (ADS)
Hasegawa, Manabu; Hiramatsu, Kotaro
2013-10-01
The effectiveness of the Metropolis algorithm (MA) (constant-temperature simulated annealing) in optimization by the method of search-space smoothing (SSS) (potential smoothing) is studied on two types of random traveling salesman problems. The optimization mechanism of this hybrid approach (MASSS) is investigated by analyzing the exploration dynamics observed in the rugged landscape of the cost function (energy surface). The results show that the MA can be successfully utilized as a local search algorithm in the SSS approach. It is also clarified that the optimization characteristics of these two constituent methods are improved in a mutually beneficial manner in the MASSS run. Specifically, the relaxation dynamics generated by employing the MA work effectively even in a smoothed landscape and more advantage is taken of the guiding function proposed in the idea of SSS; this mechanism operates in an adaptive manner in the de-smoothing process and therefore the MASSS method maintains its optimization function over a wider temperature range than the MA.
Yazdani, Alireza Z K; Bagchi, Prosenjit
2011-08-01
We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as "breathing" dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.
Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite
2014-11-04
Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.
2012-01-01
Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. PMID:22409965
Otaki, Joji M
2012-03-13
To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
The pasty propellant rocket engine development
NASA Astrophysics Data System (ADS)
Kukushkin, V. I.; Ivanchenko, A. N.
1993-06-01
The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.
Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris
2006-01-01
We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.
Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change
NASA Astrophysics Data System (ADS)
Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko
2018-03-01
Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.
High sensitivity of tidewater outlet glacier dynamics to shape
NASA Astrophysics Data System (ADS)
Enderlin, E. M.; Howat, I. M.; Vieli, A.
2013-02-01
Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e. bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.
High sensitivity of tidewater outlet glacier dynamics to shape
NASA Astrophysics Data System (ADS)
Enderlin, E. M.; Howat, I. M.; Vieli, A.
2013-06-01
Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e., bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.
Discrete Inverse and State Estimation Problems
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2006-06-01
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...
2016-03-18
As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less
Plant, R. S.; Woolnough, S. J.; Sessions, S.; Herman, M. J.; Sobel, A.; Wang, S.; Kim, D.; Cheng, A.; Bellon, G.; Peyrille, P.; Ferry, F.; Siebesma, P.; van Ulft, L.
2016-01-01
Abstract As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large‐scale dynamics in a set of cloud‐resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative‐convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison of the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large‐scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column‐relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large‐scale velocity profiles which are smoother and less top‐heavy compared to those produced by the WTG simulations. These large‐scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two‐way feedback between convection and the large‐scale circulation. PMID:27642501
Gómez, Camila; Tenorio, Elkin A.; Montoya, Paola; Cadena, Carlos Daniel
2016-01-01
Differences in life-history traits between tropical and temperate lineages are often attributed to differences in their climatic niche dynamics. For example, the more frequent appearance of migratory behaviour in temperate-breeding species than in species originally breeding in the tropics is believed to have resulted partly from tropical climatic stability and niche conservatism constraining tropical species from shifting their ranges. However, little is known about the patterns and processes underlying climatic niche evolution in migrant and resident animals. We evaluated the evolution of overlap in climatic niches between seasons and its relationship to migratory behaviour in the Parulidae, a family of New World passerine birds. We used ordination methods to measure seasonal niche overlap and niche breadth of 54 resident and 49 migrant species and used phylogenetic comparative methods to assess patterns of climatic niche evolution. We found that despite travelling thousands of kilometres, migrants tracked climatic conditions across the year to a greater extent than tropical residents. Migrant species had wider niches than resident species, although residents as a group occupied a wider climatic space and niches of migrants and residents overlapped extensively. Neither breeding latitude nor migratory distance explained variation among species in climatic niche overlap between seasons. Our findings support the notion that tropical species have narrower niches than temperate-breeders, but does not necessarily constrain their ability to shift or expand their geographical ranges and become migratory. Overall, the tropics may have been historically less likely to experience the suite of components that generate strong selection pressures for the evolution of migratory behaviour. PMID:26865303
Duellman, Tyler; Burnett, John; Yang, Jay
2015-03-15
Traditional assays for secreted proteins include methods such as Western blot and enzyme-linked immunosorbent assay (ELISA) detection of the protein in the cell culture medium. We describe a method for the detection of a secreted protein based on fluorescent measurement of an mCherry fusion reporter. This microplate reader-based mCherry fluorescence detection method has a wide dynamic range of 4.5 orders of magnitude and a sensitivity that allows detection of 1 to 2fmol fusion protein. Comparison with the Western blot detection method indicated greater linearity, wider dynamic range, and a similar lower detection threshold for the microplate-based fluorescent detection assay of secreted fusion proteins. An mCherry fusion protein of matrix metalloproteinase-9 (MMP-9), a secreted glycoprotein, was created and expressed by transfection of human embryonic kidney (HEK) 293 cells. The cell culture medium was assayed for the presence of the fluorescent signal up to 32 h after transfection. The secreted MMP-9-mCherry fusion protein was detected 6h after transfection with a linear increase in signal intensity over time. Treatment with chloroquine, a drug known to inhibit the secretion of many proteins, abolished the MMP-9-mCherry secretion, demonstrating the utility of this method in a biological experiment. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Frangoulis, Constantin; Grigoratou, Maria; Zoulias, Theodore; Hannides, Cecelia C. S.; Pantazi, Maria; Psarra, Stella; Siokou, Ioanna
2017-10-01
Although metazooplankton includes a wide size range of organisms, our knowledge is essentially based on mesozooplankton. A first estimation of the metazooplankton standing stock in a Mediterranean area, and of its size fractions and functional groups are provided by combining data out of three nets with different mesh sizes (45, 200 and 500 μm). Data were collected along a gradient of oligotrophy in the frontal area created, where the waters of Black Sea origin meet those of Levantine Sea origin (Northeast Aegean Sea, Eastern Mediterranean). Metazooplankton biomass was dominated by mesozooplankton (0.2-2 mm), while meso- and microzooplankton (<0.2 mm) shared dominance of abundance. Copepods dominated both in abundance and biomass and were followed by nauplii in abundance and gelatinous carnivores or decapod-euphausiid larvae in biomass. The spatiotemporal variability of metazoans stock, biomass-size spectra linearity, carnivorous group contribution and copepod diversity, supported that metazooplankton tends to recede from steady-state when approaching less oligotrophic dynamic areas (such as fronts) or dynamic periods (such as the spring bloom). The need and the difficulties of obtaining a larger picture from a wider size range of metazoans for understanding the role of zooplankton are stressed.
The role of internal duplication in the evolution of multi-domain proteins.
Nacher, J C; Hayashida, M; Akutsu, T
2010-08-01
Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes.
Liu, Shujuan; Dong, Yitong; Zhao, Wenbo; Xie, Xiang; Ji, Tianrong; Yin, Xiaohong; Liu, Yun; Liang, Zhongwei; Momotenko, Dmitry; Liang, Dehai; Girault, Hubert H; Shao, Yuanhua
2012-07-03
The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.
Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-12-01
The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.
The Economic Lives of People with Disabilities in Vietnam
Palmer, Michael; Groce, Nora; Mont, Daniel; Nguyen, Oanh Hong; Mitra, Sophie
2015-01-01
Through a series of focus group discussions conducted in northern and central Vietnam, this study gives voice to the lived economic experience of families with disabilities and how they manage the economic challenges associated with disability. The dynamic of low and unstable income combined with on-going health care and other disability-related costs gives rise to a range of coping mechanisms (borrowing, reducing and foregoing expenditures, drawing upon savings and substituting labour) that helps to maintain living standards in the short-run yet threatens the longer-term welfare of both the individual with disability and their household. Current social protection programs were reported as not accessible to all and while addressing some immediate economic costs of disability, do not successfully meet current needs nor accommodate wider barriers to availing benefits. PMID:26197034
Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.
Güler, Marifi
2008-10-01
Recently, a physical approach for the description of neuronal dynamics under the influence of ion channel noise was proposed in the realm of dissipative stochastic mechanics (Güler, Phys Rev E 76:041918, 2007). Led by the presence of a multiple number of gates in an ion channel, the approach establishes a viewpoint that ion channels are exposed to two kinds of noise: the intrinsic noise, associated with the stochasticity in the movement of gating particles between the inner and the outer faces of the membrane, and the topological noise, associated with the uncertainty in accessing the permissible topological states of open gates. Renormalizations of the membrane capacitance and of a membrane voltage dependent potential function were found to arise from the mutual interaction of the two noisy systems. The formalism therein was scrutinized using a special membrane with some tailored properties giving the Rose-Hindmarsh dynamics in the deterministic limit. In this paper, the resultant computational neuron model of the above approach is investigated in detail numerically for its dynamics using time-independent input currents. The following are the major findings obtained. The intrinsic noise gives rise to two significant coexisting effects: it initiates spiking activity even in some range of input currents for which the corresponding deterministic model is quiet and causes bursting in some other range of input currents for which the deterministic model fires tonically. The renormalization corrections are found to augment the above behavioral transitions from quiescence to spiking and from tonic firing to bursting, and, therefore, the bursting activity is found to take place in a wider range of input currents for larger values of the correction coefficients. Some findings concerning the diffusive behavior in the voltage space are also reported.
NASA Astrophysics Data System (ADS)
Wittek, Peter; Calderaro, Luca
2015-12-01
We extended a parallel and distributed implementation of the Trotter-Suzuki algorithm for simulating quantum systems to study a wider range of physical problems and to make the library easier to use. The new release allows periodic boundary conditions, many-body simulations of non-interacting particles, arbitrary stationary potential functions, and imaginary time evolution to approximate the ground state energy. The new release is more resilient to the computational environment: a wider range of compiler chains and more platforms are supported. To ease development, we provide a more extensive command-line interface, an application programming interface, and wrappers from high-level languages.
Size-dependent impact of CNTs on dynamic properties of calmodulin
NASA Astrophysics Data System (ADS)
Gao, Jian; Wang, Liming; Kang, Seung-Gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan
2014-10-01
There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca2+-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca2+-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca2+-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca2+ regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca2+ concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca2+-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca2+-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca2+-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca2+ regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca2+ concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01623h
Dynamical ocean-atmospheric drivers of floods and droughts
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia
2014-05-01
The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological extremes are investigated and the findings supported with spatiotemporal geostatistical analysis and nonlinear geophysical models. Overall, the study provides a three-fold contribution to the research on hydrological extremes: Firstly, it improves their physical attribution by better understanding the dynamical reasons behind the meteorological drivers. Secondly, it brings out fundamental early warning signs for potential hydrological extremes, by bringing out global ocean-atmospheric features that manifest themselves much earlier than the regional weather patterns. Thirdly, it provides tools for addressing and understanding hydrological regime changes at wider spatiotemporal scales, by providing links to planetary-scale dynamical processes that play a crucial role in multi-decadal global climate variability.
Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films
2017-01-01
Polymer-tethered colloidal particles (aka “particle brush materials”) have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush–brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems. PMID:29755139
Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films.
Cang, Yu; Reuss, Anna N; Lee, Jaejun; Yan, Jiajun; Zhang, Jianan; Alonso-Redondo, Elena; Sainidou, Rebecca; Rembert, Pascal; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George
2017-11-14
Polymer-tethered colloidal particles (aka "particle brush materials") have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush-brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems.
Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores
NASA Astrophysics Data System (ADS)
Bian, Yukun; Wang, Zilin; Chen, Anpu; Zhao, Nanrong
2015-11-01
We have proposed a fluctuation bottleneck (FB) model to investigate the non-exponential kinetics of DNA escape from nanometer-scale pores. The basic idea is that the escape rate is proportional to the fluctuating cross-sectional area of DNA escape channel, the radius r of which undergoes a subdiffusion dynamics subjected to fractional Gaussian noise with power-law memory kernel. Such a FB model facilitates us to obtain the analytical result of the averaged survival probability as a function of time, which can be directly compared to experimental results. Particularly, we have applied our theory to address the escape kinetics of DNA through α-hemolysin nanopores. We find that our theoretical framework can reproduce the experimental results very well in the whole time range with quite reasonable estimation for the intrinsic parameters of the kinetics processes. We believe that FB model has caught some key features regarding the long time kinetics of DNA escape through a nanopore and it might provide a sound starting point to study much wider problems involving anomalous dynamics in confined fluctuating channels.
The Road Less Travelled: The Deep Challenges of Social Transformations
NASA Astrophysics Data System (ADS)
O'Brien, K. L.; Moser, S. C.
2016-12-01
How do we create the societal transformations necessary to stabilize the global climate and address other global goals? The roadmap metaphor guiding this session reflects a managerial approach to deep decarbonization, one that can be planned, charted, guided and implemented with the tools already known. Transformations and systems change involve far more than technical innovations, policy instruments and behavioral change. Drawing on a wide range of research on transformation processes from the social sciences and humanities and systems science, we argue that current approaches to decarbonization are likely to fail if they ignore theories of social change, including insights on the dynamics of social, cultural, economic and political transformations. Climate stabilization also calls for attention to the relationships between human values, political agency, power, and institutional change. It is precisely these deeper dynamics - which are typically ignored - that stall transformative change. Rather than developing a carbon road map, we suggest both a wider and deeper exploration of the territory of social transformation is needed, and suggest both different metaphors and methods to engage individual change agents and communities of actors, who together can create pathways to sustainability.
NASA Astrophysics Data System (ADS)
Edera, Paolo; Bergamini, Davide; Trappe, Véronique; Giavazzi, Fabio; Cerbino, Roberto
2017-12-01
Particle-tracking microrheology (PT-μ r ) exploits the thermal motion of embedded particles to probe the local mechanical properties of soft materials. Despite its appealing conceptual simplicity, PT-μ r requires calibration procedures and operating assumptions that constitute a practical barrier to its wider application. Here we demonstrate differential dynamic microscopy microrheology (DDM-μ r ), a tracking-free approach based on the multiscale, temporal correlation study of the image intensity fluctuations that are observed in microscopy experiments as a consequence of the translational and rotational motion of the tracers. We show that the mechanical moduli of an arbitrary sample are determined correctly over a wide frequency range provided that the standard DDM analysis is reinforced with an iterative, self-consistent procedure that fully exploits the multiscale information made available by DDM. Our approach to DDM-μ r does not require any prior calibration, is in agreement with both traditional rheology and diffusing wave spectroscopy microrheology, and works in conditions where PT-μ r fails, providing thus an operationally simple, calibration-free probe of soft materials.
Cundy, A B; Bardos, R P; Puschenreiter, M; Mench, M; Bert, V; Friesl-Hanl, W; Müller, I; Li, X N; Weyens, N; Witters, N; Vangronsveld, J
2016-12-15
Gentle remediation options (GROs) are risk management strategies or technologies involving plant (phyto-), fungi (myco-), and/or bacteria-based methods that result in a net gain (or at least no gross reduction) in soil function as well as effective risk management. GRO strategies can be customised along contaminant linkages, and can generate a range of wider economic, environmental and societal benefits in contaminated land management (and in brownfields management more widely). The application of GROs as practical on-site remedial solutions is still limited however, particularly in Europe and at trace element (typically metal and metalloid) contaminated sites. This paper discusses challenges to the practical adoption of GROs in contaminated land management, and outlines the decision support tools and best practice guidance developed in the European Commission FP7-funded GREENLAND project aimed at overcoming these challenges. The GREENLAND guidance promotes a refocus from phytoremediation to wider GROs- or phyto-management based approaches which place realisation of wider benefits at the core of site design, and where gentle remediation technologies can be applied as part of integrated, mixed, site risk management solutions or as part of "holding strategies" for vacant sites. The combination of GROs with renewables, both in terms of biomass generation but also with green technologies such as wind and solar power, can provide a range of economic and other benefits and can potentially support the return of low-level contaminated sites to productive usage, while combining GROs with urban design and landscape architecture, and integrating GRO strategies with sustainable urban drainage systems and community gardens/parkland (particularly for health and leisure benefits), has large potential for triggering GRO application and in realising wider benefits in urban and suburban systems. Quantifying these wider benefits and value (above standard economic returns) will be important in leveraging funding for GRO application and soft site end-use more widely at vacant or underutilized sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Signal processing: opportunities for superconductive circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, R.W.
1985-03-01
Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data-processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examplesmore » of superconductive implementations given. A canonic signal-processing system is then configured using these components and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. (Reprints)« less
Kotliar, Natasha B.; Wiens, John A.
1990-01-01
We develop a hierarchical model of heterogeneity that provides a framework for classifying patch structure across a range of scales. Patches at lower levels in the hierarchy are more simplistic and correspond to the traditional view of patches. At levels approaching the upper bounds of the hierarchy the internal structure becomes more heterogeneous and boundaries more ambiguous. At each level in the hierarchy, patch structure will be influenced by both contrast among patches as well as the degree of aggregation of patches at lower levels in the hierarchy. We apply this model to foraging theory, but it has wider applications as in the study of habitat selection, population dynamics, and habitat fragmentation. It may also be useful in expanding the realm of landscape ecology beyond the current focus on anthropocentric scales.
Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian
2014-06-01
Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.
A crossover in anisotropic nanomechanochemistry of van der Waals crystals
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya
2015-12-01
In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.
Topological phase in a two-dimensional metallic heavy-fermion system
NASA Astrophysics Data System (ADS)
Yoshida, Tsuneya; Peters, Robert; Fujimoto, Satoshi; Kawakami, Norio
2013-04-01
We report on a topological insulating state in a heavy-fermion system away from half filling, which is hidden within a ferromagnetic metallic phase. In this phase, the cooperation of the RKKY interaction and the Kondo effect, together with the spin-orbit coupling, induces a spin-selective gap, bringing about topologically nontrivial properties. This topological phase is robust against a change in the chemical potential in a much wider range than the gap size. We analyze these remarkable properties by using dynamical mean field theory and the numerical renormalization group. Its topological properties support a gapless chiral edge mode, which exhibits a non-Tomonaga-Luttinger liquid behavior due to the coupling with bulk ferromagnetic spin fluctuations. We also propose that the effects of the spin fluctuations on the edge mode can be detected via the NMR relaxation time measurement.
Dynamic balance during walking adaptability tasks in individuals post-stroke.
Vistamehr, Arian; Balasubramanian, Chitralakshmi K; Clark, David J; Neptune, Richard R; Fox, Emily J
2018-06-06
Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
The need to look at antibiotic resistance from a health systems perspective
Vlad, Ioana
2014-01-01
Current use, misuse, and overuse of antibiotics raise dangers and ethical dilemmas that cannot be solved in isolation, exclusively within a health system building block or even within the health sector only. There is a need to tackle antibiotic resistance emergence and containment on levels ranging from individuals, households, and the communities, to health care facilities, the entire health sector, and finally to national and global levels. We analyse emergence of antibiotic resistance based on interdependencies between health systems resources. We further go beyond the health system building blocks, to look at determinants of antibiotic resistance referring to wider global dynamics. Multi-level governance is the key for successful action in containment strategies. This will involve, in a comprehensive way, patients, health facilities where they receive care, health systems to which these facilities pertain, and the wider national context as well as the global community that influences the functioning of these health systems. In order to be effective and sustainable in both high and low-resource settings, implementation of containment interventions at all these levels needs to be managed based on existing theories and models of change. Although ministries of health and the global community must provide vision and support, it is important to keep in mind that containment interventions for antibiotic resistance will target individuals, consumers as well as providers. PMID:24673267
Unifying role of dissipative action in the dynamic failure of solids
NASA Astrophysics Data System (ADS)
Grady, Dennis E.
2015-04-01
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.
Krill, Jennifer L; Dawson-Scully, Ken
2016-01-01
While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.
Tiano, L; Chessa, M G; Carrara, S; Tagliafierro, G; Delmonte Corrado, M U
1999-01-01
The chromatin structure dynamics of the Colpoda inflata macronucleus have been investigated in relation to its functional condition, concerning chromatin body extrusion regulating activity. Samples of 2- and 25-day-old resting cysts derived from a standard culture, and of 1-year-old resting cysts derived from a senescent culture, were examined by means of histogram analysis performed on acquired optical microscopy images. Three groups of histograms were detected in each sample. Histogram classification, clustering and matching were assessed in order to obtain the mean histogram of each group. Comparative analysis of the mean histogram showed a similarity in the grey level range of 25-day- and 1-year-old cysts, unlike the wider grey level range found in 2-day-old cysts. Moreover, the respective mean histograms of the three cyst samples appeared rather similar in shape. All this implies that macronuclear chromatin structural features of 1-year-old cysts are common to both cyst standard cultures. The evaluation of the acquired images and their respective histograms evidenced a dynamic state of the macronuclear chromatin, appearing differently condensed in relation to the chromatin body extrusion regulating activity of the macronucleus. The coexistence of a chromatin-decondensed macronucleus with a pycnotic extrusion body suggests that chromatin unable to decondense, thus inactive, is extruded. This finding, along with the presence of chromatin structural features common to standard and senescent cyst populations, supports the occurrence of 'rejuvenated' cell lines from 1-year-old encysted senescent cells, a phenomenon which could be a result of accomplished macronuclear renewal.
Statistical physics and physiology: monofractal and multifractal approaches
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.
1999-01-01
Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.
NASA Astrophysics Data System (ADS)
Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Melis, Nikolaos; Giannakis, Omiros; Kontoes, Charalampos
2016-04-01
The HellENIc GeoMagnetic Array (ENIGMA) is a network of 3 ground-based magnetometer stations in the areas of Trikala, Attiki and Lakonia in Greece that provides measurements for the study of geomagnetic pulsations, resulting from the solar wind - magnetosphere coupling. ENIGMA magnetometer array enables effective remote sensing of geospace dynamics and the study of space weather effects on the ground (i.e., Geomagnetically Induced Currents - GIC). ENIGMA contributes data to SuperMAG, a worldwide collaboration of organizations and national agencies that currently operate more than 300 ground-based magnetometers. ENIGMA is currently extended and upgraded receiving financial support through the national funding KRIPIS project and European Commission's BEYOND project. In particular, the REGPOT project BEYOND is an FP7 project that aims to maintain and expand the existing state-of-the-art interdisciplinary research potential, by Building a Centre of Excellence for Earth Observation based monitoring of Natural Disasters in south-eastern Europe, with a prospect to increase its access range to the wider Mediterranean region through the integrated cooperation with twining organizations. This study explores the applicability and effectiveness of a variety of computable entropy measures to the ENIGMA time series in order to investigate dynamical complexity between pre-storm activity and magnetic storms.
ERIC Educational Resources Information Center
de Groot, Lucy
2009-01-01
Adult learning, in all its forms, is a pre-requisite for a dynamic local democracy where councils play a crucial role, politically, socially, and culturally. Local government has recognised that investment in adult learning provides significant benefits for the wider welfare and wellbeing of the community. This investment has not come solely…
Working up a Debt: Students as Vulnerable Consumers
ERIC Educational Resources Information Center
Robson, Julie; Farquhar, Jillian Dawes; Hindle, Christopher
2017-01-01
Students are recognized as vulnerable consumers where financial matters are concerned, particularly with reference to indebtedness. This study examines student indebtedness in order to initiate wider debate about student vulnerability. We consider vulnerability as dynamic and temporal, linked to an event that renders the consumer susceptible to…
Size-dependent impact of CNTs on dynamic properties of calmodulin.
Gao, Jian; Wang, Liming; Kang, Seung-gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan
2014-11-07
There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca(2+)-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca(2+)-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca(2+)-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca(2+) regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca(2+) concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.
Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A
2018-01-01
To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P < 0.05); lobular carcinomas demonstrated a wider range of post-contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat-suppressed T 1 measurements as a tool for clinical studies. The proposed quantitative approach is practical, enabled the detection of differences between lobular and invasive ductal carcinomas, and further enables the optimization of DCE protocols by tailoring the dynamic range of the sequence to the values of T 1 measured. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
New methods of data calibration for high power-aperture lidar.
Guan, Sai; Yang, Guotao; Chang, Qihai; Cheng, Xuewu; Yang, Yong; Gong, Shaohua; Wang, Jihong
2013-03-25
For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes' (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers' fluorescence signal. Pursuit for sophisticated description of metal layers' characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 10(2) to 10(8) counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs' distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20-110km) and guaranteeing good SNR (i.e. 10(4):1 around 90km) without debasing QE, in one single detecting channel. For the first time, PMT in photon-counting mode is independently applied to subtract reliable information of atmospheric parameters with wide acceptable linearity over an altitude range from stratosphere up to lower thermosphere (20-110km).
Characterisation of the Permafrost Carbon Pool
Kuhry, P.; Grosse, G.; Harden, J.W.; Hugelius, G.; Koven, C.D.; Ping, C.-L.; Schirrmeister, L.; Tarnocai, C.
2013-01-01
The current estimate of the soil organic carbon (SOC) pool in the northern permafrost region of 1672 Petagrams (Pg) C is much larger than previously reported and needs to be incorporated in global soil carbon (C) inventories. The Northern Circumpolar Soil Carbon Database (NCSCD), extended to include the range 0–300 cm, is now available online for wider use by the scientific community. An important future aim is to provide quantitative uncertainty ranges for C pool estimates. Recent studies have greatly improved understanding of the regional patterns, landscape distribution and vertical (soil horizon) partitioning of the permafrost C pool in the upper 3 m of soils. However, the deeper C pools in unconsolidated Quaternary deposits need to be better constrained. A general lability classification of the permafrost C pool should be developed to address potential C release upon thaw. The permafrost C pool and its dynamics are beginning to be incorporated into Earth System models, although key periglacial processes such as thermokarst still need to be properly represented to obtain a better quantification of the full permafrost C feedback on global climate change.
Schmidt, Susanne I; Cuthbert, Mark O; Schwientek, Marc
2017-08-15
Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.
Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells
Zhong, Guocai; Wang, Haimin; Bailey, Charles C; Gao, Guangping; Farzan, Michael
2016-01-01
Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI: http://dx.doi.org/10.7554/eLife.18858.001 PMID:27805569
Properties of the spindle-to-cusp transition in extensional capsule dynamics
NASA Astrophysics Data System (ADS)
Dodson, W. R., III; Dimitrakopoulos, P.
2014-05-01
Our earlier letter (Dodson W. R. III and Dimitrakopoulos P., Phys. Rev. Lett., 101 (2008) 208102) revealed that a (strain-hardening) Skalak capsule in a planar extensional Stokes flow develops for stability reasons steady-state shapes whose edges from spindled become cusped with increasing flow rate owing to a transition of the edge tensions from tensile to compressive. A bifurcation in the steady-state shapes was also found (i.e. existence of both spindled and cusped edges for a range of high flow rates) by implementing different transient processes, owing to the different evolution of the membrane tensions. In this paper we show that the bifurcation range is wider at higher viscosity ratio (owing to the lower transient membrane tensions accompanied the slower capsule deformation starting from the quiescent capsule shape), while it contracts and eventually disappears as the viscosity ratio decreases. The spindle-to-cusp transition is shown to represent a self-similar finite-time singularity formation which for real capsules with very small but finite thickness is expected to be an apparent singularity, i.e. formation of very large (but finite) positive and negative edge curvatures.
"YOUR VIEWS SHOWED TRUE IGNORANCE!!!": (Mis)Communication in an Online Interracial Discussion Forum.
ERIC Educational Resources Information Center
McKee, Heidi
2002-01-01
Focuses on the dynamics of interracial electronic communication. Examines the misunderstandings that arose in this interracial discussion, situating the causes and consequences of the students' discourse within both the local context of the electronic forum and within wider cultural patterns. Suggests strategies for facilitating more productive…
NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
Overseas Varietal Analysis 2009 Crop Soft Red Winter Wheat
USDA-ARS?s Scientific Manuscript database
Each customer in the survey has a preference for specific protein targets. Grain shipments within those protein ranges may perform better than individual varieties that often have a wider range in protein than normally observed in pooled cargos of commercial grain shipments. The feedback on protei...
Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes
NASA Astrophysics Data System (ADS)
Köhler, Mateus Henrique; Bordin, José Rafael; da Silva, Leandro B.; Barbosa, Marcia C.
2018-01-01
We have used Molecular Dynamics simulations to investigate the structure and dynamics of TIP4P/2005 water confined inside nanotubes. The nanotubes have distinct sizes and were built with hydrophilic or hydrophobic sites, and we compare the water behavior inside each nanotube. Our results shows that the structure and dynamics are strongly influenced by polarity inside narrow nanotubes, where water layers were observed, and the influence is negligible for wider nanotubes, where the water has a bulk-like density profile. As well, we show that water at low density can have a smaller diffusion inside nanotubes than water at higher densities. This result is a consequence of water diffusion anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: lijia@wipm.ac.cn
2014-10-07
We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less
Heinrich Events as an integral part of glacial-interglacial climate dynamics
NASA Astrophysics Data System (ADS)
Barker, S.; Knorr, G.; Zhang, X.; Gong, X.; Lohmann, G.; Bazin, L.
2017-12-01
Since their discovery in the 1980s Heinrich Events have provided a playground for climate scientists trying to understand the interactions between ice sheets and the ocean. Subsequently it has become clear that these interactions extend to almost all parts of the global climate system, from temperature, winds and rainfall to deep ocean currents and atmospheric CO2. Furthermore it remains unclear as to whether these dramatic events are a cause or consequence (or both) of regional to global perturbations in a range of parameters, including meridional overturning circulation within the Atlantic. Here we will discuss some of these aspects to highlight ongoing and future research related to Heinrich events and abrupt change more generally. We will discuss some of the possible triggers for H-events, including abrupt versus more gradual forcing mechanisms and conversely the potential influence of such events on the wider climate system, including deglacial climate change.
SRRF: Universal live-cell super-resolution microscopy.
Culley, Siân; Tosheva, Kalina L; Matos Pereira, Pedro; Henriques, Ricardo
2018-08-01
Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN
NASA Astrophysics Data System (ADS)
Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor
2017-12-01
The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.
Quantization of parameters and the string landscape problem
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Vargas Moniz, Paulo
2007-05-01
We broaden the domain of application of Brustein and de Alwis's recent paper, where they introduce a (dynamical) selection principle on the landscape of string solutions using FRW quantum cosmology. More precisely, we (i) explain how their analysis is based in choosing a restrictive range of parameters, thereby affecting the validity of the predictions extracted and (ii) subsequently provide a wider and cohesive description, regarding the probability distribution induced by quantum cosmological transition amplitudes. In addition, employing DeWitt's argument for an initial condition on the wavefunction of the Universe, we found that the string and gravitational parameters become related through interesting expressions involving an integer n, suggesting a quantization relation for some of the involved parameters. This research work was supported by the grants POCI/FP/63916/2005, FEDER-POCI/P/FIS/57547/2004 and Acções Integradas (CRUP-CSIC) Luso-Espanholas E-138/04.
Beyond pairwise strategy updating in the prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Perc, Matjaž; Liu, Yongkui; Chen, Xiaojie; Wang, Long
2012-10-01
In spatial games players typically alter their strategy by imitating the most successful or one randomly selected neighbor. Since a single neighbor is taken as reference, the information stemming from other neighbors is neglected, which begets the consideration of alternative, possibly more realistic approaches. Here we show that strategy changes inspired not only by the performance of individual neighbors but rather by entire neighborhoods introduce a qualitatively different evolutionary dynamics that is able to support the stable existence of very small cooperative clusters. This leads to phase diagrams that differ significantly from those obtained by means of pairwise strategy updating. In particular, the survivability of cooperators is possible even by high temptations to defect and over a much wider uncertainty range. We support the simulation results by means of pair approximations and analysis of spatial patterns, which jointly highlight the importance of local information for the resolution of social dilemmas.
NASA Astrophysics Data System (ADS)
Paul, F.
2015-11-01
Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.
... that they are embarrassed by in public. The parents' own temperament, usual mood, and daily pressures will also influence how they interpret the child's behavior. Easygoing parents may accept a wider range ...
USDA-ARS?s Scientific Manuscript database
Multiple introductions of an exotic species can facilitate invasion success by allowing for a wider range of expressed trait values in the adventive range. Brazilian peppertree is an invasive shrub that was introduced into Florida multiple times and has subsequently hybridized, resulting in three di...
High-Quality Traineeships: Identifying What Works. Good Practice Guide
ERIC Educational Resources Information Center
National Centre for Vocational Education Research (NCVER), 2009
2009-01-01
Traineeships were introduced alongside apprenticeships to increase the reach of contracted training to a wider range of occupations and industries and to a broader range of learners (particularly women) and to improve the labour market prospects of young people. Traineeships have given hundreds of thousands of Australians access to nationally…
Computer Simulation Utilization in Graduate Behavior Therapy Training.
ERIC Educational Resources Information Center
Lambert, Matthew E.; And Others
Practicum experiences are thought to be a time for honing clinical skills and integrating content course material with clinical practice. Often, however, the range of clinical problems encountered during practica is restricted, limiting the variety of learning experiences available to practicum group members. To provide a wider range of…
Dynamic pore-scale network model (PNM) of water imbibition in porous media
NASA Astrophysics Data System (ADS)
Li, J.; McDougall, S. R.; Sorbie, K. S.
2017-09-01
A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw) and global pressure drops (ΔP) as functions of capillary number and viscosity ratio. These results indicate that unsteady-state (USS) relatively permeabilities in imbibition should be inherently rate dependent.
Dynamics of Diffusion Flames in von Karman Swirling Flows Studied
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Williams, Forman A.
2002-01-01
Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.
Røed, Knut H.; Kvie, Kjersti S.; Hasle, Gunnar; Gilbert, Lucy; Leinaas, Hans Petter
2016-01-01
Dispersal and gene flow are important mechanisms affecting the dynamics of vectors and their pathogens. Here, patterns of genetic diversity were analyzed in many North European populations of the tick, Ixodes ricinus. Population sites were selected within and between areas separated by geographical barriers in order to evaluate the importance of tick transportation by birds in producing genetic connectivity across open sea and mountain ranges. The phylogenetic analyses of the mitochondrial control region and the cytochrome b gene revealed two distinct clades with supported sub-clades, with three genetic lineages: GB and WNo associated with Great Britain and western Norway respectively, and Eu with a wider distribution across continental Europe in agreement with much lower efficiency of tick dispersal by birds than by large mammals. The results suggest different ancestry of I. ricinus colonizing Britain and the rest of northern Europe, possibly from different glacial refuges, while ticks from western Norway and continental Europe share a more recent common ancestry. Demographic history modeling suggests a period of strong increase in tick abundance coincident with progression of the European Neolithic culture, long after their post-glacial colonization of NW Europe. PMID:27907193
Tang, Qiang; Lu, Ting; Liu, Shuang-Jiang
2018-06-12
Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-P T7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.
Metallic phase-change materials for solar dynamic energy storage systems
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C., Jr.
1990-12-01
Solar (thermal) dynamic power systems for satellites require a heat storage system that is capable of operating the engine during eclipse. The conventional approach to this thermal storage problem is to use the latent heat of fluoride salts, which would melt during insolation and freeze during eclipse. Although candidate fluorides have large heats of fusion per unit mass, their poor thermal conductivity limits the rate at which energy can be transferred to and from the storage device. System performance is further limited by the high parasitic mass of the superalloy canisters needed to contain the salt. A new thermal storage system is described in which the phase-change material (PCM) is a metal (typically germanium) contained in modular graphite canisters. These modules exhibit good thermal conductivity and low parasitic mass, and they are physically and chemically stable. Prototype modules have survived over 600 melt/freeze cycles without degradation. Advanced concepts to further improve performance are described. These concepts include the selection of ternary eutectic alloys to provide a wider range of useful melting temperatures and the use of infiltration to control the location of liquid alloy and to compensate for differences in thermal expansion.
Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars
NASA Technical Reports Server (NTRS)
Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.
2004-01-01
Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.
Atomic-level description of ubiquitin folding
Piana, Stefano; Lindorff-Larsen, Kresten; Shaw, David E.
2013-01-01
Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins. PMID:23503848
Academic Literacies: Providing a Space for the Socio-Political Dynamics of EAP
ERIC Educational Resources Information Center
Turner, Joan
2012-01-01
This article highlights the potential of academic literacies as a theoretical framework for EAP, encompassing not only work on texts, but the wider, socio-political, geopolitical, and institutional contexts and practices in and with which EAP operates. An academic literacies approach foregrounds social practices, and one particular practice, that…
Peter, Christine; Hummer, Gerhard
2005-01-01
Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to ∼1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore. PMID:16006629
NASA Astrophysics Data System (ADS)
Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.
2016-12-01
We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial results on observation of wildland fires using this system for prescribed fires in the pitch-pine scrub oak forest type and the use of the system to determine the differences between actual and remotely sensed measures of FRFD, which is of importance in quantifying the release of CO2 and other fire products from wildland fire combustion.
NASA Technical Reports Server (NTRS)
Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia
2005-01-01
Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.
Dynamic landscapes in human evolution and dispersal
NASA Astrophysics Data System (ADS)
Devès, Maud; King, Geoffrey; Bailey, Geoffrey; Inglis, Robyn; Williams, Matthew; Winder, Isabelle
2013-04-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011, Winder et al. Antiquity in press). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris, aims to develop systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. Examples are shown to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
Mazo, Mikhail A; Manevitch, Leonid I; Gusarova, Elena B; Shamaev, Mikhail Yu; Berlin, Alexander A; Balabaev, Nikolay K; Rutledge, Gregory C
2008-03-27
We present the results of molecular dynamics (MD) simulation of the structure and thermomechanical behavior of Wyoming-type Na+-montmorillonite (MMT) with poly(ethylene oxide) (PEO) oligomer intercalates. Periodic boundary conditions in all three directions and simulation cells containing two MMT lamellae [Si248Al8][Al112Mg16]O640[OH]128 oriented parallel to the XY-plane were used. The interlamellar space, or gallery, between neighboring MMT lamellae was populated by 24 Na+ counterions and PEO macromolecules of different lengths, ranging from 2 up to 240 repeat units. We considered three different loadings of PEO within the gallery: 80, 160, and 240 repeat units, corresponding to 13, 23, and 31 wt % PEO based on total mass of the nanocomposite, respectively. In the cases of 13 and 23 wt %, the polymer chains formed one or two well-defined amorphous layers with interlayer distances of 1.35 and 1.8 nm, respectively. We have observed also formation of a wider monolayer gallery with interlayer distances of 1.6 nm. Three-layer PEO films formed in the case of 31 wt % loading. The thermal properties were analyzed over the range 300-400 K, and the isothermal linear compressibility, transversal moduli, and shear moduli were calculated at 300 K. These properties are compared with the results of our simulation of thermal and mechanical properties of MMT crystal with galleries filled by one or two water layers as well as with those of an isolated clay nanoplate.
Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.
NASA Astrophysics Data System (ADS)
Aslam, K.; Daub, E. G.
2017-12-01
We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.
NASA Astrophysics Data System (ADS)
Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.
2003-06-01
TCV (Tokamak à Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.
ERIC Educational Resources Information Center
Sinkinson, Anne J.
2006-01-01
The research examines the range of effects of obtaining Specialist School status in two contrasting mathematics and computing colleges, concentrating on the mathematics department. The positive impact of a wider range of technology was evident in both schools although the inherent pedagogical perspectives within each mathematics department…
Sorokin, Victoria; Alkhoury, Razan; Al-Rawabdeh, Sura; Houston, Ronald H; Thornton, David; Kerlin, Bryce; O'Brien, Sarah; Baker, Peter; Boesel, Carl; Uddin, Minhaj; Yin, Han; Kahwash, Samir
This study sought to determine delta granule normal ranges for children and to validate methodology for the appropriate diagnosis of delta granule deficiency (storage pool disease) by using the whole-mount technique in electron microscopy. Specimens obtained from 40 healthy volunteers (2 months of age through 21 years old, 21 females and 19 males) were tested. Results showed dense granules/platelet (DG/Plt) ranged from 1.78 to 5.25. The 5th percentile was 1.96 DG/Plt with an overall mean ± SEM 3.07 ± 0.12 DG/Plt. In comparison, a previously published lower cutoff value, 3.68 DG/Plt, was significantly higher than the mean from our volunteers (P < 0.0001). We found no variability in dense granules/platelet based on race or sex and no significant variation by age subgroup. Pending wider studies, the value of 2 DG/Plt is a more appropriate lower limit of normal. In the absence of wider studies (in healthy volunteers and patients), laboratories should consider establishing their own reference ranges.
Life and Operating Range Extension of the BPT-4000 Qualification Model Hall Thruster
NASA Technical Reports Server (NTRS)
Welander, Ben; Carpenter, Christian; deGrys, Kristi; Hofer, Richard R.; Randolph, Thomas M.; Manzella, David H.
2006-01-01
Following completion of the 5,600 hr qualification life test of the BPT-4000 4.5 kW Hall Thruster Propulsion System, NASA and Aerojet have undertaken efforts to extend the qualified operating range and lifetime of the thruster to support a wider range of NASA missions. The system was originally designed for orbit raising and stationkeeping applications on military and commercial geostationary satellites. As such, it was designed to operate over a range of power levels from 3 to 4.5 kW. Studies of robotic exploration applications have shown that the cost savings provided by utilizing commercial technology that can operate over a wider range of power levels provides significant mission benefits. The testing reported on here shows that the 4.5 kW thruster as designed has the capability to operate efficiently down to power levels as low as 1 kW. At the time of writing, the BPT-4000 qualification thruster and cathode have accumulated over 400 hr of operation between 1 to 2 kW with an additional 600 hr currently planned. The thruster has demonstrated no issues with longer duration operation at low power.
Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa
2015-12-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.
A nonrecursive order N preconditioned conjugate gradient: Range space formulation of MDOF dynamics
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.
1990-01-01
While excellent progress has been made in deriving algorithms that are efficient for certain combinations of system topologies and concurrent multiprocessing hardware, several issues must be resolved to incorporate transient simulation in the control design process for large space structures. Specifically, strategies must be developed that are applicable to systems with numerous degrees of freedom. In addition, the algorithms must have a growth potential in that they must also be amenable to implementation on forthcoming parallel system architectures. For mechanical system simulation, this fact implies that algorithms are required that induce parallelism on a fine scale, suitable for the emerging class of highly parallel processors; and transient simulation methods must be automatically load balancing for a wider collection of system topologies and hardware configurations. These problems are addressed by employing a combination range space/preconditioned conjugate gradient formulation of multi-degree-of-freedom dynamics. The method described has several advantages. In a sequential computing environment, the method has the features that: by employing regular ordering of the system connectivity graph, an extremely efficient preconditioner can be derived from the 'range space metric', as opposed to the system coefficient matrix; because of the effectiveness of the preconditioner, preliminary studies indicate that the method can achieve performance rates that depend linearly upon the number of substructures, hence the title 'Order N'; and the method is non-assembling. Furthermore, the approach is promising as a potential parallel processing algorithm in that the method exhibits a fine parallel granularity suitable for a wide collection of combinations of physical system topologies/computer architectures; and the method is easily load balanced among processors, and does not rely upon system topology to induce parallelism.
Andrew M. Minnis; Amy Y. Rossman; Nathan M. Kleczewski; S. Luke. Flory
2012-01-01
Many species of Bipolaris are important pathogens of grasses. This new species was isolated from Microstegium vimineum, an invasive plant in the USA. The fungus causes disease on Microstegium, but it also infects a wider range of hosts.
Solid oxide fuel cell operable over wide temperature range
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
2001-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Teaching the Taboo: Courage and Imagination in the Classroom
ERIC Educational Resources Information Center
Ayers, Rick; Ayers, William
2011-01-01
Education at its best is about opening doors, opening minds, and inviting students to become powerful choice-makers as they forge their own pathways into a wider world. While many teachers long for teaching to be something transcendent and powerful, they all too often find themselves teaching obedience and conformity. This dynamic book--by two…
Perspectives on the National Water Model
Steve Kopp; Don Cline; Chelcy Miniat; Carl Lucero; John Rothlisberger; David Levinson; Steve Evett; Mark Brusberg; Martin Lowenfish; Mike Strobel; Wayne Tschirhart; Bruce Rindahl; Scott Holder; Matt Ables
2018-01-01
The National Water Model is a dynamic and fast-moving initiative with a wide variety of contributors intended to serve an even wider audience, from fellow scientists to emergency managers to water recreation. For perspective on the depth and breadth of the model and its potential impact, a variety of groups from federal to local government, watershed authorities and...
Your chance to shape the future of the RCN and the profession.
2017-07-19
Offering you the chance to join a committee is unlikely to set your pulse racing, so let's put it another way: would you like to join a group of dynamic nurses who will help shape the future of the RCN and the wider nursing profession? If the answer is yes, then read on.
ERIC Educational Resources Information Center
Bowman, Kaye; McKenna, Suzy
2016-01-01
This occasional paper provides an overview of the development of Australia's national training system and is a key knowledge document of a wider research project "Consistency with flexibility in the Australian national training system." This research project investigates the various approaches undertaken by each of the jurisdictions to…
ERIC Educational Resources Information Center
Abrams, Dominic; Palmer, Sally B.; Rutland, Adam; Cameron, Lindsey; Van de Vyver, Julie
2014-01-01
Research with adults has demonstrated a "black sheep effect" (BSE) whereby, relative to evaluations of normative group members, ingroup deviants are derogated more than outgroup deviants. The developmental subjective group dynamics (DSGD) model holds that the BSE should develop during middle childhood when children apply wider social…
ERIC Educational Resources Information Center
Joseph, Cynthia
2006-01-01
This article uses the notion of resistance as an analytical tool, emphasizing its sociopolitical significance and multidimensionality, to understand the complex link between ways of being Malay, Chinese and Indian schoolgirls, schooling and the wider Malaysian society. The macro and micro dynamics of the Malaysian ethnoscape, namely the ethnic…
Dose ratio proton radiography using the proximal side of the Bragg peak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doolan, P. J., E-mail: paul.doolan.09@ucl.ac.uk; Royle, G.; Gibson, A.
Purpose: In recent years, there has been a movement toward single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp falloff. The authors investigate the limits and applicability of the dose ratio method on the proximal side of the lower energy Bragg peak, which has the potential to allow a muchmore » wider range of water-equivalent thicknesses (WET) to be imaged. Comparisons are made with the use of the distal side of the Bragg peak. Methods: Using the analytical approximation for the Bragg peak, the authors generated theoretical dose ratio curves for a range of energy pairs, and then determined how an uncertainty in the dose ratio would translate to a spread in the WET estimate. By defining this spread as the accuracy one could achieve in the WET estimate, the authors were able to generate lookup graphs of the range on the proximal side of the Bragg peak that one could reliably use. These were dependent on the energy pair, noise level in the dose ratio image and the required accuracy in the WET. Using these lookup graphs, the authors investigated the applicability of the technique for a range of patient treatment sites. The authors validated the theoretical approach with experimental measurements using a complementary metal oxide semiconductor active pixel sensor (CMOS APS), by imaging a small sapphire sphere in a high energy proton beam. Results: Provided the noise level in the dose ratio image was 1% or less, a larger spread of WETs could be imaged using the proximal side of the Bragg peak (max 5.31 cm) compared to the distal side (max 2.42 cm). In simulation, it was found that, for a pediatric brain, it is possible to use the technique to image a region with a square field equivalent size of 7.6 cm{sup 2}, for a required accuracy in the WET of 3 mm and a 1% noise level in the dose ratio image. The technique showed limited applicability for other patient sites. The CMOS APS demonstrated a good accuracy, with a root-mean-square-error of 1.6 mm WET. The noise in the measured images was found to be σ = 1.2% (standard deviation) and theoretical predictions with a 1.96σ noise level showed good agreement with the measured errors. Conclusions: After validating the theoretical approach with measurements, the authors have shown that the use of the proximal side of the Bragg peak when performing dose ratio imaging is feasible, and allows for a wider dynamic range than when using the distal side. The dynamic range available increases as the demand on the accuracy of the WET decreases. The technique can only be applied to clinical sites with small maximum WETs such as for pediatric brains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, W. J., E-mail: williamjglover@gmail.com
2014-11-07
State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weightedmore » schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.« less
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens
NASA Technical Reports Server (NTRS)
Srawley, J. E.
1976-01-01
For each of the two types of specimens, bend and compact, described previously for plane strain fracture toughness of materials, E 399, a polynominal expression is given for calculation of the stress intensity factor, K, from the applied force, P, and the specimen dimensions. It is explicitly stated, however, that these expressions should not be used outside the range of relative crack length, a/W, from 0.45 to 0.55. While this range is sufficient for the purpose of E 399, the same specimen types are often used for other purposes over a much wider range of a/W; for example, in the study of fatigue crack growth. Expressions are presented which are at least as accurate as those in E 399-74, and which cover much wider ranges of a/W: for the three-point bend specimen from 0 to 1; and for the compact specimen from 0.2 to 1. The range has to be restricted for the compact specimen because of the proximity of the loading pin holes to the crackline, which causes the stress intensity factor to be sensitive to small variations in dimensions when a/W is small. This is a penalty inherently associated with the compactness of the specimen.
Adaptive contact networks change effective disease infectiousness and dynamics.
Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M
2010-08-19
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).
Improved density discrimination using agfacontour film
NASA Technical Reports Server (NTRS)
Goodding, R. A.
1973-01-01
A technique was developed for obtaining tone separations from black and white photographic materials. Agfacontour film and photographic derivatives are utilized to improve the density discrimination and decrease the density range from 0.45 to 0.08 units. This increase in capability extends the usefulness of tone separations to a wider range of subject matter and problem areas.
A Service Oriented Infrastructure for Earth Science exchange
NASA Astrophysics Data System (ADS)
Burnett, M.; Mitchell, A.
2008-12-01
NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and a summary of how technologies where leveraged into a significant operational system for the Earth Observation community.
Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel
2013-01-01
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244
Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel
2013-01-01
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.
Predation on Northern krill (Meganyctiphanes norvegica Sars).
Simard, Yvan; Harvey, Michel
2010-01-01
We consider predation as a function of prey concentration with a focus on how this interaction is influenced by biological-physical interactions, and wider oceanographic processes. In particular, we examine how the anti-predation behaviour of Northern krill interacts with ocean-circulation process to influence its vulnerability to predation. We describe how three-dimensional (3D) circulation interacts with in situ light levels to modulate predator-prey interactions from small to large scales, and illustrate how the stability of the predator-prey system is sometimes perturbed as a consequence. Northern krill predators include a wide range of species from the pelagic and benthic strata, as well as birds. Many exhibit adaptations in their feeding strategy to take advantage of the dynamic physical-biological processes that determine the distribution, concentration and vulnerability of Northern krill. Among them, baleen whales appear to have developed particularly efficient predation strategies. A literature search indicates that Northern krill are a major contributor to ecosystem function throughout its distributional range, and a key species with respect to the flow of energy to upper trophic levels. A list of future research needed to fill gaps in our understanding of Northern krill predator-prey interaction is provided. Copyright © 2010 Elsevier Ltd. All rights reserved.
2016-01-01
We report a theoretical description and numerical tests of the extended-system adaptive biasing force method (eABF), together with an unbiased estimator of the free energy surface from eABF dynamics. Whereas the original ABF approach uses its running estimate of the free energy gradient as the adaptive biasing force, eABF is built on the idea that the exact free energy gradient is not necessary for efficient exploration, and that it is still possible to recover the exact free energy separately with an appropriate estimator. eABF does not directly bias the collective coordinates of interest, but rather fictitious variables that are harmonically coupled to them; therefore is does not require second derivative estimates, making it easily applicable to a wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard ABF for a wide range of parameters. PMID:27959559
Adaptive error covariances estimation methods for ensemble Kalman filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Yicun, E-mail: zhen@math.psu.edu; Harlim, John, E-mail: jharlim@psu.edu
2015-08-01
This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for usingmore » information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.« less
Equation of State and Electrical Conductivity of Helium at High Pressures and Temperatures
NASA Astrophysics Data System (ADS)
McWilliams, R. S.; Eggert, J. H.; Loubeyre, P.; Brygoo, S.; Collins, G.; Jeanloz, R.
2004-12-01
Helium, the second-most abundant element in the universe and giant planets, is expected to metallize at much higher pressures and temperatures than the most abundant element, hydrogen. The difference in chemical-bonding character, between insulator and metal, is expected to make hydrogen-helium mixtures immiscible throughout large fractions of planetary interiors, and therefore subject to gravitational separation contributing significantly to the internal dynamics of giant planets. Using laser-driven shock waves on samples pre-compressed in high-pressure cells, we have obtained the first measurements of optical reflectivity from the shock front in helium to pressures of 146 GPa. The reflectivity exceeds 5% above \\ensuremath{\\sim} 100 GPa, indicating high electrical conductivity. By varying the initial pressure (hence density) of the sample, we can access a much wider range of final pressure-temperature conditions than is possible in conventional Hugoniot experiments. Our work increases by nine-fold the pressure range of single-shock measurements, in comparison with gas-gun experiments, and yields results in agreement with the Saumon, Chabrier and Van Horn (1994) equation of state for helium. This changes the internal structures inferred for Jupiter-size planets, relative to models based on earlier equations of state (e. g., SESAME).
Collective Behavior of Camphor Floats Migrating on the Water Surface
NASA Astrophysics Data System (ADS)
Nishimori, Hiraku; Suematsu, Nobuhiko J.; Nakata, Satoshi
2017-10-01
As simple and easily controllable objects among various self-propelled particles, camphor floats on the water surface have been widely recognized. In this paper, we introduce characteristic behaviors and discuss the background mechanism of camphor floats on water, both in isolated and non-isolated conditions. In particular, we focus on: (i) the transition of dynamical characters through bifurcations exhibited by systems with small number of camphor floats and (ii) the emergence of a rich variety of complex dynamics observed in systems with large number camphor floats, and attempt to elucidate these phenomena through mathematical modeling as well as experimental analysis. Finally, we discuss the connection of the dynamics of camphor floats to that of a wider class of complex and sophisticated dynamics exhibited by various types of self-propelled particles.
ERIC Educational Resources Information Center
Crossley, David
2015-01-01
The Whole Education National Network is a dynamic national not-for-profit partnership of schools and organisations that believe that all children and young people are entitled to an education that supports the development of wider skills, qualities and characteristics to enable them to thrive in life, learning and work, as well as conventional…
The Sheperd equation and chaos identification.
Gregson, Robert A M
2010-04-01
An equation created by Sheperd (1982) to model stability in exploited fish populations has been found to have a wider application, and it exhibits complicated internal dynamics, including phases of strict periodicity and of chaos. It may be potentially applicable to other psychophysiological contexts. The problems of determining goodness-of fit, and the comparative performance of alternative models including the Shephed model, are briefly addressed.
Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability.
Kafaie Shirmanesh, Ghazaleh; Sokhoyan, Ruzan; Pala, Ragip A; Atwater, Harry A
2018-05-09
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
Asymmetry of projected increases in extreme temperature distributions
Kodra, Evan; Ganguly, Auroop R.
2014-01-01
A statistical analysis reveals projections of consistently larger increases in the highest percentiles of summer and winter temperature maxima and minima versus the respective lowest percentiles, resulting in a wider range of temperature extremes in the future. These asymmetric changes in tail distributions of temperature appear robust when explored through 14 CMIP5 climate models and three reanalysis datasets. Asymmetry of projected increases in temperature extremes generalizes widely. Magnitude of the projected asymmetry depends significantly on region, season, land-ocean contrast, and climate model variability as well as whether the extremes of consideration are seasonal minima or maxima events. An assessment of potential physical mechanisms provides support for asymmetric tail increases and hence wider temperature extremes ranges, especially for northern winter extremes. These results offer statistically grounded perspectives on projected changes in the IPCC-recommended extremes indices relevant for impacts and adaptation studies. PMID:25073751
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Soliven, Arianne; Haidar Ahmad, Imad A; Tam, James; Kadrichu, Nani; Challoner, Pete; Markovich, Robert; Blasko, Andrei
2017-09-05
Amikacin, an aminoglycoside antibiotic lacking a UV chromophore, was developed into a drug product for delivery by inhalation. A robust method for amikacin assay analysis and aerosol particle size distribution (aPSD) determination, with comparable performance to the conventional UV detector was developed using a charged aerosol detector (CAD). The CAD approach involved more parameters for optimization than UV detection due to its sensitivity to trace impurities, non-linear response and narrow dynamic range of signal versus concentration. Through careful selection of the power transformation function value and evaporation temperature, a wider linear dynamic range, improved signal-to-noise ratio and high repeatability were obtained. The influences of mobile phase grade and glassware binding of amikacin during sample preparation were addressed. A weighed (1/X 2 ) least square regression was used for the calibration curve. The limit of quantitation (LOQ) and limit of detection (LOD) for this method were determined to be 5μg/mL and 2μg/mL, respectively. The method was validated over a concentration range of 0.05-2mg/mL. The correlation coefficient for the peak area versus concentration was 1.00 and the y-intercept was 0.2%. The recovery accuracies of triplicate preparations at 0.05, 1.0, and 2.0mg/mL were in the range of 100-101%. The relative standard deviation (S rel ) of six replicates at 1.0mg/mL was 1%, and S rel of five injections at the limit of quantitation was 4%. A robust HPLC-CAD method was developed and validated for the determination of the aPSD for amikacin. The CAD method development produced a simplified procedure with minimal variability in results during: routine operation, transfer from one instrument to another, and between different analysts. Copyright © 2017 Elsevier B.V. All rights reserved.
Anna Schoettle; S. G. Rochelle
2000-01-01
Limber pine (Pinus flexilis James) grows across a wider range of elevations than any other tree species in the central Rockies, from ;1600 m at Pawnee Buttes to .3300 m at Rollins Pass. In this study we investigated two possible explanations for limber pineâs success across a broad range of elevations: (1) the sites on which it is found, although separated by...
3D parallel-detection microwave tomography for clinical breast imaging
Meaney, P. M.; Paulsen, K. D.
2014-01-01
A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data. PMID:25554311
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Clustering promotes switching dynamics in networks of noisy neurons
NASA Astrophysics Data System (ADS)
Franović, Igor; Klinshov, Vladimir
2018-02-01
Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.
Application of Microrheology in Food Science.
Yang, Nan; Lv, Ruihe; Jia, Junji; Nishinari, Katsuyoshi; Fang, Yapeng
2017-02-28
Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.
Interfacial mixing in high-energy-density matter with a multiphysics kinetic model
NASA Astrophysics Data System (ADS)
Haack, Jeffrey R.; Hauck, Cory D.; Murillo, Michael S.
2017-12-01
We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017), 10.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.
Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.
Song, Kai-Tai; Tai, Jen-Chao
2006-10-01
Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.
Design issues for a reinforcement-based self-learning fuzzy controller
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Dauherity, Walter
1993-01-01
Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.
A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang
2010-01-22
To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potentialmore » entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.« less
The minimal flow unit in near-wall turbulence
NASA Technical Reports Server (NTRS)
Jimeez, Javier; Moin, Parviz
1991-01-01
Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.
The Earth System (ES-DOC) Project
NASA Astrophysics Data System (ADS)
Greenslade, Mark; Murphy, Sylvia; Treshansky, Allyn; DeLuca, Cecilia; Guilyardi, Eric; Denvil, Sebastien
2014-05-01
ESSI1.3 New Paradigms, Modelling, and International Collaboration Strategies for Earth System Sciences Earth System Documentation (ES-DOC) is an international project supplying tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software and places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages emerging documentation standards and supports the following projects: Coupled Model Inter-comparison Project Phase 5 (CMIP5); Dynamical Core Model Inter-comparison Project (DCMIP); National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This presentation will introduce the project to a wider audience and demonstrate the range of tools and services currently available for use. It will also demonstrate how international collaborative efforts are essential to the success of ES-DOC.
Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations
Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus
2012-01-01
Recent years of research have shown that the complex temporal structure of ongoing oscillations is scale-free and characterized by long-range temporal correlations. Detrended fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation, normal development, or disease can lead to differences in the scale-free amplitude modulation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the time-averaged oscillation power, indicating that the DFA provides unique insights into the functional organization of neuronal systems. To facilitate understanding and encourage wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explanation of the DFA algorithm and its underlying theory. Practical advice on applying DFA to oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Toolbox (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide a brief overview of insights derived from the application of DFA to ongoing oscillations in health and disease, and discuss the putative relevance of criticality for understanding the mechanism underlying scale-free modulation of oscillations. PMID:23226132
TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W., E-mail: robert.h.tyler@nasa.gov
Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as amore » global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m{sup −2}), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed.« less
What to do now? How women with breast cancer make fertility preservation decisions.
Snyder, Karrie Ann; Tate, Alexandra Lee
2013-07-01
There has been increased attention paid to cancer-related infertility and fertility preservation. However, how cancer patients decide whether or not to pursue fertility preservation has not been fully examined. The data come from 34 interviews with women in the USA diagnosed with breast cancer prior to 40 years of age who contemplated fertility preservation prior to cancer treatment. Fully transcribed interviews were coded through a three-staged inductive process. Three sets of factors that shaped the decision-making process of the respondents regarding fertility preservation treatment options were identified: perceived benefits (e.g. ability to use 'younger' eggs in the future), inhibiting concerns (e.g. success rates) and influential relationships (e.g. physicians, parents and partners). Respondents saw their main fertility preservation decision as choosing whether or not to pursue egg/embryo banking. The decision-making process was complicated and included both health-related and personal considerations, with many respondents reporting a lack of support services for fertility issues. Findings suggest that greater attention needs to be placed on presenting patients with a wider range of options. Those who counsel patients regarding fertility preservation decisions should be aware of the influence of relationship dynamics, broader health care concerns, and fertility histories on these decisions. KEY MESSAGE POINTS: While fertility preservation has garnered greater attention, less is known about how cancer patients make fertility preservation decisions. Despite the range of choices for fertility preservation, respondents identified egg/embryo banking as their primary option. Many factors outside of cancer concerns inhibit and facilitate fertility preservation decisions including fertility history and family relationship dynamics.
Morisaku, Toshinori; Yui, Hiroharu
2018-05-15
A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.
Dynamic Landscapes and Sea Level Change in Human Evolution and Dispersal
NASA Astrophysics Data System (ADS)
King, G. C.; Devès, M. H.; Bailey, G.; Inglis, R.; Williams, M.
2012-12-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris,are developing systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. These approaches use remote sensing techniques combined with archaeological and tectonic field surveys on land and underwater. Examples are shown from Europe, the Middle East and Africa to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less
Update on Emergency Department Visits Involving Energy Drinks: A Continuing Public Health Concern
... concentrated forms of energy drinks, known as energy shots, have become increasingly popular among a wider range ... 3 Marketing analysts reported increasing sales of energy shots in 2011 that were expected to continue through ...
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Banfi, F.; Brumana, R.; Oreni, D.; Previtali, M.; Roncoroni, F.
2015-08-01
This paper describes a procedure for the generation of a detailed HBIM which is then turned into a model for mobile apps based on augmented and virtual reality. Starting from laser point clouds, photogrammetric data and additional information, a geometric reconstruction with a high level of detail can be carried out by considering the basic requirements of BIM projects (parametric modelling, object relations, attributes). The work aims at demonstrating that a complex HBIM can be managed in portable devices to extract useful information not only for expert operators, but also towards a wider user community interested in cultural tourism.
Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa
2011-08-01
The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
The Ansel Adams zone system: HDR capture and range compression by chemical processing
NASA Astrophysics Data System (ADS)
McCann, John J.
2010-02-01
We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.
Images and Meaning-Making in a World of Resemblance: The Bavarian-Saxon Kidney Stone Affair of 1580
Stein, Claudia
2015-01-01
This article de-constructs and re-constructs the dynamic of a sixteenth-century political dispute between the Catholic Bavarian Duke Wilhelm V and the Protestant Saxon Elector August I. By focusing on the visual imagery which ignited the dispute, the paper explores sixteenth-century ‘ways of seeing’ and the epistemic role realistic images played in the production of knowledge about the natural world. While the peculiar dynamic of the affair is based on a specific understanding of the evidential role of images, the paper also argues that the wider socio-cultural context, in particular certain strategies of truth-telling, provide further clues as to the dynamic and closure of the affair. PMID:26290618
Images and Meaning-Making in a World of Resemblance: The Bavarian-Saxon Kidney Stone Affair of 1580.
Stein, Claudia
2013-04-01
This article de-constructs and re-constructs the dynamic of a sixteenth-century political dispute between the Catholic Bavarian Duke Wilhelm V and the Protestant Saxon Elector August I. By focusing on the visual imagery which ignited the dispute, the paper explores sixteenth-century 'ways of seeing' and the epistemic role realistic images played in the production of knowledge about the natural world. While the peculiar dynamic of the affair is based on a specific understanding of the evidential role of images, the paper also argues that the wider socio-cultural context, in particular certain strategies of truth-telling, provide further clues as to the dynamic and closure of the affair.
Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.
2011-01-01
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768
Broadening conceptions of learning in medical education: the message from teamworking.
Bleakley, Alan
2006-02-01
There is a mismatch between the broad range of learning theories offered in the wider education literature and a relatively narrow range of theories privileged in the medical education literature. The latter are usually described under the heading of 'adult learning theory'. This paper critically addresses the limitations of the current dominant learning theories informing medical education. An argument is made that such theories, which address how an individual learns, fail to explain how learning occurs in dynamic, complex and unstable systems such as fluid clinical teams. Models of learning that take into account distributed knowing, learning through time as well as space, and the complexity of a learning environment including relationships between persons and artefacts, are more powerful in explaining and predicting how learning occurs in clinical teams. Learning theories may be privileged for ideological reasons, such as medicine's concern with autonomy. Where an increasing amount of medical education occurs in workplace contexts, sociocultural learning theories offer a best-fit exploration and explanation of such learning. We need to continue to develop testable models of learning that inform safe work practice. One type of learning theory will not inform all practice contexts and we need to think about a range of fit-for-purpose theories that are testable in practice. Exciting current developments include dynamicist models of learning drawing on complexity theory.
Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions
NASA Astrophysics Data System (ADS)
Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.
2016-03-01
In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.
Dynamics and Control of a Quadrotor with Active Geometric Morphing
NASA Astrophysics Data System (ADS)
Wallace, Dustin A.
Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.
NASA Astrophysics Data System (ADS)
Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.; Harman, Ciaran; Gooseff, Michael N.; Singha, Kamini
2016-02-01
Solute transport along riparian and hyporheic flow paths is broadly expected to respond to dynamic hydrologic forcing by streams, aquifers, and hillslopes. However, direct observation of these dynamic responses is lacking, as is the relative control of geologic setting as a control on responses to dynamic hydrologic forcing. We conducted a series of four stream solute tracer injections through base flow recession in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow riparian wells in each watershed. We found hyporheic mean arrival time, temporal variance, and fraction of stream water in the bedrock-constrained valley bottom and near large roughness elements in the wider valley bottom were not variable with discharge, suggesting minimal control by hydrologic forcing. Conversely, we observed increases in mean arrival time and temporal variance and decreasing fraction stream water with decreasing discharge near the hillslopes in the wider valley bottom. This may indicate changes in stream discharge and valley bottom hydrology control transport in less constrained locations. We detail five hydrogeomorphic responses to base flow recession to explain observed spatial and temporal patterns in the interactions between streams and their valley bottoms. Models able to account for the transition from geologically dominated processes in the near-stream subsurface to hydrologically dominated processes near the hillslope will be required to predict solute transport and fate in valley bottoms of headwater mountain streams.
NASA Astrophysics Data System (ADS)
Lawler, D. M.
2008-01-01
In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment flux can be forged at event timescales, and a lack of sediment exhaustion was evident here. Five challenges for wider geomorphological process investigation are discussed. This event-based dynamics approach, based on continuous monitoring methodologies, appears to have considerable wider potential for stronger process inference and model testing and validation in many areas of geomorphology.
Using Drama to Support Literacy: Activities for Children Aged 7 to 14
ERIC Educational Resources Information Center
Goodwin, John
2006-01-01
The power of drama provides a real context for narrative writing, and in this book the tool kit of drama strategies has been laid out and used effectively by teachers across a wider range of imaginary contexts. Using drama makes possible a vast range of themes and story contexts which enthuse and hook children into the writing process. The real…
Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A
2018-01-01
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.
Recent Advances in Modeling Hugoniots with Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaesemann, K R; Fried, L E
2005-07-26
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Recent Advances in Modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, K. R.; Fried, L. E.
2006-07-01
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
RANGE INCREASER FOR PNEUMATIC GAUGES
Fowler, A.H.; Seaborn, G.B. Jr.
1960-09-27
An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.
Adjustable Tuning Spring for Bellows Pump
NASA Technical Reports Server (NTRS)
Green, G. L.; Tu Duc, D.; Hooper, S.
1985-01-01
Adjustable leaf spring increases maximum operating pressure of pump from 2 to over 60 psi (13 to over 400 kN/m2). Small commercial bellows pump using ac-powered electromagnet to vibrate bellows at mechanical resonance modified to operate over wider pressure range.
ERIC Educational Resources Information Center
Harris, Philip R.
1985-01-01
Looks at changes in the manager's role due to technological advancement in the workplace. Discusses wider range of uses for computers (analysis, decision making, communications, planning, tracking trends), importance of supervisor training, cyberphobia (fear of new technology), cyberphrenia (addiction to new technology), and the effect of a work…
Community College Faculty: Making the Paradigm Shift.
ERIC Educational Resources Information Center
Van Ast, John
1999-01-01
Discusses the need for paradigm shifts during the next decade that address the following challenges: (1) the wider range of student ability and mastery; (2) high attrition rates; and (3) differing and often contradicting perceptions of students, faculty, and administration. Contains 180 references. (TGO)
Efficiency and flexibility using implicit methods within atmosphere dycores
NASA Astrophysics Data System (ADS)
Evans, K. J.; Archibald, R.; Norman, M. R.; Gardner, D. J.; Woodward, C. S.; Worley, P.; Taylor, M.
2016-12-01
A suite of explicit and implicit methods are evaluated for a range of configurations of the shallow water dynamical core within the spectral-element Community Atmosphere Model (CAM-SE) to explore their relative computational performance. The configurations are designed to explore the attributes of each method under different but relevant model usage scenarios including varied spectral order within an element, static regional refinement, and scaling to large problem sizes. The limitations and benefits of using explicit versus implicit, with different discretizations and parameters, are discussed in light of trade-offs such as MPI communication, memory, and inherent efficiency bottlenecks. For the regionally refined shallow water configurations, the implicit BDF2 method is about the same efficiency as an explicit Runge-Kutta method, without including a preconditioner. Performance of the implicit methods with the residual function executed on a GPU is also presented; there is speed up for the residual relative to a CPU, but overwhelming transfer costs motivate moving more of the solver to the device. Given the performance behavior of implicit methods within the shallow water dynamical core, the recommendation for future work using implicit solvers is conditional based on scale separation and the stiffness of the problem. The strong growth of linear iterations with increasing resolution or time step size is the main bottleneck to computational efficiency. Within the hydrostatic dynamical core, of CAM-SE, we present results utilizing approximate block factorization preconditioners implemented using the Trilinos library of solvers. They reduce the cost of linear system solves and improve parallel scalability. We provide a summary of the remaining efficiency considerations within the preconditioner and utilization of the GPU, as well as a discussion about the benefits of a time stepping method that provides converged and stable solutions for a much wider range of time step sizes. As more complex model components, for example new physics and aerosols, are connected in the model, having flexibility in the time stepping will enable more options for combining and resolving multiple scales of behavior.
Engaging diversity's underbelly: a story from an immigrant parish community.
Borg, Mark B
2006-06-01
: This story explores an intervention conducted in a Catholic parish community in New York City. The intervention, conducted by the author and a Jesuit priest, focused on issues of unity and diversity among the various Chinese immigrant subgroups in the parish (primarily Cantonese- and Mandarin-speakers). Issues of class, power, and a history of colonialism in the Catholic Church are explored as central to the relations among culturally diverse Chinese American community members and between the members and the practitioners and the church authority. The author especially focuses on how the dynamics that played out in the intervention reflected wider issues of economics, labor practices, and political elitism in the wider Chinatown community. A central part of the author's argument is about power relationships between this parish community and Chinatown and how these power relationships are embedded within broader racial and economic oppression within the United States.
Renju, Jenny; Bonnington, Oliver; Wamoyi, Joyce; Nyamukapa, Constance; Seeley, Janet; Wringe, Alison
2017-01-01
Objectives The nature of patient–provider interactions and communication is widely documented to significantly impact on patient experiences, treatment adherence and health outcomes. Yet little is known about the broader contextual factors and dynamics that shape patient–provider interactions in high HIV prevalence and limited-resource settings. Drawing on qualitative research from five sub-Saharan African countries, we seek to unpack local dynamics that serve to hinder or facilitate productive patient–provider interactions. Methods This qualitative study, conducted in Kisumu (Kenya), Kisesa (Tanzania), Manicaland (Zimbabwe), Karonga (Malawi) and uMkhanyakude (South Africa), draws upon 278 in-depth interviews with purposively sampled people living with HIV with different diagnosis and treatment histories, 29 family members of people who died due to HIV and 38 HIV healthcare workers. Data were collected using topic guides that explored patient testing and antiretroviral therapy treatment journeys. Thematic analysis was conducted, aided by NVivo V.8.0 software. Results Our analysis revealed an array of inter-related contextual factors and power dynamics shaping patient–provider interactions. These included (1) participants’ perceptions of roles and identities of ‘self’ and ‘other’; (2) conformity or resistance to the ‘rules of HIV service engagement’ and a ‘patient-persona’; (3) the influence of significant others’ views on service provision; and (4) resources in health services. We observed that these four factors/dynamics were located in the wider context of conceptualisations of power, autonomy and structure. Conclusion Patient–provider interaction is complex, multidimensional and deeply embedded in wider social dynamics. Multiple contextual domains shape patient–provider interactions in the context of HIV in sub-Saharan Africa. Interventions to improve patient experiences and treatment adherence through enhanced interactions need to go beyond the existing focus on patient–provider communication strategies. PMID:28736392
Modelling the aggregation process of cellular slime mold by the chemical attraction.
Atangana, Abdon; Vermeulen, P D
2014-01-01
We put into exercise a comparatively innovative analytical modus operandi, the homotopy decomposition method (HDM), for solving a system of nonlinear partial differential equations arising in an attractor one-dimensional Keller-Segel dynamics system. Numerical solutions are given and some properties show evidence of biologically practical reliance on the parameter values. The reliability of HDM and the reduction in computations give HDM a wider applicability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Youngjoo; Kim, Dong Kyun; Seo, Min-Duk
2015-01-30
Highlights: • The conformational dynamics of β-arrestin1 or β-arrestin2 were analyzed by HDX-MS. • β-Strands II through IV were more dynamic in β-arrestin2 than in β-arrestin1. • The middle loop was less dynamic in β-arrestin2 than in β-arrestin1. • Upon pre-activation by the R169E mutation, β-arrestins became more dynamic. • Pre-activation affected a wider region of β-arrestin1 compared to β-arrestin2. - Abstract: Arrestins have important roles in G protein-coupled receptor (GPCR) signaling including desensitization of GPCRs and G protein-independent signaling. There have been four arrestins identified: arrestin1, arrestin2 (e.g. β-arrestin1), arrestin3 (e.g. β-arrestin2), and arrestin4. β-Arrestin1 and β-arrestin2 are ubiquitouslymore » expressed and regulate a broad range of GPCRs, while arrestin1 and arrestin4 are expressed in the visual system. Although the functions of β-arrestin1 and β-arrestin2 widely overlap, β-arrestin2 has broader receptor selectivity, and a few studies have suggested that β-arrestin1 and β-arrestin2 have distinct cellular functions. Here, we compared the conformational dynamics of β-arrestin1 and β-arrestin2 by hydrogen/deuterium exchange mass spectrometry (HDX-MS). We also used the R169E mutant as a pre-activation model system. HDX-MS data revealed that β-strands II through IV were more dynamic in β-arrestin2 in the basal state, while the middle loop was more dynamic in β-arrestin1. With pre-activation, both β-arrestin1 and β-arrestin2 became more flexible, but broader regions of β-arrestin1 became flexible compared to β-arrestin2. The conformational differences between β-arrestin1 and β-arrestin2 in both the basal and pre-activated states might determine their different receptor selectivities and different cellular functions.« less
F*** Yeah Fluid Dynamics: Lessons from online outreach
NASA Astrophysics Data System (ADS)
Sharp, Nicole
2013-11-01
The fluid dynamics education outreach blog FYFD features photos, videos, and research along with concise, accessible explanations of phenomena every weekday. Over the past three years, the blog has attracted an audience of roughly 200,000 online followers. Reader survey results indicate that over half of the blog's audience works or studies in non-fluids fields. Twenty-nine percent of all survey respondents indicate that FYFD has been a positive influence on their desire to pursue fluid dynamics in their education or career. Of these positively influenced readers, over two-thirds have high-school or undergraduate-level education, indicating a significant audience of potential future fluid dynamicists. This talk will utilize a mixture of reader metrics, web analytics, and anecdotal evidence to discuss what makes science outreach successful and how we, as a community, can benefit from promoting fluid dynamics to a wider audience. http://tinyurl.com/azjjgj2
NASA Astrophysics Data System (ADS)
Almehmadi, Fares S.; Chatterjee, Monish R.
2014-12-01
Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mismatch for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the impact of additive white noise. The simulations with profiled input beams are shown to produce a stronger encryption key (i.e., much lower parametric tolerance thresholds) relative to simulations with uniform plane wave input beams. In each case, it is shown that the tolerance for key parameters drops by factors ranging from 10 to 20 times below those for uniform plane wave propagation. Results are shown to be at consistently lower tolerances for secure transmission of analog and digital signals using parameter tolerance measures, as well as BER performance measures for digital signals. These results hold out the promise for considerably greater information transmission security for such a system.
Crater function moments: Role of implanted noble gas atoms
NASA Astrophysics Data System (ADS)
Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew
2018-04-01
Spontaneous pattern formation by energetic ion beams is usually explained in terms of surface-curvature dependent sputtering and atom redistribution in the target. Recently, the effect of ion implantation on surface stability has been studied for nonvolatile ion species, but for the case of noble gas ion beams it has always been assumed that the implanted atoms can be neglected. In this work, we show by molecular dynamics (MD) and Monte Carlo (MC) simulations that this assumption is not valid in a wide range of implant conditions. Sequential-impact MD simulations are performed for 1-keV Ar, 2-keV Kr, and 2-keV Xe bombardments of Si, starting with a pure single-crystalline Si target and running impacts until sputtering equilibrium has been reached. The simulations demonstrate the importance of the implanted ions for crater-function estimates. The atomic volumes of Ar, Kr, and Xe in Si are found to be a factor of two larger than in the solid state. To extend the study to a wider range of energies, MC simulations are performed. We find that the role of the implanted ions increases with the ion energy although the increase is attenuated for the heavier ions. The analysis uses the crater function formalism specialized to the case of sputtering equilibrium.
A Model for Evaluating Tactually Assistive Devices.
ERIC Educational Resources Information Center
Terrio, Lee; Haas, William
1986-01-01
Audiometric instruments and techniques adopted to measure tactual cueing characteristics of the Radioear B70A and the Siemens Fonator electromechanical vibrators were used by young adults. The Siemens Phonator demonstrated a wider suprathreshold operating range than did the Radioear B70A. (Author/CL)
Proteus mirabilis interkingdom swarming signals attract blow flies
USDA-ARS?s Scientific Manuscript database
Flies transport specific bacteria with their larvae which provides a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericat. This s...
John R. Jones
1985-01-01
Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....
A review of vagus nerve stimulation as a therapeutic intervention
Johnson, Rhaya L; Wilson, Christopher G
2018-01-01
In this review, we provide an overview of the US Food and Drug Administration (FDA)-approved clinical uses of vagus nerve stimulation (VNS) as well as information about the ongoing studies and preclinical research to expand the use of VNS to additional applications. VNS is currently FDA approved for therapeutic use in patients aged >12 years with drug-resistant epilepsy and depression. Recent studies of VNS in in vivo systems have shown that it has anti-inflammatory properties which has led to more preclinical research aimed at expanding VNS treatment across a wider range of inflammatory disorders. Although the signaling pathway and mechanism by which VNS affects inflammation remain unknown, VNS has shown promising results in treating chronic inflammatory disorders such as sepsis, lung injury, rheumatoid arthritis (RA), and diabetes. It is also being used to control pain in fibromyalgia and migraines. This new preclinical research shows that VNS bears the promise of being applied to a wider range of therapeutic applications. PMID:29844694
NASA Astrophysics Data System (ADS)
Qing, Jiasheng; Wang, Lei; Dou, Kun; Wang, Bao; Liu, Qing
2016-06-01
The influence of V-N microalloying on the high-temperature mechanical behavior of high strength weathering steel is discussed through thermomechanical simulation experiment. The difference of tensile strength caused by variation of [%V][%N] appears after proeutectoid phase change, and the higher level of [%V][%N] is, the stronger the tensile strength tends to be. The ductility trough apparently becomes deeper and wider with the increase of [%V][%N]. When the level of [%V][%N] reaches to 1.7 × 10-3, high strength weathering steel shows almost similar reduction of area to 0.03% Nb-containing steel in the temperature range of 800-900°, however, the ductility trough at the low-temperature stage is wider than that of Nb-containing steel. Moreover, the net crack defect of bloom is optimized through the stable control of N content in low range under the precondition of high strength weathering steel with sufficient strength.
Siblings of Children with Autism: the Siblings Embedded Systems Framework.
Kovshoff, Hanna; Cebula, Katie; Tsai, Hsiao-Wei Joy; Hastings, Richard P
2017-01-01
A range of interacting factors/mechanisms at the individual, family, and wider systems levels influences siblings living in families where one sibling has autism. We introduce the Sibling Embedded Systems Framework which aims to contextualise siblings' experience and characterise the multiple and interacting factors influencing family and, in particular, sibling outcomes. Findings from studies that have reported outcomes for siblings of children with autism are equivocal, ranging from negative impact, no difference, to positive experience. This is likely due to the complex nature of understanding the sibling experience. We focus on particular elements of the framework and review recent novel literature to help guide future directions for research and practice including the influence of culture, methodological considerations, and wider participatory methods. The Siblings Embedded System Framework can be used to understand interactive factors that affect sibling adjustment and to develop clinically, educationally and empirically based work that aims to enhance and support sibling adjustment, relationships, and well-being in families of children with autism.
Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development
Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; ...
2014-11-04
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocitymore » were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.« less
Stability of planetary orbits in triple star systems
NASA Astrophysics Data System (ADS)
Busetti, Franco; Beust, Hervé; Harley, Charis
2018-06-01
Triple stellar systems comprising a central binary orbited by a third star at a larger distance are fairly common. However, there have been very few studies on the stability of planetary orbits in such systems. There has been almost no work on generalised systems, little on retrograde planetary orbits and none on retrograde stellar orbits, with nearly all being for coplanar orbits and for a limited number of orbital parameters. We provide a generalised numerical mapping of the regions of planetary stability in triples, using the symplectic N-body code HJS (Beust 2003) designed for the dynamics of multiple hierarchical systems. We investigate all these orbit types and extend the parameters used to all relevant orbital elements of the triple’s stars, also expanding these elements and mass ratios to wider ranges.This establishes the regions of secular stability and results in empirical models describing the stability bounds for planets in each type of triple configuration, as functions of the various system parameters. These results are compared to the corresponding results for binaries in the limit of a vanishing mass of the third star. A general feature is that retrograde planetary orbits appear more stable than prograde ones, and that stable regions also tend to be wider when the third star's motion is retrograde. Conversely, we point out the destabilizing role of Kozai-Lidov resonance in non-coplanar systems, which shrinks the stability regions as a result of large induced eccentricity variations. Nonetheless, large enough stability regions for planets do exist in triples, and this should motivate future observational campaigns.Refs : Beust, 2003, A&A 400, 1129 Busetti, Beust, Harley, 2018, to be submitted to A&A
Explicit Computations of Instantons and Large Deviations in Beta-Plane Turbulence
NASA Astrophysics Data System (ADS)
Laurie, J.; Bouchet, F.; Zaboronski, O.
2012-12-01
We use a path integral formalism and instanton theory in order to make explicit analytical predictions about large deviations and rare events in beta-plane turbulence. The path integral formalism is a concise way to get large deviation results in dynamical systems forced by random noise. In the most simple cases, it leads to the same results as the Freidlin-Wentzell theory, but it has a wider range of applicability. This approach is however usually extremely limited, due to the complexity of the theoretical problems. As a consequence it provides explicit results in a fairly limited number of models, often extremely simple ones with only a few degrees of freedom. Few exception exist outside the realm of equilibrium statistical physics. We will show that the barotropic model of beta-plane turbulence is one of these non-equilibrium exceptions. We describe sets of explicit solutions to the instanton equation, and precise derivations of the action functional (or large deviation rate function). The reason why such exact computations are possible is related to the existence of hidden symmetries and conservation laws for the instanton dynamics. We outline several applications of this apporach. For instance, we compute explicitly the very low probability to observe flows with an energy much larger or smaller than the typical one. Moreover, we consider regimes for which the system has multiple attractors (corresponding to different numbers of alternating jets), and discuss the computation of transition probabilities between two such attractors. These extremely rare events are of the utmost importance as the dynamics undergo qualitative macroscopic changes during such transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Bis(Dioxolene)Bis(Pyridine)Ruthenium Redox Series.
1991-08-20
wurking and counter electrodes, and a AgCl/Ag quasi-reference electrode with ferrocene (Fc) as an internal standard. The Fc+/Fc couple was assumed to...assigning the electronic spectra of these species. Similar work has been completed on phosphine substituted species which offer a wider range of
DOT National Transportation Integrated Search
2016-05-01
Over the past 20 years, drilled shafts have demonstrated increasing popularity over driven : precast piles. Drilled shafts can accommodate a wider range of sizes, and noise and vibration : during construction are significantly reduced. On the other h...
Wedemeyer, Gary A.; Nelson, Nancy C.
1975-01-01
Gaussian and nonparametric (percentile estimate and tolerance interval) statistical methods were used to estimate normal ranges for blood chemistry (bicarbonate, bilirubin, calcium, hematocrit, hemoglobin, magnesium, mean cell hemoglobin concentration, osmolality, inorganic phosphorus, and pH for juvenile rainbow (Salmo gairdneri, Shasta strain) trout held under defined environmental conditions. The percentile estimate and Gaussian methods gave similar normal ranges, whereas the tolerance interval method gave consistently wider ranges for all blood variables except hemoglobin. If the underlying frequency distribution is unknown, the percentile estimate procedure would be the method of choice.
Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity
Neri, Peter
2010-01-01
Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835
Storkey, J; Holst, N; Bøjer, O Q; Bigongiali, F; Bocci, G; Colbach, N; Dorner, Z; Riemens, M M; Sartorato, I; Sønderskov, M; Verschwele, A
2015-04-01
A functional approach to predicting shifts in weed floras in response to management or environmental change requires the combination of data on weed traits with analytical frameworks that capture the filtering effect of selection pressures on traits. A weed traits database (WTDB) was designed, populated and analysed, initially using data for 19 common European weeds, to begin to consolidate trait data in a single repository. The initial choice of traits was driven by the requirements of empirical models of weed population dynamics to identify correlations between traits and model parameters. These relationships were used to build a generic model, operating at the level of functional traits, to simulate the impact of increasing herbicide and fertiliser use on virtual weeds along gradients of seed weight and maximum height. The model generated 'fitness contours' (defined as population growth rates) within this trait space in different scenarios, onto which two sets of weed species, defined as common or declining in the UK, were mapped. The effect of increasing inputs on the weed flora was successfully simulated; 77% of common species were predicted to have stable or increasing populations under high fertiliser and herbicide use, in contrast with only 29% of the species that have declined. Future development of the WTDB will aim to increase the number of species covered, incorporate a wider range of traits and analyse intraspecific variability under contrasting management and environments.
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji
2014-09-09
Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.
Yamada, Akira; Terakawa, Mitsuhiro
2015-04-10
We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.
Biographies of Exclusion: Poor Work and Poor Transitions
ERIC Educational Resources Information Center
Shildrick, Tracy; MacDonald, Robert
2007-01-01
The usefulness of the concept of transition has been hotly contested in Anglophone youth studies over the past decade. A variety of criticisms have been ranged against it, including that it: presumes the continuing predominance of linear, obvious, mainstream pathways to adulthood; excludes wider youth questions in focusing narrowly on educational…
Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...
Parents Guide on Choice. The Right To Choose.
ERIC Educational Resources Information Center
Raywid, Mary Anne
Starting with the contention that we need to restore a wider range of choice to parents in their children's education, this paper lists and reviews the varieties of public education currently available throughout the country, and discusses their advantages and disadvantages. These varieties include magnet schools, alternative schools, independent…
Response Strength in Extreme Multiple Schedules
ERIC Educational Resources Information Center
McLean, Anthony P.; Grace, Randolph C.; Nevin, John A.
2012-01-01
Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess…
Forest operations for ecosystem management
Robert B. Rummer; John Baumgras; Joe McNeel
1997-01-01
The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...
Aging: Prospects and Issues. Revised. 1976.
ERIC Educational Resources Information Center
Davis, Richard H., Ed.
Completely revised and updated since its first edition in 1973, the book explores an even wider range of concerns regarding gerontology. Part 1 presents an overview of the multiple aspects of gerontology, and includes the following chapters: (1) Aging: Prospects and Issues, Richard H. Davis; (2) Aging: The Psychologist's Perspective, James E.…
Heavy Metal Music and Reckless Behavior among Adolescents.
ERIC Educational Resources Information Center
Arnett, Jeffrey
1991-01-01
Fifty-four male and 30 female adolescents who like heavy metal music were compared on various outcome variables to 56 male and 105 female peers who do not like it. Those who like heavy metal report a wider range of reckless behavior than those who do not like it. (SLD)
Alternative Instructional Strategies in an IS Curriculum
ERIC Educational Resources Information Center
Parker, Kevin R.; LeRouge, Cynthia; Trimmer, Ken
2005-01-01
Systems Analysis and Design is a core component of an education in information systems. To appeal to a wider range of constituents and facilitate the learning process, the content of a traditional Systems Analysis and Design course has been supplemented with an alternative modeling approach. This paper presents an instructional design that…
Culture vs. Technology: Mass Media Policy of the Netherlands Attempts a Balance.
ERIC Educational Resources Information Center
Heuterman, Thomas H.; Rennen, Toon
Telecommunications policy makers in Western Europe face the dilema of satisfying public demand for a wider range of television viewing alternatives without sacrificing national cultural integrity. The Dutch Parliament addressed this problem in 1984, 1985, and 1986 as it approved steps to implement the "Medianota," the comprehensive…
Arginase: A Novel Proliferative Determinant in Prostate Cancer
2005-04-01
neoplastic prostate samples. The purpose of the present research funded by USAMRMC is to examine the expression of All in a wider range of benign and - malignant prostate...of polyamine synthesis levels in these lines, and our measurement and localization of arginase expression in benign and malignant prostate tissue samples.
Understanding Online Knowledge Sharing: An Interpersonal Relationship Perspective
ERIC Educational Resources Information Center
Ma, Will W. K.; Yuen, Allan H. K.
2011-01-01
The unique features and capabilities of online learning are built on the ability to connect to a wider range of learning resources and peer learners that benefit individual learners, such as through discussion forums, collaborative learning, and community building. The success of online learning thus depends on the participation, engagement, and…
Operations Management and Curriculum Design.
ERIC Educational Resources Information Center
Slack, Nigel
1983-01-01
The last few years have seen developments in the academic treatment of operations management which both broaden the subject to include a much wider range of industries in the nonmanufacturing sectors and place the operations function in a more strategic context. (MEAD Subscriptions, CSML, University of Lancaster, Lancaster LA1 4YX, England) (SSH)
Documenting Variation in (Endangered) Heritage Languages: How and Why?
ERIC Educational Resources Information Center
Nagy, Naomi
2017-01-01
This paper contributes to recently expanded interest in documenting variable as well as categorical patterns of endangered languages. It describes approaches, tools and curricular developments that have benefitted from involving students who are heritage language community members, key to expanding variationist focus to a wider range of languages.…
Assessment Using Multi-Criteria Decision Approach for "Higher Order Skills" Learning Domains
ERIC Educational Resources Information Center
Ramakishnan, Sadhu Balasundaram; Ramadoss, Balakrishnan
2009-01-01
Over the past several decades, a wider range of assessment strategies has gained prominence in classrooms, including complex assessment items such as individual or group projects, student journals and other creative writing tasks, graphic/artistic representations of knowledge, clinical interviews, student presentations and performances, peer- and…
Levels of Student Responses in a Spreadsheet-Based Environment
ERIC Educational Resources Information Center
Tabach, Michal; Friedlander, Alex
2004-01-01
The purpose of this report is to investigate the range of student responses in three domains--hypothesizing, organizing data, and algebraic generalization of patterns during their work on a spreadsheet-based activity. In a wider context, we attempted to investigate students' utilization schemes of spreadsheets in their learning of introductory…
Promising Practices in Small High Schools. A Report of 15 Northwest Projects.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
Promising methods utilized in small rural high schools to provide a wider range of experiences for students are identified and described. Programs reported on include the Arctic Nursing Program, Career Research Program, Contractual Study Program, Eye-opening Experience, Field Experience Program, Guitar and Folk Music Program, Individualized…
A Wider Spectrum of Opportunities.
ERIC Educational Resources Information Center
Council for Industry and Higher Education (United Kingdom).
The United Kingdom must invest in a comprehensive system of post-18 education that is broadly inclusive and that offers a broad range of educational opportunities to meet the needs of both the increasing numbers of 16-year-olds choosing to pursue postsecondary education and the many older individuals needing additional education throughout their…
Persuading and Dissuading by Conditional Argument
ERIC Educational Resources Information Center
Thompson, V.A.; Evans, J.St.B.T.; Handley, S.J.
2005-01-01
Informal reasoning typically draws on a wider range of inferential behaviour than is measured by traditional inference tasks. In this paper, we developed several tasks to study informal reasoning with two novel types of conditional statements: Persuasions (e.g., if the Kyoto accord is ratified, greenhouse gas emissions will be reduced) and…
Bipolaris microstegii Minnis, Rossman, Kleczewki & S.L. Flory, sp. nov.
USDA-ARS?s Scientific Manuscript database
Many species of Bipolaris are significant pathogens of grasses. A new species of Bipolaris was isolated from Microstegium vimineum, an invasive plant in the USA. The fungus causes disease on Microstegium, but it also infects a wider range of hosts. Comparison of ITS and gpd sequence data to sequence...
Effect of salt and ethanol addition on zein-starch dough and bread quality
USDA-ARS?s Scientific Manuscript database
Development of viscoelastic doughs from non-wheat proteins allows for a wider range of gluten-free products. Littlework has been completed to describemechanisms of zein functionality in food systems. To identify factors responsible for dough development in zein–starchmixtures and their influence on ...
Froehle, Andrew W; Grannis, Kimberly A; Sherwood, Richard J; Duren, Dana L
2017-05-01
Age at menarche impacts patterns of pubertal growth and skeletal development. These effects may carry over into variation in biomechanical profiles involved in sports-related traumatic and overuse knee injuries. The present study investigated whether age at menarche is a potential indicator of knee injury risk through its influence on knee biomechanics during normal walking. To test the hypothesis that earlier menarche is related to postpubertal biomechanical risk factors for knee injuries, including a wider, more immature gait base of support, and greater valgus knee angles and moments. Cross-sectional observational study. University research facility. Healthy, postmenarcheal, adolescent girls. Age at menarche was obtained by recall questionnaire. Pubertal growth and anthropometric data were collected by using standard methods. Biomechanical data were taken from tests of walking gait at self-selected speed. Reflective marker position data were collected with a 3-dimensional quantitative motion analysis system, and 3 force plates recorded kinetic data. Age at menarche; growth and anthropometric measurements; base of support; static knee frontal plane angle; and dynamic knee frontal plane angles and moments during stance. Earlier menarche was correlated significantly with abbreviated pubertal growth and postpubertal retention of immature traits, including a wider base of support. Earlier menarche and wider base of support were both correlated with more valgus static knee angles, more valgus knee abduction angles and moments at foot-strike, and a more valgus peak knee abduction angle during stance. Peak knee abduction moment during stance was not correlated with age at menarche or base of support. Earlier menarche and its effects on growth are associated with retention of a relatively immature gait base of support and a tendency for static and dynamic valgus knee alignment. This biomechanical profile may put girls with earlier menarche at greater risk for sports-related knee injuries. Not applicable. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Grannis, Kimberly A.; Sherwood, Richard J.; Duren, Dana L
2016-01-01
Background Age at menarche impacts patterns of pubertal growth and skeletal development. These effects may carry over into variation in biomechanical profiles involved in sports-related traumatic and overuse knee injuries. The present study investigated whether age at menarche is a potential indicator of knee injury risk through its influence on knee biomechanics during normal walking. Objective To test the hypothesis that earlier menarche is related to post-pubertal biomechanical risk factors for knee injuries, including a wider, more immature gait base of support, and greater valgus knee angles and moments. Design Cross-sectional observational study. Setting University research facility. Participants Healthy, post-menarcheal, adolescent females. Methods Age at menarche was obtained by recall questionnaire. Pubertal growth and anthropometric data were collected using standard methods. Biomechanical data were taken from tests of walking gait at self-selected speed. Reflective marker position data were collected using a three-dimensional quantitative motion analysis system, and three force plates recorded kinetic data. Main Outcome Measures Age at menarche; growth and anthropometric measurements; base of support; static knee frontal plane angle; dynamic knee frontal plane angles and moments during stance. Results Earlier menarche was significantly correlated with abbreviated pubertal growth and post-pubertal retention of immature traits, including a wider base of support. Earlier menarche and wider base of support were both correlated with more valgus static knee angles, more valgus knee abduction angles and moments at foot-strike, and a more valgus peak knee abduction angle during stance. Peak knee abduction moment during stance was not correlated with age at menarche or base of support. Conclusions Earlier menarche and its effects on growth are associated with retention of a relatively immature gait base of support and a tendency for static and dynamic valgus knee alignment. This biomechanical profile may put girls with earlier menarche at higher risk for sports-related knee injuries. PMID:27485675
Dynamic graphs, community detection, and Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun
A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited tomore » dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.« less
Static and dynamic characteristics of parallel-grooved seals
NASA Technical Reports Server (NTRS)
Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji
1987-01-01
Presented is an analytical method to determine static and dynamic characteristics of annular parallel-grooved seals. The governing equations were derived by using the turbulent lubrication theory based on the law of fluid friction. Linear zero- and first-order perturbation equations of the governing equations were developed, and these equations were analytically investigated to obtain the reaction force of the seals. An analysis is presented that calculates the leakage flow rate, the torque loss, and the rotordynamic coefficients for parallel-grooved seals. To demonstrate this analysis, we show the effect of changing number of stages, land and groove width, and inlet swirl on stability of the boiler feed water pump seals. Generally, as the number of stages increased or the grooves became wider, the leakage flow rate and rotor-dynamic coefficients decreased and the torque loss increased.
Effectiveness of breast cancer screening policies in countries with medium-low incidence rates.
Kong, Qingxia; Mondschein, Susana; Pereira, Ana
2018-02-05
Chile has lower breast cancer incidence rates compared to those in developed countries. Our public health system aims to perform 10 biennial screening mammograms in the age group of 50 to 69 years by 2020. Using a dynamic programming model, we have found the optimal ages to perform 10 screening mammograms that lead to the lowest lifetime death rate and we have evaluated a set of fixed inter-screening interval policies. The optimal ages for the 10 mammograms are 43, 47, 51, 54, 57, 61, 65, 68, 72, and 76 years, and the most effective fixed inter-screening is every four years after the 40 years. Both policies respectively reduce lifetime death rate in 6.4% and 5.7% and the cost of saving one life in 17% and 9.3% compared to the 2020 Chilean policy. Our findings show that two-year inter-screening interval policies are less effective in countries with lower breast cancer incidence; thus we recommend screening policies with a wider age range and larger inter-screening intervals for Chile.
Effectiveness of breast cancer screening policies in countries with medium-low incidence rates
Kong, Qingxia; Mondschein, Susana; Pereira, Ana
2018-01-01
ABSTRACT Chile has lower breast cancer incidence rates compared to those in developed countries. Our public health system aims to perform 10 biennial screening mammograms in the age group of 50 to 69 years by 2020. Using a dynamic programming model, we have found the optimal ages to perform 10 screening mammograms that lead to the lowest lifetime death rate and we have evaluated a set of fixed inter-screening interval policies. The optimal ages for the 10 mammograms are 43, 47, 51, 54, 57, 61, 65, 68, 72, and 76 years, and the most effective fixed inter-screening is every four years after the 40 years. Both policies respectively reduce lifetime death rate in 6.4% and 5.7% and the cost of saving one life in 17% and 9.3% compared to the 2020 Chilean policy. Our findings show that two-year inter-screening interval policies are less effective in countries with lower breast cancer incidence; thus we recommend screening policies with a wider age range and larger inter-screening intervals for Chile. PMID:29412375
Developing an active artificial hair cell using nonlinear feedback control
NASA Astrophysics Data System (ADS)
Joyce, Bryan S.; Tarazaga, Pablo A.
2015-09-01
The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.
A vibration correction method for free-fall absolute gravimeters
NASA Astrophysics Data System (ADS)
Qian, J.; Wang, G.; Wu, K.; Wang, L. J.
2018-02-01
An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.
Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.
Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe
2015-06-15
It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.
Compton suppression gamma-counting: The effect of count rate
Millard, H.T.
1984-01-01
Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.
Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn
2011-06-15
In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.
Radiation-Spray Coupling for Realistic Flow Configurations
NASA Technical Reports Server (NTRS)
El-Asrag, Hossam; Iannetti, Anthony C.
2011-01-01
Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.
Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks
Pei, Sen; Tang, Shaoting; Zheng, Zhiming
2015-01-01
Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans’ physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods. PMID:25950181
Measurements of Laser Imprint with High-Z Coated targets on Omega EP
NASA Astrophysics Data System (ADS)
Karasik, Max; Oh, J.; Stoeckl, C.; Aglitskiy, Y.; Schmitt, A. J.; Bates, J. W.; Obenschain, S. P.
2015-11-01
Previous experiments on Nike KrF laser (λ = 248nm) at NRL found that a thin (400-800 Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint and reducing ablative Richtmyer-Meshkov growth. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and driving the target at higher mass ablation rate. Implementation of this technique on the frequency-tripled Nd:glass (351 nm) NIF would enable a wider range direct drive experiments there. To this end, we are carrying out experiments using the NIF-like beams of Omega EP. Analogous to experiments on Nike, areal mass perturbations due to RT-amplified laser imprint are measured using curved crystal imaging coupled to a streak camera. High-Z coating dynamics and target trajectory are imaged side-on. First results indicate that imprint suppression is observed, albeit with thicker coatings. Work supported by the Department of Energy/NNSA.
Degiuseppe, Juan Ignacio; Parra, Gabriel Ignacio; Stupka, Juan Andrés
2014-01-01
Seasonal shifts in the predominant strains and the periodic emergence of new strains are epidemiological features of human rotaviruses. After the sporadic detection in two samples in 1998, G3P[8] strains reemerged as the predominant rotavirus during 2008–2009 in Argentina. Notably, in 2011 6.3% (37/587) of samples presented the G3P[6] genotypes, which coincided with the recent detection of G3P[6] and G2P[6] strains in South America and Europe. Analyses of the 11 gene segments of four G3P[8] and two G3P[6] strains revealed that G3P[8] strains detected a decade apart (1998 and 2009) presented minor differences, while the G3P[6] strains presented a complete different genomic constellation albeit showing a similar VP7 gene. This study provides insights in the dynamics and evolution of one of the genotypes with the wider range of hosts and inter-species transmission potential. PMID:25337915
Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E
2013-05-24
The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high-pressure downstream region.
Warrener, Anna G.; Lewton, Kristi L.; Pontzer, Herman; Lieberman, Daniel E.
2015-01-01
The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman’s locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal. PMID:25760381
Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability Analysis
NASA Astrophysics Data System (ADS)
Filo, Maurice G.
This thesis touches upon several topics in cochlear modeling. Throughout the literature, mathematical models of the cochlea vary according to the degree of biological realism to be incorporated. This thesis casts the cochlear model as a continuous space-time dynamical system using operator language. This framework encompasses a wider class of cochlear models and makes the dynamics more transparent and easier to analyze before applying any numerical method to discretize space. In fact, several numerical methods are investigated to study the computational efficiency of the finite dimensional realizations in space. Furthermore, we study the effects of the active gain perturbations on the stability of the linearized dynamics. The stability analysis is used to explain possible mechanisms underlying spontaneous otoacoustic emissions and tinnitus. Dynamic Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of nonlinear cochlear models. Cochlear response features are illustrated using DMD which has the advantage of explicitly revealing the spatial modes of vibrations occurring in the Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a living cochlea.
Re-Conceptualising Rural Resources as Countryside Capital: The Case of Rural Tourism
ERIC Educational Resources Information Center
Garrod, Brian; Wornell, Roz; Youell, Ray
2006-01-01
Commentators tend to agree that the rural resource is becoming increasingly subject to pressures arising from an ever wider range of economic, social, political and environmental influences. This paper focuses on the case of rural tourism in illustrating the advantages of adopting a sustainable development approach to identifying suitable policies…
New Perspectives on Human Problem Solving
ERIC Educational Resources Information Center
Goldstone, Robert L.; Pizlo, Zygmunt
2009-01-01
In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…
The Neoliberalization of Higher Education in England: An Alternative is Possible*
ERIC Educational Resources Information Center
Maisuria, Alpesh; Cole, Mike
2017-01-01
In this article, we provide a critical explanation and critique of neoliberalism. We attempt an innovative focus ranging from the wider contemporary political and ideological shifts, to the way in which neoliberal policy specifically influences higher education and the consequences thereof. We follow a narrative logic in three parts where we first…
Sequence Matters but How Exactly? A Method for Evaluating Activity Sequences from Data
ERIC Educational Resources Information Center
Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma
2016-01-01
How should a wide variety of educational activities be sequenced to maximize student learning? Although some experimental studies have addressed this question, educational data mining methods may be able to evaluate a wider range of possibilities and better handle many simultaneous sequencing constraints. We introduce Sequencing Constraint…
ERIC Educational Resources Information Center
Adler, Jonathan M.; Matthews, Elizabeth A.
2009-01-01
Students bring an intact, if unarticulated, epistemological perspective into the classroom that influences how they receive and process new information. In this study, students who explored a wider range of perspectives had significantly improved learning outcomes as measured in 3 domains: retention of specific content, retention of general…
Additional Support Needs Reforms and Social Justice in Scotland
ERIC Educational Resources Information Center
Riddell, Sheila; Stead, Joan; Weedon, Elisabet; Wright, Kevin
2010-01-01
New additional support-needs legislation in Scotland sought to recognise the way in which poverty, as well as individual impairment, contribute to the creation of children's difficulties in learning. As well as identifying a wider range of needs, the legislation sought to provide parents, irrespective of social background, with more powerful means…
Learning through a Foreign Language: Models, Methods and Outcomes.
ERIC Educational Resources Information Center
Masih, John, Ed.
This book presents European perspectives on the means of structuring curricula that integrate content and language teaching, drawing on the experience of practitioners at a range of levels. It also provides details of the outcomes of such programs and describes the current and future challenges for wider scale adoption of content and language…
Knowledge Infrastructures and the Inscrutability of Openness in Education
ERIC Educational Resources Information Center
Edwards, Richard
2015-01-01
Openness has a long genealogy in education. Whether through the use of post, radio, television and digital technologies, extending learning opportunities to more and a wider range of people has been a significant aspect of educational history. Transcending barriers to learning has been promoted as the means of opening educational opportunities in…
Activities in Science Related to Space.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.
Contained are a collection of science activities based upon forty-six scientific concepts related to space science. These activities are designed for junior high school science, but a much wider grade level range of use is possible. The booklet is primarily intended for teacher use. Each series of concept-oriented activities is independent of the…
Characterizing Twitter Communication--A Case Study of International Engineering Academic Units
ERIC Educational Resources Information Center
Palmer, Stuart
2014-01-01
Engineering academic units might engage with social media for a range of purposes including for general communication with students, staff, alumni, other important stakeholders and the wider community at large; for student recruitment and for marketing and promotion more generally. This paper presents an investigation into the use of Twitter by…
Liquid Spray Characterization in Flow Fields with Centripetal Acceleration
2014-03-27
25 2.4.1 Atomization of Liquid Jets ...volumetric heat release rates, easier light-up, wider burning range, and lower exhaust pollutant emissions [11]. 26 2.4.1 Atomization of Liquid Jets ...Atomization involves the interaction of consolidating and disruptive forces acting on a jet of liquid . The process of atomization can be further
The Politics of Testing When Measures "Go Public"
ERIC Educational Resources Information Center
Henig, Jeffrey R.
2013-01-01
Background/Context: Validity issues are often discussed in technical terms, but the context changes when measures enter broad public debate, and a wider range of interests come into play. Purpose: This article, part of a special section of TCR, considers the political dimensions of validity questions as raised by a keynote address and panel…
ERIC Educational Resources Information Center
Reeves, Matthew Jonathan; Bailey, Richard P.
2016-01-01
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental psychiatric disorder among children. Despite the noted positive aspects of the disorder, it is often associated with a range of negative outcomes for that are detrimental to children's education and wider well-being. This comprehensive scoping review examined…
The Revised DCDQ: Is It a Suitable Screening Measure for Motor Difficulties in Adolescents?
ERIC Educational Resources Information Center
Pannekoek, Linda; Rigoli, Daniela; Piek, Jan P.; Barrett, Nicholas C.; Schoemaker, Marina
2012-01-01
The parent-rated Developmental Coordination Disorder Questionnaire (DCDQ) has been revised to incorporate a wider age range, including adolescence. In this exploratory study, internal consistency and validity of the DCDQ-2007 was assessed using a community-based sample of 87 adolescents. Psychometric properties of the DCDQ-2007 were investigated…
Interactional Competence in a Paired Speaking Test: Features Salient to Raters
ERIC Educational Resources Information Center
May, Lyn
2011-01-01
Paired speaking tests are now commonly used in both high-stakes testing and classroom assessment contexts. The co-construction of discourse by candidates is regarded as a strength of paired speaking tests, as candidates have the opportunity to display a wider range of interactional competencies, including turn taking, initiating topics, and…
Education Policy Studies in South Africa, 1995-2006
ERIC Educational Resources Information Center
Deacon, Roger; Osman, Ruksana; Buchler, Michelle
2010-01-01
This article reports on findings pertaining to scholarship in education policy drawn from a wider study on all education research in South Africa from 1995 to 2006. This study, which defined education research as broadly pertaining to teaching and/or learning, obtained extensive data from a wide range of sources, including universities, public…
A table for converting pH to hydrogen ion concentration [H+] over the range 5-9.
DOT National Transportation Integrated Search
1968-10-01
The wider use, in the future, of hydrogen ion concentration (H+) rather than pH to describe and evaluate acid-base status will require interconversion of the two notations until a final standard is adopted. The relationship between pH and (H+) is giv...
Burns, Jacky; Conway, David I; Gnich, Wendy; Macpherson, Lorna M D
2017-03-08
Poor health and health inequalities persist despite increasing investment in health improvement programmes across high-income countries. Evidence suggests that to reduce health inequalities, a range of activities targeted at different levels within society and throughout the life course should be employed. There is a particular focus on addressing inequalities in early years as this may influence the experience of health in adulthood. To address the wider determinants of health at a community level, a key intervention which can be considered is supporting patients to access wider community resources. This can include processes such as signposting, referral and facilitation. There is a lack of evidence synthesis in relation to the most effective methods for linking individuals from health services to other services within communities, especially when considering interventions aimed at families with young children. The aim of this study is to understand the way health services can best help parents, carers and families with pre-school children to engage with local services, groups and agencies to address their wider health and social needs. The review may inform future guidance to support families to address wider determinants of health. The study is a systematic review, and papers will be identified from the following electronic databases: Web of Science, Embase, MEDLINE and CINAHL. A grey literature search will be conducted using an internet search engine and specific grey literature databases (TRiP, EThOS and Open Grey). Reference lists/bibliographies of selected papers will be searched. Quality will be assessed using the Effective Public Health Practice Project Quality Assessment Tool for quantitative studies and the CASP tool for qualitative studies. Data will be synthesised in a narrative form and weighted by study quality. It is important to understand how health services can facilitate access to wider services for their patients to address the wider determinants of health. This may impact on the experience of health inequalities. This review focuses on how this can be achieved for families with pre-school children, and the evidence obtained will be useful for informing future guidance on this topic. PROSPERO CRD42016034066.
New families of carbon gels based on natural resources
NASA Astrophysics Data System (ADS)
Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain
2013-03-01
Carbon gels are versatile materials which can be used for many applications. They are extremely expensive, because generally prepared from resorcinol - formaldehyde (RF) resins first gelled and next dried with supercritical carbon dioxide. In the present work, resorcinol has been substituted partly or completely by tannins, a family of molecules extracted from mimosa tree barks. Tannins are natural, non-toxic products, typically thirty times cheaper than resorcinol. Their chemical resemblance with the latter makes them be often called natural resorcinol. Using tannins not only substantially decreases the cost but also allows preparing materials in a much wider range of pHs than that usually employed for RF gels. Consequently the main pore size and the fraction of given families of pores, controlling the carbon gels' properties, are tuned in an easier way, and a much wider range of pore structures is obtained. Finally, two alternative ways of drying are suggested for further decreasing the cost: freeze-drying and supercritical drying in acetone. Both are shown to lead, in some conditions described below, to materials having similar characteristics to those of expensive RF carbon aerogels previously dried in supercritical CO2.
A new catalogue of ultraluminous X-ray sources (and more!)
NASA Astrophysics Data System (ADS)
Roberts, T.; Earnshaw, H.; Walton, D.; Middleton, M.; Mateos, S.
2017-10-01
Many of the critical issues of ultraluminous X-ray source (ULX) science - for example the prevalence of IMBH and/or ULX pulsar candidates within the wider ULX population - can only be addressed by studying statistical samples of ULXs. Similarly, characterising the range of properties displayed by ULXs, and so understanding their accretion physics, requires large samples of objects. To this end, we introduce a new catalogue of 376 ultraluminous X-ray sources and 1092 less luminous point X-ray sources associated with nearby galaxies, derived from the 3XMM-DR4 catalogue. We highlight applications of this catalogue, for example the identification of new IMBH candidates from the most luminous ULXs; and examining the physics of objects at the Eddington threshold, where their luminosities of ˜ 10^{39} erg s^{-1} indicate their accretion rates are ˜ Eddington. We also show how the catalogue can be used to start to examine a wider range of lower luminosity (sub-ULX) point sources in star forming galaxies than previously accessible through spectral stacking, and argue why this is important for galaxy formation in the high redshift Universe.
Precise and versatile formula for birefringent filters
NASA Astrophysics Data System (ADS)
Shao, Zhongxing
1996-07-01
In an investigation of extraordinary-(E-) ray behavior and the index of refraction for E waves in a uniaxial crystal, a precise and versatile formula for birefringent filters, based on the exact construction of the optical path difference, is set up with neither the approximation Delta n = no - ne less than or equals no (or n e), nor the ambiguity sin( theta )/sin(rw) = ne. The exact construction gives the correct variation of the position and the dimension in each path, yielding the path difference while the filter is tuning. The formula is applicable not only to a filter with its optical axis parallel to the entrance surface (FAPS) but also to a filter with its axis inclined to the surface (FAIS). Also, the formula indicates that a FAIS allows laser wavelengths to be tuned over a wider range than does a FAPS. The origin of the wider range is interpreted to be the greater variation in the index for the FAIS while the filter is tuning. With the help of the formula we design a FAIS for tuning a cw 42.25.Lc.
Yang, Jenn-Ming; Yang, Shwu-Huey; Huang, Wen-Chen; Tzeng, Chii-Ruey
2013-07-01
To determine morphologic differences between Monarc and TVT-O procedures in axial and coronal planes by three- and four-dimensional (3D and 4D) ultrasound. Retrospective chart audits and ultrasound analyses were conducted on 128 women who had undergone either Monarc or TVT-O procedures for urodynamic stress incontinence. Thirty matched pairs of the two successful procedures were randomly selected and compared. Matched variables were age, parity, body mass index, cesarean status, menopausal status, and primary surgeries. Six-month postoperative 3D and 4D ultrasound results obtained at rest, on straining, and during coughing in these 60 women were analyzed. Assessed ultrasound parameters included the axial tape urethral distance (aTUD), axial central urethral echolucent area (aUCEA), axial tape angle (aTA), and coronal tape angle (cTA), all of which were measured at three equidistant points along the tapes. Paired t-tests were used to compare differences in ultrasound parameters between women after the two procedures and a P value <0.004 was considered significant after Bonferroni correction. At rest, women subjected to Monarc procedures had a significantly wider aTA at one-fourth of the tape and a wider cTA at one-, two-, and three-fourths of the tape than did those subjected to TVT-O procedures. There were no significant differences in other resting ultrasound parameters between these two procedures. Additionally, after both procedures women had comparable straining and coughing ultrasound manifestations as well as respective dynamic changes. Despite flatter resting tape angulations in women following Monarc procedures, both Monarc and TVT-O tapes had equivalent dynamic patterns and changes assessed by 4D ultrasound. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Dynamics of ARF regulation that control senescence and cancer.
Ko, Aram; Han, Su Yeon; Song, Jaewhan
2016-11-01
ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer. [BMB Reports 2016; 49(11): 598-606].
Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji
2016-01-01
This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins. Guest Editors: J.C. Gumbart and Sergei Noskov. PMID:26766517
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Meixner, T.; Ferré, T. P. A.; Williams, M. W.; Sickman, J. O.; Molotch, N. P.; Jepsen, S. M.
2014-12-01
The role of dynamic storage in catchment discharge response to earlier snowmelt timing has not been fully quantified. Green Lake 4 (GL4) and Emerald Lake Watershed (ELW) have similar high-elevation settings but GL4 has greater estimated storage capacity relative to ELW due to differences in physical structure. Daily catchment area-normalized input (modelled snowmelt estimates) and output (measured discharge) in conjunction with mineral weathering products (hydrochemical data) for eleven snowmelt seasons from GL4 (more storage) and ELW (less storage) were used to determine the role of dynamic storage at the catchment scale. Daily fluxes generally show snowmelt is greater than discharge initially, changing mid-season to discharge being greater than snowmelt, creating a counter-clockwise hysteresis loop for each snowmelt season. This hysteresis loop can be approximated with a least-squares fitted ellipse. The properties of fitted ellipses were used to quantify catchment response, which were then compared between catchments with different storage capacities (GL4 and ELW). The eccentricity of the fitted ellipses can be used to quantify delay between snowmelt and discharge due to connection to subsurface storage; narrower loops show minimal storage delay whereas wider loops show greater storage delay. Variability of mineral weathering products shows changes in contribution from stored water over the snowmelt season. Both catchments show a moderate linear correlation between fitted ellipse area and total snowmelt volume (GL4 R2=0.516, ELW R2=0.614). Ellipse eccentricity is more consistent among years in ELW (range=0.81-0.94) than in GL4 (range=0.54-0.95), indicating a more consistent hydrologic structure and connectivity to shallow storage at ELW. The linear correlation between seasonal eccentricity versus snowmelt timing is stronger in ELW than GL4 (R2=0.741 and 0.223, respectively). ELW shows hydrochemical response independent of snowmelt timing, whereas GL4 shows more variability. The larger storage capacity of GL4 allows for a greater range of physical and chemical response to input conditions. The limited storage capacity of ELW shows greater vulnerability of physical response to changes in snowmelt conditions, though chemical response remains constant regardless of snowmelt conditions.
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
[A difficult stabilisation. Chlorpromazine in the fifties in Belgium].
Majerus, Benoît
2010-01-01
Through a Belgian case study the article tries to trace the gradual stabilisation of chlorpromazine as an antipsychotic in the 1950s. By varying ranges and angles of approach it shows the heterogeneity of actors involved and the semantic bricolage that accompany the marketing of the first antipsychotic. Far from being a revolution, the presence of Largactil in psychiatric practice is rather characterised by integration into a wider range of medicines and sinuous searching to give sense to this new drug.
C4 Photosynthesis in Tree Form Euphorbia Species from Hawaiian Rainforest Sites 1
Pearcy, Robert W.; Troughton, John
1975-01-01
The 13C 12C isotope ratios and the leaf anatomy of 18 species and varieties of Euphorbia native to the Hawaian Islands indicated that all possess C4 photosynthesis. These species range from small prostrate coastal strand shrubs to shrubs and trees in rainforest and bog habitats. The results show that C4 photosynthesis occurs in plants from a much wider range of habitats and life-forms than has been previously reported. PMID:16659208
An Optimized Control for LLC Resonant Converter with Wide Load Range
NASA Astrophysics Data System (ADS)
Xi, Xia; Qian, Qinsong
2017-05-01
This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.
Carlson Mazur, Martha L.; Michael J. Wiley,; Douglas A. Wilcox,
2015-01-01
The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions.
NASA Astrophysics Data System (ADS)
Gimenez, Juan M.; González, Leo M.
2015-03-01
In this paper, a new generation of the particle method known as Particle Finite Element Method (PFEM), which combines convective particle movement and a fixed mesh resolution, is applied to free surface flows. This interesting variant, previously described in the literature as PFEM-2, is able to use larger time steps when compared to other similar numerical tools which implies shorter computational times while maintaining the accuracy of the computation. PFEM-2 has already been extended to free surface problems, being the main topic of this paper a deep validation of this methodology for a wider range of flows. To accomplish this task, different improved versions of discontinuous and continuous enriched basis functions for the pressure field have been developed to capture the free surface dynamics without artificial diffusion or undesired numerical effects when different density ratios are involved. A collection of problems has been carefully selected such that a wide variety of Froude numbers, density ratios and dominant dissipative cases are reported with the intention of presenting a general methodology, not restricted to a particular range of parameters, and capable of using large time-steps. The results of the different free-surface problems solved, which include: Rayleigh-Taylor instability, sloshing problems, viscous standing waves and the dam break problem, are compared to well validated numerical alternatives or experimental measurements obtaining accurate approximations for such complex flows.
Developmental mechanisms in the prodrome to psychosis
Walker, Elaine F.; Trotman, Hanan D.; Goulding, Sandra M.; Holtzman, Carrie W.; Ryan, Arthur T.; McDonald, Allison; Shapiro, Daniel I.; Brasfield, Joy L.
2014-01-01
Psychotic disorders continue to be among the most disabling and scientifically challenging of all mental illnesses. Accumulating research findings suggest that the etiologic processes underlying the development of these disorders are more complex than had previously been assumed. At the same time, this complexity has revealed a wider range of potential options for preventive intervention, both psychosocial and biological. In part, these opportunities result from our increased understanding of the dynamic and multifaceted nature of the neurodevelopmental mechanisms involved in the disease process, as well as the evidence that many of these entail processes that are malleable. In this article, we review the burgeoning research literature on the prodrome to psychosis, based on studies of individuals who meet clinical high risk criteria. This literature has examined a range of factors, including cognitive, genetic, psychosocial, and neurobiological. We then turn to a discussion of some contemporary models of the etiology of psychosis that emphasize the prodromal period. These models encompass the origins of vulnerability in fetal development, as well as postnatal stress, the immune response, and neuromaturational processes in adolescent brain development that appear to go awry during the prodrome to psychosis. Then, informed by these neurodevelopmental models of etiology, we turn to the application of new research paradigms that will address critical issues in future investigations. It is expected that these studies will play a major role in setting the stage for clinical trials aimed at preventive intervention. PMID:24342857
Comparative visual ecophysiology of mid-Atlantic temperate reef fishes
Horodysky, Andrij Z.; Brill, Richard W.; Crawford, Kendyl C.; Seagroves, Elizabeth S.; Johnson, Andrea K.
2013-01-01
Summary The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata]) were studied via electroretinography (ERG). Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400–610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes. PMID:24285711
Seasonality of a boreal forest: a remote sensing perspective
NASA Astrophysics Data System (ADS)
Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan
2016-04-01
Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.
Dynamics of venom composition across a complex life cycle
Macrander, Jason; Fridrich, Arie; Modepalli, Vengamanaidu; Reitzel, Adam M; Sunagar, Kartik
2018-01-01
Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostella vectensis suggests that venom is already expressed in eggs and larvae of this species. Here, we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle. PMID:29424690
Capturing change: the duality of time-lapse imagery to acquire data and depict ecological dynamics
Brinley Buckley, Emma M.; Allen, Craig R.; Forsberg, Michael; Farrell, Michael; Caven, Andrew J.
2017-01-01
We investigate the scientific and communicative value of time-lapse imagery by exploring applications for data collection and visualization. Time-lapse imagery has a myriad of possible applications to study and depict ecosystems and can operate at unique temporal and spatial scales to bridge the gap between large-scale satellite imagery projects and observational field research. Time-lapse data sequences, linking time-lapse imagery with data visualization, have the ability to make data come alive for a wider audience by connecting abstract numbers to images that root data in time and place. Utilizing imagery from the Platte Basin Timelapse Project, water inundation and vegetation phenology metrics are quantified via image analysis and then paired with passive monitoring data, including streamflow and water chemistry. Dynamic and interactive time-lapse data sequences elucidate the visible and invisible ecological dynamics of a significantly altered yet internationally important river system in central Nebraska.
Bai, Yunjun; Wei, Xueping
2018-01-01
Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
The evolution of a Müllerian mimic in a spatially distributed community.
Joron, Mathieu; Iwasa, Yoh
2005-11-07
Strong positive density-dependence should lead to a loss of diversity, but warning-colour and Müllerian mimicry systems show extraordinary levels of diversity. Here, we propose an analytical model to explore the dynamics of two forms of a Müllerian mimic in a heterogeneous environment with two alternative model species. Two connected populations of a dimorphic, chemically defended mimic are allowed to evolve and disperse. The proportions of the respective model species vary spatially. We use a nonlinear approximation of Müller's number-dependent equations to model a situation where the mortality for either form of the mimic decreases hyberbolically when its local density increases. A first non-spatial analysis confirms that the positive density-dependence makes coexistence of mimetic forms unstable in a single isolated patch, but shows that mimicry of the rarer model can be stable once established. The two-patch analysis shows that when models have different abundance in different places, local mimetic diversity in the mimic is maintained only if spatial heterogeneity is strong, or, more interestingly, if the mimic is not too strongly distasteful. Therefore, mildly toxic species can become polymorphic in a wider range of ecological settings. Spatial dynamics thus reveal a region of Müllerian polymorphism separating classical Batesian polymorphism and Müllerian monomorphism along the mimic's palatability spectrum. Such polymorphism-palatability relationship in a spatial environment provides a parsimonious hypothesis accounting for the observed Müllerian polymorphism that does not require quasi-Batesian dynamics. While the stability of coexistence depends on all factors, only the migration rate and strength of selection appear to affect the level of diversity at the polymorphic equilibrium. Local adaptation is predicted in most polymorphic cases. These results are in very good accordance with recent empirical findings on the polymorphic butterflies Heliconius numata and H. cydno.
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
NASA Astrophysics Data System (ADS)
Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.
2015-12-01
In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.
Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang
2018-01-01
The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.
An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mese, Ali; Dvorkin, Jack; Shillinglaw, John
2000-09-11
This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.
Mathematical Fluid Dynamics of Plasma Flow Control over High Speed Wings
2010-12-01
discharges ( DBD ) that fall into a wider class of discharges known as surface barrier discharges (SBD). In 2004-2006 we have improved the fidelity of our...K E\\ exp K B\\ r + 4 T T , I CAp ./or /•: > 0 Jont --, ,/ ^ if y = fe ( , .(• < (). Ev < 0 0 if (/ = 0. i > 0 (2.20) (2.21...obtained data are not sufficient to predict the momentum and heat sources induced by actual DBD -plasma actuators. These sources result from few tens of
A physical approach to the numerical treatment of boundaries in gas dynamics
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
Two types of boundaries are considered: rigid walls, and artificial (open) boundaries which were arbitrarily drawn somewhere across a wider flow field. A set of partial differential equations (typically, the Euler equations) has an infinite number of solutions, each one defined by a set of initial and boundary conditions. The initial conditions remaining the same, any change in the boundary conditions will produce a new solution. To pose the problem well, a necessary and sufficient number of boundary conditions are prescribed.
Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.
Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd
2015-09-28
Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
An, Hao; Wang, Changhong; Fidan, Baris
2017-10-01
This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1992-01-01
A discussion is given of the many factors that affect sonic booms with particular emphasis on the application and development of improved computational fluid dynamics (CFD) codes. The benefits that accrue from interference (induced) lift, distributing lift using canard configurations, the use of wings with dihedral or anhedral and hybrid laminar flow control for drag reduction are detailed. The application of the most advanced codes to a wider variety of configurations along with improved ray-tracing codes to arrive at more accurate and, hopefully, lower sonic booms is advocated. Finally, it is speculated that when all of the latest technology is applied to the design of a supersonic transport it will be found environmentally acceptable.
Collective translational and rotational Monte Carlo cluster move for general pairwise interaction
NASA Astrophysics Data System (ADS)
Růžička, Štěpán; Allen, Michael P.
2014-09-01
Virtual move Monte Carlo is a cluster algorithm which was originally developed for strongly attractive colloidal, molecular, or atomistic systems in order to both approximate the collective dynamics and avoid sampling of unphysical kinetic traps. In this paper, we present the algorithm in the form, which selects the moving cluster through a wider class of virtual states and which is applicable to general pairwise interactions, including hard-core repulsion. The newly proposed way of selecting the cluster increases the acceptance probability by up to several orders of magnitude, especially for rotational moves. The results have their applications in simulations of systems interacting via anisotropic potentials both to enhance the sampling of the phase space and to approximate the dynamics.
Gossip and emotion in nursing and health-care organizations.
Waddington, Kathryn; Fletcher, Clive
2005-01-01
The purpose of this paper is to examine the relationship between gossip and emotion in health-care organizations. It draws on findings from empirical research exploring the characteristics and function of gossip which, to date, has been a relatively under-researched organizational phenomenon. A multidisciplinary approach was adopted, drawing on an eclectic range of discipline-based theories, skills, ideas and data. Methods included repertory grid technique, in-depth interviews and structured diary records of work-related gossip. The sample comprised 96 qualified nurses working in a range of practice areas and organizational settings in the UK. Template analysis was used to integrate findings across three phases of data collection. The findings revealed that gossip is used to express a range of emotions including care and concern about others, anger, annoyance and anxiety, with emotional outcomes that include feeling reassured and supported. It is the individual who gossips, while the organization provides the content, emotional context, triggers and opportunities. Nurses were chosen as an information-rich source of data, but the findings may simply reflect the professional culture and practice of nursing. Future research should take into account a wider range of health-care organizational roles and perspectives in order to capture the dynamics and detail of the emotions and relationships that initiate and sustain gossip. Because gossip makes people feel better it may serve to reinforce the "stress mask of professionalism", hiding issues of conflict, vulnerability and intense emotion. Managers need to consider what the emotions expressed through gossip might represent in terms of underlying issues relating to organizational health, communication and change. This paper makes a valuable contribution to the under-researched phenomenon of gossip in organizations and adds to the growing field of research into the role of emotion in health-care organizations and emotion work in nursing.
Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight
NASA Technical Reports Server (NTRS)
Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J; Berton, Jeffrey J.
2009-01-01
This document describes the development of further extensions and improvements to the jet noise model developed by Modern Technologies Corporation (MTC) for the National Aeronautics and Space Administration (NASA). The noise component extraction and correlation approach, first used successfully by MTC in developing a noise prediction model for two-dimensional mixer ejector (2DME) nozzles under the High Speed Research (HSR) Program, has been applied to dual-stream nozzles, then extended and improved in earlier tasks under this contract. Under Task 6, the coannular jet noise model was formulated and calibrated with limited scale model data, mainly at high bypass ratio, including a limited-range prediction of the effects of mixing-enhancement nozzle-exit chevrons on jet noise. Under Task 9 this model was extended to a wider range of conditions, particularly those appropriate for a Supersonic Business Jet, with an improvement in simulated flight effects modeling and generalization of the suppressor model. In the present task further comparisons are made over a still wider range of conditions from more test facilities. The model is also further generalized to cover single-stream nozzles of otherwise similar configuration. So the evolution of this prediction/analysis/correlation approach has been in a sense backward, from the complex to the simple; but from this approach a very robust capability is emerging. Also from these studies, some observations emerge relative to theoretical considerations. The purpose of this task is to develop an analytical, semi-empirical jet noise prediction method applicable to takeoff, sideline and approach noise of subsonic and supersonic cruise aircraft over a wide size range. The product of this task is an even more consistent and robust model for the Footprint/Radius (FOOTPR) code than even the Task 9 model. The model is validated for a wider range of cases and statistically quantified for the various reference facilities. The possible role of facility effects will thus be documented. Although the comparisons that can be accomplished within the limited resources of this task are not comprehensive, they provide a broad enough sampling to enable NASA to make an informed decision on how much further effort should be expended on such comparisons. The improved finalized model is incorporated into the FOOTPR code. MTC has also supported the adaptation of this code for incorporation in NASA s Aircraft Noise Prediction Program (ANOPP).
What Can the Work of Habermas Offer Educational Researcher Development Programmes?
ERIC Educational Resources Information Center
Garland, Paul
2014-01-01
Although certain aspects of the work of Habermas have had much influence on emancipatory and action research, this article draws on a wider range of his thinking in order to explore how his ideas can inform the content and process of educational researcher development programmes. Habermas's theory of communicative action, his discourse ethics…
ERIC Educational Resources Information Center
Rudd, Tim
2017-01-01
This paper offers conceptual and theoretical insights relating to the Teaching Excellence Framework (TEF), highlighting a range of potential systemic and institutional outcomes and issues. The paper is organised around three key areas of discussion that are often under-explored in debates. Firstly, after considering the TEF in the wider context of…
ERIC Educational Resources Information Center
Welch, Karla Conn; Hieb, Jeffrey; Graham, James
2015-01-01
Coursework that instills patterns of rigorous logical thought has long been a hallmark of the engineering curriculum. However, today's engineering students are expected to exhibit a wider range of thinking capabilities both to satisfy ABET requirements and to prepare the students to become successful practitioners. This paper presents the initial…
A Review of Self-Report and Alternative Approaches in the Measurement of Student Motivation
ERIC Educational Resources Information Center
Fulmer, Sara M.; Frijters, Jan C.
2009-01-01
Within psychological and educational research, self-report methodology dominates the study of student motivation. The present review argues that the scope of motivation research can be expanded by incorporating a wider range of methodologies and measurement tools. Several authors have suggested that current study of motivation is overly reliant on…
ERIC Educational Resources Information Center
Ari, Omer
2009-01-01
Fluency instruction has had limited effects on reading comprehension relative to reading rate and prosodic reading (Dowhower, 1987; Herman, 1985; National Institute of Child Health and Human Development, 2000a). More specific components (i.e., error detection) of comprehension may yield larger effects through exposure to a wider range of materials…
ERIC Educational Resources Information Center
Loyalka, Prashant Kumar
2009-01-01
Since the late 1990s, China has dramatically increased its college enrollments, the number and diversity of its higher education institutions, university tuition fees, and financial aid. Now students from a wider range of backgrounds have significantly more opportunities to attend college and also compete for entry into more selective…
Transforming Science Education for the Anthropocene--Is It Possible?
ERIC Educational Resources Information Center
Gilbert, Jane
2016-01-01
Since its inception, science education has been the focus of a great many reform attempts. In general, the aim has been to improve science understanding and/or make science study more interesting and/or relevant to a wider range of students. However, these reform attempts have had limited success. This paper argues that this is in part because…
The Socio-Cultural and Learning Experiences of Music Students in a British University
ERIC Educational Resources Information Center
Dibben, Nicola
2006-01-01
Research into student experience in Higher Education has largely focused on students' role as learners. However, the student experience encompasses a much wider range of behaviours and beliefs than can be captured through a focus on teaching and learning alone. I report the findings of a research project which explored student experience in the…
Archaebacterial Involvement in Microbial Metal Corrosion
1990-03-19
viand /or + I A-o- - iP’ " ’ I m I I | | A more complete study using a wider range of sizes of organo groups is currently being completed to further...replaced with Dr. Boopathy, who comes from the University of Missouri. Through Dr. Rajogopal’s visit last year to work with the French-Georgia group ( Le
ERIC Educational Resources Information Center
Stansfield, Jayne
2008-01-01
To make the Mathematics Enhancement Course (MEC) students realize that mathematics exist in a wider range of forms and environments than most will have encountered before, they are sent out on several trips and visits during the six-month course. This year one of the trips was to spend a day at the ATM conference. Afterwards the students had to…
Galactic water vapor emission: further observations of variability.
Knowles, S H; Mayer, C H; Sullivan, W T; Cheung, A C
1969-10-10
Recent observations of the 1.35-centimeter line emission of water vapor from galactic sources show short-term variability in the spectra of several sources. Two additional sources, Cygnus 1 and NGC 6334N, have been observed, and the spectra of W49 and VY Canis Majoris were measured over a wider range of radial velocity.
Measures of Disadvantage: Is Car Ownership a Good Indicator?
ERIC Educational Resources Information Center
Johnson, Victoria; Currie, Graham; Stanley, Janet
2010-01-01
A need to better understand the multidimensional nature of disadvantage is leading to the adoption of a wider range of measurement variables. One variable now commonly adopted is zero car ownership. This paper challenges the logic of including "not having a car" as an indicator of disadvantage. It argues that this can distort the real picture of…
What We Learned from a Tomato: Partnering with a Content Expert Plants New Ideas for Instruction
ERIC Educational Resources Information Center
Ermeling, Bradley A.
2014-01-01
The interactions described in this article represent an example of teachers expanding horizons of instructional plans as a direct result of outside expert contributions. After alerting teachers to oversimplified claims about the benefits of lycopene, the research fellow presented the team with a wider range of instructional options to consider…
The Relations Between Student Organizations and the Wider University. Final Report.
ERIC Educational Resources Information Center
Gamson, Zelda F.
This report presents the findings from a study of student organizations at the University of Michigan. Four religious groups, 5 political groups, 10 sororities and 10 fraternities were chosen to represent a range of groups within each of the types. The study was undertaken to determine (1) the impact of formal student organizations on their…
Parent-Child Moments of Meeting in Art-Making with Collage, iPad, Tuxpaint and Crayons
ERIC Educational Resources Information Center
Sakr, Mona; Kucirkova, Natalia
2017-01-01
Previous research suggests that parent-child art making can foster opportunities for closeness between children and parents. Most studies however, have focused on art-making that involves paint and paper, or non-digital drawing technologies. There is a need for researchers to consider how a wider range of technologies, including digital…
Reflecting on the Challenges of Applied Theatre in Kenya
ERIC Educational Resources Information Center
Okuto, Maxwel; Smith, Bobby
2017-01-01
In this article the authors draw on their own experience and research in applied theatre in Kenya in order to reflect on challenges currently facing practitioners working in the country. In order to outline the range of challenges faced by practitioners, issues related to the wider landscapes of government and politics in Kenya are explored,…
The mouse lymphoma assay is widely used to identify chemicals that are capable of inducing mutational damages. The Tk+/- gene located on an autosome in mouse lymphoma cells may recover a wider range of mutational events than the X-linked Hprt locus. However, chemical-induced muta...
The College Ladder: Linking Secondary and Postsecondary Education for Success for All Students
ERIC Educational Resources Information Center
Lerner, Jennifer Brown; Brand, Betsy
2006-01-01
This compendium identifies and describes schools, programs, and policies that link secondary and postsecondary education to help students earn college credit or take college-level courses while in high school. It raises issues for practitioners and policymakers to consider as these program grow and target a wider range of students. This compendium…
Resource Delivery and Teaching in Live Chat Reference: Comparing Two Libraries
ERIC Educational Resources Information Center
Dempsey, Paula R.
2017-01-01
This study investigates how reference staff at two libraries balance teaching with resource delivery in live chat reference. Analysis of 410 transcripts from one week shows that one library tends to deliver more resources from a wider range of database suggestions, to take more time in chat interactions, and to incorporate more teaching behavior…
Reviews of National Policies for Education: Quality Assurance in Higher Education in Chile 2013
ERIC Educational Resources Information Center
OECD Publishing (NJ3), 2013
2013-01-01
Growth and diversity have characterised higher education in OECD countries for fifty years. Chile is no exception and has experienced dramatic increases in the number of students, the range of institutions and the programmes that they offer. But wider participation and diversification are only part of the story. Chilean society remains highly…
Three Million Apprenticeships: Building Ladders of Opportunity
ERIC Educational Resources Information Center
Learning and Work Institute, 2017
2017-01-01
Apprenticeships are a great way to combine learning and earning and meet employers' skills needs. That is why they have a long history dating back several centuries, though today's apprenticeships have a wider focus including on all ages, a range of levels, and existing as well as new employees. Changes in the economy, and the importance of skills…
Conceptual Design for the New RPI 2020 Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adolphsen, C.; Bane, K.; Dolgashev, V.
2014-10-29
The Rensselaer Polytechnic Institute (RPI) spectrometer is an installation based on an L-band linear accelerator designed and installed many decades ago. While this installation has served many important experiments over the decades, a new more powerful and more flexible linac to serve a wider range of experiments is envisioned as an upgrade to the existing installation by 2020.
Semantic Interaction in Early and Late Bilinguals: All Words Are Not Created Equally
ERIC Educational Resources Information Center
Gathercole, Virginia C. Mueller; Moawad, Ruba Abdelmatloub
2010-01-01
This study examines L1-L2 interaction in semantic categorization in early and late L2 learners. Word categories that overlapped but were not identical in Arabic and English were tested. Words always showed a "wider" range of application in one language, "narrower" in the other. Three types of categories--"classical", "radial", and…
Do Junior High School Students Perceive Their Learning Environment as Constructivist?
ERIC Educational Resources Information Center
Moustafa, Asely; Ben-Zvi-Assaraf, Orit; Eshach, Haim
2013-01-01
The purpose of this study is to examine the manner in which the features of a constructivist learning environment, and the mechanisms at its base, are expressed in junior high school students' conceptions. Our research is based on an integration of quantitative and qualitative approaches, deigned to provide a wider ranging and deeper…
Implications of non-covalent interactions in zein-starch dough and bread quality
USDA-ARS?s Scientific Manuscript database
Breads made from non-wheat flours are made from thick batters and are lower quality than wheat bread. The development of visco-elastic doughs from non-wheat proteins would allow a wider range of gluten-free products and would improve the quality of such foods. Only recently has the mechanism of zei...
Framing health for land-use planning legislation: A qualitative descriptive content analysis.
Harris, Patrick; Kent, Jennifer; Sainsbury, Peter; Thow, Anne Marie
2016-01-01
Framing health as a relevant policy issue for other sectors is not well understood. A recent review of the New South Wales (Australia) land-use planning system resulted in the drafting of legislation with an internationally unprecedented focus on human health. We apply a political science approach to investigate the question 'how and to what extent were health and wider issues framed in submissions to the review?' We investigated a range of stakeholder submissions including health focussed agencies (n = 31), purposively identified key stakeholders with influence on the review (n = 24), and a random sample of other agencies and individuals (n = 47). Using qualitative descriptive analysis we inductively coded for the term 'health' and sub-categories. We deductively coded for 'wider concerns' using a locally endorsed 'Healthy Urban Development Checklist'. Additional inductive analysis uncovered further 'wider concerns'. Health was explicitly identified as a relevant issue for planning policy only in submissions by health-focussed agencies. This framing concerned the new planning system promoting and protecting health as well as connecting health to wider planning concerns including economic issues, transport, public open space and, to a slightly lesser extent, environmental sustainability. Key stakeholder and other agency submissions focussed on these and other wider planning concerns but did not mention health in detail. Health agency submissions did not emphasise infrastructure, density or housing as explicitly as others. Framing health as a relevant policy issue has the potential to influence legislative change governing the business of other sectors. Without submissions from health agencies arguing the importance of having health as an objective in the proposed legislation it is unlikely health considerations would have gained prominence in the draft bill. The findings have implications for health agency engagement with legislative change processes and beyond in land use planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bailey, Geoffrey N; Reynolds, Sally C; King, Geoffrey C P
2011-03-01
This paper examines the relationship between complex and tectonically active landscapes and patterns of human evolution. We show how active tectonics can produce dynamic landscapes with geomorphological and topographic features that may be critical to long-term patterns of hominin land use, but which are not typically addressed in landscape reconstructions based on existing geological and paleoenvironmental principles. We describe methods of representing topography at a range of scales using measures of roughness based on digital elevation data, and combine the resulting maps with satellite imagery and ground observations to reconstruct features of the wider landscape as they existed at the time of hominin occupation and activity. We apply these methods to sites in South Africa, where relatively stable topography facilitates reconstruction. We demonstrate the presence of previously unrecognized tectonic effects and their implications for the interpretation of hominin habitats and land use. In parts of the East African Rift, reconstruction is more difficult because of dramatic changes since the time of hominin occupation, while fossils are often found in places where activity has now almost ceased. However, we show that original, dynamic landscape features can be assessed by analogy with parts of the Rift that are currently active and indicate how this approach can complement other sources of information to add new insights and pose new questions for future investigation of hominin land use and habitats. Copyright © 2010 Elsevier Ltd. All rights reserved.
Access to medicines from a health system perspective
Bigdeli, Maryam; Jacobs, Bart; Tomson, Goran; Laing, Richard; Ghaffar, Abdul; Dujardin, Bruno; Van Damme, Wim
2013-01-01
Most health system strengthening interventions ignore interconnections between systems components. In particular, complex relationships between medicines and health financing, human resources, health information and service delivery are not given sufficient consideration. As a consequence, populations' access to medicines (ATM) is addressed mainly through fragmented, often vertical approaches usually focusing on supply, unrelated to the wider issue of access to health services and interventions. The objective of this article is to embed ATM in a health system perspective. For this purpose, we perform a structured literature review: we examine existing ATM frameworks, review determinants of ATM and define at which level of the health system they are likely to occur; we analyse to which extent existing ATM frameworks take into account access constraints at different levels of the health system. Our findings suggest that ATM barriers are complex and interconnected as they occur at multiple levels of the health system. Existing ATM frameworks only partially address the full range of ATM barriers. We propose three essential paradigm shifts that take into account complex and dynamic relationships between medicines and other components of the health system. A holistic view of demand-side constraints in tandem with consideration of multiple and dynamic relationships between medicines and other health system resources should be applied; it should be recognized that determinants of ATM are rooted in national, regional and international contexts. These are schematized in a new framework proposing a health system perspective on ATM. PMID:23174879
Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta
2014-01-01
Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute "cognitive readiness," which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance.
Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus
2016-02-15
The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. © 2015 Wiley Periodicals, Inc.
Dorchin, Netta; Astrin, Jonas J.; Bodner, Levona; Harris, Keith M.
2015-01-01
The Palaearctic gall-midge genus Ozirhincus is unique among the Cecidomyiidae for its morphology and biology. Unlike most other phytophagous gall midges, species in this genus do not induce galls but develop inside achenes of Asteraceae plants. The heads of adults are characterized by an unusually elongate proboscis, the function of which is unclear. Despite a lot of attention from taxonomists in the 19th and early 20th century, a proper revision of the genus has been hindered by complex host associations, the loss of most relevant type material, and the lack of a thorough comparative study of all life stages. The present revision integrated morphological, molecular, and life-history data to clearly define species boundaries within Ozirhincus, and delimit host-plant ranges for each of them. A phylogenetic analysis based on the mitochondrial COI and 16S genes confirmed the validity of four distinct species but did not resolve the relationships among them. All species are oligophages, and some may occur together on the same host plant. Species with wider host-plant ranges have wider European and circum-Mediterranean distribution ranges, whereas species with narrower host ranges are limited to Europe and the Russian Far East. As part of the present work, O. hungaricus is reinstated from synonymy, O. tanaceti is synonymized under O. longicollis, neotypes are designated for O. longicollis and O. millefolii, and a lectotype is designated for O. anthemidis. PMID:26134526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun
Here, an entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace’s law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results.more » Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.« less
NASA Astrophysics Data System (ADS)
Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan
2018-03-01
An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.
A long-wave infrared hyperspectral sensor for Shadow class UAVs
NASA Astrophysics Data System (ADS)
Lucey, P. G.; Akagi, Jason T.; Hinrichs, John L.; Crites, S. T.; Wright, R.
2013-05-01
The University of Hawaii has developed a concept to ruggedize an existing thermal infrared hyperspectral system for use in the NASA SIERRA UAV. The Hawaii Institute of Geophysics and Planetology has developed a suite of instruments that acquire high spectral resolution thermal infrared image data with low mass and power consumption by combining microbolometers with stationary interferometers, allowing us to achieve hyperspectral resolution (20 wavenumbers between 8 and 14 micrometers), with signal to noise ratios as high as 1500:1. Several similar instruments have been developed and flown by our research group. One recent iteration, developed under NASA EPSCoR funding and designed for inclusion on a microsatellite (Thermal Hyperspectral Imager; THI), has a mass of 11 kg. Making THI ready for deployment on the SIERRA will involve incorporating improvements made in building nine thermal interferometric hyperspectral systems for commercial and government sponsors as part of HIGP's wider program. This includes: a) hardening the system for operation in the SIERRA environment, b) compact design for the calibration system, c) reconfiguring software for autonomous operation, d) incorporating HIGP-developed detectors with increased responsiveness at the 8 micron end of the TIR range, and e) an improved interferometer to increase SNR for imaging at the SIERRA's air speed. UAVs provide a unique platform for science investigations that the proposed instrument, UAVTHI, will be well placed to facilitate (e.g. very high temporal resolution measurements of temporally dynamic phenomena, such as wildfires and volcanic ash clouds). Its spectral range is suited to measuring gas plumes, including sulfur dioxide and carbon dioxide, which exhibit absorption features in the 8 to 14 micron range.
Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; ...
2018-03-22
Here, an entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace’s law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results.more » Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.« less
Narratives of neoliberalism: ‘clinical labour’ in context
Parry, Bronwyn
2015-01-01
Cross-border reproductive care has been thrust under the international spotlight by a series of recent scandals. These have prompted calls to develop more robust means of assessing the exploitative potential of such practices and the need for overarching and normative forms of national and international regulation. Allied theorisations of the emergence of forms of clinical labour have cast the outsourcing of reproductive services such as gamete donation and gestational surrogacy as artefacts of a wider neoliberalisation of service provision. These accounts share with many other narratives of neoliberalism a number of key assertions that relate to the presumed organisation of labour relations within this paradigm. This article critically engages with four assumptions implicit in these accounts: that clinical labourers constitute a largely homogeneous underclass of workers; that reproductive labour has been contractualised in ways that disembed it from wider social and communal relations; that contractualisation can provide protection for clinical labour lessening the need for formal regulatory oversight; and that the transnationalisation of reproductive service labour is largely unidirectional and characterised by a dynamic of provision in which ‘the rest’ services ‘the West’. Drawing on the first findings of a large-scale ethnographic research project into assisted reproduction in India I provide evidence to refute these assertions. In so doing the article demonstrates that while the outsourcing and contractualisation of reproductive labour may be embedded in a wider neoliberal paradigm these practices cannot be understood nor their impacts be fully assessed in isolation from their social and cultural contexts. PMID:26052118
Interfacial material for solid oxide fuel cell
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
NASA Astrophysics Data System (ADS)
Zapf, Marc Patrick H.; Boon, Mei-Ying; Lovell, Nigel H.; Suaning, Gregg J.
2016-04-01
Objective. The prospective efficacy of peripheral retinal prostheses for guiding orientation and mobility in the absence of residual vision, as compared to an implant for the central visual field (VF), was evaluated using simulated prosthetic vision (SPV). Approach. Sighted volunteers wearing a head-mounted display performed an obstacle circumvention task under SPV. Mobility and orientation performance with three layouts of prosthetic vision were compared: peripheral prosthetic vision of higher visual acuity (VA) but limited VF, of wider VF but limited VA, as well as centrally restricted prosthetic vision. Learning curves using these layouts were compared fitting an exponential model to the mobility and orientation measures. Main results. Using peripheral layouts, performance was superior to the central layout. Walking speed with both higher-acuity and wider-angle layouts was 5.6% higher, and mobility errors reduced by 46.4% and 48.6%, respectively, as compared to the central layout. The wider-angle layout yielded the least number of collisions, 63% less than the higher-acuity and 73% less than the central layout. Using peripheral layouts, the number of visual-scanning related head movements was 54.3% (higher-acuity) and 60.7% (wider-angle) lower, as compared to the central layout, and the ratio of time standing versus time walking was 51.9% and 61.5% lower, respectively. Learning curves did not differ between layouts, except for time standing versus time walking, where both peripheral layouts achieved significantly lower asymptotic values compared to the central layout. Significance. Beyond complementing residual vision for an improved performance, peripheral prosthetic vision can effectively guide mobility in the later stages of retinitis pigmentosa (RP) without residual vision. Further, the temporal dynamics of learning peripheral and central prosthetic vision are similar. Therefore, development of a peripheral retinal prosthesis and early implantation to alleviate VF constriction in RP should be considered to extend the target group and the time of benefit for potential retinal prosthesis implantees.
Entanglement and asymmetric steering over two octaves of frequency difference
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2017-12-01
The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.
Autogenic dynamics of debris-flow fans
NASA Astrophysics Data System (ADS)
van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten
2015-04-01
Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.
NASA Astrophysics Data System (ADS)
Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.
2004-03-01
Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.
ERIC Educational Resources Information Center
Rubino, Antonia; Cruickshank, Ken
2016-01-01
Australian research on immigrant languages has paid little attention to interactional approaches to language alternation as identity construction, and sites other than the family and the mainstream school. We argue for the need of studies that take into account a wider range of sites, in particular "community" sites, and adopt…
ERIC Educational Resources Information Center
Gillespie, Simon
2017-01-01
Educating a diverse student population is a core principle of international school education. Historically, many international schools have had admissions policies that excluded students with special learning needs. However, admission policies have changed to require more inclusiveness and school support for a wider range of students and for…
System for corrosion monitoring in pipeline applying fuzzy logic mathematics
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.
2018-05-01
A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.
How Organisations Are Using Blended E-Learning to Deliver More Flexible Approaches to Trade Training
ERIC Educational Resources Information Center
Callan, Victor James; Johnston, Margaret Alison; Poulsen, Alison Louise
2015-01-01
Training organisations are being asked to respond to the growing levels of diversity around the contexts for training and to examine a wider range of training solutions than in the past. This research investigates how training organisations in Australia are using blended forms of e-learning to provide more responsive, flexible and innovative…
Deeper Learning: Improving Student Outcomes for College, Career, and Civic Life. Policy Brief
ERIC Educational Resources Information Center
Bitter, Catherine; Loney, Emily
2015-01-01
The Issue: To prepare for the demands of postsecondary education and the workforce, students need to master content and build skills that allow them to collaborate with others, and then apply that knowledge to new situations. Students will be able to access a wider range of opportunities in college, career, and civic life if they possess the…
A Longitudinal Study of Post-School Provision for Irish School-Leavers with Intellectual Disability
ERIC Educational Resources Information Center
McConkey, Roy; Kelly, Fionnola; Craig, Sarah; Keogh, Fiona
2017-01-01
Background: In recent years, efforts have been made to improve the transition of pupils with intellectual disabilities to adult services and to offer a wider range of choices. However, there have been few longitudinal studies to monitor the services provided to young adults post-school. This case study in the Republic of Ireland identified the…
Assessing the Impact of Regeneration Spending: Lessons from the United Kingdom and the Wider World
ERIC Educational Resources Information Center
Potts, David
2008-01-01
The government increased the funding for regional development agencies to 2.3 billion British Pounds in 2007/8, yet hard evidence on the effectiveness of the spending is difficult to find. Techniques for valuing benefits in difficult areas have existed for many years. They range from the hedonic methods and contingent valuation studies of…
The Library of Birmingham Project: Lifelong Learning for the Digital Age
ERIC Educational Resources Information Center
Blewitt, John; Gambles, Brian
2010-01-01
The Library of Birmingham (LoB) is a 193 million British pounds project designed to provide a new space for lifelong learning and knowledge growth, a physical and virtual portal for Birmingham's citizens to the wider world. In cooperation with a range of private, public, and third-sector bodies, as well as individual citizens, the library, due to…
Responding to Self-Harm: A Documentary Analysis of Agency Policy and Procedure
ERIC Educational Resources Information Center
Paul, Sally; Hill, Malcolm
2013-01-01
This paper reports on the findings of a documentary analysis of policies and procedures relating to self-harm from a range of organisations working with young people in the UK. It identifies the extent to which policies and/or procedures relating to self-harm are available for service providers and offers a wider understanding of the concepts of…
ERIC Educational Resources Information Center
Soler, Josep; Björkman, Beyza; Kuteeva, Maria
2018-01-01
As universities seek to become more international, their need to engage with a wider range of languages, particularly English, seems more prominent. At the same time, universities are also regarded by many stakeholders as key institutions to preserve a given national language and culture. This apparent tension makes universities a fruitful ground…
ERIC Educational Resources Information Center
Cretchley, Patricia
2009-01-01
The Australian Federal Government and Australian universities have embarked on a bid to raise the profile of learning and teaching (L&T) in universities. Current strategies include increased funding of competitive grants for L&T projects, a wider range of teaching awards and fellowships and a controversial new national competitive Learning…
Dale G. Brockway; Kenneth W. Outcalt
2017-01-01
Though longleaf pine (Pinus palustris Mill.) forests have been primarily managed with even-aged methods, interest is increasing in uneven-aged systems, as a means of achieving a wider range of stewardship goals. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty with using traditional approaches and...
ERIC Educational Resources Information Center
Plane, Karen
In a competitive market training economy, vocational education and training (VET) and small business in Australia face a number of challenges. They need to qualify the extent of lifelong learning skills being used in the small firm workplace, define the range of learning partnerships both within VET and the wider informal learning community in…
ERIC Educational Resources Information Center
Osborne, Lisa A.; Reed, Phil
2009-01-01
Two 9- to 10-month-Iong studies (N = 137) examined the interaction between parenting stress and behavior problems in children with autistic spectrum disorders (ASDs). Study 1 focused on very young children, and Study 2 employed a wider range of child ages; both studies assessed these factors at 2 points in time. The researchers noted a strong…
ERIC Educational Resources Information Center
Qingquan, Ni; Chatupote, Monta; Teo, Adisa
2008-01-01
This article focused on the investigation of the differences in the frequency of language learning strategy use by successful and unsuccessful first-year students of a Chinese university. The study found that successful students used a wider range of learning strategies for EFL learning significantly more frequently than unsuccessful students. It…
Defect-enhanced void filling and novel filled phases of open-structure skutterudites
Xi, Lili; Qiu, Yuting; Shi, Xun; ...
2015-05-14
Here, we report the design of novel filled CoSb 3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.
ERIC Educational Resources Information Center
Goatman, Mike; Moody, Louise
2014-01-01
There are currently a wide range of Higher Education Industrial Design courses available in the UK. In the present era, a wider breadth of narrative has developed within the subject, and as a result the content of industrial design educational offerings varies considerably. The paper assesses the industry view of Industrial Design as a discipline…
Rodney J. Keenan; David Lamb; John Parrotta
1999-01-01
Management of tropical timber plantations is generally based on a single-product output, high-input model, often using an exotic species that has been successfully used for plantation timber production in many temperate regions. This intensive model may be appropriate in areas designated solely for wood production but where the aim is to produce a wider range...
ERIC Educational Resources Information Center
Lyon, Edward G.; Bunch, George C.; Shaw, Jerome M.
2012-01-01
Science performance assessments (SPAs) are designed to elicit a wider range of scientific knowledge and abilities than ordinarily measured by more traditional paper-and-pencil tests. To engage in SPAs and thus demonstrate abilities such as scientific inquiry, students must interact with various participants and communicate in a variety of ways.…
The Role of Silence in Teaching and Learning
ERIC Educational Resources Information Center
Schultz, Katherine
2013-01-01
The author's first teaching position was as a 4th and 5th grade teacher at a school in Philadelphia. There, she learned the Quaker value of adding silence and periods of reflection to her teaching to provide a wider range of students with the opportunity to participate in classroom discussions. Later, a focus on silence as a teaching strategy led…
ERIC Educational Resources Information Center
Nagtalon-Ramos, Jamille Kristine
2017-01-01
Although Filipino and Filipino American nurses represent an impressive share of the nursing workforce, they are not well represented in advanced practice, faculty, and executive leadership positions. Obtaining a graduate degree in nursing has the potential to open a wider range of opportunities to meet the healthcare demands of a population that…
Math Across the Community College Curriculum (MAC3): A Successful Path to Quantitative Literacy
ERIC Educational Resources Information Center
Hillyard, Cinnamon; Korey, Jane; Leoni, Deann; Hartzler, Rebecca
2010-01-01
In recent years, mathematical and quantitative arguments have become prominent in the media as well as in politics, business, and science conversations. This has led to multiple calls for mathematics to be more accessible and meaningful to a wider range of the population (AMATYC, 2006; Cerrito, 1996; Cheney, 1989; Cohen, 1982; College Board, 1983;…
ERIC Educational Resources Information Center
Yue, Siwei; Wang, Xuefei
2014-01-01
Based on a corpus of 296 authentic business emails produced in computer-mediated business communication from 7 Chinese international trade enterprises, this paper addresses the language strategy applied in CMC (Computer-mediated Communication) by examining the use of hedges. With the emergence of internet, a wider range of hedges are applied…
Diffusive Transport and Structural Properties of Liquid Iron Alloys at High Pressure
NASA Astrophysics Data System (ADS)
Posner, E.; Rubie, D. C.; Steinle-Neumann, G.; Frost, D. J.
2017-12-01
Diffusive transport properties of liquid iron alloys at high pressures (P) and temperatures (T) place important kinetic constraints on processes related to the origin and evolution of planetary cores. Earth's core composition is largely controlled by the extent of chemical equilibration achieved between liquid metal bodies and a silicate magma ocean during core formation, which can be estimated using chemical diffusion data. In order to estimate the time and length scales of metal-silicate chemical equilibration, we have measured chemical diffusion rates of Si, O and Cr in liquid iron over the P-T range of 1-18 GPa and 1873-2643 K using a multi-anvil apparatus. We have also performed first-principles molecular dynamic simulations of comparable binary liquid compositions, in addition to pure liquid Fe, over a much wider P-T range (1 bar-330 GPa, 2200-5500 K) in order to both validate the simulation results with experimental data at conditions accessible in the laboratory and to extend our dataset to conditions of the Earth's core. Over the entire P-T range studied using both methods, diffusion coefficients are described consistently and well using an exponential function of the homologous temperature relation. Si, Cr and Fe diffusivities of approximately 5 × 10-9 m2 s-1 are constant along the melting curve from ambient to core pressures, while oxygen diffusion is 2-3 times faster. Our results indicate that in order for the composition of the Earth's core to represent chemical equilibrium, impactor cores must have broken up into liquid droplet sizes no larger than a few tens of cm. Structural properties, analyzed using partial radial distribution functions from the molecular dynamics simulations, reveal a pressure-induced structural change in liquid Fe0.96O0.04 at densities of 8 g cm-3, in agreement with previous experimental studies. For densities above 8 g cm-3, the liquid is essentially close packed with a local CsCl-like (B2) packing of Fe around O under conditions of the Earth's core.
On temporal stochastic modeling of precipitation, nesting models across scales
NASA Astrophysics Data System (ADS)
Paschalis, Athanasios; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2014-01-01
We analyze the performance of composite stochastic models of temporal precipitation which can satisfactorily reproduce precipitation properties across a wide range of temporal scales. The rationale is that a combination of stochastic precipitation models which are most appropriate for specific limited temporal scales leads to better overall performance across a wider range of scales than single models alone. We investigate different model combinations. For the coarse (daily) scale these are models based on Alternating renewal processes, Markov chains, and Poisson cluster models, which are then combined with a microcanonical Multiplicative Random Cascade model to disaggregate precipitation to finer (minute) scales. The composite models were tested on data at four sites in different climates. The results show that model combinations improve the performance in key statistics such as probability distributions of precipitation depth, autocorrelation structure, intermittency, reproduction of extremes, compared to single models. At the same time they remain reasonably parsimonious. No model combination was found to outperform the others at all sites and for all statistics, however we provide insight on the capabilities of specific model combinations. The results for the four different climates are similar, which suggests a degree of generality and wider applicability of the approach.
SEAL Studies of Variant Blanket Concepts and Materials
NASA Astrophysics Data System (ADS)
Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.
1997-09-01
Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.
Burners and combustion apparatus for carbon nanomaterial production
Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael
2013-02-05
The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.
Burners and combustion apparatus for carbon nanomaterial production
Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael
2007-10-09
The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.
NASA Astrophysics Data System (ADS)
Kuppel, S.; Tetzlaff, D.; Maneta, M. P.; Soulsby, C.
2017-12-01
Stable water isotope tracing has been extensively used in a wide range of geographical environments as a means to understand the sources, flow paths and ages of water stored and exiting a landscape via evapotranspiration, surface runoff and/or stream flow. Comparisons of isotopic signatures of precipitation and water in streams, soils, groundwater and plant xylem facilitates the assessment of how plant water use may affect preferential hydrologic pathways, storage dynamics and transit times in the critical zone. While tracers are also invaluable for testing model structure and accuracy, in most cases the measured isotopic signatures have been used to guide the calibration of conceptual runoff models with simplified vegetation and energy balance representation, which lacks sufficient detail to constrain key ecohydrological controls on flow paths and water ages. Here, we use a physically-based, distributed ecohydrological model (EcH2O) which we have extended to track 2H and 18O (including fractionation processes), and water age. This work is part of the "VeWa" project which aims at understanding ecohydrological couplings across climatic gradients in the wider North, where the hydrological implications of projected environmental change are essentially unknown though expected to be high. EcH2O combines a hydrologic scheme with an explicit representation of plant growth and phenology while resolving the energy balance across the soil-vegetation-atmosphere continuum. We focus on a montane catchment in Scotland, where unique long-term, high resolution hydrometric, ecohydrological and isotopic data allows for extensive model testing and projections. Results show the importance of incorporating soil fractionation processes to explain stream isotope dynamics, particularly seasonal enrichment in this humid, energy-limited catchment. This generic process-based approach facilitates analysis of dynamics in isotopes, storage and ages for the different hydrological compartments (canopy to groundwater) and, in particular, the explicit partitioning between soil evaporation and plant transpiration. Our study clearly advances our understanding of dynamics in water storage, flux and age in northern ecosystems, integrating ecohydrology, unsaturated zone, surface water, and groundwater hydrology.
Long-Term Soil Experiments: A Key to Managing Earth's Rapidly Changing Critical Zones
NASA Astrophysics Data System (ADS)
Richter, D., Jr.
2014-12-01
In a few decades, managers of Earth's Critical Zones (biota, humans, land, and water) will be challenged to double food and fiber production and diminish adverse effects of management on the wider environment. To meet these challenges, an array of scientific approaches is being used to increase understanding of Critical Zone functioning and evolution, and one amongst these approaches needs to be long-term soil field studies to move us beyond black boxing the belowground Critical Zone, i.e., to further understanding of processes driving changes in the soil environment. Long-term soil experiments (LTSEs) provide direct observations of soil change and functioning across time scales of decades, data critical for biological, biogeochemical, and environmental assessments of sustainability; for predictions of soil fertility, productivity, and soil-environment interactions; and for developing models at a wide range of temporal and spatial scales. Unfortunately, LTSEs globally are not in a good state, and they take years to mature, are vulnerable to loss, and even today remain to be fully inventoried. Of the 250 LTSEs in a web-based network, results demonstrate that soils and belowground Critical Zones are highly dynamic and responsive to human management. The objective of this study is to review the contemporary state of LTSEs and consider how they contribute to three open questions: (1) can soils sustain a doubling of food production in the coming decades without further impinging on the wider environment, (2) how do soils interact with the global C cycle, and (3) how can soil management establish greater control over nutrient cycling. While LTSEs produce significant data and perspectives for all three questions, there is on-going need and opportunity for reviews of the long-term soil-research base, for establishment of an efficiently run network of LTSEs aimed at sustainability and improving management control over C and nutrient cycling, and for research teams that provide for generation to generation transfer of new and historic LTSEs.
Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow
NASA Astrophysics Data System (ADS)
Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua
2018-01-01
The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002
A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments
NASA Astrophysics Data System (ADS)
Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue
2013-03-01
The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.
Signal processing: opportunities for superconductive circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, R.W.
1985-03-01
Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described andmore » examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers.« less
NASA Astrophysics Data System (ADS)
Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.
2018-03-01
This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.
Free-fall dynamics of a pair of rigidly linked disks
NASA Astrophysics Data System (ADS)
Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum
2018-03-01
We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.
Standalone GPS L1 C/A Receiver for Lunar Missions.
Capuano, Vincenzo; Blunt, Paul; Botteron, Cyril; Tian, Jia; Leclère, Jérôme; Wang, Yanguang; Basile, Francesco; Farine, Pierre-André
2016-03-09
Global Navigation Satellite Systems (GNSSs) were originally introduced to provide positioning and timing services for terrestrial Earth users. However, space users increasingly rely on GNSS for spacecraft navigation and other science applications at several different altitudes from the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude. Despite this, space remains a challenging operational environment, particularly on the way from the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability. Following our previous studies, this paper describes the proof of concept "WeakHEO" receiver; a GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also assesses the performance of the receiver in two representative portions of an Earth Moon Transfer Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in a MTO.
Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez
2017-09-01
Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.
Hao, Li-Ying; Yang, Guang-Hong
2013-09-01
This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.
Santos, N C; Castanho, M A
1996-01-01
The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Klapisch, Marcel; Karasik, Max; Obenschain, Steve
2013-10-01
Modifications to the FAST3D code have been made to enhance its ability to simulate the dynamics of plastic ICF targets with high-Z overcoats. This class of problems is challenging computationally due in part to plasma conditions that are not in a state of local thermodynamic equilibrium and to the presence of mixed computational cells containing more than one material. Recently, new opacity tables for gold, palladium and plastic have been generated with an improved version of the STA code. These improved tables provide smoother, higher-fidelity opacity data over a wider range of temperature and density states than before, and contribute to a more accurate treatment of radiative transfer processes in FAST3D simulations. Furthermore, a new, more efficient subroutine known as ``MMEOS'' has been installed in the FAST3D code for determining pressure and temperature equilibrium conditions within cells containing multiple materials. We will discuss these topics, and present new simulation results for high-Z planar-target experiments performed recently on the NIKE Laser Facility. Work supported by DOE/NNSA.
Dráberová, Eduarda; Stegurová, Lucie; Sulimenko, Vadym; Hájková, Zuzana; Dráber, Petr; Dráber, Pavel
2013-09-30
Microtubules formed by αβ-tubulin dimers represent cellular structures that are indispensable for the maintenance of cell morphology and for cell motility generation. Microtubules in intact cells are in highly regulated equilibrium with cellular pools of soluble tubulin dimers. Sensitive, reproducible and rapid assays are necessary to monitor tubulin changes in cytosolic pools after treatment with anti-mitotic drugs, during the cell cycle or activation and differentiation events. Here we describe new assays for α-tubulin quantification. The assays are based on sandwich ELISA, and the signal is amplified with biotinyl-tyramide or immuno-PCR. Matching monoclonal antibody pair recognizes phylogenetically highly conserved epitopes localized outside the C-terminal isotype-defining region. This makes it possible to detect α-tubulin isotypes in different cell types of various species. Biotinyl-tyramide amplification and immuno-PCR amplification enable detection of tubulin at concentrations 2.5ng/ml and 0.086ng/ml, respectively. Immuno-PCR detection shows enhanced sensitivity and wider dynamic range when compared to ELISA with biotinyl-tyramide detection. Our results on taxol-treated and activated bone marrow-derived mast cells demonstrate, that the assays allow sensitive quantification of tubulin in complex biological fluids. © 2013.
Measurement of the prompt fissionγ-ray spectrum of 242Pu
NASA Astrophysics Data System (ADS)
Urlass, Sebastian; Beyer, Roland; Junghans, Arnd Rudolf; Kögler, Toni; Schwengner, Ronald; Wagner, Andreas
2018-03-01
The prompt γ-ray spectrum of fission fragments is important in understanding the dynamics of the fission process, as well as for nuclear engineering in terms of predicting the γ-ray heating in nuclear reactors. The γ-ray spectrum measured from the fission fragments of the spontaneous fission of 242Pu will be presented here. A fission chamber containing in total 37mg of 242Pu was used as active sample. The γ-quanta were detected with high time- and energy-resolution using LaBr3 and HPGe detectors, respectively, in coincidence with spontaneous fission events detected by the fission chamber. The acquired γ-ray spectra were corrected for the detector response using the spectrum stripping method. About 70 million fission events were detected which results in a very low statistical uncertainty and a wider energy range covered compared to previous measurements. The prompt fission γ-ray spectrum measured with the HPGe detectors shows structures that allow conclusions about the nature of γ-ray transitions in the fission fragments. The average photon multiplicity of 8.2 and the average total energy release by prompt photons per fission event of about 6.8 MeV were determined for both detector types.
Khandelia, Piyush; Yap, Karen; Makeyev, Eugene V
2011-08-02
Sequence-specific gene silencing by short hairpin (sh) RNAs has recently emerged as an indispensable tool for understanding gene function and a promising avenue for drug discovery. However, a wider biomedical use of this approach is hindered by the lack of straightforward methods for achieving uniform expression of shRNAs in mammalian cell cultures. Here we report a high-efficiency and low-background (HILO) recombination-mediated cassette exchange (RMCE) technology that yields virtually homogeneous cell pools containing doxycycline-inducible shRNA elements in a matter of days and with minimal efforts. To ensure immediate utility of this approach for a wider research community, we modified 11 commonly used human (A549, HT1080, HEK293T, HeLa, HeLa-S3, and U2OS) and mouse (CAD, L929, N2a, NIH 3T3, and P19) cell lines to be compatible with the HILO-RMCE process. Because of its technical simplicity and cost efficiency, the technology will be advantageous for both low- and high-throughput shRNA experiments. We also provide evidence that HILO-RMCE will facilitate a wider range of molecular and cell biology applications by allowing one to rapidly engineer cell populations expressing essentially any transgene of interest.
Streamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cells
Khandelia, Piyush; Yap, Karen; Makeyev, Eugene V.
2011-01-01
Sequence-specific gene silencing by short hairpin (sh) RNAs has recently emerged as an indispensable tool for understanding gene function and a promising avenue for drug discovery. However, a wider biomedical use of this approach is hindered by the lack of straightforward methods for achieving uniform expression of shRNAs in mammalian cell cultures. Here we report a high-efficiency and low-background (HILO) recombination-mediated cassette exchange (RMCE) technology that yields virtually homogeneous cell pools containing doxycycline-inducible shRNA elements in a matter of days and with minimal efforts. To ensure immediate utility of this approach for a wider research community, we modified 11 commonly used human (A549, HT1080, HEK293T, HeLa, HeLa-S3, and U2OS) and mouse (CAD, L929, N2a, NIH 3T3, and P19) cell lines to be compatible with the HILO-RMCE process. Because of its technical simplicity and cost efficiency, the technology will be advantageous for both low- and high-throughput shRNA experiments. We also provide evidence that HILO-RMCE will facilitate a wider range of molecular and cell biology applications by allowing one to rapidly engineer cell populations expressing essentially any transgene of interest. PMID:21768390
Sinanthropus in Britain: human origins and international science, 1920-1939.
Manias, Chris
2015-06-01
The Peking Man fossils discovered at Zhoukoudian in north-east China in the 1920s and 1930s were some of the most extensive palaeoanthropological finds of the twentieth century. This article examines their publicization and discussion in Britain, where they were engaged with by some of the world's leading authorities in human evolution, and a media and public highly interested in human-origins research. This international link - simultaneously promoted by scientists in China and in Britain itself - reflected wider debates on international networks; the role of science in the modern world; and changing definitions of race, progress and human nature. This article illustrates how human-origins research was an important means of binding these areas together and presenting scientific work as simultaneously authoritative and credible, but also evoking mystery and adventurousness. Examining this illustrates important features of contemporary views of both science and human development, showing not only the complexities of contemporary regard for the international and public dynamics of scientific research, but wider concerns over human nature, which oscillated between optimistic notions of unity and progress and pessimistic ones of essential differences and misdirected development.
Dynamical Systems Theory: Application to Pedagogy
NASA Astrophysics Data System (ADS)
Abraham, Jane L.
Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.
Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji
2016-07-01
This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Non-slow-roll dynamics in α-attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, K. Sravan; Marto, J.; Moniz, P. Vargas
2016-04-01
In this paper we consider the α−attractor model and study inflation under a non-slow-roll dynamics. More precisely, we follow the approach recently proposed by Gong and Sasaki [1] by means of assuming N=N(φ). Within this framework we obtain a family of functions describing the local shape of the potential during inflation. We study a specific model and find an inflationary scenario predicting an attractor at n{sub s}≈0.967 and r≈5.5×10{sup −4}. We further show that considering a non-slow-roll dynamics, the α−attractor model can be broaden to a wider class of models that remain compatible with value of r<0.1. We further exploremore » the model parameter space with respect to large and small field inflation and conclude that the inflaton dynamics is connected to the α− parameter, which is also related to the Kähler manifold curvature in the supergravity (SUGRA) embedding of this model. We also comment on the stabilization of the inflaton's trajectory.« less
The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae
NASA Astrophysics Data System (ADS)
Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra
2012-11-01
The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.
Large deflections and vibrations of a tip pulled beam with variable transversal section
NASA Astrophysics Data System (ADS)
Kurka, P.; Izuka, J.; Gonzalez, P.; Teixeira, L. H.
2016-10-01
The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.
Sensitivity of Age-of-Air Calculations to the Choice of Advection Scheme
NASA Technical Reports Server (NTRS)
Eluszkiewicz, Janusz; Hemler, Richard S.; Mahlman, Jerry D.; Bruhwiler, Lori; Takacs, Lawrence L.
2000-01-01
The age of air has recently emerged as a diagnostic of atmospheric transport unaffected by chemical parameterizations, and the features in the age distributions computed in models have been interpreted in terms of the models' large-scale circulation field. This study shows, however, that in addition to the simulated large-scale circulation, three-dimensional age calculations can also be affected by the choice of advection scheme employed in solving the tracer continuity equation, Specifically, using the 3.0deg latitude X 3.6deg longitude and 40 vertical level version of the Geophysical Fluid Dynamics Laboratory SKYHI GCM and six online transport schemes ranging from Eulerian through semi-Lagrangian to fully Lagrangian, it will be demonstrated that the oldest ages are obtained using the nondiffusive centered-difference schemes while the youngest ages are computed with a semi-Lagrangian transport (SLT) scheme. The centered- difference schemes are capable of producing ages older than 10 years in the mesosphere, thus eliminating the "young bias" found in previous age-of-air calculations. At this stage, only limited intuitive explanations can be advanced for this sensitivity of age-of-air calculations to the choice of advection scheme, In particular, age distributions computed online with the National Center for Atmospheric Research Community Climate Model (MACCM3) using different varieties of the SLT scheme are substantially older than the SKYHI SLT distribution. The different varieties, including a noninterpolating-in-the-vertical version (which is essentially centered-difference in the vertical), also produce a narrower range of age distributions than the suite of advection schemes employed in the SKYHI model. While additional MACCM3 experiments with a wider range of schemes would be necessary to provide more definitive insights, the older and less variable MACCM3 age distributions can plausibly be interpreted as being due to the semi-implicit semi-Lagrangian dynamics employed in the MACCM3. This type of dynamical core (employed with a 60-min time step) is likely to reduce SLT's interpolation errors that are compounded by the short-term variability characteristic of the explicit centered-difference dynamics employed in the SKYHI model (time step of 3 min). In the extreme case of a very slowly varying circulation, the choice of advection scheme has no effect on two-dimensional (latitude-height) age-of-air calculations, owing to the smooth nature of the transport circulation in 2D models. These results suggest that nondiffusive schemes may be the preferred choice for multiyear simulations of tracers not overly sensitive to the requirement of monotonicity (this category includes many greenhouse gases). At the same time, age-of-air calculations offer a simple quantitative diagnostic of a scheme's long-term diffusive properties and may help in the evaluation of dynamical cores in multiyear integrations. On the other hand, the sensitivity of the computed ages to the model numerics calls for caution in using age of air as a diagnostic of a GCM's large-scale circulation field.
Experimental studies of tuned particle damper: Design and characterization
NASA Astrophysics Data System (ADS)
Zhang, Kai; Xi, Yanhui; Chen, Tianning; Ma, Zhihao
2018-01-01
To better suppress the structural vibration in the micro vibration and harsh environment, a new type of damper, tuned particle damper (TPD), was designed by combining the advantage of classical dynamic vibration absorber (DVA) and particle damper (PD). An equivalent theoretical model was established to describe the dynamic behavior of a cantilever system treated with TPD. By means of a series of sine sweep tests, the dynamic characteristic of TPD under different excitation intensity was explored and the damping performance of TPD was investigated by comparing with classical DVA and PD with the same mass ratio. Experimental results show that with the increasing of excitation intensity TPD shows two different dynamic characteristics successively, i.e., PD-like and DVA-like. TPD shows a wider suppression frequency band than classical DVA and better practicability than PD in the micro vibration environment. Moreover, to characterize the dynamic characteristic of TPD, a simple evaluation of the equivalent dynamic mass and equivalent dynamic damping of the cantilever system treated with TPD was performed by fitting the experimental data to the presented theoretical model. Finally, based on the rheology behaviors of damping particles reported by the previous research results, an approximate phase diagram which shows the motion states of damping particles in TPD was employed to analyze the dynamic characteristic of TPD and several motion states of damping particles in TPD were presented via a high-speed camera.
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
Teka, Wondimu; Stockton, David; Santamaria, Fidel
2016-03-01
We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan
2009-06-01
The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p < 0.001) than with the 30 IIDR. Group mean CNC scores at 60 dB SPL, loudness ratings, and the signal to noise ratios-50 for Bamford-Kowal-Bench Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.
Stable Isotope Values of Nitrogen and Carbon in Particulate ...
Data set from “Patterns in stable isotope values of nitrogen and carbon in particulate matter from the Northwest Atlantic Continental Shelf, from the Gulf of Maine to Cape Hatteras” by Oczkowski et al. These are the data upon which all results and conclusion are made. Publishing the data allow for use by wider audience. Stable isotope dynamics on the shelf can inform both nearshore and open ocean research efforts, providing an important link along the marine continuum. To our knowledge, this data set is unique in its spatial coverage and variables measured.
The changing brain: Neuroscience and the enduring import of everyday experience
Martin, Paul; Cunningham-Burley, Sarah
2015-01-01
Discourses of ‘neuroplasticity’ have become increasingly apparent in the neurosciences and wider society. These connect with broader narratives about the ‘changing brain’ throughout the life-course. Here, we explore their presence in the talk of a range of publics. Their presence is indicative of how novel neuroscience is accepted, or not, by our participants. In particular, we suggest that any acceptance of the science relates to their personal and/or professional experiences of change (to their own or others’ subjectivities) rather than to some intrinsic and widely-held significance of scientific concepts per se. Accordingly, we also submit that it is in part through the congruence of some neuroscientific claims to everyday experiences and perspectives that the former are rendered legible and salient. In this respect, ‘lay’ knowledge has considerable import for the wider cultural authorisation of that of ‘experts’. PMID:24598481
Use of Monte Carlo simulation for the interpretation and analysis of diffuse scattering
NASA Astrophysics Data System (ADS)
Welberry, T. R.; Chan, E. J.; Goossens, D. J.; Heerdegen, A. P.
2010-02-01
With the development of computer simulation methods there is, for the first time, the possibility of having a single general method that can be used for any diffuse scattering problem in any type of system. As computers get ever faster it is expected that current methods will become increasingly powerful and applicable to a wider and wider range of problems and materials and provide results in increasingly fine detail. In this article we discuss two contrasting recent examples. The first is concerned with the two polymorphic forms of the pharmaceutical compound benzocaine. The strong and highly structured diffuse scattering in these is shown to be symptomatic of the presence of highly correlated molecular motions. The second concerns Ag+ fast ion conduction in the pearceite/polybasite family of mineral solid electrolytes. Here Monte-Carlo simulation is used to model the diffuse scattering and gain insight into how the ionic conduction arises.
NASA Astrophysics Data System (ADS)
Soto-Crespo, J. M.; Akhmediev, Nail
2002-12-01
The complex quintic Swift-Hohenberg equation (CSHE) is a model for describing pulse generation in mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simulations, we study the single- and two-soliton solutions of the (1+1)-dimensional complex quintic Swift-Hohenberg equations. We have found that several types of stationary and moving composite solitons of this equation are generally stable and have a wider range of existence than for those of the complex quintic Ginzburg-Landau equation. We have also found that the CSHE has a wider variety of localized solutions. In particular, there are three types of stable soliton pairs with π and π/2 phase difference and three different fixed separations between the pulses. Different types of soliton pairs can be generated by changing the parameter corresponding to the nonlinear gain (ɛ).
Andrews, Jonathan
2012-03-01
This article examines the management and meaning of post-mortem examinations, and the spatial ordering of patients' death, dissection and burial at the Victorian asylum, referencing a range of institutional contexts and exploiting a case study of the Royal Edinburgh Asylum. The routinizing of dissection and the development of the dead-house from a more marginal asylum sector to a lynchpin of laboratory medicine is stressed. External and internal pressure to modernize pathological research facilities is assessed alongside governmental, public and professional critiques of variable necroscopy practices. This is contextualized against wider issues and attitudes surrounding consent and funereal rituals. Onus is placed on tendencies in anatomizing insanity towards the conversion of deceased lunatics--pauper lunatics especially--into mere pathological specimens. On the other hand, significant but compromised resistance on the part of a minority of practitioners, relatives and the wider public is also identified.
Noise Source Identification and Dynamic Modeling of a Pneumatic Nailing Device =
NASA Astrophysics Data System (ADS)
Nili Ahmadabadi, Zahra
Exposure to hazardous noise levels emitted by pneumatic nailing devices contributes significantly to risk of hearing damage among the construction workers throughout the world. This health problem comes from the lack of appropriate technology such as low noise devices which in turn results from the lack of scientific knowledge about designing reduced noise devices. This study contributes to the design improvement of pneumatic nailing devices through identifying the noise sources and developing the simulation tool required to redesign the pneumatic nailing device. To identify the noise sources, the study uses a combination of two complementary experimental approaches. The first makes use of time-synchronized data analysis of several variables during the machine operation. This strategy allows identifying the physical processes and provides a detailed separation of the noise generation mechanisms in successive time sequences. However, since multiple noise sources radiate at the same time, this observation approach is not sufficient for noise source identification and ranking. Thus, it is completed by a selective wrapping and muffler procedure. This technique provides overall generated noise associated with each process, as well as ranking of the three major sources: (1) exhaust noise, (2) machine body vibrations, and (3) workpiece vibrations. A special investigation is conducted on this third one with two cases: a workpiece/worktable setup representative of the actual field usage of a nailing device and a workpiece/sandbox setup used in a standardized laboratory test. The study evaluates the efficiency of the workpiece/sandbox setup in reducing the workpiece radiation and obtains a typical workpiece contribution on an actual worksite. To provide a simulation tool, a dynamic model of the pneumatic nailing device needs to be developed. Dynamic modeling of the nailing device requires mathematical modeling of the physical processes involved in its operation. All of these processes can be described through already existing mathematical relations, except for the penetration resistance force (PRF) imposed on the nails when penetrating the wood. The PRF depends on various factors. This study follows two approaches in parallel to develop an empirical prediction law for the PRF: quasi-static and high-speed. The quasi-static approach provides a rapid and precise representation of the law at quasistatic penetration velocities. The law covers the entire displacement range, various nail geometries and sizes, and wood types. The high-speed approach aims to provide a law which covers a much wider range of penetration velocities. The approach is complicated since it requires a sophisticated test machine to conduct the nail driving tests at high penetration velocities. The study designs and fabricates an advanced test machine to later extend the prediction range of the PRF law. The last part of this study develops the dynamic model of a nail gun while integrating the quasi-static PRF law. The model includes dynamics of all the air chambers and the moving parts, and interactions and impacts/contacts between different parts. The study integrates a comprehensive experimental validation of the model. Future improvements in the dynamic model precision will be possible by using the extended version of the PRF law.
Gibbs, Andrew; Dunkle, Kristin; Washington, Laura; Willan, Samantha; Shai, Nwabisa; Jewkes, Rachel
2018-01-01
Childhood traumas, in the form of physical, sexual, and emotional abuse and neglect, are globally widespread and highly prevalent, and associated with a range of subsequent poor health outcomes. This study sought to understand the relationship between physical, sexual and emotional childhood abuse and subsequent HIV-risk behaviours amongst young people (18-30) living in urban informal settlements in Durban, South Africa. Data came from self-completed questionnaires amongst 680 women and 677 men comprising the baseline of the Stepping Stones and Creating Futures intervention trial. Men and women were analysed separately. Logistic regression models assessed the relationship between six HIV-risk behaviours and four measures of trauma: the form of trauma, the severity of each trauma, the range of traumas, and overall severity of childhood trauma. Childhood traumas were incredibly prevalent in this population. All childhood traumas were associated with a range of HIV-risk behaviours. This was for the ever/never trauma, as well as the severity of each type of trauma, the range of trauma, and overall severity of childhood trauma. Despite the wider harsh contexts of urban informal settlements, childhood traumas still play a significant role in shaping subsequent HIV-risk behaviours amongst young people. Interventions to reduce childhood traumas for populations in informal settlements need to be developed. In addition, trauma focused therapies need to be considered as part of wider HIV-prevention interventions for young adults. ClinicalTrials.gov NCT03022370.
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Haehnelt, Martin G.; Bosman, Sarah E. I.; Puchwein, Ewald
2018-01-01
High signal-to-noise observations of the Ly α forest transmissivity in the z = 7.085 quasi-stellar object (QSO) ULAS J1120+0641 show seven narrow transmission spikes followed by a long 240 cMpc h-1 trough. Here, we use radiative transfer simulations of cosmic reionization previously calibrated to match a wider range of Ly α forest data to show that the occurrence of seven transmission spikes in the narrow redshift range z = 5.85-6.1 is very sensitive to the exact timing of reionization. Occurrence of the spikes requires the most underdense regions of the intergalactic medium to be already fully ionized. The rapid onset of a long trough at z = 6.12 requires a strong decrease of the photoionization rate Γ at z ≳ 6.1 in this line of sight, consistent with the end of percolation at this redshift. The narrow range of reionization histories that we previously found to be consistent with a wider range of Ly α forest data have a reasonable probability of showing seven spikes and the mock absorption spectra provide an excellent match to the spikes and the trough in the observed spectrum of ULAS J1120+0641. Larger samples of high signal-to-noise searches for rare Ly α transmission spikes at z > 5.8 should therefore provide important further insights into the exact timing of the percolation of H II bubbles at the tail end of reionization.
Dunkle, Kristin; Washington, Laura; Willan, Samantha; Shai, Nwabisa; Jewkes, Rachel
2018-01-01
Childhood traumas, in the form of physical, sexual, and emotional abuse and neglect, are globally widespread and highly prevalent, and associated with a range of subsequent poor health outcomes. This study sought to understand the relationship between physical, sexual and emotional childhood abuse and subsequent HIV-risk behaviours amongst young people (18–30) living in urban informal settlements in Durban, South Africa. Data came from self-completed questionnaires amongst 680 women and 677 men comprising the baseline of the Stepping Stones and Creating Futures intervention trial. Men and women were analysed separately. Logistic regression models assessed the relationship between six HIV-risk behaviours and four measures of trauma: the form of trauma, the severity of each trauma, the range of traumas, and overall severity of childhood trauma. Childhood traumas were incredibly prevalent in this population. All childhood traumas were associated with a range of HIV-risk behaviours. This was for the ever/never trauma, as well as the severity of each type of trauma, the range of trauma, and overall severity of childhood trauma. Despite the wider harsh contexts of urban informal settlements, childhood traumas still play a significant role in shaping subsequent HIV-risk behaviours amongst young people. Interventions to reduce childhood traumas for populations in informal settlements need to be developed. In addition, trauma focused therapies need to be considered as part of wider HIV-prevention interventions for young adults. Trial registration: ClinicalTrials.gov NCT03022370 PMID:29624612
Copper Filtration and kVp: Effect on Entrance Skin Exposure.
Barba, James; Culp, Melissa
2015-01-01
The selection of technical factors to produce an image is driven primarily by the patient, body part, and factors regarding the status of that patient or part. Analog receptor systems are restricted by the ranges of data they are able to record, as well as the quantity and quality of data required to record an image. Using digital receptors allows for a wider range of exposure factors because of the nature of the receptor systems and the data processing methods employed. Thus, factor selection can be more patient centered when using digital receptors to produce a radiograph. To explore the relationship between milliampere seconds (mAs), kilovoltage peak (kVp), and additional copper filtration with exposure indicators and entrance skin exposure (ESE) using both analog and digital receptors. Researchers conducted 2-tailed t-tests using Stata/IC version 11.2 software (StataCorp LP) to compare ESE from several trials using hip and knee phantoms. The analysis indicated that increasing kVp, adding 0.1 mm copper filtration, and correspondingly reducing mAs reduced ESE on a hip phantom by 64%, from 151 mR to 54.4 mR and reduced ESE on a knee phantom by 51%, from 27.2 mR to 13.4 mR. Radiology departments and radiologic technologists can consider these data when creating dose reduction protocols. The wider latitude range of digital radiography can be used to minimize patient exposure while still producing images of diagnostic quality within the acceptable exposure indicator range stated by the manufacturer.
Multi-Satellite Scheduling Approach for Dynamic Areal Tasks Triggered by Emergent Disasters
NASA Astrophysics Data System (ADS)
Niu, X. N.; Zhai, X. J.; Tang, H.; Wu, L. X.
2016-06-01
The process of satellite mission scheduling, which plays a significant role in rapid response to emergent disasters, e.g. earthquake, is used to allocate the observation resources and execution time to a series of imaging tasks by maximizing one or more objectives while satisfying certain given constraints. In practice, the information obtained of disaster situation changes dynamically, which accordingly leads to the dynamic imaging requirement of users. We propose a satellite scheduling model to address dynamic imaging tasks triggered by emergent disasters. The goal of proposed model is to meet the emergency response requirements so as to make an imaging plan to acquire rapid and effective information of affected area. In the model, the reward of the schedule is maximized. To solve the model, we firstly present a dynamic segmenting algorithm to partition area targets. Then the dynamic heuristic algorithm embedding in a greedy criterion is designed to obtain the optimal solution. To evaluate the model, we conduct experimental simulations in the scene of Wenchuan Earthquake. The results show that the simulated imaging plan can schedule satellites to observe a wider scope of target area. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.
Thomas, Michael; Corry, Ben
2016-01-01
Membranes made from nanomaterials such as nanotubes and graphene have been suggested to have a range of applications in water filtration and desalination, but determining their suitability for these purposes requires an accurate assessment of the properties of these novel materials. In this study, we use molecular dynamics simulations to determine the permeability and salt rejection capabilities for membranes incorporating carbon nanotubes (CNTs) at a range of pore sizes, pressures and concentrations. We include the influence of osmotic gradients and concentration build up and simulate at realistic pressures to improve the reliability of estimated membrane transport properties. We find that salt rejection is highly dependent on the applied hydrostatic pressure, meaning high rejection can be achieved with wider tubes than previously thought; while membrane permeability depends on salt concentration. The ideal size of the CNTs for desalination applications yielding high permeability and high salt rejection is found to be around 1.1 nm diameter. While there are limited energy gains to be achieved in using ultra-permeable CNT membranes in desalination by reverse osmosis, such membranes may allow for smaller plants to be built as is required when size or weight must be minimized. There are diminishing returns in further increasing membrane permeability, so efforts should focus on the fabrication of membranes containing narrow or functionalized CNTs that yield the desired rejection or selection properties rather than trying to optimize pore densities. PMID:26712639
Advances in animal ecology from 3D ecosystem mapping with LiDAR
NASA Astrophysics Data System (ADS)
Davies, A.; Asner, G. P.
2015-12-01
The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.
Macias, Michael S; Guerra-Diaz, Patricia; Almirall, José R; Furton, Kenneth G
2010-02-25
Currently, in the field of odor detection, there is generally a wider variation in limit of detections (LODs) for canines than instruments. The study presented in this paper introduces an improved protocol for the creation of controlled odor mimic permeation system (COMPS) devices for use as standards in canine training and discusses the canine detection thresholds of piperonal, a starting material for the illicit drug 3,4-methylenedioxymethamphetamine (MDMA), when exposed to these devices. Additionally, this paper describes the first-ever reported direct comparison of solid phase microextraction-ion mobility spectrometry (SPME-IMS) to canine detection for the MDMA odorant, piperonal. The research presented shows the reliability of COMPS devices as low cost field calibrants providing a wide range of odorant concentrations for biological and instrumental detectors. The canine LOD of piperonal emanating from the 100 ng s(-1) COMPS was found to be 1 ng as compared to the SPME-IMS LOD of piperonal in a static, closed system at 2 ng, with a linear dynamic range from 2 ng to 11 ng. The utilization of the COMPS devices would allow for training that will reduce the detection variability between canines and maintain improved consistency for training purposes. Since both SPME and IMS are field portable technologies, it is expected that this coupled method will be useful as a complement to canine detection for the field detection of MDMA. 2009 Elsevier Ireland Ltd. All rights reserved.
Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.
2016-01-01
The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Dynamic Monte Carlo description of thermal desorption processes
NASA Astrophysics Data System (ADS)
Weinketz, Sieghard
1994-07-01
The applicability of the dynamic Monte Carlo method of Fichthorn and Weinberg, in which the time evolution of a system is described in terms of the absolute number of different microscopic possible events and their associated transition rates, is discussed for the case of thermal desorption simulations. It is shown that the definition of the time increment at each successful event leads naturally to the macroscopic differential equation of desorption, in the case of simple first- and second-order processes in which the only possible events are desorption and diffusion. This equivalence is numerically demonstrated for a second-order case. In the sequence, the equivalence of this method with the Monte Carlo method of Sales and Zgrablich for more complex desorption processes, allowing for lateral interactions between adsorbates, is shown, even though the dynamic Monte Carlo method does not bear their limitation of a rapid surface diffusion condition, thus being able to describe a more complex ``kinetics'' of surface reactive processes, and therefore be applied to a wider class of phenomena, such as surface catalysis.
ERIC Educational Resources Information Center
Hutchins, Tiffany L.; Howard, Malinda; Prelock, Patricia A.; Belin, Gayle
2010-01-01
Nationally, the shortage of speech-language pathologists (SLPs) in the schools is growing. As such, it is important to understand factors related to the retention of SLPs in this setting. This study expanded on previous research by examining a wider range of factors that may be related to the retention of SLPs including caseload size, workload…
Watson, Derrick G
2017-01-01
I propose that there remains a central role for the item (or its equivalent) in a wider range of search and search-related tasks/functions than might be conveyed by the article. I consider the functional relationship between the framework and some aspects of previous theories, and suggest some challenges that the new framework might encounter.
The Building 549 auditorium is often packed with high school interns eager to hear a scientific lecture. On April 22, however, the room swelled with interns spanning a wider age range. At the 25th Werner H. Kirsten Student Intern Program (WHK SIP) Anniversary Symposium, incoming, current, and former interns gathered to celebrate the program, which has provided biomedical
Weathering of iron sulfides under Mars surface ambient conditions
NASA Technical Reports Server (NTRS)
Blackburn, T. R.
1981-01-01
The study of iron sulfide surface alternation reactions under Mars' surface ambient conditions begun during 1980 was extended through improved irradiation design and experimental protocols. A wider range of humidities and more intense irradiation were incorporated in the study. X-ray photoelectron spectra of irradiated chips suggest formation of FeSO4, FeCO3, and an iron oxide on the iron sulfide substrates studied.
Flexistudy: A Development at Barnet College. Coombe Lodge Case Study. Information Bank Number 1351.
ERIC Educational Resources Information Center
Albrecht, A.; Spencer, D. C.
An outline is presented of Barnet College's flexistudy program, a system for providing a wider range of learning opportunities through a more flexible arrangement of course times and content to students who are unable to attend college regularly, who are too few in number to form a specialist class, or who wish to start school at some time other…
John Podgwaite; Viatcheslav Martemyanov; Stanislav Bakhvalov
2007-01-01
Periodic intrusions of Asian strains of gypsy moth, Lymantria dispar L., into North America have occurred over the past several years. Preventative measures in the countries of origin and around ports of entry in North America have lowered the risk of invasion and establishment but the threat remains current. Asian strains have a wider host range...
Medtech: Potential for innovation.
Bestetti, Gilberto
2009-10-17
Switzerland, with its ETHZ and EPFL, universities, advanced technical colleges, the CSEM, the Empa and the Paul Scherrer Institute, possesses a complete chain of knowledge and interdisciplinary competence which ranks it among the worldwide leaders in medical technology. To ensure that a wider range of excellent research results are translated into marketable products and methods, the CTI Agency for the Promotion of Innovation launched the Medtech initiative, a success story.
Multinational Experiment 7. Regional Analysis: Wider Mediterranean
2013-07-08
crossroads for the maritime trade and the global economic flows, the Mediterranean Sea is something like a lab where maritime security initiatives could...and their economic development. One of the most critical areas in the world partially faces the Mediterranean: the Middle East. As stated, 21...Nations have a coastline on the Mediterranean Sea, offering a wide range of economical , political, cultural and religious perspectives that hamper the
The 2015 National Security Strategy: Authorities, Changes, Issues for Congress
2016-02-26
climate change ; ensure access to shared spaces (expanding cyberspace and including outer space and air and maritime security); and increase global...hand, one could conclude that these, along with confronting climate change , convey both a wider range of national security challenges in terms of...The 2015 National Security Strategy: Authorities, Changes , Issues for Congress Nathan J. Lucas, Coordinator Section Research Manager Kathleen
Range Estimation Algorithm Comparison in 3-D Flash LADAR Data
2009-03-01
formed from LADAR intensity data viewed at sample 10. Target is about 70 meters from receiver and normal to line of sight. White square indicates region...that when averaged form a pulse that is slightly wider than the individual returns. . . . . . . . 35 4.1 Examples of simulated LADAR waveforms of...varying widths used for PWE tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Simulated noiseless data buffered through LADAR sytem
Phosphorus translocation by red deer on a subalpine grassland in the central European Alps
Martin Schutz; Anita C. Risch; Gerald Achermann; Conny Thiel-Egenter; Deborah Page-Dumroese; Martin F. Jurgensen; Peter J. Edward
2006-01-01
We examined the role of red deer (Cervus elaphus L.) in translocating phosphorus (P) from their preferred grazing sites (short-grass vegetation on subalpine grasslands) to their wider home range in a subalpine grassland ecosystem in the Central European Alps. Phosphorus was used because it is the limiting nutrient in these grasslands. When we compared P removal of...
Universal Declaration of Human Rights, A Lay Version for the Common Man, Woman and Child.
ERIC Educational Resources Information Center
Tankard, Alice Doumanian
This lay version of the Universal Declaration of Human Rights (the original version was adopted by the General Assembly of the United Nations in 1948) has been written in simplified vocabulary to make it understandable to a wider range of ages and reading abilities. The declaration consists of a preamble followed by a listing of 30 goals common to…
Plantation Spacing Affects Early Growth of Planted Virginia Pine
T.E. Russell
1979-01-01
Spacings ranging from 4 x 4 to 8 x 8 ft did not affect 15 year height growth of Virginia pines planted on a cutover Cumberland Plateau site. Wider spacings produced trees of larger diameters than did closer spacings; closer spacings had more basal area and volume. Although height to the base of the live crown increased as spacing narrowed, self-pruning was poor at all...
ERIC Educational Resources Information Center
Boatman, Angela; Long, Bridget Terry
2018-01-01
We examine the impact of remedial and developmental courses on college students with varying levels of academic preparedness, thus focusing on a wider range of students than previous studies. Using a regression discontinuity design, we provide causal estimates of the effects of placement in different levels of remedial courses on short-,…
Energy performance of building fabric - Comparing two types of vernacular residential houses
NASA Astrophysics Data System (ADS)
Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo
2017-10-01
Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.
ERIC Educational Resources Information Center
Meyer, Mary C.
2006-01-01
From a very young age, shoes for boys tend to be wider than shoes for girls. Is this because boys have wider feet, or because it is assumed that girls are willing to sacrifice comfort for fashion, even in elementary school? To assess the former, a statistician measures kids' feet. (Contains 2 tables and 3 figures.)
NASA Astrophysics Data System (ADS)
Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.
2017-11-01
Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
Complex networks of functional connectivity in a wetland reconnected to its floodplain
Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson
2017-01-01
Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a “biotic filter,” shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.
Mori, Takaharu; Jung, Jaewoon; Sugita, Yuji
2013-12-10
Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.
Complex networks of functional connectivity in a wetland reconnected to its floodplain
NASA Astrophysics Data System (ADS)
Larsen, Laurel G.; Newman, Susan; Saunders, Colin; Harvey, Judson W.
2017-07-01
Disturbances such as fire or flood, in addition to changing the local magnitude of ecological, hydrological, or biogeochemical processes, can also change their functional connectivity—how those processes interact in space. Complex networks offer promise for quantifying functional connectivity in watersheds. The approach resolves connections between nodes in space based on statistical similarities in perturbation signals (derived from solute time series) and is sensitive to a wider range of timescales than traditional mass-balance modeling. We use this approach to test hypotheses about how fire and flood impact ecological and biogeochemical dynamics in a wetland (Everglades, FL, USA) that was reconnected to its floodplain. Reintroduction of flow pulses after decades of separation by levees fundamentally reconfigured functional connectivity networks. The most pronounced expansion was that of the calcium network, which reflects periphyton dynamics and may represent an indirect influence of elevated nutrients, despite the comparatively smaller observed expansion of phosphorus networks. With respect to several solutes, periphyton acted as a "biotic filter," shifting perturbations in water-quality signals to different timescales through slow but persistent transformations of the biotic community. The complex-networks approach also revealed portions of the landscape that operate in fundamentally different regimes with respect to dissolved oxygen, separated by a threshold in flow velocity of 1.2 cm/s, and suggested that complete removal of canals may be needed to restore connectivity with respect to biogeochemical processes. Fire reconfigured functional connectivity networks in a manner that reflected localized burn severity, but had a larger effect on the magnitude of solute concentrations.
Huguin, Maïlis; Arechiga-Ceballos, Nidia; Delaval, Marguerite; Guidez, Amandine; de Castro, Isaï Jorge; Lacoste, Vincent; Salmier, Arielle; Setién, Alvaro Aguilar; Silva, Claudia Regina; Lavergne, Anne; de Thoisy, Benoit
2018-05-11
Social systems are major drivers of population structure and gene flow, with important effects on dynamics and dispersal of associated populations of parasites. Among bats, the common vampire bat (Desmodus rotundus) has likely one of the most complex social structures. Using autosomal and mitochondrial markers on vampires from Mexico, French Guiana, and North Brazil, from both roosting and foraging areas, we observed an isolation by distance at the wider scale and lower but significant differentiation between closer populations (<50 km). All populations had a low level of relatedness and showed deviations from Hardy-Weinberg equilibrium and a low but significant inbreeding coefficient. The associated heterozygote deficiency was likely related to a Wahlund effect and to cryptic structures, reflecting social groups living in syntopy, both in roosting and foraging areas, with only limited admixture. Discrepancy between mitochondrial and nuclear markers suggests female philopatry and higher dispersal rates in males, associated with peripheral positions in the groups. Vampires are also the main neotropical reservoir for rabies virus, one of the main lethal pathogens for humans. Female social behaviors and trophallaxis may favor a rapid spread of virus to related and unrelated offspring and females. The high dispersal capacity of males may explain the wider circulation of viruses and the inefficacy of bat population controls. In such opportunistic species, gene connectivity should be considered for management decision making. Strategies such as culling could induce immigration of bats from neighboring colonies to fill vacant roosts and feeding areas, associated with the dispersal of viral strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Adam
A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.
Towards a Standardized Line List for G 191-B2B and other DA Type Objects
NASA Astrophysics Data System (ADS)
Preval, S. P.; Barstow, M. A.; Holberg, J. B.; Dickinson, N. J.
2013-01-01
We present a comprehensive analysis of the far UV spectrum of G 191-B2B over the range of 900-1700Å using co-added data from the FUSE and STIS archives. While previous identifications made by Holberg et al. (2003) are reaffirmed in this work, it is found that many previously unidentified lines can now be attributed to Fe, Ni, and a few lighter metals. Future work includes extending this detailed analysis to a wider range of DA objects, in the expectation that a more complete analysis of their atmospheres can be realised.
Practical problems which women encounter with available contraception in Australia.
Weisberg, E
1994-06-01
Australian women face major difficulties with contraception because of the limited range of choices, the need for meticulous attention to compliance with most available methods and because of cost limitations for a significant minority of the population. The most commonly used methods are oral contraceptive pills and barrier methods, and each has substantial compliance problems which can be minimized with care and counselling. There is an urgent need for a wider range of options in Australia and for good information and publicity about them. Present progress in this direction gives some hope for the near future.
NASA Astrophysics Data System (ADS)
Bodryakov, V. Yu.; Bykov, A. A.
2016-05-01
The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).
Wealth generation through recycling of material for reuse
NASA Astrophysics Data System (ADS)
Chukwudum, Okechukw John; Patience I., E.
2018-06-01
Management of solid waste needs appropriate technology, which is economically affordable, socially accepted and environmentally friendly. The public needs to be sensitized on the potential wealth that their inorganic and organic wastes contain. The paper deals with the idea of recycling as a means of solid waste treatment and explores. In developing countries, where standards are often lower and raw materials very expensive, there is a wider scope for use of recycled material. The range of products varies from building materials to shoes, home to office equipment, sewage pipe to beauty aids. Recyclingand reuse issues overlap a range of disciplines.
Jamieson, Terra S; Schiff, Sherry L; Taylor, William D
2013-02-01
Gas exchange can be a key component of the dissolved oxygen (DO) mass balance in aquatic ecosystems. Quantification of gas transfer rates is essential for the estimation of DO production and consumption rates, and determination of assimilation capacities of systems receiving organic inputs. Currently, the accurate determination of gas transfer rate is a topic of debate in DO modeling, and there are a wide variety of approaches that have been proposed in the literature. The current study investigates the use of repeated measures of stable isotopes of O₂ and DO and a dynamic dual mass-balance model to quantify gas transfer coefficients (k) in the Grand River, Ontario, Canada. Measurements were conducted over a longitudinal gradient that reflected watershed changes from agricultural to urban. Values of k in the Grand River ranged from 3.6 to 8.6 day⁻¹, over discharges ranging from 5.6 to 22.4 m³ s⁻¹, with one high-flow event of 73.1 m³ s⁻¹. The k values were relatively constant over the range of discharge conditions studied. The range in discharge observed in this study is generally representative of non-storm and summer low-flow events; a greater range in k might be observed under a wider range of hydrologic conditions. Overall, k values obtained with the dual model for the Grand River were found to be lower than predicted by the traditional approaches evaluated, highlighting the importance of determining site-specific values of k. The dual mass balance approach provides a more constrained estimate of k than using DO only, and is applicable to large rivers where other approaches would be difficult to use. The addition of an isotopic mass balance provides for a corroboration of the input parameter estimates between the two balances. Constraining the range of potential input values allows for a direct estimate of k in large, productive systems where other k-estimation approaches may be uncertain or logistically infeasible. Copyright © 2012 Elsevier Ltd. All rights reserved.
Typlt, Marei; Englitz, Bernhard; Sonntag, Mandy; Dehmel, Susanne; Kopp-Scheinpflug, Cornelia; Ruebsamen, Rudolf
2012-01-01
Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies. PMID:22253838
Gaidajis, George
2003-01-01
To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.
Meningitis in HIV-positive patients in sub-Saharan Africa: a review
Veltman, Jennifer A; Bristow, Claire C; Klausner, Jeffrey D
2014-01-01
Introduction Meningitis is one of the leading causes of death among patients living with HIV in sub-Saharan Africa. There is no widespread tracking of the incidence rates of causative agents among patients living with HIV, yet the aetiologies of meningitis are different than those of the general population. Methods We reviewed the scientific literature published in PubMed to determine the incidence rates of meningitis among hospitalized people living with HIV in sub-Saharan Africa and report our findings from seven studies across sub-Saharan Africa. Results We found high rates of cryptococcal meningitis (19–68%). Tuberculous meningitis was lower (1–36%), although some centres included possible cases as “other” meningitis; therefore, this may not be a true representation of the total cases. Pyogenic meningitis ranged from 6 to 30% and “other” meningitis ranged from 7 to 28% of all reported cases of meningitis. Mortality rates ranged from 25 to 68%. This review describes the most common aetiologies and provides practical diagnostic, treatment and prevention considerations as they apply to the individual living with HIV in sub-Saharan Africa. Conclusions Diagnosis is often limited, and wider availability of accurate and low-cost laboratory diagnostics is desperately needed for prompt diagnosis and initiation of appropriate treatment. Wider acceptance and adoption of available preventative modalities can decrease the incidence of potentially fatal central nervous system infections in African patients living with HIV. PMID:25308903
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... shape. Such fruit, if it is wider than it is tall, is considered to be badly misshapen. Identification... the current parameters for misshapen fruit; from ``fruit that is not wider than tall'' to fruit that is a certain percentage wider than it is tall. This alternative would allow for flatter/wider fruit...
Evaluating the Wider Outcomes of Schools: Complex Systems Modelling for Leadership Decisioning
ERIC Educational Resources Information Center
Crick, Ruth Deakin; Barr, Steven; Green, Howard; Pedder, David
2017-01-01
A continuing challenge for the education system is how to evaluate the wider outcomes of schools. Wider measures of success--such as citizenship or lifelong learning--influence each other and emerge over time from complex interactions between students, teachers and leaders, and the wider community. Unless methods are found to evaluate these…
Diurnal evolution of wind structure and data availability measured by the DOE prototype radar system
NASA Astrophysics Data System (ADS)
Hirth, Brian D.; Schroeder, John L.; Guynes, Jerry G.
2017-11-01
A new Doppler radar prototype has been developed and deployed at Texas Tech University with a focus on enhancing the technologies’ capability to contribute to wind plant relevant complex flow measurements. In particular, improvements in data availability, total data coverage, and autonomous operation were targeted to enable contributions to a wider range of wind energy applications. Doppler radar offers rapid scan speeds, extended maximum range and excellent along-beam range resolution allowing for the simultaneous measurement of various wind phenomena ranging from regional and wind plant scales to inflow and wake flow assessment for an individual turbine. Data examples and performance improvements relative to a previous edition of the technology are presented, including insights into the influence of diurnal atmospheric stability evolution of wind structure and system performance.
Sim, Jae-Ang; Kim, Jong-Min; Lee, Sahnghoon; Bae, Ji-Yong; Seon, Jong-Keun
2017-04-01
Although trans-portal and outside-in techniques are commonly used for anatomical ACL reconstruction, there is very little information on variability in tunnel placement between two techniques. A total of 103 patients who received ACL reconstruction using trans-portal (50 patients) and outside-in techniques (53 patients) were included in the study. The ACL tunnel location, length and graft-femoral tunnel angle were analyzed using the 3D CT knee models, and we compared the location and length of the femoral and tibial tunnels, and graft bending angle between the two techniques. The variability in each technique regarding the tunnel location, length and graft tunnel angle using the range values was also compared. There were no differences in the average of femoral tunnel depth and height between the two groups. The ranges of femoral tunnel depth and height showed no difference between two groups (36 and 41 % in trans-portal technique vs. 32 and 41 % in outside-in technique). The average value and ranges of tibial tunnel location also showed similar results in two groups. The outside-in technique showed longer femoral tunnel than the trans-portal technique (34.0 vs. 36.8 mm, p = 0.001). The range of femoral tunnel was also wider in trans-portal technique than in outside-in technique. Although the outside-in technique showed significant acute graft bending angle than trans-portal technique in average values, the trans-portal technique showed wider ranges in graft bending angle than outside-in technique [ranges 73° (SD 13.6) vs. 53° (SD 10.7), respectively]. Although both trans-portal and outside-in techniques in ACL reconstruction can provide relatively consistent in femoral and tibial tunnel locations, trans-portal technique showed high variability in femoral tunnel length and graft bending angles than outside-in technique. Therefore, the outside-in technique in ACL reconstruction is considered as the effective method for surgeons to make more consistent femoral tunnel. III.
Fox, Aaron S; Bonacci, Jason; McLean, Scott G; Spittle, Michael; Saunders, Natalie
2016-05-01
Laboratory-based measures provide an accurate method to identify risk factors for anterior cruciate ligament (ACL) injury; however, these methods are generally prohibitive to the wider community. Screening methods that can be completed in a field or clinical setting may be more applicable for wider community use. Examination of field-based screening methods for ACL injury risk can aid in identifying the most applicable method(s) for use in these settings. The objective of this systematic review was to evaluate and compare field-based screening methods for ACL injury risk to determine their efficacy of use in wider community settings. An electronic database search was conducted on the SPORTDiscus™, MEDLINE, AMED and CINAHL databases (January 1990-July 2015) using a combination of relevant keywords. A secondary search of the same databases, using relevant keywords from identified screening methods, was also undertaken. Studies identified as potentially relevant were independently examined by two reviewers for inclusion. Where consensus could not be reached, a third reviewer was consulted. Original research articles that examined screening methods for ACL injury risk that could be undertaken outside of a laboratory setting were included for review. Two reviewers independently assessed the quality of included studies. Included studies were categorized according to the screening method they examined. A description of each screening method, and data pertaining to the ability to prospectively identify ACL injuries, validity and reliability, recommendations for identifying 'at-risk' athletes, equipment and training required to complete screening, time taken to screen athletes, and applicability of the screening method across sports and athletes were extracted from relevant studies. Of 1077 citations from the initial search, a total of 25 articles were identified as potentially relevant, with 12 meeting all inclusion/exclusion criteria. From the secondary search, eight further studies met all criteria, resulting in 20 studies being included for review. Five ACL-screening methods-the Landing Error Scoring System (LESS), Clinic-Based Algorithm, Observational Screening of Dynamic Knee Valgus (OSDKV), 2D-Cam Method, and Tuck Jump Assessment-were identified. There was limited evidence supporting the use of field-based screening methods in predicting ACL injuries across a range of populations. Differences relating to the equipment and time required to complete screening methods were identified. Only screening methods for ACL injury risk were included for review. Field-based screening methods developed for lower-limb injury risk in general may also incorporate, and be useful in, screening for ACL injury risk. Limited studies were available relating to the OSDKV and 2D-Cam Method. The LESS showed predictive validity in identifying ACL injuries, however only in a youth athlete population. The LESS also appears practical for community-wide use due to the minimal equipment and set-up/analysis time required. The Clinic-Based Algorithm may have predictive value for ACL injury risk as it identifies athletes who exhibit high frontal plane knee loads during a landing task, but requires extensive additional equipment and time, which may limit its application to wider community settings.
ERIC Educational Resources Information Center
Briggs, Lianne
2012-01-01
Despite retention being a significant focus of higher education research, graduation rates remain of concern. Increased numbers of students are advancing to college bringing with them a wider range of abilities, attributes, and characteristics. There is much we know about what predicts success for these students but our knowledge is far from…
The Case of Perrin and Thomson: An Example of the Use of a Mini-Corpus
ERIC Educational Resources Information Center
Banks, David
2005-01-01
Although recent trends have been towards large corpora, there is a valid place for the study of small corpora. This article is an example of one such study using a corpus of late 19th century texts, consisting of 1783 words in French by Perrin, and 2824 words in English by Thomson. Perrin uses more first person pronouns in a wider range of…
Children's Responses to Line Spacing in Early Reading Books or "Holes to Tell Which Line You're On"
ERIC Educational Resources Information Center
Reynolds, Linda; Walker, Sue; Duncan, Alison
2006-01-01
This paper describes a study designed to find out whether children's reading would be affected by line spacing that is wider or narrower than the commonly used default values. The realistic, high quality test material was set using a range of four different line spacing values, and twenty-four children in Years 1 and 2 (between five and seven…
ERIC Educational Resources Information Center
Brock, Jack L., Jr.
This testimony discusses ways in which some federal government agencies use technology to provide the public with cheaper, faster access to a wider range of information which can be searched and manipulated in ways never possible on the printed page. Technologies included in the discussion are compact disc-read only memory (CD-ROM), electronic…
ERIC Educational Resources Information Center
Angouri, Jo
2010-01-01
The current international nature of socio-economic activities is reshaping workplace settings and creating the need for large numbers of employees to perform successful communicative acts with a wider range of interactants than in the past, often using a language other than their mother tongue. Against this backdrop much emphasis has been placed…
ERIC Educational Resources Information Center
Kimitris, Petros N.
2017-01-01
The present study was designed to explore the role of history school books in evaluating the experience of a nation but also to examine the causes behind the reactions of political parties, historians and the wider public. Depending on the sociohistorical context, the aims of history education may range from the inculcation of national identity to…
ERIC Educational Resources Information Center
Bottani, Norberto; And Others
The educational indicators in this report show how education systems in the 24 member countries of the Organisation for Economic Co-Operation and Development (OECD) resemble each other and differ. This edition, the second, builds on the 1992 volume, with more up-to-date figures and coverage of a wider range of subjects and countries. The 38…
ERIC Educational Resources Information Center
Feinstein, Leon; Hammond, Cathie; Woods, Laura; Preston, John; Bynner, John
Researchers investigated effects of adult learning (AL) on a range of measures of health and social capital and cohesion. Data from the National Child Development Study relating to almost 10,000 adults born in Britain in 1958 were used, with focus on changes in their lives between age 33 in 1991 and 42 in 2000. Findings indicated AL played an…
Nanocrystal thin film fabrication methods and apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk
Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.
Thermal dependence of cardiac function in arctic fish: implications of a warming world.
Franklin, Craig E; Farrell, Anthony P; Altimiras, Jordi; Axelsson, Michael
2013-11-15
With the Arctic experiencing one of the greatest and most rapid increases in sea temperatures in modern time, predicting how Arctic marine organisms will respond to elevated temperatures has become crucial for conservation biology. Here, we examined the thermal sensitivity of cardiorespiratory performance for three closely related species of sculpins that inhabit the Arctic waters, two of which, Gymnocanthus tricuspis and Myoxocephalus scorpioides, have adapted to a restricted range within the Arctic, whereas the third species, Myoxocephalus scorpius, has a wider distribution. We tested the hypothesis that the fish restricted to Arctic cold waters would show reduced cardiorespiratory scope in response to an increase in temperature, as compared with the more eurythermal M. scorpius. As expected from their biogeography, M. scorpioides and G. tricuspis maximised cardiorespiratory performance at temperatures between 1 and 4°C, whereas M. scorpius maximised performance over a wider range of temperatures (1-10°C). Furthermore, factorial scope for cardiac output collapsed at elevated temperature for the two high-latitude species, negatively impacting their ability to support aerobically driven metabolic processes. Consequently, these results concurred with our hypothesis, suggesting that the sculpin species restricted to the Arctic are likely to be negatively impacted by increases in ocean temperatures.
Identifying future models for delivering genetic services: a nominal group study in primary care
Elwyn, Glyn; Edwards, Adrian; Iredale, Rachel; Davies, Peter; Gray, Jonathon
2005-01-01
Background To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. Methods Modified nominal group technique using in primary care professional development workshops. Results 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. Conclusion There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests. PMID:15831099
Zarotti, Nicolò; Simpson, Jane; Fletcher, Ian
2017-01-01
Objectives This study explored the perspectives of people affected by Huntington's disease (HD) on their own communicative abilities. Methods Qualitative semi-structured interviews were carried out with eight people with early HD. The data were analysed through thematic analysis. Results Four themes were constructed from the data, characterised by the following core topics: How HD directs and mediates communication; Regaining control to improve communication; Emotional outflows into communication and the struggle for separation; Sheltering as a way to boost confidence in communication. Discussion Separating patients' identity as individuals from that of a person with a disease can help increase communicative control. Consistent with the general theory and model of self-regulation, patients should be allowed a wider range of choices to regain control over communication. Achieving better emotion regulation is of paramount importance for communication, and factors such as medication regimes, relationships and existing coping strategies should be strengthened. Consistent with previous research, feelings of safety and the idea of a safe place ('sheltering') represent an effective coping mechanism. Practical implications include the refinement of communication and relationships among clinicians, caregivers, and patients with HD by considering a wider range of medical, psychological and socio-environmental factors.
Blind Spectroscopic Galaxy Surveys Using an Ultra-Wide-Band Imaging Spectrograph on AtLAST and LST
NASA Astrophysics Data System (ADS)
Kohno, Kotaro
2018-01-01
A novel approach to elucidation of cosmic star formation history is a blind search for CO and [CII] emissions using a ultra-wide-band imaging spectrograph on the future large submm telescopes like AtLAST and LST. In particular, searching for [CII] emitters in the appropriate frequency range allows us to sample those sources very efficiently for a redshift range of 3.5 to 9 (190 to 420 GHz), reaching the star-formation in the EoR. Further, spectroscopic analysis of CO in the lower frequency bands will constrain the evolution of CO luminosity functions across cosmic time. We conducted a feasibility study of ``CO/[CII] tomography'' based on a mock galaxy catalog containing 1.4 million objects drawn from the S(3) -SAX (Obreschkow et al. 2009). We find that a blind spectroscopic survey using a 50-m telescope equipped with a 100-pixel imaging spectrograph, which covers 70-370 GHz simultaneously, will be promising indeed. A survey of 2 deg(2) in 1,000 hr (on-source) will uncover > 10^5 line-emitting galaxies in total, including 10^3 [CII] emitters in the EoR (Tamura et al., in prep.). Wider surveys (10 deg^2 or wider) will also be discussed for RSD science cases.
DEM simulation of granular flows in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Peng, Chong; Wu, Wei
2017-04-01
The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of this validation is abstracting the role of the governing acceleration on the granular flow dynamics and extend it to a wider range of accelerations and slope angles. Based on this results we aim to validate the centrifuge scaling principle of flow velocity and flow height, and discuss the viability of centrifuge modelling of mass flows in a wider range of configurations. References T. Arndt, A. Brucks, J.M. Ottino, and R. Lueptow. Creeping granular motion under variable gravity levels. Phys. Rev. E, 74 (031307), 2006. E. Bowman, J. Laue, and S. Springman. Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal, 47(7): 742 - 762, 2010. M. Cabrera. Experimental modelling of granular flows in rotating frames. PhD thesis, University of Natural Resources and Life Sciences, Vienna, February 2016 J. Garnier, C. Gaudin, S.M. Springman, P.J. Culligan, D.J. Goodings, D. Konig, B.L. Kutter, R. Phillips, M.F. Randolph, and L. Thorel. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 7(3):1 - 23, 2007. R.M. Iverson. Scaling and design of landslide and debris-flow experiments. Geomorphology, 2015. J. Mathews. Investigation of granular flow using silo centrifuge models. PhD thesis, University of Natural Resources and Life Sciences, Vienna, September 2013. L. Vallejo, N. Estrada, A. Taboada, B. Caicedo, and J.A. Silva. Numerical and physical modeling of granular flow. In C.W. Ng, Y.H. Wang, and L.M. Zhang, editors, Physical Modelling in Geotechnics. Taylor & Francis, July 2006.
Is the NIHSS Certification Process Too Lenient?
Hills, Nancy K.; Josephson, S. Andrew; Lyden, Patrick D.; Johnston, S. Claiborne
2009-01-01
Background and Purpose The National Institutes of Health Stroke Scale (NIHSS) is a widely used measure of neurological function in clinical trials and patient assessment; inter-rater scoring variability could impact communications and trial power. The manner in which the rater certification test is scored yields multiple correct answers that have changed over time. We examined the range of possible total NIHSS scores from answers given in certification tests by over 7,000 individual raters who were certified. Methods We analyzed the results of all raters who completed one of two standard multiple-patient videotaped certification examinations between 1998 and 2004. The range for the correct score, calculated using NIHSS ‘correct answers’, was determined for each patient. The distribution of scores derived from those who passed the certification test then was examined. Results A total of 6,268 raters scored 5 patients on Test 1; 1,240 scored 6 patients on Test 2. Using a National Stroke Association (NSA) answer key, we found that correct total scores ranged from 2 correct scores to as many as 12 different correct total scores. Among raters who achieved a passing score and were therefore qualified to administer the NIHSS, score distributions were even wider, with 1 certification patient receiving 18 different correct total scores. Conclusions Allowing multiple acceptable answers for questions on the NIHSS certification test introduces scoring variability. It seems reasonable to assume that the wider the range of acceptable answers in the certification test, the greater the variability in the performance of the test in trials and clinical practice by certified examiners. Greater consistency may be achieved by deriving a set of ‘best’ answers through expert consensus on all questions where this is possible, then teaching raters how to derive these answers using a required interactive training module. PMID:19295205