Sample records for width micron-scale length

  1. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  2. The influence of stripe width on the threshold current of double-heterojunction lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1977-01-01

    Experimental measurements of the threshold current of oxide-isolated stripe laser as a function of stripe width and p-layer resistivity are presented. A calculation of the influence of carrier outdiffusion has been made, including the effect of current leakage beyond the stripe edges. The calculated threshold increase is in substantial agreement with experiment for stripe widths down to about 10 microns. The data also yield an effective diffusion length of about 7 microns for the lasers studied. Deviations between experimental and calculated thresholds occurring at stripe widths of 4-6 microns are represented by an empirical curve which is compared with previously published calculations of threshold gain.

  3. [Geographic variation of seed morphological traits of Picea schrenkiana var. tianschanica in Tianshan Mountains, Xinjiang of Northwest China].

    PubMed

    Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi

    2012-06-01

    Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.

  4. Scaling of graphene integrated circuits.

    PubMed

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-07

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

  5. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  6. Current-induced nonuniform enhancement of sheet resistance in A r+ -irradiated SrTi O3

    NASA Astrophysics Data System (ADS)

    Roy, Debangsu; Frenkel, Yiftach; Davidovitch, Sagi; Persky, Eylon; Haham, Noam; Gabay, Marc; Kalisky, Beena; Klein, Lior

    2017-06-01

    The sheet resistance Rs of A r+ irradiated SrTi O3 in patterns with a length scale of several microns increases significantly below ˜40 K in connection with driving currents exceeding a certain threshold. The initial lower Rs is recovered upon warming with accelerated recovery around 70 and 160 K. Scanning superconducting quantum interference device microscopy shows local irreversible changes in the spatial distribution of the current with a length scale of several microns. We attribute the observed nonuniform enhancement of Rs to the attraction of the charged single-oxygen and dioxygen vacancies by the crystallographic domain boundaries in SrTi O3 . The boundaries, which are nearly ferroelectric below 40 K, are polarized by the local electrical field associated with the driven current and the clustered vacancies which suppress conductivity in their vicinity and yield a noticeable enhancement in the device resistance when the current path width is on the order of the boundary extension. The temperatures of accelerated conductivity recovery are associated with the energy barriers for the diffusion of the two types of vacancies.

  7. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.

    PubMed

    Yuan, Dajun; Lin, Wei; Guo, Rui; Wong, C P; Das, Suman

    2012-06-01

    Scalable fabrication of carbon nanotube (CNT) bundles is essential to future advances in several applications. Here, we report on the development of a simple, two-step method for fabricating vertically aligned and periodically distributed CNT bundles and periodically porous CNT films at the sub-micron scale. The method involves laser interference ablation (LIA) of an iron film followed by CNT growth via iron-catalyzed chemical vapor deposition. CNT bundles with square widths ranging from 0.5 to 1.5 µm in width, and 50-200 µm in length, are grown atop the patterned catalyst over areas spanning 8 cm(2). The CNT bundles exhibit a high degree of control over square width, orientation, uniformity, and periodicity. This simple scalable method of producing well-placed and oriented CNT bundles demonstrates a high application potential for wafer-scale integration of CNT structures into various device applications, including IC interconnects, field emitters, sensors, batteries, and optoelectronics, etc.

  8. Multistage polymeric lens structure in silica-waveguides for photonic functional circuits

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2005-04-01

    A waveguide lens composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and the low-loss structure is designed. Both an imaging optical system and a Fourier-Transform optical system can be configured in a PLC by use of a waveguide lens. It makes a PLC functional and its design flexible. Moreover, a focal length of a lens is tunable with large thermo-optic effect of the polymer. A concatenated lens is formed to attain a desirable focal length with low-loss. The thickness of each lens and the spacing are about 10-50 microns. The simulation showed that the radiation loss of the light propagate through 20-stage grooves filled with a polymer was only 0.868 dB when the refractive index of the polymer was 1.57, the groove width was 30 microns, and the spacing between adjacent grooves was 15 microns. For example, the single lens structure that the center thickness is 30 microns, the diameter is 300 microns, and the refractive index of the polymer was 1.57, have a focal length of 4600 microns. The focal length of 450 microns can be obtained with 20-stage concatenated lens structure. The larger numerical aperture can be realized with a polymer of higher refractive index. We have applied the concatenated lens structure to various photonic circuits including optical couplers, a variable optical attenuator.

  9. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  10. Development of long wavelength semiconductor diode lasers near 28 microns for use in infrared heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1984-01-01

    The development of tunable diode lasers operating in the 28 micrometers spectral region for use in infrared heterodyne spectrometers is reported. A process capable of yielding lasers emitting 500 micron W of multimode power, 112 micron W in a true single mode and true single mode operation at laser currents of up to 35% above threshold was developed. Results were obtained from narrow mesastripe (20 micrometer wide) short cavity (120 micrometer length) laser configurations. Six stripe geometry lasers, with a variety of cavity widths and lengths were delivered. The techniques to fabricate such devices was obtained and the long term reliability of such lasers by reproducible electrical and optical output characteristics fabrication from lasers are demonstrated.

  11. Electrically-pumped, broad-area, single-mode photonic crystal lasers.

    PubMed

    Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel

    2007-05-14

    Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.

  12. Design of a nanopatterned long focal-length planar focusing collector for concentrated solar power

    NASA Astrophysics Data System (ADS)

    Ding, Qing; Choubal, Aakash; Toussaint, Kimani C.

    2017-02-01

    Concentrated solar power (CSP) facilities heavily utilize parabolic troughs to collect and concentrate sunlight onto receivers that deliver solar thermal energy to heat engines for generating electricity. However, parabolic troughs are bulky and heavy and result in a large capital investment for CSP plants, thereby making it difficult for CSP technology to be competitive with photovoltaics. We present the design of a planar focusing collector (PFC) with focal length beyond the micron scale. The PFC design is based on the use of a nanostructured silver surface for linearly polarized singlewavelength light. The designed PFC consists of metallic nanogrooves on a dielectric substrate. The geometric properties, namely the width and depth, of a single-unit nanogroove allows for full control of the optical phase at desired spatial coordinates along the nanogroove short-axis for a single wavelength. Moreover, we show numerically that such phase control can be used to construct a phase front that mimics that of a cylindrical lens. In addition, we determine the concentration ratio by comparing the width of our PFC design to the cross-sectional width of its focal spot. We also determine the conversion efficiency at long focal lengths by evaluating the ratio of the collected optical power to the incoming optical power. Finally, we examine the focusing behavior across multiple wavelengths and angles of incidence. Our work shows how nano-optics and plasmonics could contribute to this important area of CSP technology.

  13. Genetic parameters for different growth scales in GIFT strain of Nile tilapia (Oreochromis niloticus).

    PubMed

    He, J; Gao, H; Xu, P; Yang, R

    2015-12-01

    Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.

  14. Large-scale synthesis of ear-like Si{sub 3}N{sub 4} dendrites from SiO{sub 2}/Fe composites and Si powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Feng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Jin Guoqiang

    2008-07-01

    Large-scale ear-like Si{sub 3}N{sub 4} dendrites were prepared by the reaction of SiO{sub 2}/Fe composites and Si powders in N{sub 2} atmosphere. The product was characterized by field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results reveal that the product mainly consists of ear-like Si{sub 3}N{sub 4} dendrites with crystal structures, which have a length of several microns and a diameter of 100-200 nm. Nanosized ladder-like Si{sub 3}N{sub 4} was also obtained when changing the Fe content in the SiO{sub 2}/Fe composites. The Si{sub 3}N{sub 4} nanoladders have a length of hundreds nanometers to several micronsmore » and a width of 100-300 nm. The ear-like Si{sub 3}N{sub 4} dendrites are formed from a two-step growth process, the formation of inner stem structures followed by the epitaxial growth of secondary branches.« less

  15. Electric Field Tunable Microwave and MM-wave Ferrite Devices

    DTIC Science & Technology

    2010-04-30

    xm thick YIG film grown by liquid-phase epitaxy on a (111) gadolinium gallium garnet was used. A PZT plate with the dimensions 4x1x0.5 mm3 was...of width ~ 150 micron and length 20 mm. An YIG film , 6 u.m thick, 0.5 mm in width and 2.5 mm long, grown on a 0.5 mm thick gadolinium gallium garnet ...yttrium iron garnet film and a ceramic barium strontium titanate slab. The electrical tunability of the differential phase shift Acp is achieved through

  16. Scaling and functional morphology in strigiform hind limbs

    PubMed Central

    Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.

    2017-01-01

    Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549

  17. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  18. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.

    PubMed

    Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija

    2017-05-01

    Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.

  19. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  20. Length scales and pinning of interfaces

    PubMed Central

    Tan, Likun

    2016-01-01

    The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068

  1. The Hydrophobicity and Adhesion of Heterogeneous Surfaces of Dual Nanometer and Micron Scale Structures

    DTIC Science & Technology

    2011-04-11

    scale post geometry. superhydrophobic , surface modification, adhesion, contact angle, Cassie, Wenzel, PDMS, CYTOP, Teflon AF, roll-off angle U U U U SAR...width > 1, the micro-scale features dominated the wetting state regardless of the nano-scale post geometry., KEYWORDS superhydrophobic , surface... superhydrophobicity can be routinely found in nature. Fo~ example, many plant leaves1.2, bird feathers3, insect wings and insect legs4 take advantage of

  2. Micron-scale pattern formation in prestressed polygonal films

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Onck, P. R.

    2011-02-01

    In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the internal eigenstrain by buckling-up, after which the films bond-back to the substrate. After an initial symmetric evolution of the buckling profile, the symmetry of the deflection pattern breaks when the wavelength of wriggles near the film edges decreases. During bond back the deflection morphology converges to a fourfold, fivefold, and sixfold ridging pattern for the square, pentagonal and hexagonal films, respectively, showing a close resemblance with experimental film systems of similar size and shape. Rectangular films of large length to width ratio go through a transition in buckling shapes from the initial Euler mode, through the varicose mode into the antisymmetric telephone-cord mode. For all the film shapes, the ratio of the film height to the effective film width scales with the square root of eigenstrain and is independent of thickness. The bond-back mechanism determines the final wrinkle morphology and is governed by the eigenstrain value at the end of the buckling-up stage and the dimensionless parameter (Γ /EWeq)(Weq/t)3, relating the interface energy to the strain energy in the film.

  3. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  4. Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al, Ga) As lasers

    NASA Technical Reports Server (NTRS)

    Derry, P. L.; Chen, H. Z.; Morkoc, H.; Yariv, A.; Lau, K. Y.

    1988-01-01

    Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/sq cm (520 microns long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A CW threshold current of 0.55 mA was obtained for a laser with facet reflectivities of about 80 percent, a cavity length of 120 micron, and an active region stripe width of 1 micron. These devices driven directly with logic level signals have switch-on delays less than 50 ps without any current prebias. Such lasers permit fully on-off switching while at the same time obviating the need for bias monitoring and feedback control.

  5. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  6. Readout characteristics of a minute aperture-mounted optical head slider flying above a submicron wide metal patterned medium track

    NASA Astrophysics Data System (ADS)

    Ohkubo, Toshifumi; Hirota, Terunao; Oumi, Manabu; Hirata, Masakazu; Nakajima, Kunio

    2004-10-01

    Advances in a digital network society require both higher densities and higher transfer rates in all sorts of storage devices. In optical recording, the trend toward higher recording density and larger storage capacity requires novel surface recording technologies that would drastically improve recording density. To satisfy these severe requirements, we have already proposed a compact integrated optical head slider assembly for proximity optical recording based on the "near field principle". Using the optical head slider, we have successfully demonstrated readout signals from 200 to 150-nm-long bit patterns at frequency bands up to approximately 10 MHz. However, from the practical point of view, it is quite necessary to evaluate readout signals from patterns of smaller (sub-micron to sub-sub-micron) track width in order to prove high-density recording potential. In this paper, we have investigated tracking accuracy characteristics utilizing sub-micron sized alternate patterns of 1-mm length formed in a straight line in the circumferential direction of the medium. Arranging precisely the head's relative position to these recorded patterns, we have successfully obtained readout signals just crossing the sub-micron line-and-space pattern's boundaries. Assuming that an aperture runs along an accurate trajectory of the arc of a circle, readout signal amplitude variations when crossing the pattern edge at a right angle have precisely predicted. Also, the influences of track width on maximum readout signal intensity and tracking sensitivity are discussed in detail.

  7. Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform.

    PubMed

    Nielsen, Michael P; Lafone, Lucas; Rakovich, Aliaksandra; Sidiropoulos, Themistoklis P H; Rahmani, Mohsen; Maier, Stefan A; Oulton, Rupert F

    2016-02-10

    We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.

  8. Perspectives on integrated modeling of transport processes in semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.

  9. Are Tornadoes Getting Stronger?

    NASA Astrophysics Data System (ADS)

    Elsner, J.; Jagger, T.

    2013-12-01

    A cumulative logistic model for tornado damage category is developed and examined. Damage path length and width are significantly correlated to the odds of a tornado receiving the next highest damage category. Given values for the cube root of path length and square root of path width, the model predicts a probability for each category. The length and width coefficients are insensitive to the switch to the Enhanced Fujita (EF) scale and to distance from nearest city although these variables are statistically significant in the model. The width coefficient is sensitive to whether or not the tornado caused at least one fatality. This is likely due to the fact that the dimensions and characteristics of the damage path for such events are always based on ground surveys. The model predicted probabilities across the categories are then multiplied by the center wind speed from the categorical EF scale to obtain an estimate of the highest tornado wind speed on a continuous scale in units of meters per second. The estimated wind speeds correlate at a level of .82 (.46, .95) [95% confidence interval] to wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. More work needs to be done to understand the upward trends in path length and width. The increases lead to an apparent increase in tornado intensity across all EF categories.

  10. Morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite: Part I. Exposure estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amandus, H.E.; Wheeler, R.; Jankovic, J.

    1987-01-01

    The vermiculite ore and concentrate of a mine and mill near Libby, Montana, was found to be contaminated with fibrous tremolite-actinolite. Of 599 fibers (length greater than 5 microns and width greater than 0.45 micron) counted in eight airborne membrane filter samples, 96% had an aspect ratio greater than 10 and 16% had an aspect ratio greater than 50. Additionally, 73% of the fibers were longer than 10 microns, 36% were longer than 20 microns, and 10% were longer than 40 microns. Estimates of exposure before 1964 in the dry mill were 168 fibers/cc for working areas, 182 fibers/cc formore » sweepers, 88 fibers/cc for skipping, and 13 fibers/cc for the quality control laboratory. In 1964-1971, exposure estimates for these areas were 33, 36, 17, and 3 fibers/cc, respectively. Estimates of exposures in the mine before 1971 ranged from 9-23 fibers/cc for drillers and were less than 2 fibers/cc for nondrilling jobs. All 8-hr TWA job exposure estimates decreased from 1972-1976, and from 1977-1982 were less than 1 fiber/cc.« less

  11. The morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite: Part I. Exposure estimates.

    PubMed

    Amandus, H E; Wheeler, R; Jankovic, J; Tucker, J

    1987-01-01

    The vermiculite ore and concentrate of a mine and mill near Libby, Montana, was found to be contaminated with fibrous tremolite-actinolite. Of 599 fibers (length greater than 5 microns and width greater than 0.45 micron) counted in eight airborne membrane filter samples, 96% had an aspect ratio greater than 10 and 16% had an aspect ratio greater than 50. Additionally, 73% of the fibers were longer than 10 microns, 36% were longer than 20 microns, and 10% were longer than 40 microns. Estimates of exposure before 1964 in the dry mill were 168 fibers/cc for working areas, 182 fibers/cc for sweepers, 88 fibers/cc for skipping, and 13 fibers/cc for the quality control laboratory. In 1964-1971, exposure estimates for these areas were 33, 36, 17, and 3 fibers/cc, respectively. Estimates of exposures in the mine before 1971 ranged from 9-23 fibers/cc for drillers and were less than 2 fibers/cc for nondrilling jobs. All 8-hr TWA job exposure estimates decreased from 1972-1976, and from 1977-1982 were less than 1 fiber/cc.

  12. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-relatedmore » structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.« less

  13. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  14. Web-dendritic growth. [single crystal silicon ribbons for solar cells

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B.; Faust, J. W., Jr.; Rhodes, C.

    1977-01-01

    The effects of various machine design parameters on the growth of web dendritic silicon ribbon were investigated. Ribbons were grown up to lengths of one meter, with widths increasing linearly up to one cm at the point of termination of growth. Thermal data were collected and evaluated for actual seeding and growth with variations in parameters affecting heat loss. It was found that for suitable growth, the mechanical system should be very rigid and stable, and the tolerances and specifications of the quartz crucibles must be far tighter than normal quartz tolerances. The widening rates of the ribbons were found to be a function of the temperature gradient rather than the temperature differences alone. A twin spacing in the seed of 3 microns to 2 microns was found to be unfavorable for growth; whereas spacing of 0.9 microns to 2 microns and 8 microns to 2 microns were favorable. Thermal modeling studies of the effects of furnace design parameters on the temperature distributions in melt and the growth of the dendritic web ribbon showed that the pull rate of the ribbon is strongly dependent on the temperature of the top thermal shield, the spacing between this shield and the melt, and the thickness of the growing web.

  15. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  16. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.

    PubMed

    Jorgenson, Tyler D; Mohammed, Abdul M; Agrawal, Deepak K; Schulman, Rebecca

    2017-02-28

    An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.

  17. A light and electron microscopic study of Trypanosoma fallisi N. Sp. in toads (Bufo americanus) from Algonquin Park, Ontario.

    PubMed

    Martin, D S; Desser, S S

    1990-01-01

    Trypanosoma fallisi n. sp. is described from Bufo americanus in Ontario. The parasite was observed in 65 of 94 toads examined. The trypanosomes were pleomorphic with respect to the age of infections, being longer and broader in early infections (during spring and summer) and shorter and more slender during late summer and autumn. They ranged in size from 38-76 microns in body length and 3-8 microns in width, with a free flagellum 6-30 microns long. Epizootiological and experimental evidence suggests that this trypanosome is transmitted to the toads by the leech, Batracobdella picta. Trypanosoma fallisi is morphologically similar to T. bufophlebotomi described in Bufo boreas from California, but geographic isolation, host and vector differences as well as slight morphological differences indicate that speciation has occurred. Similar trypanosomes from Bufo americanus (which were identified as T. bufophlebotomi) in Michigan, are probably T. fallisi. This species shares many ultrastructural features with trypanosomes of other lower vertebrates and also of mammals.

  18. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.

    PubMed

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-29

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.

  19. Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Kalidindi, Surya R.

    Recent advances in spherical indentation stress-strain protocols and analyses have demonstrated the capability for measuring reliably the local mechanical responses in polycrystalline metal samples at different length scales, ranging from sub-micron (regions within individual grains) to several hundreds of microns (regions covering several grains). These recent advances have now made it possible to study systematically the mechanical behavior of a single material system at different length scales, with tremendous potential to obtain new insights into the role of individual phases, interfaces, and other microscale constituents on the macroscale mechanical response of the material. In this paper, we report spherical indentationmore » stress-strain measurements with different indenter sizes (microns to millimeters) on Ti-6Al-4V (Ti-64) which capture the mechanical response of single phase alpha-Ti-64, single colony (alpha-beta), few colonies, and many colonies of Ti-64. The results show that the average mechanical response (indentation modulus and yield strength) from multiple indentations remains relatively unchanged from single phase alpha to many colonies of Ti-64, while the variance in the response decreases with indenter size. In conclusion, the work-hardening response in indentation tests follows a similar behavior up to indentation zones of many colonies, which shows significantly higher work hardening rates.« less

  20. Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements

    DOE PAGES

    Weaver, Jordan S.; Kalidindi, Surya R.

    2016-12-01

    Recent advances in spherical indentation stress-strain protocols and analyses have demonstrated the capability for measuring reliably the local mechanical responses in polycrystalline metal samples at different length scales, ranging from sub-micron (regions within individual grains) to several hundreds of microns (regions covering several grains). These recent advances have now made it possible to study systematically the mechanical behavior of a single material system at different length scales, with tremendous potential to obtain new insights into the role of individual phases, interfaces, and other microscale constituents on the macroscale mechanical response of the material. In this paper, we report spherical indentationmore » stress-strain measurements with different indenter sizes (microns to millimeters) on Ti-6Al-4V (Ti-64) which capture the mechanical response of single phase alpha-Ti-64, single colony (alpha-beta), few colonies, and many colonies of Ti-64. The results show that the average mechanical response (indentation modulus and yield strength) from multiple indentations remains relatively unchanged from single phase alpha to many colonies of Ti-64, while the variance in the response decreases with indenter size. In conclusion, the work-hardening response in indentation tests follows a similar behavior up to indentation zones of many colonies, which shows significantly higher work hardening rates.« less

  1. Musculoaponeurotic Area of the Hip and Clinicophotographic Scaling System

    PubMed Central

    Mena-Chávez, J. Alejandro

    2015-01-01

    Background: With the evolution of body contouring, few innovative alternatives have been developed for cosmetic treatment in the hip area. Methods: A multicenter controlled study was conducted, including a prior review of the literature regarding the hip area. Dissections were performed on 4 male cadavers, outlining the “musculoaponeurotic area of the hip.” The area was subdivided into anterior and posterior surfaces. A clinical study was conducted in 79 patients, obtaining a scale by using the most prominent points on the sides of both thighs as the main reference. With the lines marked on photographs and the measurements, a “clinicophotographic scaling system” was designed. Results: The anterior surface corresponds to the tensor fasciae latae and its tendon as well as to the aponeurosis of the gluteus medius. The posterior surface corresponds with the iliotibial tract and the tendon insertions of the gluteus maximus. The average dimensions of the cadaver “musculoaponeurotic area of the hip” are as follows: length, 17.5 cm, and width, 11.5 cm. Using the “clinicophotographic scaling system,” the dimensions are as follows: length, 14.9 cm, and width, 10.3 cm. Conclusions: The “musculoaponeurotic area of the hip” was defined involving muscles, tendons, aponeurosis, fascia, subcutaneous cellular tissue, and skin. The borders were established using important anatomical points that determine the length and width of the area. The “clinicophotographic scaling system” was used to clinically calculate the length and width of the area. By examination and palpation, the borders and dimensions of this area could be determined. PMID:26180724

  2. Single crystal silicon filaments fabricated in SOI: A potential IR source for a microfabricated photometric CO2 sensor

    NASA Technical Reports Server (NTRS)

    Tu, Juliana; Smith, Rosemary L.

    1995-01-01

    The objective of this project was to design, fabricate, and test single crystal silicon filaments as potential black body IR sources for a spectrophotometric CO2 sensing microsystem. The design and fabrication of the silicon-on-insulator (SOI) filaments are summarized and figures showing the composite layout of the filament die (which contains four filaments of different lengths -- 500 microns, 1 mm, 1.5 mm and 2 mm -- and equal widths of 15 microns) are presented. The composite includes four mask layers: (1) silicon - defines the filament dimensions and contact pads; (2) release pit - defines the oxide removed from under the filament and hence, the length of the released filament; (3) Pyrex pit - defines the pit etched in the Pyrex cap (not used); and (4) metal - defines a metal pattern on the contact pads or used as a contact hole etch. I/V characteristics testing of the fabricated SOI filaments is described along with the nitride-coating procedures carried out to prevent oxidation and resistance instability.

  3. Analysis of SMIRR Data for Volcanic and Sedimentary Terrains of the Trans-pecos Region, Texas

    NASA Technical Reports Server (NTRS)

    Blount, H. G.; Whitfordstark, J. L.

    1985-01-01

    The Shuttle Multispectral Infrared Radiometer (SMIRR) carried on the second mission of the Space Shuttle produced spectral data for portions of Presidio and Jeff Davis Counties, Texas during the eighteenth orbit of the spacecraft in November of 1981. The data covers an area approximately 100 m in width and 100 km in length extending from the Rio Grande just north of Candelaria in the southwest to Fort Stockton in the northeast. The area is part of the Chihuahua Desert ecosystem. The purpose of the project is to provide groundtruth for the spectral data produced by the SMIRR scanner. The ten filters on the SMIRR scanner extend from 0.50 to 2.35 microns. It has been found that the bands from 2.0 to 2.35 microns are particularly useful for discriminating carbonate and clay minerals.

  4. Two Independent Contributions to Step Variability during Over-Ground Human Walking

    PubMed Central

    Collins, Steven H.; Kuo, Arthur D.

    2013-01-01

    Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308

  5. Solution to certain problems in the failure of composite structures

    NASA Astrophysics Data System (ADS)

    Goodsell, Johnathan

    The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)

  6. Cationic nanofibrillar cellulose with high antibacterial properties.

    PubMed

    Chaker, Achraf; Boufi, Sami

    2015-10-20

    Cationic nanofibrillar cellulose (C-NFC) has been prepared via a high pressure homogenization using quaternized cellulose fibers with glycidyltrimethylammonium chloride. It has been shown that the quaternization of dried softwood pulp facilitated the defibrillation processes and prevented clogging of the homogenizer. The effects of the trimethylammonium chloride content on the fibrillation yield, the transparency degree of the gel, the rheological behavior of the NFC suspension and their electrokinetic properties were investigated. AFM observation showed that the NFC suspension consisted of individualized cellulose I nanofibrils 4-5nm in width and length in the micronic scale. In addition to their strong reinforcing potential, the inclusion of C-NFC into a polymer matrix was shown to efficiently enhance the antibacterial activity. The reinforcing potential of C-NFC, studied by dynamic mechanical analysis (DMA), was compared to anionic NFC and the difference was explained in terms of the nanofibrils capacities to build up a strong networks held by hydrogen bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  8. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 (micron)meter MOSFET's: A 3-D 'Atomistic' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen

    1998-01-01

    A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 microns MOSFET's is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFET's. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFET's was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.

  9. Saw-tooth refractive x-ray optics with sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Cederstrom, Bjorn; Ribbing, Carolina; Lundqvist, Mats

    2002-11-01

    Saw-tooth refractive x-ray lenses have been used to focus a synchrotron beam to sub-μm line width. These lenses are free from spherical aberration and work in analogy with 1-D focusing parabolic compound refractive lenses. However, the focal length can be varied by a simple mechanical procedure. Silicon lenses were fabricated by wet anisotropic etching, and epoxy replicas were molded from the silicon masters. Theses lenses provided 1-D intensity gains up to a factor of 40 and the smallest focal line width was 0.74 μm, very close to the theoretical expectation. Two crossed lenses were put in series to obtain 2-D focusing and the 80 μm by 275 μm source was imaged to 1.0 μm by 5.4 μm. Beryllium lenses were fabricated using conventional computer-controlled milling. The focal line width was 1.7 μm, nearly 3 times larger than predicted by theory. This can be attributed to large surface roughness and a bent lens shape.

  10. Evolution of Pull-Apart Basins and Their Scale Independence

    NASA Astrophysics Data System (ADS)

    Aydin, Atilla; Nur, Amos

    1982-02-01

    Pull-apart basins or rhomb grabens and horsts along major strike-slip fault systems in the world are generally associated with horizontal slip along faults. A simple model suggests that the width of the rhombs is controlled by the initial fault geometry, whereas the length increases with increasing fault displacement. We have tested this model by analyzing the shapes of 70 well-defined rhomb-like pull-apart basins and pressure ridges, ranging from tens of meters to tens of kilometers in length, associated with several major strike-slip faults in the western United States, Israel, Turkey, Iran, Guatemala, Venezuela, and New Zealand. In conflict with the model, we find that the length to width ratio of these basins is a constant value of approximately 3; these basins become wider as they grow longer with increasing fault offset. Two possible mechanisms responsible for the increase in width are suggested: (1) coalescence of neighboring rhomb grabens as each graben increases its length and (2) formation of fault strands parallel to the existing ones when large displacements need to be accommodated. The processes of formation and growth of new fault strands promote interaction among the new faults and between the new and preexisting faults on a larger scale. Increased displacement causes the width of the fault zone to increase resulting in wider pull-apart basins.

  11. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding

    PubMed Central

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-01

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities. PMID:28787947

  12. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  13. Magneto-transport Characterization of Thin Film In-plane and Cross-plane Conductivity

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Grayson, Matthew

    Thin films with highly anisotropic in-plane and cross-plane conductivities are widely used in devices, such as infrared emitters and detectors, and the proper magneto-transport characterization in both directions can reveal information about the doping density, impurities, carrier life times and band structure. This work introduces a novel method for deducing the complete anisotropic electrical conductivity tensor of such an anisotropic resistive layer atop a highly conducting bottom contact, which is a standard part of the device structure. Three strip-line contacts separated by a length scale comparable to the film thickness are applied atop the resistive thin film layer of interest, with the highly conducting back-plane as a back-contact. The potential distribution in the device is modeled, using both scaling and conformal transformation to minimize the calculated volume. As a proof of concept, triple strip-line devices for GaAs and GaAs/AlGaAs superlattice thin films are fabricated. To achieve narrow strip-line contacts with sub-micron scale widths, non-annealed Ni/Au contacts form ohmic contacts to a patterned n+-GaAs cap layer atop the anisotropic thin films. Preliminary experimental data will be presented as a validation of this method. Acknowledgment: Funded by AFOSR FA9550-15-1-0377 and AFOSR FA9550-15-1-0247.

  14. Length and area equivalents for interpreting wildland resource maps

    Treesearch

    Elliot L. Amidon; Marilyn S. Whitfield

    1969-01-01

    Map users must refer to an appropriate scale in interpreting wildland resource maps. Length and area equivalents for nine map scales commonly used have been computed. For each scale a 1-page table consists of map-to-ground equivalents, buffer strip or road widths, and cell dimensions required for a specified acreage. The conversion factors are stored in a Fortran...

  15. Detection of submicron scale cracks and other surface anomalies using positron emission tomography

    DOEpatents

    Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.

    2004-02-17

    Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.

  16. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperature scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition

  17. Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2010-01-01

    We have recently shown that normal-metal/superconductor (N /S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N /S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  18. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Ballistic transport in graphene grown by chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calado, V. E.; Goswami, S.; Xu, Q.

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  20. The design and evaluation of grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.

    1989-01-01

    X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.

  1. Gene transfer device utilizing micron-spiked electrodes produced by the self-organization phenomenon of Fe-alloy.

    PubMed

    Miyano, Naoki; Inoue, Yuuki; Teramura, Yuji; Fujii, Keisuke; Tsumori, Fujio; Iwata, Hiroo; Kotera, Hidetoshi

    2008-07-01

    In the diffusional phase transformation of two-phase alloys, the new phase precipitates form the matrix phase at specific temperatures, followed by the formation of a mixed microstructure comprising the precipitate and the matrix. It has been found that by specific chemical-etching treatment, the precipitate in Fe-25Cr-6Ni alloy projects substantially and clusters at the surface. The configuration of the precipitate has an extremely high aspect ratio: it is several microns in width and several tens of microns in length (known as micron-spiked). This study targets the development of a gene transfer device with a micro-spike produced based on the self-organization phenomenon of the Fe-25Cr-6Ni alloy. With this spike-projected device, we tried to efficiently transfer plasmid DNA into adherent cells by electric pulse-triggered gene transfer using a plasmid-loaded electrode (electroporation-based reverse transfection). The spiked structure was applied to a substrate of the device to allow efficient gene transfer into adherent cells, although the general substrate was flat and had a smooth surface. The results suggest that this unique spike-projected device has potential applications in gene transfer devices for the analysis of the human genome in the post-genome period.

  2. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour.

    PubMed

    Zhang, Y; Paris, O; Terrill, N J; Gupta, H S

    2016-05-23

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  3. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  4. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    PubMed Central

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-01-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales. PMID:27211574

  5. Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi

    1996-01-01

    This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.

  6. Development of micronic GMR-magnetoresistive sensors for non-destructive sensing applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc

    2015-09-01

    We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.

  7. Design and test of a prototype scale ejector wing

    NASA Technical Reports Server (NTRS)

    Mefferd, L. A.; Alden, R. E.; Bevilacqua, P. M.

    1979-01-01

    A two dimensional momentum integral analysis was used to examine the effect of changing inlet area ratio, diffuser area ratio, and the ratio of ejector length to width. A relatively wide range of these parameters was considered. It was found that for constant inlet area ratio the augmentation increases with the ejector length, and for constant length: width ratio the augmentation increases with inlet area ratio. Scale model tests were used to verify these trends and to examine th effect of aspect ratio. On the basis of these results, an ejector configuration was selected for fabrication and testing at a scale representative of an ejector wing aircraft. The test ejector was powered by a Pratt-Whitney F401 engine developing approximately 12,000 pounds of thrust. The results of preliminary tests indicate that the ejector develops a thrust augmentation ratio better than 1.65.

  8. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits.

    PubMed

    Liu, Liu; Ding, Yunhong; Yvind, Kresten; Hvam, Jørn M

    2011-06-20

    A compact and efficient polarization splitting and rotating device built on the silicon-on-insulator platform is introduced, which can be readily used for the interface section of a polarization diversity circuit. The device is compact, with a total length of a few tens of microns. It is also simple, consisting of only two parallel silicon-on-insulator wire waveguides with different widths, and thus requiring no additional and nonstandard fabrication steps. A total insertion loss of -0.6 dB and an extinction ratio of 12 dB have been obtained experimentally in the whole C-band.

  9. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    NASA Astrophysics Data System (ADS)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  10. Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan

    2017-02-01

    Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.

  11. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. I. Measurements

    NASA Astrophysics Data System (ADS)

    Majkrzak, Charles F.; Metting, Christopher; Maranville, Brian B.; Dura, Joseph A.; Satija, Sushil; Udovic, Terrence; Berk, Norman F.

    2014-03-01

    The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k when it is prepared in a typical instrument used to study the structure of materials in thin film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object, while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed-matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutron's effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary nonspecular measurements of the widths of grating reflections were also performed, which corroborate the specular results. (This paper principally describes measurements interpreted according to the theoretical picture presented in a companion paper.) Each grating was fabricated by lift-off photolithography patterning of a nickel film (approximately 1000 Å thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 μm (5 μm Ni stripe, 5 μm intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.

  12. Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.

    2014-12-01

    Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.

  13. A 32-bit NMOS microprocessor with a large register file

    NASA Astrophysics Data System (ADS)

    Sherburne, R. W., Jr.; Katevenis, M. G. H.; Patterson, D. A.; Sequin, C. H.

    1984-10-01

    Two scaled versions of a 32-bit NMOS reduced instruction set computer CPU, called RISC II, have been implemented on two different processing lines using the simple Mead and Conway layout rules with lambda values of 2 and 1.5 microns (corresponding to drawn gate lengths of 4 and 3 microns), respectively. The design utilizes a small set of simple instructions in conjunction with a large register file in order to provide high performance. This approach has resulted in two surprisingly powerful single-chip processors.

  14. Indium gallium arsenide microwave power transistors

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory A.; Kapoor, Vik J.; Shokrani, Mohsen; Messick, Louis J.; Nguyen, Richard

    1991-01-01

    Depletion-mode InGaAs microwave power MISFETs with 1-micron gate lengths and up to 1-mm gate widths have been fabricated using an ion-implantation process. The devices employed a plasma-deposited silicon/silicon dioxide gate insulator. The dc I-V characteristics and RF power performance at 9.7 GHz are presented. The output power, power-added efficiency, and power gain as a function of input power are reported. An output power of 1.07 W with a corresponding power gain and power-added efficiency of 4.3 dB and 38 percent, respectively, was obtained. The large-gate-width devices provided over twice the previously reported output power for InGaAs MISFETs at X-band. In addition, output power stability within 1.2 percent over 24 h of continuous operation was achieved. In addition, a drain current drift of 4 percent over 10,000 sec was obtained.

  15. Endothelial reaction to perforating and non-perforating excimer laser excisions in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, J.W.; Lang, G.K.; Naumann, G.O.

    1991-05-01

    With an ArF excimer laser (193 nm, 750 mJ/cm2, 20 Hz) and a special slit-mask system, perforating and non-perforating linear keratectomies were performed in 55 rabbit corneas with a follow-up from 1 hour to 6 months. Varying the pulse number according to ablation rate (0.8 micron/pulse) and corneal thickness, four linear radial excisions (3 mm length, 70 microns width) of increasing depth (70%, 80%, 90%, 100% perforation) were produced. The corneas were processed for light microscopy, scanning and transmission electron microscopy, and vital staining of the endothelium. Except for mild cell contact alterations and discrete single cell damage in themore » 90% deep excisions, no endothelial damage could be detected after non-perforating keratectomies. Minute (less than 20 microns) and small (20 to 100 microns maximal diameter) perforations induced cell enlargement, formation of pseudopodia, rosette-like figures, multi-nucleated giant cells, and ultimately uniform reformation of the cell pattern (1 hour to 7 days postoperatively). Larger excimer laser defects of Descemet's membrane (greater than 100 microns) were overgrown by dedifferentiated endothelial cells producing a new PAS-positive basement membrane. Vital staining revealed the complete and stable reorganization of the endothelium over these lesions within 6 months. The authors observations are similar to those reported on the endothelial repair process following other surgical manipulations (knife incisions, direct Nd:YAG-laser trauma) and support the applicability of excimer lasers for corneal trephination in patients.« less

  16. Fabrication Method for LOBSTER-Eye Optics in <110> Silicon

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Collier, Michael; Mateo, Jennette

    2013-01-01

    Soft x-ray optics can use narrow slots to direct x-rays into a desirable pattern on a focal plane. While square-pack, square-pore, slumped optics exist for this purpose, they are costly. Silicon (Si) is being examined as a possible low-cost replacement. A fabrication method was developed for narrow slots in <110> Si demonstrating the feasibility of stacked slot optics to replace micropores. Current micropore optics exist that have 20-micron-square pores on 26-micron pitch in glass with a depth of 1 mm and an extent of several square centimeters. Among several proposals to emulate the square pore optics are stacked slot chips with etched vertical slots. When the slots in the stack are positioned orthogonally to each other, the component will approach the soft x-ray focusing observed in the micropore optics. A specific improvement Si provides is that it can have narrower sidewalls between slots to permit greater throughput of x-rays through the optics. In general, Si can have more variation in slot geometry (width, length). Further, the sidewalls can be coated with high-Z materials to enhance reflection and potentially reduce the surface roughness of the reflecting surface. Narrow, close-packed deep slots in <110> Si have been produced using potassium hydroxide (KOH) etching and a patterned silicon nitride (SiN) mask. The achieved slot geometries have sufficient wall smoothness, as observed through scanning electron microscope (SEM) imaging, to enable evaluation of these slot plates as an optical element for soft x-rays. Etches of different angles to the crystal plane of Si were evaluated to identify a specific range of etch angles that will enable low undercut slots in the Si <110> material. These slots with the narrow sidewalls are demonstrated to several hundred microns in depth, and a technical path to 500-micron deep slots in a precision geometry of narrow, closepacked slots is feasible. Although intrinsic stress in ultrathin wall Si is observed, slots with walls approaching 1.5 microns can be achieved (a significant improvement over the 6-micron walls in micro - pore optics). The major advantages of this technique are the potential for higher x-ray throughout (due to narrow slot walls) and lower cost over the existing slumped micropore glass plates. KOH etching of smooth sidewalls has been demonstrated for many applications, suggesting its feasibility for implementation in x-ray optics. Si cannot be slumped like the micropore optics, so the focusing will be achieved with millimeter-scale slot plates that populate a spherical dome. The possibility for large-scale production exists for Si parts that is more difficult to achieve in micropore parts.

  17. A description of Isospora amphiboluri (Apicomplexa: Eimeriidae) from the inland bearded dragon, Pogona vitticeps (Sauria: Agamidae).

    PubMed

    McAllister, C T; Upton, S J; Jacobson, E R; Kopit, W

    1995-04-01

    Fecal samples from 50 captive inland bearded dragons, Pogona vitticeps (Ahl, 1926), bred in California, were examined for coccidian parasites. Sixteen (32%) of the lizards were found to be passing oocysts of Isospora amphiboluri Cannon, 1967, previously described from bearded dragons Pogona barbata (Cuvier, 1829) from Australia. Sporulated oocytes were spherical to subspherical, 25.3 x 25.1 (23-26 x 23-26) microns, with a shape index (length/width) of 1.0 (1.0-1.1). A micropyle, oocyst residuum, and polar granule were absent. Sporocyts were ovoidal, 17.0 x 11.4 (16-18 x 11-12) microns, with a shape index of 1.5 (1.4-1.7). A sporocyst residuum, Stieda, and substieda bodies were present, but parastieda bodies were absent. Sporozoites were elongated, 13.9 x 3.5 (12-15 x 3-4) microns in situ, containing spherical anterior and posterior refractile bodies. The occurrence of I. amphiboluri in P. vitticeps is a new host and geographic record for the parasite. Photomicrographs of the oocysts and endogenous life cycle stages of I. amphiboluri are presented for the first time.

  18. Freeze-tolerant condenser for a closed-loop heat-transfer system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J. (Inventor); Elkouh, Nabil A. (Inventor)

    2002-01-01

    A freeze tolerant condenser (106) for a two-phase heat transfer system is disclosed. The condenser includes an enclosure (110) and a porous artery (112) located within and extending along the length of the enclosure. A vapor space (116) is defined between the enclosure and the artery, and a liquid space (114) is defined by a central passageway within the artery. The artery includes a plurality of laser-micromachined capillaries (130) extending from the outer surface of the artery to its inner surface such that the vapor space is in fluid communication with the liquid space. In one embodiment of the invention, the capillaries (130) are cylindrical holes having a diameter of no greater than 50 microns. In another embodiment, the capillaries (130') are slots having widths of no greater than 50 microns. A method of making an artery in accordance with the present invention is also disclosed. The method includes providing a solid-walled tube and laser-micromachining a plurality of capillaries into the tube along a longitudinal axis, wherein each capillary has at least one cross-sectional dimension transverse to the longitudinal axis of less than 50 microns.

  19. Identification of dangerous fibers: some examples in Northern Italy

    NASA Astrophysics Data System (ADS)

    Zanetti, Giovanna; Marini, Paola; Giorgis, Ilaria

    2016-04-01

    The presence of asbestiform minerals has to be foreseen in the planning of infrastructural activities: Asbestos can be a component of sedimentary rocks or of mafic and ultra mafic metamorphic rocks. Surveys and core drilling, in addition to providing important information on the quality of the rock and its geotechnical characteristics, allow for a prediction of the presence of asbestiform minerals in the areas affected by mining or infrastructural activities. During the excavation, workers can be exposed to the asbestos risk, therefore, the control of the air quality and of the excavated materials are fundamental for the safety of involved people. In this work some problems we met in the analysis of airborne filters and bulk samples from sites in northern Italy are presented. The asbestos fibers present in rocks as accessory minerals, are often different in habit and dimension from the well-known asbestos fibers used as industrial minerals and moreover can be erroneously identified as minerals morphologically and chemically similar present in the same rock or environment. In the case of tunnel muck it could be contaminated by substances used for the excavation that could modify colours and optical properties of asbestos minerals. In the PCOM (Phase Contrast Optical Microscope) analysis chrysotile, sepiolite and antigorite, due to their different refraction index, when the fibers have dimension > 0,5 micron and aren't contaminated by lubricant can be easely identified even if the morphology of chrysotile is very similar to that of sepiolite. In Electron Scanning Microscope (SEM) the discrimination between chrysotile and antigorite on the airborne filters is not always possible because the fibers of thin dimensions show similar habit and spectrum. In the case of the tremolite amphibole, morphology changes from prismatic to fibrous depending on its origin (p.eg. Monastero, Val Grana, Verrayes, Brachiello). Both prismatic and asbestiform tremolite (Gamble and Gibbs, 2007; Addison and McConnel, 2007) may show inhalable elements with width less than 3 micron, length more than 5 micron and width length ratio 1:3, whose dangerousness (fiber coming from fibrous tremolite or the cleavage fragments coming from prismatic tremolite) could be different and it is object of epidemiologic studies.

  20. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold

    NASA Astrophysics Data System (ADS)

    Lee, Dongyun; Wei, Xiaoding; Zhao, Manhong; Chen, Xi; Jun, Seong C.; Hone, James; Kysar, Jeffrey W.

    2007-01-01

    The results of two sets of experiments to measure the elastic-plastic behaviour of gold at the nanometre length scale are reported. One set of experiments was on free-standing nanoscale single crystals of gold, and the other was on free-standing nanoscale specimens of open-celled nanoporous gold. Both types of specimens were fabricated from commercially available leaf which was either pure Au or a Au/Ag alloy following by dealloying of the Ag. Mechanical testing specimens of a 'dog-bone' shape were fabricated from the leaf using standard lithographic procedures after the leaf had been glued onto a silicon wafer. The thickness of the gauge portion of the specimens was about 100 nm, the width between 250 nm and 300 nm and the length 7 µm. The specimens were mechanically loaded with a nanoindenter (MTS) at the approximate midpoint of the gauge length. The resulting force-displacement curve of the single crystal gold was serrated and it was evident that slip localization occurred on individual slip systems; however, the early stages of the plastic deformation occurred in a non-localized manner. The results of detailed finite element analyses of the specimen suggest that the critical resolved shear stress of the gold single crystal was as high as 135 MPa which would lead to a maximum uniaxial stress of about 500 MPa after several per cent strain. The behaviour of the nanoporous gold was substantially different. It exhibited an apparent elastic behaviour until the point where it failed in an apparently brittle manner, although it is assumed that plastic deformation occurred in the ligaments prior to failure. The average elastic stiffness of three specimens was measured to be Enp = 8.8 GPa and the stress at ultimate failure averaged 190 MPa for the three specimens tested. Scaling arguments suggest that the stress in the individual ligaments could approach the theoretical shear strength. Presented at the IUTAM Symposium on Plasticity at the Micron Scale, Technical University of Denmark, Copenhagen, Denmark.

  1. Graphene Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Bowick, Mark; Kosmrlj, Andrej; Nelson, David; Sknepnek, Rastko

    2015-03-01

    Graphene provides an ideal system to test the statistical mechanics of thermally fluctuating elastic membranes. The high Young's modulus of graphene means that thermal fluctuations over even small length scales significantly stiffen the renormalized bending rigidity. We study the effect of thermal fluctuations on graphene ribbons of width W and length L, pinned at one end, via coarse-grained Molecular Dynamics simulations and compare with analytic predictions of the scaling of width-averaged root-mean-squared height fluctuations as a function of distance along the ribbon. Scaling collapse as a function of W and L also allows us to extract the scaling exponent eta governing the long-wavelength stiffening of the bending rigidity. A full understanding of the geometry-dependent mechanical properties of graphene, including arrays of cuts, may allow the design of a variety of modular elements with desired mechanical properties starting from pure graphene alone. Supported by NSF grant DMR-1435794

  2. Convergence of macroscopic tongue anatomy in ruminants and scaling relationships with body mass or tongue length.

    PubMed

    Meier, Andrea R; Schmuck, Ute; Meloro, Carlo; Clauss, Marcus; Hofmann, Reinhold R

    2016-03-01

    Various morphological measures demonstrate convergent evolution in ruminants with their natural diet, in particular with respect to the browser/grazer dichotomy. Here, we report quantitative macroanatomical measures of the tongue (length and width of specific parts) of 65 ruminant species and relate them to either body mass (BM) or total tongue length, and to the percentage of grass in the natural diet (%grass). Models without and with accounting for the phylogenetic structures of the dataset were used, and models were ranked using Akaike's Information Criterion. Scaling relationships followed geometric principles, that is, length measures scaled with BM to the power of 0.33. Models that used tongue length rather than BM as a body size proxy were consistently ranked better, indicating that using size proxies that are less susceptible to a wider variety of factors (such as BM that fluctuates with body condition) should be attempted whenever possible. The proportion of the freely mobile tongue tip of the total tongue (and hence also the corpus length) was negatively correlated to %grass, in accordance with concepts that the feeding mechanism of browsers requires more mobile tongues. It should be noted that some nonbrowsers, such as cattle, use a peculiar mechanism for grazing that also requires long, mobile tongues, but they appear to be exceptions. A larger corpus width with increasing %grass corresponds to differences in snout shape with broader snouts in grazers. The Torus linguae is longer with increasing %grass, a finding that still warrants functional interpretation. This study shows that tongue measures covary with diet in ruminants. In contrast, the shape of the tongue (straight or "hourglass-shaped" as measured by the ratio of the widest and smallest corpus width) is unrelated to diet and is influenced strongly by phylogeny. © 2015 Wiley Periodicals, Inc.

  3. Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda

    2017-08-01

    This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.

  4. Tornado Intensity Estimated from Damage Path Dimensions

    PubMed Central

    Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242

  5. Tornado intensity estimated from damage path dimensions.

    PubMed

    Elsner, James B; Jagger, Thomas H; Elsner, Ian J

    2014-01-01

    The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.

  6. What sets the minimum tokamak scrape-off layer width?

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon

    2016-10-01

    The heat flux width of the tokamak scrape-off layer is on the order of the poloidal ion gyroradius, but the ``heuristic drift'' physics model is still not completely understood. In the absence of anomalous transport, neoclassical transport sets the minimum width. For plateau collisionality, the ion temperature width is set by qρi , while the electron temperature width scales as the geometric mean q(ρeρi) 1 / 2 and is close to qρi in magnitude. The width is enhanced because electrons are confined by the sheath potential and have a much longer time to radially diffuse before escaping to the wall. In the Pfirsch-Schluter regime, collisional diffusion increases the width by the factor (qR / λ) 1 / 2 where qR is the connection length and λ is the mean free path. This qualitatively agrees with the observed transition in the scaling law for detached plasmas. The radial width of the SOL electric field is determined by Spitzer parallel and ``neoclassical'' radial electric conductivity and has a similar scaling to that for thermal transport. Prepared under US DOE contract DE-AC52-07NA27344.

  7. Spatial Competition: Roughening of an Experimental Interface.

    PubMed

    Allstadt, Andrew J; Newman, Jonathan A; Walter, Jonathan A; Korniss, G; Caraco, Thomas

    2016-07-28

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader's lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover's growth morphology.

  8. Spatial Competition: Roughening of an Experimental Interface

    PubMed Central

    Allstadt, Andrew J.; Newman, Jonathan A.; Walter, Jonathan A.; Korniss, G.; Caraco, Thomas

    2016-01-01

    Limited dispersal distance generates spatial aggregation. Intraspecific interactions are then concentrated within clusters, and between-species interactions occur near cluster boundaries. Spread of a locally dispersing invader can become motion of an interface between the invading and resident species, and spatial competition will produce variation in the extent of invasive advance along the interface. Kinetic roughening theory offers a framework for quantifying the development of these fluctuations, which may structure the interface as a self-affine fractal, and so induce a series of temporal and spatial scaling relationships. For most clonal plants, advance should become spatially correlated along the interface, and width of the interface (where invader and resident compete directly) should increase as a power function of time. Once roughening equilibrates, interface width and the relative location of the most advanced invader should each scale with interface length. We tested these predictions by letting white clover (Trifolium repens) invade ryegrass (Lolium perenne). The spatial correlation of clover growth developed as anticipated by kinetic roughening theory, and both interface width and the most advanced invader’s lead scaled with front length. However, the scaling exponents differed from those predicted by recent simulation studies, likely due to clover’s growth morphology. PMID:27465518

  9. Graphene-based bimorphs for the fabrication of micron-sized, autonomous origami machines.

    NASA Astrophysics Data System (ADS)

    Miskin, Marc; Dorsey, Kyle; Bircan, Baris; Reynolds, Michael; Rose, Peter; Cohen, Itai; McEuen, Paul

    We present a new platform for the construction of micron sized origami machines that change shape in fractions of a second in response to environmental stimuli. The enabling technology behind our machines is the graphene-glass bimorph. We show that graphene sheets bound to nanometer thick layers of glass are ultrathin actuators that bend in response to small strain differentials. These bimorphs can bend to micron radii of curvature using strains that are two orders of magnitude lower than the fracture strain of graphene. By patterning thick rigid panels on top of bimorphs, we localize bending to the unpatterned regions to produce folds. Using panels and bimorphs, we can scale down existing origami patterns to produce a wide range of machines. These machines can sense their environments, respond, and perform useful functions on time and length scales comparable to microscale biological organisms. this work was supported by NSF Grants DMR-1435829 and DMR-1120296, and performed at Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network (NSF Grant ECCS-0335765).

  10. Effect of Crystal Defects on Minority Carrier Diffusion Length in 6H SiC Measured Using the Electron Beam Induced Current Method

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood

    1997-01-01

    We report values of minority carrier diffusion length in n-type 6H SiC measured using a planar Electron Beam Induced Current (EBIC) method. Values of hole diffusion length in defect free regions of n-type 6H SiC, with a doping concentration of 1.7El7 1/cu cm, ranged from 1.46 microns to 0.68 microns. We next introduce a novel variation of the planar method used above. This 'planar mapping' technique measured diffusion length along a linescan creating a map of diffusion length versus position. This map is then overlaid onto the EBIC image of the corresponding linescan, allowing direct visualization of the effect of defects on minority carrier diffusion length. Measurements of the above n-type 6H SiC resulted in values of hole diffusion length ranging from 1.2 micron in defect free regions to below 0.1 gm at the center of large defects. In addition, measurements on p-type 6H SiC resulted in electron diffusion lengths ranging from 1.42 micron to 0.8 micron.

  11. Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time.

    PubMed

    Daniels, M; Noble, M I; ter Keurs, H E; Wohlfart, B

    1984-10-01

    The relation between force and velocity was determined in sixteen trabeculae of rat right ventricle as a function of time during a twitch, of sarcomere length and of external Ca2+ concentration, [Ca2+]o. The trabeculae were studied in modified Krebs-Henseleit solution at 25 degrees C. Force was measured with a semiconductor strain gauge. Sarcomere length was measured with a laser diffraction system. A servomotor system was used in which control could be switched between sarcomere length, muscle length and force. Force-velocity relations were derived from load clamps and from contractions in which sarcomere length was initially held constant followed by a quick release and slower release of the sarcomeres at controlled velocity. Force-velocity relations were fitted by Hill's equation (Hill, 1938), (Po-P) b = (P+a) V, where P = force, V = velocity, Po = isometric force in mN/mm2 and a and b are constants. For [Ca2+]o = 2.5 mM, with both interventions the values (mean +/- S.D.) were: b = 1.00 +/- 0.45 micron/s; a = 9.52 +/- 5.60 mN/mm2; Vo measured = 13.6 +/- 3.0 micron/s; Vo calculated = 13.4 +/- 3.4 micron/s; Po measured = 96.5 +/- 25.0 mN/mm2; Po calculated = 119.3 +/- 34.5 mN/mm2. Vo rose with [Ca2+]o to a maximum at [Ca2+]o = 1.2 mM when Po was about 50% of maximum, while Po rose with [Ca2+]o to a maximum at above 2.5 mM. Vo rose with time during the twitch to a maximum at 25 ms following onset of contraction; Po was then about 50% of the maximum that was obtained at 120 ms. Vo increased with sarcomere length from zero at a sarcomere length of 1.6 micron to a maximum at 1.85 micron. Between 1.85 micron and 2.3 micron, Vo was constant. At 1.85 micron, Po was about 60% of maximum Po. These results are compatible with the hypothesis that Vo is more sensitive than Po to the amount of Ca2+ bound to the contractile proteins, and that Vo reaches a maximal value with an amount of Ca2+ bound to the contractile proteins at which Po has obtained only about 50% of its maximal value.

  12. Constant Stress Drop Fits Earthquake Surface Slip-Length Data

    NASA Astrophysics Data System (ADS)

    Shaw, B. E.

    2011-12-01

    Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.

  13. Dusty plasma in the region of the lunar terminator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, S. I., E-mail: popel@iki.rssi.ru; Zelenyi, L. M.; Atamaniuk, B.

    2016-05-15

    Dusty plasma in the region of the lunar terminator is considered. It is shown that, in this region, a structure resembling a plasma sheath forms near the lunar surface. This sheath creates a potential barrier, due to which electrons over the illuminated part of the Moon are confined by electrostatic forces. The width of the sheath-like structure is on the order of the ion Debye length. In this structure, significant (about several hundred V/m) electric fields arise, which lift charged micron-size dust grains to heights of several tens of centimeters. The suggested effect may be used to explain the glowmore » observed by the Surveyor spacecraft over the lunar terminator.« less

  14. Partial polygon pruning of hydrographic features in automated generalization

    USGS Publications Warehouse

    Stum, Alexander K.; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2017-01-01

    This paper demonstrates a working method to automatically detect and prune portions of waterbody polygons to support creation of a multi-scale hydrographic database. Water features are known to be sensitive to scale change; and thus multiple representations are required to maintain visual and geographic logic at smaller scales. Partial pruning of polygonal features—such as long and sinuous reservoir arms, stream channels that are too narrow at the target scale, and islands that begin to coalesce—entails concurrent management of the length and width of polygonal features as well as integrating pruned polygons with other generalized point and linear hydrographic features to maintain stream network connectivity. The implementation follows data representation standards developed by the U.S. Geological Survey (USGS) for the National Hydrography Dataset (NHD). Portions of polygonal rivers, streams, and canals are automatically characterized for width, length, and connectivity. This paper describes an algorithm for automatic detection and subsequent processing, and shows results for a sample of NHD subbasins in different landscape conditions in the United States.

  15. Rapid fabrication of micro-nanometric tapered fiber lens and characterization by a novel scanning optical microscope with submicron resolution.

    PubMed

    Zheng, Shouguo; Zeng, Xinhua; Luo, Wei; Jradi, Safi; Plain, Jérôme; Li, Miao; Renaud-Goud, Philippe; Deturche, Régis; Wang, Zengfu; Kou, Jieting; Bachelot, Renaud; Royer, Pascal

    2013-01-14

    In numerous applications of optical scanning microscopy, a reference tapered fiber lens with high symmetry at sub-wavelength scale remains a challenge. Here, we demonstrate the ability to manufacture it with a wide range of geometry control, either for the length from several hundred nanometers to several hundred microns, or for the curvature radius from several tens of nanometers to several microns on the endface of a single mode fiber. On this basis, a scanning optical microscope has been developed, which allows for fast characterization of various sub-wavelength tapered fiber lenses. Focal position and depth of microlenses with different geometries have been determined to be ranged from several hundreds of nanometers to several microns. FDTD calculations are consistent with experimental results.

  16. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  17. Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.

    2013-11-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  18. Animal-eyeball vs. road-sign retroreflectors.

    PubMed

    Greene, Nathaniel R; Filko, Brian J

    2010-01-01

    The retroreflective characteristics of ex-vitro cow and deer eyeballs were compared to those of man-made materials used in road signs and bicycle-style reflectors. Reflected intensities were measured using a goniometer that consists of a green He-Ne laser as the light source, and a photomultiplier tube as the detector. It was found that the best quality road-sign reflector, made from a 200-micron-scale, close-packed array of corner cubes, is approximately six times more efficient than a cow eyeball at returning light in the direction of the incoming beam. Less expensive man-made retroreflectors, utilizing 35-micron glass beads (as in mailbox decals) or millimeter-scale arrays of corner cubes (bicycle-style reflectors) are, however, less efficient than the cow eye. The high quality of animal eyeball optics is evidenced by their extremely tight angular spread (full width half maximum congruent with 1 degrees) of retroreflected intensity about the incident path. Moreover, as the reflector itself is rotated relative to the incident beam, the eyeballs preserve their efficiency of retroreflection better than the man-made materials. Interference-diffraction patterns were observed in the retroreflected beams from the small-scale corner cubes, but were not observed in eyeball retroreflection.

  19. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.

    PubMed

    Fast, V G; Kléber, A G

    1995-05-01

    Unidirectional conduction block (UCB) and reentry may occur as a consequence of an abrupt tissue expansion and a related change in the electrical load. The aim of this study was to evaluate critical dimensions of the tissue necessary for establishing UCB in heart cell culture. Neonatal rat heart cell cultures with cell strands of variable width emerging into a large cell area were grown using a technique of patterned cell growth. Action potential upstrokes were measured using a voltage sensitive dye (RH-237) and a linear array of 10 photodiodes with a 15 microns resolution. A mathematical model was used to relate action potential wave shapes to underlying ionic currents. UCB (block of a single impulse in anterograde direction - from a strand to a large area - and conduction in the retrograde direction) occurred in narrow cell strands with a width of 15(SD 4) microns (1-2 cells in width, n = 7) and there was no conduction block in strands with a width of 31(8) microns (n = 9, P < 0.001) or larger. The analysis of action potential waveshapes indicated that conduction block was either due to geometrical expansion alone (n = 5) or to additional local depression of conduction (n = 2). In wide strands, action potential upstrokes during anterograde conduction were characterised by multiple rising phases. Mathematical modelling showed that two rising phases were caused by electronic current flow, whereas local ionic current did not coincide with the rising portions of the upstrokes. (1) High resolution optical mapping shows multiphasic action potential upstrokes at the region of abrupt expansion. At the site of the maximum decrement in conduction, these peaks were largely determined by the electrotonus and not by the local ionic current. (2) Unidirectional conduction block occurred in strands with a width of 15(4) microns (1-2 cells).

  20. Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Ching, Chang Y.

    1994-01-01

    The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.

  1. Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, S., E-mail: smei4@wisc.edu; Knezevic, I., E-mail: knezevic@engr.wisc.edu; Maurer, L. N.

    2014-10-28

    We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chenmore » et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.« less

  2. Electrostatic solitary waves generated by beam injection in LAPD

    NASA Astrophysics Data System (ADS)

    Chen, L.; Gekelman, W. N.; Lefebvre, B.; Kintner, P. M.; Pickett, J. S.; Pribyl, P.; Vincena, S. T.

    2011-12-01

    Spacecraft data have revealed that electrostatic solitary waves are ubiquitous in non-equilibrium collisionless space plasmas. These solitary waves are often the main constituents of the observed electrostatic turbulence. The ubiquitous presence of these solitary waves in space motivated laboratory studies on their generation and evolution in the Large Plasma Device (LAPD) at UCLA. In order to observe these structures, microprobes with scale sizes of order of the Debye length (30 microns) had to be built using Mems technology. A suprathermal electron beam was injected into the afterglow plasma, and solitary waves as well as nonlinear wave packets were measured. The solitary waves are interpreted as BGK electron holes based on their width, amplitude, and velocity characteristics. The ensuing turbulence, including the solitary waves and wave packets, exhibits a band dispersion relation with its central line consistent with the electrostatic whistler mode. One surprise brought by the laboratory experiments is that the electron holes were not generated through resonant two-stream instabilities, but likely through an instability due to parallel currents. The characteristics of the LAPD electron holes and those observed in space will be compared to motivate further theoretical, simulation, and experimental work.

  3. Programmable solid state atom sources for nanofabrication.

    PubMed

    Han, Han; Imboden, Matthias; Stark, Thomas; del Corro, Pablo G; Pardo, Flavio; Bolle, Cristian A; Lally, Richard W; Bishop, David J

    2015-06-28

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ∼1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.

  4. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple

    Treesearch

    Philip M. Wargo

    1978-01-01

    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  5. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  6. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    PubMed

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data

    NASA Astrophysics Data System (ADS)

    Chernokulsky, Alexander; Shikhov, Andrey

    2018-07-01

    The 1984 Ivanovo tornado outbreak is one of the most fatal tornado events in Europe with previously unspecified tornado track characteristics. In this paper, we used Landsat images to discover tornado-induced forest disturbances and restore actual characteristics of tornadoes during the outbreak. We defined boundaries of tornado-induced windthrows by visual comparison of satellite images and specified them with Normalized Difference Infrared Index. We confirmed the occurrence of eight tornadoes during the outbreak and determined their location, path width and length. Other tornadoes occurrence during the outbreak was discussed. Fujita-scale intensity of confirmed tornadoes was estimated based on the related literature corpus including previously omitted sources. In addition, information on tornado path lengths and widths was used to estimate minimal tornado intensity for those tornadoes that passed no settlements. In total, the Ivanovo outbreak includes 8-13 tornadoes with F-scale rating mean ranges from 1.8-2.5 and has adjusted Fujita length around 540 km, which makes the outbreak one the strongest in Europe and places it within the upper quartile of U.S. outbreaks. Characteristics of certain tornadoes within the Ivanovo outbreak are exceptional for Russia. The widest tornado path during the Ivanovo outbreak is 1740 m; the longest is from 81.5-85.9 km. With the example of the Ivanovo outbreak, we showed that existing databases on historical Russian tornadoes tend to overestimate tornado path length (for very long tornadoes) and underestimate maximum tornado path width.

  8. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Xue, Z.; Gao, H.

    2000-08-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less

  9. Crack surface roughness in three-dimensional random fuse networks

    NASA Astrophysics Data System (ADS)

    Nukala, Phani Kumar V. V.; Zapperi, Stefano; Šimunović, Srđan

    2006-08-01

    Using large system sizes with extensive statistical sampling, we analyze the scaling properties of crack roughness and damage profiles in the three-dimensional random fuse model. The analysis of damage profiles indicates that damage accumulates in a diffusive manner up to the peak load, and localization sets in abruptly at the peak load, starting from a uniform damage landscape. The global crack width scales as Wtilde L0.5 and is consistent with the scaling of localization length ξ˜L0.5 used in the data collapse of damage profiles in the postpeak regime. This consistency between the global crack roughness exponent and the postpeak damage profile localization length supports the idea that the postpeak damage profile is predominantly due to the localization produced by the catastrophic failure, which at the same time results in the formation of the final crack. Finally, the crack width distributions can be collapsed for different system sizes and follow a log-normal distribution.

  10. Analysis of edge stability for models of heat flux width

    DOE PAGES

    Makowski, Michael A.; Lasnier, Charles J.; Leonard, Anthony W.; ...

    2017-05-12

    Detailed measurements of the n e, and T e, and T i profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completelymore » consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.« less

  11. Top-Contact Self-Aligned Printing for High-Performance Carbon Nanotube Thin-Film Transistors with Sub-Micron Channel Length.

    PubMed

    Cao, Xuan; Wu, Fanqi; Lau, Christian; Liu, Yihang; Liu, Qingzhou; Zhou, Chongwu

    2017-02-28

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed thin-film transistors due to their excellent electrical performance and intrinsic printability with solution-based deposition. However, limited by resolution and registration accuracy of current printing techniques, previously reported fully printed nanotube transistors had rather long channel lengths (>20 μm) and consequently low current-drive capabilities (<0.2 μA/μm). Here we report fully inkjet printed nanotube transistors with dramatically enhanced on-state current density of ∼4.5 μA/μm by downscaling the devices to a sub-micron channel length with top-contact self-aligned printing and employing high-capacitance ion gel as the gate dielectric. Also, the printed transistors exhibited a high on/off ratio of ∼10 5 , low-voltage operation, and good mobility of ∼15.03 cm 2 V -1 s -1 . These advantageous features of our printed transistors are very promising for future high-definition printed displays and sensing systems, low-power consumer electronics, and large-scale integration of printed electronics.

  12. 23 CFR 658.16 - Exclusions from length and width determinations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.16 Exclusions from length and width determinations. (a) Vehicle components not excluded by law or regulation shall be included in the measurement of the length and width of commercial motor vehicles. (b) The...

  13. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large enough to instigate flow focusing. Once canyon growth is initiated, the equilibrium width of canyons may arise from the competition between the cross-stream backwater effects along the canyon sidewalls, which promote widening of the escarpment, and the geometry of the canyon flood system, which promote a drying of the canyon sidewalls. These results show promise for a new paleohydraulic tool to infer discharges of ancient floods on Earth and Mars.

  14. Tetragonal deformation of the hexagonal myofilament matrix in single skinned skeletal muscle fibres owing to change in sarcomere length.

    PubMed

    Schiereck, P; de Beer, E L; Grundeman, R L; Manussen, T; Kylstra, N; Bras, W

    1992-10-01

    Single skinned skeletal muscle fibres were immersed in solutions containing two different levels of activator calcium (pCa: 4.4; 6.0). Sarcomere length was varied from 1.6 to 3.5 microns and recorded by laser diffraction. Slack length was 2.0 microns. Small-angle equatorial X-ray diffraction patterns of relaxed and activated fibres at different sarcomere lengths were recorded using synchrotron radiation. The position and amplitude of the diffraction peaks were calculated from the spectra based on the hexagonal arrangement of the myofilament matrix, relating the position of the (1.0)- and (1.1)-diffraction peaks in this model by square root of 3. The diffraction peaks were fitted by five Gaussian functions (1.0, 1.1, 2.0, 2.1 and Z-line) and residual background was corrected by means of a hyperbola. The coupling of the position of the (1.0)- and (1.1)-peak was expressed as a factor: FAC = [d(1.0)/d(1.1)]/square root 3. In the relaxed state this coupling factor decreased at increasing sarcomere length (0.9880 +/- 0.002 at 2.0 microns; 0.900 +/- 0.01 at 3.5 microns). The coupling factor tends toward the one that will be obtained from the squared structure of actin filaments near the Z-discs. At shorter sarcomere lengths a decrease of the coupling factor has also been seen (0.9600 +/- 0.005 at 1.6 microns), giving rise to an increased uniform deformation of the hexagonal matrix, when sarcomere length is changed from slack length. From these experiments we conclude that a change in sarcomere length (from slack length) increases the deformation of the actin-myosin matrix to a tetragonal lattice.

  15. Fine spatiotemporal activity in contracting myometrium revealed by motion-corrected calcium imaging.

    PubMed

    Loftus, Fiona C; Shmygol, Anatoly; Richardson, Magnus J E

    2014-10-15

    Successful childbirth depends on the occurrence of precisely coordinated uterine contractions during labour. Calcium indicator fluorescence imaging is one of the main techniques for investigating the mechanisms governing this physiological process and its pathologies. The effective spatiotemporal resolution of calcium signals is, however, limited by the motion of contracting tissue: structures of interest in the order of microns can move over a hundred times their width during a contraction. The simultaneous changes in local intensity and tissue configuration make motion tracking a non-trivial problem in image analysis and confound many of the standard techniques. This paper presents a method that tracks local motion throughout the tissue and allows for the almost complete removal of motion artefacts. This provides a stabilized calcium signal down to a pixel resolution, which, for the data examined, is in the order of a few microns. As a byproduct of image stabilization, a complete kinematic description of the contraction-relaxation cycle is also obtained. This contains novel information about the mechanical response of the tissue, such as the identification of a characteristic length scale, in the order of 40-50 μm, below which tissue motion is homogeneous. Applied to our data, we illustrate that the method allows for analyses of calcium dynamics in contracting myometrium in unprecedented spatiotemporal detail. Additionally, we use the kinematics of tissue motion to compare calcium signals at the subcellular level and local contractile motion. The computer code used is provided in a freely modifiable form and has potential applicability to in vivo calcium imaging of neural tissue, as well as other smooth muscle tissue. © 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. Fine spatiotemporal activity in contracting myometrium revealed by motion-corrected calcium imaging

    PubMed Central

    Loftus, Fiona C; Shmygol, Anatoly; Richardson, Magnus J E

    2014-01-01

    Successful childbirth depends on the occurrence of precisely coordinated uterine contractions during labour. Calcium indicator fluorescence imaging is one of the main techniques for investigating the mechanisms governing this physiological process and its pathologies. The effective spatiotemporal resolution of calcium signals is, however, limited by the motion of contracting tissue: structures of interest in the order of microns can move over a hundred times their width during a contraction. The simultaneous changes in local intensity and tissue configuration make motion tracking a non-trivial problem in image analysis and confound many of the standard techniques. This paper presents a method that tracks local motion throughout the tissue and allows for the almost complete removal of motion artefacts. This provides a stabilized calcium signal down to a pixel resolution, which, for the data examined, is in the order of a few microns. As a byproduct of image stabilization, a complete kinematic description of the contraction–relaxation cycle is also obtained. This contains novel information about the mechanical response of the tissue, such as the identification of a characteristic length scale, in the order of 40–50 μm, below which tissue motion is homogeneous. Applied to our data, we illustrate that the method allows for analyses of calcium dynamics in contracting myometrium in unprecedented spatiotemporal detail. Additionally, we use the kinematics of tissue motion to compare calcium signals at the subcellular level and local contractile motion. The computer code used is provided in a freely modifiable form and has potential applicability to in vivo calcium imaging of neural tissue, as well as other smooth muscle tissue. PMID:25085893

  17. Maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width groups

    PubMed Central

    Shahid, Fazal; Alam, Mohammad Khursheed; Khamis, Mohd Fadhli

    2015-01-01

    Objective: To investigate the maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width (intercanine, interpremolar, and intermolar) groups. Materials and Methods: The calculated sample size was 128 subjects. The crown width/height, arch length, arch perimeter, and arch width of the maxilla and mandible were obtained via digital calliper (Mitutoyo, Japan). A total of 4325 variables were measured. The sex differences in the crown width and height were evaluated. Analysis of variance was applied to evaluate the differences between arch length, arch perimeter, and arch width groups. Results: Males had significantly larger mean values for crown width and height than females (P ≤ 0.05) for maxillary and mandibular arches, both. There were no significant differences observed for the crown width/height ratio in various arch length, arch perimeter, and arch width (intercanine, interpremolar, and intermolar) groups (P ≤ 0.05) in maxilla and mandible, both. Conclusions: Our results indicate sexual disparities in the crown width and height. Crown width and height has no significant relation to various arch length, arch perimeter, and arch width groups of maxilla and mandible. Thus, it may be helpful for orthodontic and prosthodontic case investigations and comprehensive management. PMID:26929686

  18. The golden ratio of nasal width to nasal bone length.

    PubMed

    Goynumer, G; Yayla, M; Durukan, B; Wetherilt, L

    2011-01-01

    To calculate the ratio of fetal nasal width over nasal bone length at 14-39 weeks' gestation in Caucasian women. Fetal nasal bone length and nasal width at 14-39 weeks' gestation were measured in 532 normal fetuses. The mean and standard deviations of fetal nasal bone length, nasal width and their ratio to one another were calculated in normal fetuses according to the gestational age to establish normal values. A positive and linear correlation was detected between the nasal bone length and the gestational week, as between the nasal width and the gestational week. No linear growth pattern was found between the gestational week and the ratio of nasal width to nasal bone length, nearly equal to phi, throughout gestation. The ratio of nasal width to nasal bone length, approximately equal to phi, can be calculated at 14-38 weeks' gestation. This might be useful in evaluating fetal abnormalities.

  19. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics.

    PubMed

    Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia

    2016-01-01

    Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    NASA Astrophysics Data System (ADS)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  1. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  2. High-resolution spectra of the 3.29 micron interstellar emission feature - A summary

    NASA Technical Reports Server (NTRS)

    Tokunaga, A. T.; Sellgren, K.; Smith, R. G.; Nagata, T.; Sakata, A.; Nakada, Y.

    1991-01-01

    High spectral resolution observations of the 3.29-micron interstellar emission feature show two types of profiles. Type 1 has a central wavelength of 3.289-micron and is observed in extended objects such as planetary nebulae and H II regions. Type 2 has a central wavelength of 3.296 microns and is observed around a small number of stellar sources. Type 2 has a full width at half-maximum of 0.020 micron; Type 1 has a broader FWHM, perhaps as much as 0.042 micron, but this is uncertain because of contamination by Pf(delta) emission. These profiles are tabulated for comparison to laboratory data. It is found that no proposed identification for the 3.29-micron emission feature definitely matches the observational spectra, although amorphous aromatic materials and heated polycyclic aromatic hydrocarbons tend to fit the best.

  3. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  4. Investigation on the durability of man-made vitreous fibers in rat lungs.

    PubMed Central

    Bellmann, B; Muhle, H; Kamstrup, O; Draeger, U F

    1994-01-01

    Two types of sized stonewool with median lengths of 6.7 and 10.1 microns and median diameters of 0.63 and 0.85 microns, and crocidolite with fibers of median length of 4.8 microns and median diameter of 0.18 microns were instilled intratracheally into female Wistar rats. A single dose of 2 mg in 0.3 ml saline was used for the stonewool samples and 0.1 mg in 0.3 ml saline for crocidolite. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM). Five animals per group were sacrificed after 2 days, 1, 3, 6, and 12 months. After low-temperature ashing of the lungs about 200 fibers per animal were analyzed by SEM for length and diameter. The number and mass of fibers in the total lung were calculated. For the stonewool samples the decrease in the number of fibers in the lung ash followed approximately first order kinetics resulting in half-times of 90 and 120 days. The analysis of fiber number and diameter of different length fractions was used to estimate the contribution of three processes of fiber elimination: transport by macrophages for short fibers, breakage of fibers, and dissolution of fibers. (The process of transport by macrophages was found fastest for fibers with length < 2.5 microns). For the elimination of critical fibers with length > 5 microns, the breakage and dissolution were the most important processes. The breakage of fibers was predominant for one of the stonewool samples. The preferential type of the mechanism of fiber elimination is dependent on chemical composition and size distribution. PMID:7882927

  5. Non-contact tensile viscoelastic characterization of microscale biological materials

    NASA Astrophysics Data System (ADS)

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-06-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  6. Non-contact tensile viscoelastic characterization of microscale biological materials

    NASA Astrophysics Data System (ADS)

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-01-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  7. Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  8. Characteristics of III-V Semiconductor Devices at High Temperature

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Young, Paul G.; Taub, Susan R.; Alterovitz, Samuel A.

    1994-01-01

    This paper presents the development of III-V based pseudomorphic high electron mobility transistors (PHEMT's) designed to operate over the temperature range 77 to 473 K (-196 to 200 C). These devices have a pseudomorphic undoped InGaAs channel that is sandwiched between an AlGaAs spacer and a buffer layer; gate widths of 200, 400, 1600, and 3200 micrometers; and a gate length of 2 micrometers. Measurements were performed at both room temperature and 473 K (200 C) and show that the drain current decreases by 30 percent and the gate current increases to about 9 microns A (at a reverse bias of -1.5 V) at the higher temperature. These devices have a maximum DC power dissipation of about 4.5 W and a breakdown voltage of about 16 V.

  9. On the large eddy simulation of turbulent flows in complex geometry

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip

    1993-01-01

    Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.

  10. The Selection of Q-Switch for a 350mJ Air-borne 2-micron Wind Lidar

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.

    2008-01-01

    In the process of designing a coherent, high energy 2micron, Doppler wind Lidar, various types of Q-Switch materials and configurations have been investigated for the oscillator. Designing an oscillator with a relatively low gain laser material, presents challenges related to the management high internal circulating fluence due to high reflective output coupler. This problem is compounded by the loss of hold-off. In addition, the selection has to take into account the round trip optical loss in the resonator and the loss of hold-off. For this application, a Brewster cut 5mm aperture, fused silica AO Q-switch is selected. Once the Q-switch is selected various rf frequencies were evaluated. Since the Lidar has to perform in single longitudinal and transverse mode with transform limited line width, in this paper, various seeding configurations are presented in the context of Q-Switch diffraction efficiency. The master oscillator power amplifier has demonstrated over 350mJ output when the amplifier is operated in double pass mode and higher than 250mJ when operated in single pass configuration. The repetition rate of the system is 10Hz and the pulse length 200ns.

  11. Experimental and Computational Investigation of Microbubble Production in Microfluidic Flow-Focusing Devices

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Shandas, Robin

    2005-11-01

    Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.

  12. Metasurface Freeform Nanophotonics.

    PubMed

    Zhan, Alan; Colburn, Shane; Dodson, Christopher M; Majumdar, Arka

    2017-05-10

    Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.

  13. Instability in extensional microflow of aqueous gel

    NASA Astrophysics Data System (ADS)

    Bryce, Robert; Freeman, Mark

    2007-03-01

    Microfluidic devices are typically characterized by laminar flows, often leading to diffusion limited mixing. Recently it has been demonstrated that the addition of polymer to fluids can lead to elastic instabilities and, under some conditions, turbulence at arbitrarily low Reynolds numbers in mechanically driven flows [1]. We investigated electroosmotic driven extensional flow of an aqueous polymer gel. Microchannels with 100 micron width and 20 micron depth with the characteristic ``D'' chemical etch cross section were formed in glass. A Y-channel geometry with two input channels and a single output created extensional flow at the channel intersection. Instabilities where observed in the extensional region by fluorescently tagging one input stream. Instabilities were characterized by 1/f spectra in laser induced fluorescent brightness profiles. Due to the simple geometry of extensional flow and the importance of electroosmotic flows for integrated applications and in scaling, this is of interest for device applications. [1] A. Groisman and V. Steinberg, Nature 405, 53-55, 2000.

  14. Measurements of ion species separation in strong plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans

    2017-10-01

    Shocks are important dynamic phenomena in inertial confinement fusion (ICF) and astrophysical plasmas. While the relationship between upstream and downstream plasmas far from the shock front is fully determined by conservation equations, the structure of shock fronts is determined by dynamic kinetic processes. Kinetic theory and simulations predict that the width of a strong (M >2) collisional plasma shock front is on the order of tens of ion mean-free-paths. The shock front structure plays an important role for overall dynamics when the shock front width approaches plasma scale lengths, as in the spherically converging shock in the DT-vapor in an ICF implosion. However, there has been no experimental data benchmarking shock front structure in the plasma phase. The structure of a shock front in a plasma with multiple ion species has been directly measured for the first time using a combination of Thomson scattering and proton radiography in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%) +Ne(2%). Within the shock front, velocity separation of the ion species is observed for the first time: the light species (H) accelerates to of order the shocked fluid velocity (450 microns/ns) before the heavy species (Ne) begins to move. This velocity-space separation implies that the separation of ion species occurs at the shock front, a predicted feature of shocks in multi-species plasmas but never observed experimentally until now. Comparison of experimental data with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented.

  15. Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries

    NASA Technical Reports Server (NTRS)

    Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria

    2010-01-01

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  16. Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Majee, Arnab K.; Aksamija, Zlatan

    2016-06-01

    Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m 100 μ m due to the coupling between in-plane and flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range, preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width, which we attribute to the interplay between nonresistive normal and diffusive edge scattering in the Poisseuille flow regime. We conclude that normal processes play a crucial role in the length and width dependence of thermal transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-plane (ZA) contribution to transport.

  17. Biopersistence of inhaled organic and inorganic fibers in the lungs of rats.

    PubMed Central

    Warheit, D B; Hartsky, M A; McHugh, T A; Kellar, K A

    1994-01-01

    Fiber dimension and durability are recognized as important features in influencing the development of pulmonary carcinogenic and fibrogenic effects. Using a short-term inhalation bioassay, we have studied pulmonary deposition and clearance patterns and evaluated and compared the pulmonary toxicity of two previously tested reference materials, an inhaled organic fiber, Kevlar para-aramid fibrils, and an inorganic fiber, wollastonite. Rats were exposed for 5 days to aerosols of Kevlar fibrils (900-1344 f/cc; 9-11 mg/m3) or wollastonite fibers (800 f/cc; 115 mg/m3). The lungs of exposed rats were digested to quantify dose, fiber dimensional changes over time, and clearance kinetics. The results showed that inhaled wollastonite fibers were cleared rapidly with a retention half-time of < 1 week. Mean fiber lengths decreased from 11 microns to 6 microns over a 1-month period, and fiber diameters increased from 0.5 micron to 1.0 micron in the same time. Fiber clearance studies with Kevlar showed a transient increase in the numbers of retained fibrils at 1 week postexposure, with rapid clearance of fibers thereafter, and retention half-time of 30 days. A progressive decrease in the mean lengths from 12.5 microns to 7.5 microns and mean diameters from 0.33 micron to 0.23 micron was recorded 6 months after exposure to inhaled Kevlar fibrils. The percentages of fibers > 15 microns in length decreased from 30% immediately after exposure to 5% after 6 months; the percentages of fibers in the 4 to 7 microns range increased from 25 to 55% in the same period.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4. A Figure 4. B Figure 6. A Figure 6. B PMID:7882921

  18. Implementing inverted master-slave 3D semiconductor stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coteus, Paul W.; Hall, Shawn A.; Takken, Todd E.

    2016-03-08

    A method and apparatus are provided for implementing an enhanced three dimensional (3D) semiconductor stack. A chip carrier has an aperture of a first length and first width. A first chip has at least one of a second length greater than the first length or a second width greater than the first width; a second chip attached to the first chip, the second chip having at least one of a third length less than the first length or a third width less than the first width; the first chip attached to the chip carrier by connections in an overlap regionmore » defined by at least one of the first and second lengths or the first and second widths; the second chip extending into the aperture; and a heat spreader attached to the chip carrier and in thermal contact with the first chip for dissipating heat from both the first chip and second chip.« less

  19. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  20. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.

    PubMed

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  1. Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films

    NASA Astrophysics Data System (ADS)

    Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi

    2017-07-01

    We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.

  2. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  3. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  4. From fetus to adult--an allometric analysis of the giraffe vertebral column.

    PubMed

    van Sittert, Sybrand J; Skinner, John D; Mitchell, Graham

    2010-09-15

    As mammalian cervical vertebral count is almost always limited to seven, the vertebral column of the giraffe (Giraffa camelopardalis) provides an interesting study on scaling and adaptation to shape in light of these constraints. We have defined and described the growth rates of the lengths, widths, and heights of the vertebrae from fetal through neonatal life to maturity. We found that the disproportionate elongation of the cervical vertebrae is not a fetal process but occurs after birth, and that each cervical (C2-C7) vertebrae elongates at the same rate. C7 is able to specialize toward elongation as its function has been shifted to T1. We concluded that T1 is a transitional vertebra whose scaling exponent and length is between that of the cervical and thoracic series. Despite its transitional nature, T1 is still regarded as thoracic, as it possesses an articulating rib that attaches to the sternum. The other dimensions taken (width, height, and spinous process length) show that giraffe vertebral morphology exhibit adaptations to biomechanical strain, and we have underlined the importance of the thoracic spinous processes in supporting the head and neck. (c) 2010 Wiley-Liss, Inc.

  5. Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method

    NASA Astrophysics Data System (ADS)

    Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong

    2018-06-01

    In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.

  6. Uterine caliper and depth gauge

    DOEpatents

    King, Loyd L.; Wheeler, Robert G.; Fish, Thomas M.

    1977-01-01

    A uterine caliper and sound consisting of an elongated body having outwardly biased resilient caliper wings and a spring-loaded slidable cervical stop. A slide on the body is operatively connected to the wings by a monofilament and operates with respect to a first scale on the body as a width indicator. A rod extending longitudinally on the body is connected to the cervical stop and cooperates with a second scale on the body as a depth indicator. The instrument can be positioned to measure the distance from the outer cervical ostium to the fundus, as read on said second scale. The wings may be allowed to open by moving the slide, and when the wings engage the utero-tubal junctions, the width may be read on said first scale. By adjustment of the caliper wings the instrument may be retracted until the resistance of the inner ostium of the cervix is felt, enabling the length of the cervical canal to be read directly by the position of the longitudinal indicator rod with respect to said second scale. The instrument may be employed to measure the width of the uterine cavity at any position between the inner ostium of the cervix and the fundus.

  7. Early Proterozoic (2.04 GA) Phoshorites of Pechenga Greenstone Belt and Their Origin

    NASA Technical Reports Server (NTRS)

    Rozanov, Alexei Yu.; Astafieva, Marina M.; Hoover, Richard B.

    2007-01-01

    No principal differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 microns in diameter, 20 microns in length), coccoidal (0.8-1.0 microns) and ellipsoidal or rod-shaped microfossils (0.8 microns in diameter, around 2 microns in length) which morphologically resemble modern Microcoleus and Siphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkali ne or saline environment_ The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, including the formation of phosphorites and changes in the phosphorous cycle, mimics the sequence which was repeated at the Neoproterozoic-Cembrian transition, implying that oxidation of the terrestrial atmosphere-hydrosphere system experienced an irregular cyclic development.

  8. Modelling foot height and foot shape-related dimensions.

    PubMed

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  9. Influence of crank length and crank width on maximal hand cycling power and cadence.

    PubMed

    Krämer, Christian; Hilker, Lutz; Böhm, Harald

    2009-07-01

    The effect of different crank lengths and crank widths on maximal hand cycling power, cadence and handle speed were determined. Crank lengths and crank widths were adapted to anthropometric data of the participants as the ratio to forward reach (FR) and shoulder breadth (SB), respectively. 25 able-bodied subjects performed maximal inertial load hand cycle ergometry using crank lengths of 19, 22.5 and 26% of FR and 72, 85 and 98% of SB. Maximum power ranged from 754 (246) W for the crank geometry short wide (crank length x crank width) to 873 (293) W for the combination long middle. Every crank length differed significantly (P < 0.05) from each other, whereas no significant effect of crank width to maximum power output was revealed. Optimal cadence decreased significantly (P < 0.001) with increasing crank length from 124.8 (0.9) rpm for the short to 107.5 (1.6) rpm for the long cranks, whereas optimal handle speed increased significantly (P < 0.001) with increasing crank length from 1.81 (0.01) m/s for the short to 2.13 (0.03) m/s for the long cranks. Crank width did neither influence optimal cadence nor optimal handle speed significantly. From the results of this study, for maximum hand cycling power, a crank length to FR ratio of 26% for a crank width to SB ratio of 85% is recommended.

  10. The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of satellite and aircraft derived particle size

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.

    1990-01-01

    Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.

  11. Effect of extending grating length and width on human visually evoked potentials.

    PubMed

    Mihaylova, Milena S; Hristov, Ivan; Racheva, Kalina; Totev, Tsvetalin; Mitov, Dimitar

    2015-01-01

    Visually evoked potentials (VEPs) were elicited by Gabor gratings with different lengths and widths at three spatial frequencies (SFs): low, 1.45 c/deg, medium, 2.9 c/deg and high, 5.8 c/deg and at a contrast 3 times above the detection threshold at each SF. An increase of grating length enhanced N1 amplitude at occipital and parietal positions stronger than the increase of grating width at aspect ratios (length : width) above 4:1. The stronger effect of stimulus length than width was reflected also in the amplitude of the later P1 component at central and parietal positions. The larger effect of stimulus length than width on the VEP amplitude was SF specific: it was stronger at 5.8 c/deg, smaller at 2.9 c/deg and vanished at 1.45 c/deg. The results obtained suggest anisotropy in the physiological mechanisms that underlie grating perception and involve bottom- up processes initiated in the occipital cortex.

  12. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunk, Peter Randall; King, William P.; Sun, Amy Cha-Tien

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measuresmore » polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.« less

  13. Dynamic Behavior of Engineered Lattice Materials

    PubMed Central

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  14. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  15. Earthquake scaling laws for rupture geometry and slip heterogeneity

    NASA Astrophysics Data System (ADS)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.

  16. Pulsed DF chain-laser breakdown induced by maritime aerosols

    NASA Astrophysics Data System (ADS)

    Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.

    1982-08-01

    Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.

  17. Relations between age, weight, refractive error and eye shape by computerized tomography in children.

    PubMed

    Song, Ha Tae; Kim, Young Jun; Lee, Soo Jung; Moon, Yeon Sung

    2007-09-01

    To investigate relationships between age, weight, refractive error, and morphologic changes in children's eyes by computerized tomography (CT). Of the 772 eyes of 386 patients under the age of 20 years, who visited our Department of Ophthalmology between January 2005 to August 2006 and underwent CT of the orbit, 406 eyes of 354 patients with clear CT images and normal eyeball contour were enrolled in the present retrospective study. The axial lengths, widths, horizontal and vertical lengths, refractive errors, and body weight of eyes were measured, and relationship between these parameters were investigated. Axial length was found to correlate significantly with eye width (r=0.914), and in emmetropic eyes and myopic eyes, axial lengths and widths were found to increase as age and body weight increased. Axial lengths increased rapidly until age 10, and then increased slowly. In emmetropic eyes, widths/axial lengths increased with age, but in myopic eyes these decreased as age or severity of myopia increased. Moreover, as age increased, the myopic population and severity also increased. The axial length was longer in case of myopia compared to emmetropia in all age groups and there was almost no difference in the increase rate of axial length by the age of myopia and emmetropia. However, the width was wider in case of myopia compared to emmetropia in all age groups and the increase rate of width in myopia by age was smaller than that of emmetropia. Myopia showed decreasing rate of width/axial length with increase of age, from 1.004 in 5 years to 0.971 in 20 years. However, emmetropia showed increasing rate of width/axial length with increase of age, from 0.990 in 5 years to 1.006 in 20 years.

  18. Relations between Age, Weight, Refractive Error and Eye Shape by Computerized Tomography in Children

    PubMed Central

    Song, Ha Tae; Kim, Young Jun; Lee, Soo Jung

    2007-01-01

    Purpose To investigate relationships between age, weight, refractive error, and morphologic changes in children's eyes by computerized tomography (CT). Methods Of the 772 eyes of 386 patients under the age of 20 years, who visited our Department of Ophthalmology between January 2005 to August 2006 and underwent CT of the orbit, 406 eyes of 354 patients with clear CT images and normal eyeball contour were enrolled in the present retrospective study. The axial lengths, widths, horizontal and vertical lengths, refractive errors, and body weight of eyes were measured, and relationship between these parameters were investigated. Results Axial length was found to correlate significantly with eye width (r=0.914), and in emmetropic eyes and myopic eyes, axial lengths and widths were found to increase as age and body weight increased. Axial lengths increased rapidly until age 10, and then increased slowly. In emmetropic eyes, widths / axial lengths increased with age, but in myopic eyes these decreased as age or severity of myopia increased. Moreover, as age increased, the myopic population and severity also increased. Conclusions The axial length was longer in case of myopia compared to emmetropia in all age groups and there was almost no difference in the increase rate of axial length by the age of myopia and emmetropia. However, the width was wider in case of myopia compared to emmetropia in all age groups and the increase rate of width in myopia by age was smaller than that of emmetropia. Myopia showed decreasing rate of width/axial length with increase of age, from 1.004 in 5 years to 0.971 in 20 years. However, emmetropia showed increasing rate of width/axial length with increase of age, from 0.990 in 5 years to 1.006 in 20 years. PMID:17804923

  19. Value of the fetal plantar shape in prenatal diagnosis of talipes equinovarus.

    PubMed

    Liao, Huifang; Cai, Ailu; Wang, Bing; Wang, Xiaoguang; Yan, Zhen; Li, Jingyu

    2012-07-01

    The purpose of this study was to evaluate the value of the fetal plantar shape in prenatal diagnosis of talipes equinovarus. A case-control study was conducted between September 2009 and February 2011. We measured the width and length of 249 feet (156 fetuses) included in this study and then calculated the width to length ratio. All of the fetuses were followed to obtain the pregnancy outcomes and confirm whether the deformity existed; then the bimalleolar angle of each foot with talipes equinovarus was measured. Independent samples t tests were performed to compare the foot width, length, and width to length ratio between normal and talipes equinovarus groups. We also assessed the correlation between the width to length ratio and bimalleolar angle in the talipes equinovarus cases with the Pearson correlation coefficient. Statistically significant differences were shown between the two groups (P< .001) for the three foot measurements, and a significant negative correlation was found between the width to length ratio and bimalleolar angle of the affected foot (r = -0.857). The fetal plantar shape can provide valuable information for prenatal diagnosis of clubfoot. Compared with a normal foot, a clubfoot tends to be wider and shorter. A higher width to length ratio is associated with a smaller bimalleolar angle and indicates a more severe talipes equinovarus deformity.

  20. Size-dependent regulation of dorsal-ventral patterning in the early Drosophila embryo

    PubMed Central

    Garcia, Mayra; Nahmad, Marcos; Reeves, Gregory T.; Stathopoulos, Angelike

    2013-01-01

    How natural variation in embryo size affects patterning of the Drosophila embryo dorsal-ventral (DV) axis is not known. Here we examined quantitatively the relationship between nuclear distribution of the Dorsal transcription factor, boundary positions for several target genes, and DV axis length. Data were obtained from embryos of a wild-type background as well as from mutant lines inbred to size select embryos of smaller or larger sizes. Our data show that the width of the nuclear Dorsal gradient correlates with DV axis length. In turn, for some genes expressed along the DV axis, the boundary positions correlate closely with nuclear Dorsal levels and with DV axis length; while the expression pattern of others is relatively constant and independent of the width of the Dorsal gradient. In particular, the patterns of snail (sna) and ventral nervous-system defective (vnd) correlate with nuclear Dorsal levels and exhibit scaling to DV length; while the pattern of intermediate neuroblasts defective (ind) remains relatively constant with respect to changes in Dorsal and DV length. However, in mutants that exhibit an abnormal expansion of the Dorsal gradient which fails to scale to DV length, only sna follows the Dorsal distribution and exhibits overexpansion; in contrast, vnd and ind do not overexpand suggesting some additional mechanism acts to refine the dorsal boundaries of these two genes. Thus, our results argue against the idea that the Dorsal gradient works as a global system of relative coordinates along the DV axis and suggest that individual targets respond to changes in embryo size in a gene-specific manner. PMID:23800450

  1. Coherence length saturation at the low temperature limit in two-dimensional hole gas

    NASA Astrophysics Data System (ADS)

    Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi

    2018-05-01

    The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.

  2. 2.5 MHz Line-Width High-energy, 2 Micrometer Coherent Wind Lidar Transmitter

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.; Reithmaier, Karl

    2007-01-01

    2 micron solid-state lasers are the primary choice for coherent Doppler wind detection. As wind lidars, they are used for wake vortex and clear air turbulence detection providing air transport safety. In addition, 2 micron lasers are one of the candidates for CO2 detection lidars. The rich CO2 absorption line around 2 micron, combined with the long upper state life of time, has made Ho based 2 micron lasers a viable candidate for CO2 sensing DIAL instrument. The design and fabrication of a compact coherent laser radar transmitter for Troposphere wind sensing is under way. This system is hardened for ground as well as airborne applications. As a transmitter for a coherent wind lidar, this laser has stringent spectral line width and beam quality requirements. Although the absolute wavelength does not have to be fixed for wind detection, to maximize return signal, the output wavelength should avoid atmospheric CO2 and H2O absorption lines. The base line laser material is Ho:Tm:LuLF which is an isomorph of Ho:Tm:YLF. LuLF produces 20% more output power than Ho:Tm:YLF. In these materials the Tm absorption cross-section, the Ho emission cross-section, the Tm to Ho energy transfer parameters and the Ho (sup 5) I (sub 7) radiative life time are all identical. However, the improved performance of the LuLF is attributed to the lower thermal population in the (sup 5) I (sub 8) manifold. It also provides higher normal mode to Q-switch conversion than YLF at high pump energy indicating a lower up-conversion. The laser architecture is composed of a seed laser, a ring oscillator, and a double pass amplifier. The seed laser is a single longitudinal mode with a line width of 13 KHz. The 100mJ class oscillator is stretched to 3 meters to accommodate the line-width requirement without compromising the range resolution of the instrument. The amplifier is double passed to produce greater than 300mJ energy.

  3. Perception of Saudi dentists and lay people to altered smile esthetics.

    PubMed

    Talic, Nabeel; Alomar, Samar; Almaidhan, Asma

    2013-01-01

    To evaluate and compare the perceptions of Saudi dentists and lay people to altered smile features. Thirty-six digital smile photographs with altered features were used. Altered features included the following: crown length, width, gingival level of the lateral incisors, gingival display, midline diastema, and upper midline shift. The photographs were presented to a sample of 30 dentists and 30 lay people with equal gender distribution. Each participant rated each picture with a visual analogue scale, which ranged from 0 (very unattractive) to 100 (very attractive). Dentists were more critical than lay people when evaluating symmetrical crown length discrepancies. Compared to lay people, Saudi dentists gave lower ratings to a crown length discrepancy of >2 mm (P < 0.001), crown width discrepancy of ⩾2 mm (P < 0.05), change in gingiva to lip distance of ⩾2 mm (P < 0.01), and midline deviation of >1 mm (P < 0.01). There was no significant difference between dentists and lay people towards alterations in the gingival level of the lateral incisors or towards a space between the central incisors. No significant sex difference was seen across the groups. In this sample, Saudi dentists gave significantly lower attractiveness scores to crown length and crown width discrepancies, midline deviations, and changes in gingiva to lip distance compared to Saudi lay people.

  4. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    PubMed

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  5. Qualification of a Quantitative Laryngeal Imaging System Using Videostroboscopy and Videokymography

    PubMed Central

    Popolo, Peter S.; Titze, Ingo R.

    2008-01-01

    Objectives: We sought to determine whether full-cycle glottal width measurements could be obtained with a quantitative laryngeal imaging system using videostroboscopy, and whether glottal width and vocal fold length measurements were repeatable and reliable. Methods: Synthetic vocal folds were phonated on a laboratory bench, and dynamic images were obtained in repeated trials by use of videostroboscopy and videokymography (VKG) with an imaging system equipped with a 2-point laser projection device for measuring absolute dimensions. Video images were also obtained with an industrial videoscope system with a built-in laser measurement capability. Maximum glottal width and vocal fold length were compared among these 3 methods. Results: The average variation in maximum glottal width measurements between stroboscopic data and VKG data was 3.10%. The average variations in width measurements between the clinical system and the industrial system were 1.93% (stroboscopy) and 3.49% (VKG). The variations in vocal fold length were similarly small. The standard deviations across trials were 0.29 mm for width and 0.48 mm for length (stroboscopy), 0.18 mm for width (VKG), and 0.25 mm for width and 0.84 mm for length (industrial). Conclusions: For stable, periodic vibration, the full extent of the glottal width can be reliably measured with the quantitative videostroboscopy system. PMID:18646436

  6. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries.

    PubMed

    Sutton, N; Tracey, M C; Johnston, I D; Greenaway, R S; Rampling, M W

    1997-05-01

    A novel instrument has been developed to study the microrheology of erythrocytes as they flow through channels of dimensions similar to human blood capillaries. The channels are produced in silicon substrates using microengineering technology. Accurately defined, physiological driving pressures and temperatures are employed whilst precise, real-time image processing allows individual cells to be monitored continuously during their transit. The instrument characterises each cell in a sample of ca. 1000 in terms of its volume and flow velocity profile during its transit through a channel. The unique representation of the data in volume/velocity space provides new insight into the microrheological behaviour of blood. The image processing and subsequent data analysis enable the system to reject anomalous events such as multiple cell transits, thereby ensuring integrity of the resulting data. By employing an array of microfluidic flow channels we can integrate a number of different but precise and highly reproducible channel sizes and geometries within one array, thereby allowing multiple, concurrent isobaric measurements on one sample. As an illustration of the performance of the system, volume/velocity data sets recorded in a microfluidic device incorporating multiple channels of 100 microns length and individual widths ranging between 3.0 and 4.0 microns are presented.

  7. Direct numerical simulations of three-dimensional electrokinetic flows

    NASA Astrophysics Data System (ADS)

    Chiam, Keng-Hwee

    2006-11-01

    We discuss direct numerical simulations of three-dimensional electrokinetic flows in microfluidic devices. In particular, we focus on the study of the electrokinetic instability that develops when two solutions with different electrical conductivities are coupled to an external electric field. We characterize this ``mixing'' instability as a function of the parameters of the model, namely the Reynolds number of the flow, the electric Peclet number of the electrolyte solution, and the ratio of the electroosmotic to the electroviscous time scales. Finally, we describe how this model breaks down when the length scale of the device approaches the nanoscale, where the width of the electric Debye layer is comparable to the width of the channel, and discuss solutions to overcome this.

  8. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  9. Comparison of Standardized Clinical Evaluation of Wounds Using Ruler Length by Width and Scout Length by Width Measure and Scout Perimeter Trace

    PubMed Central

    Langemo, Diane; Spahn, James; Spahn, Thomas; Pinnamaneni, V. Chowdry

    2015-01-01

    ABSTRACT The study objective was to examine precision in wound measurement using a recently Food and Drug Administration-approved Scout (WoundVision, LLC, Indianapolis, Indiana) device to measure wound length (L) and width (W). Wound perimeter and a ruler measurement of L and W were also made. Images of 40 actual patient wounds were measured using the Scout device. All 3 techniques (length, width, perimeter) demonstrated acceptable within and between reader precision; however, the best precision was in wound perimeter measurement. PMID:25679463

  10. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  11. Detection of 12 micron Mg I and OH lines in stellar spectra

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Deming, D.; Wiedemann, G. R.; Keady, J. J.

    1986-01-01

    Infrared lines of Mg I and OH have been detected in stellar spectra near 12.3 microns. The Mg I 7i-6h transition was seen in Alpha Ori and Alpha Tau, and the R2e(23.5) and R1f(24.5) transitions of OH were seen in Alpha Ori. All lines appear in absorption, in contrast to the solar spectrum where the Mg I line shows a prominent emission core. The lack of emission in these low surface gravity stars is due to a greatly reduced volume recombination rate for the high-n states of Mg I, which is not fully compensated by the increased chromospheric scale height. The OH equivalent widths are sensitive to the temperature structure of the upper photosphere of Alpha Ori, and they indicate that the photosphere near tau 5000 of about 10 to the -5th is approximately 100 K hotter than is given by flux constant models. The OH measurements agree more closely with the 1981 semiemprical model of Basri, Linsky, and Eriksson (1981), which is based on Ca II and Mg II ultraviolet features.

  12. Interactions regulating the head-to-tail directed assembly of biological Janus rods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A. C.; Bachand, M.; Gomez, A.

    We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.

  13. Interactions regulating the head-to-tail directed assembly of biological Janus rods

    DOE PAGES

    Greene, A. C.; Bachand, M.; Gomez, A.; ...

    2017-03-31

    We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.

  14. Modeling wildland fire containment with uncertain flame length and fireline width

    Treesearch

    Romain Mees; David Strauss; Richard Chase

    1993-01-01

    We describe a mathematical model for the probability that a fireline succeeds in containing a fire. The probability increases as the fireline width increases, and also as the fire's flame length decreases. More interestingly, uncertainties in width and flame length affect the computed containment probabilities, and can thus indirectly affect the optimum allocation...

  15. The Reliability of a Novel Mobile 3-dimensional Wound Measurement Device.

    PubMed

    Anghel, Ersilia L; Kumar, Anagha; Bigham, Thomas E; Maselli, Kathryn M; Steinberg, John S; Evans, Karen K; Kim, Paul J; Attinger, Christopher E

    2016-11-01

    Objective assessment of wound dimensions is essential for tracking progression and determining treatment effectiveness. A reliability study was designed to establish intrarater and interrater reliability of a novel mobile 3-dimensional wound measurement (3DWM) device. Forty-five wounds were assessed by 2 raters using a 3DWM device to obtain length, width, area, depth, and volume measurements. Wounds were also measured manually, using a disposable ruler and digital planimetry. The intraclass correlation coefficient (ICC) was used to establish intrarater and interrater reliability. High levels of intrarater and interrater agreement were observed for area, length, and width; ICC = 0.998, 0.977, 0.955 and 0.999, 0.997, 0.995, respectively. Moderate levels of intrarater (ICC = 0.888) and interrater (ICC = 0.696) agreement were observed for volume. Lastly, depth yielded an intrarater ICC of 0.360 and an interrater ICC of 0.649. Measures from the 3DWM device were highly correlated with those obtained from scaled photography for length, width, and area (ρ = 0.997, 0.988, 0.997, P < 0.001). The 3DWM device yielded correlations of ρ = 0.990, 0.987, 0.996 with P < 0.001 for length, width, and area when compared to manual measurements. The 3DWM device was found to be highly reliable for measuring wound areas for a range of wound sizes and types as compared to manual measurement and digital planimetry. The depth and therefore volume measurement using the 3DWM device was found to have a lower ICC, but volume ICC alone was moderate. Overall, this device offers a mobile option for objective wound measurement in the clinical setting.

  16. Role of Fiber Length on Phagocytosis & Inflammatory Response

    NASA Astrophysics Data System (ADS)

    Turkevich, Leonid; Stark, Carahline; Champion, Julie

    2014-03-01

    Asbestos fibers have long been associated with lung cancer death. The inability of immune cells (e.g. macrophages) to effectively remove asbestos leads to chronic inflammation and disease. This study examines the role of fiber length on toxicity at the cellular level using model glass fibers. A major challenge is obtaining single diameter fibers but differing in length. Samples of 1 micron diameter fibers with different length distributions were prepared: short fibers (less than 15 microns) by aggressive crushing, and long fibers (longer than 15 microns) by successive sedimentation. Time-lapse video microscopy monitored the interaction of MH-S murine alveolar macrophages with the fibers: short fibers were easily internalized by the macrophages, but long fibers resisted internalization over many hours. Production of TNF- α (tumor necrosis factor alpha), a general inflammatory secreted cytokine, and Cox-2 (cyclo-oxygenase-2), an enzyme that produces radicals, each exhibited a dose-dependence that was greater for long than for short fibers. These results corroborate the importance of fiber length in both physical and biochemical cell response and support epidemiological observations of higher toxicity for longer fibers.

  17. Magnetic Iron Oxide Nanowires Formed by Reactive Dewetting.

    PubMed

    Bennett, Roger A; Etman, Haitham A; Hicks, Hannah; Richards, Leah; Wu, Chen; Castell, Martin R; Dhesi, Sarnjeet S; Maccherozzi, Francesco

    2018-04-11

    The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe 3 O 4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.

  18. Graphene Nanoribbons Fabricated by Helium Ion microscope

    NASA Astrophysics Data System (ADS)

    Pickard, D.; Oezyilmaz, B.; Thong, J.; Loh, K. P.; Viswanathan, V.; Zhongkai, A.; Mathew, S.; Kundu, T.; Park, C.; Yi, Z.; Xu, X.; Zhang, K.; Tat, T. C.; Wang, H.; Venkatesan, T.; Botton, G.; Couillard, M.

    2010-03-01

    Graphene, a monolayer graphitic lattice of carbon atoms has tremendous promise for a variety of applications on account of the zero mass of electrons, high mobility and the sensitivity of transport to perturbations at the interface. Patterning graphene is an obvious challenge and mesoscopic devices based on graphene require high spatial resolution patterning that will induce as little damage as possible. We use a helium ion microscope with its 0.4nm spot size beam to directly write patterns on free standing graphene films. TEM images of the patterns reveal holes as small as 4 nm and ribbons with line widths as narrow as 3 nm. The images show recovery of the graphene lattice at a distance of about a nm from the patterned edge. The linewidths of the ribbon can be varied considerably in a controllable fashion over ribbon lengths of the order of microns. . .

  19. Further Development of Scaffolds for Regeneration of Nerves

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Tuszynski, Mark

    2009-01-01

    Progress has been made in continuing research on scaffolds for the guided growth of nerves to replace damaged ones. The scaffolds contain pores that are approximately cylindrical and parallel, with nearly uniform widths ranging from tens to hundreds of microns. At the earlier stage of development, experimental scaffolds had been made from agarose hydrogel. Such a scaffold was made in a multistep process in which poly(methyl methacrylate) [PMMA] fibers were used as templates for the pores. The process included placement of a bundle of the PMMA fibers in a tube, filling the interstices in the tube with a hot agarose solution, cooling to turn the solution into a gel, and then immersion in acetone to dissolve the PMMA fibers. The scaffolds were typically limited to about 25 pores per scaffold, square cross sections of no more than about 1.5 by 1.5 mm, and lengths of no more than about 2 mm.

  20. The magnetoresistance of sub-micron Fe wires

    NASA Astrophysics Data System (ADS)

    Blundell, S. J.; Shearwood, C.; Gester, M.; Baird, M. J.; Bland, J. A. C.; Ahmed, H.

    1994-07-01

    A novel combination of electron- and ion-beam lithography has been used to prepare Fe gratings with wire widths of 0.5 μm and wire separations in the range 0.5-4 μm from an Fe/GaAs (001) film of thickness 25 nm. With an in-plane magnetic field applied perpendicular to the length of the wires, a harder magnetisation loop is observed using the magneto-optic Kerr effect (MOKE), compared with that observed in the unprocessed film. We observe a strong effect in the magnetoresistance (MR) when the magnetic field is applied transverse to the wires. It is believed that this effect originates from the highly non-uniform demagnetising field in each wire of the grating. These results demonstrate that the combination of MOKE and MR measurements can provide important information about the magnetisation reversal processes in magnetic gratings and can be used to understand the effect of shape anisotropy on magnetic properties.

  1. Wide band continuous all-fiber comb generator at 1.5 micron

    NASA Astrophysics Data System (ADS)

    Lemaître, François; Mondin, Linda; Orlik, X.

    2017-11-01

    We present an all-fiber continuous optical frequency comb-generator (OFCG) able to generate over 6 nm (750 GHz) at 1560 nm using a combination of electro-optic and acousto-optic modulations. As opposed to numerous experimental setups that use the longitudinal modes of an optical cavity to generate continuous optical frequency combs, our setup doesn't need any active stabilization of the cavity length since we use the intrinsically high stability of radiofrequency sources to generate the multiple lines of the comb laser. Moreover, compared to the work of ref [1], the hybrid optical modulation we use allows to suppress the problem of instability due interferences between the generated lines. We notice that these lines benefit from the spectral quality of the seed laser because the spectral width of the synthesized hyperfrequency and radiofrequency signals are generally narrower than laser sources.

  2. Effects of theophylline on expression of the long cilia phenotype in sand dollar blastulae.

    PubMed

    Riederer-Henderson, M A

    1988-04-01

    Previously, increases in ciliary length have only been obtained through genetic mutation in Chlamydomonas or by incubation of swimming echinoderm blastulae in trypsin or elastase. We have found that the phenotypic switch from short to long cilia on sand dollar blastulae can also be effected by incubation in theophylline. Cilia detached from control blastulae have a mean length of 21 +/- 7 microns with 10% of the cilia being greater than 30 microns. Upon incubation in 10 mM theophylline additional long cilia appeared after 10 hours and by 24-32 hours 1/2-3/4 of the embryo was covered with long cilia. The percentage of long cilia increased to 65% with a mean length of 40.0 +/- 17.6 microns. Incubation in other methylxanthines, such as aminophylline, caffeine, or isobutylmethylxanthine, inhibited development but had no effect on ciliary length distribution. Dibutyryl cAMP, 8-bromoadenosine, and calcium ionophore also had no effect on ciliary length. Cyclic AMP levels were measured and showed only slight differences among controls and embryos incubated in trypsin, caffeine, or theophylline. These data suggest that theophylline may be altering ciliary length control through some mechanism other than elevations in cAMP.

  3. Incisors’ proportions in smile esthetics

    PubMed Central

    Alsulaimani, Fahad F; Batwa, Waeil

    2013-01-01

    Aims: To determine whether alteration of the maxillary central and lateral incisors’ length and width, respectively, would affect perceived smile esthetics and to validate the most esthetic length and width, respectively, for the central and lateral incisors. Materials and Methods: Photographic manipulation was undertaken to produce two sets of photographs, each set of four photographs showing the altered width of the lateral incisor and length of the central length. The eight produced photographs were assessed by laypeople, dentists and orthodontists. Results: Alteration in the incisors’ proportion affected the relative smile attractiveness for laypeople (n=124), dentists (n=115) and orthodontists (n=68); dentists and orthodontists did not accept lateral width reduction of more than 0.5 mm (P<0.01), which suggests that the lateral to central incisor width ratio ranges from 54% to 62%. However, laypeople did not accept lateral width reduction of more than 1 mm (P<0.01), widening the range to be from 48% to 62%. All groups had zero tolerance for changes in central crown length (P<0.01). Conclusion: All participants recognized that the central incisors’ length changes. For lateral incisors, laypeople were more tolerant than dentists and orthodontists. This suggests that changing incisors’ proportions affects the relative smile attractiveness. PMID:24987650

  4. Estimation of Length-Scales in Soils by MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Altobelli, S.; Alexander, J. I. D.

    2004-01-01

    Soil can be best described as an unconsolidated granular media that forms porous structure. The present macroscopic theory of water transport in porous media rests upon the continuum hypothesis that the physical properties of porous media can be associated with continuous, twice-differentiable field variables whose spatial domain is a set of centroids of Representative Elementary Volume (REV) elements. MRI is an ideal technique to estimate various length-scales in porous media. A 0.267 T permanent magnet at NASA GRC was used for this study. A 2D or 3D spatially-resolved porosity distribution were obtained from the NMR signal strength from each voxel and the spin-lattice relaxation time. A classical spin-warp imaging with Multiple Spin Echos (MSE) was used to evaluate proton density in each voxel. Initial resolution of 256 x 256 was subsequently reduced by averaging neighboring voxels and the porosity convergence was observed. A number of engineered "space candidate" soils such as Isolite(trademark), Zeoponics(trademark), Turface(trademark), and Profile(trademark) were used. Glass beads in the size range between 50 microns to 2 mm were used as well. Initial results with saturated porous samples have shown a good estimate of the average porosity consistent with the gravimetric porosity measurement results. For Profile(trademark) samples with particle sizes ranging between 0.25 to 1 mm and characteristic interparticle pore size of 100 microns the characteristic Darcy scale was estimated to be about delta(sub REV) = 10 mm. Glass beads porosity show clear convergence toward a definite REV which stays constant throughout homogeneous sample. Additional information is included in the original extended abstract.

  5. Tests of the Weak Equivalence Principal Below Fifty Microns

    NASA Astrophysics Data System (ADS)

    Leopardi, Holly; Hoyle, C. D.; Smith, Dave; Cardenas, Crystal; Harter, Andrew Conrad

    2014-03-01

    Due to the incompatibility of the Standard Model and General Relativity, tests of gravity remain at the forefront of experimental physics research. The Weak Equivalence Principle (WEP), which states that in a uniform gravitational field all objects fall with the same acceleration regardless of composition, total mass, or structure, is fundamentally the result of the equality of inertial mass and gravitational mass. The WEP has been effectively studied since the time of Galileo, and is a central feature of General Relativity; its violation at any length scale would bring into question fundamental aspects of the current model of gravitational physics. A variety of scenarios predict possible mechanisms that could result in a violation of the WEP. The Humboldt State University Gravitational Physics Laboratory is using a torsion pendulum with equal masses of different materials (a ``composition dipole'' configuration) to determine whether the WEP holds below the 50-micron distance scale. The experiment will measure the twist of a torsion pendulum as an attractor mass is oscillated nearby in a parallel-plate configuration, providing a time varying torque on the pendulum. The size and distance dependence of the torque variation will provide means to determine deviations from accepted models of gravity on untested distance scales. P.I.

  6. Non-Hookean statistical mechanics of clamped graphene ribbons

    NASA Astrophysics Data System (ADS)

    Bowick, Mark J.; Košmrlj, Andrej; Nelson, David R.; Sknepnek, Rastko

    2017-03-01

    Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations of Hooke's Law: Large distance elastic parameters are in fact not constant but instead depend on the macroscopic dimensions. Inspired by recent experiments on free-standing graphene cantilevers, we combine the statistical mechanics of thin elastic plates and large-scale numerical simulations to investigate the thermal renormalization of the bending rigidity of graphene ribbons clamped at one end. For ribbons of dimensions W ×L (with L ≥W ), the macroscopic bending rigidity κR determined from cantilever deformations is independent of the width when W <ℓth , where ℓth is a thermal length scale, as expected. When W >ℓth , however, this thermally renormalized bending rigidity begins to systematically increase, in agreement with the scaling theory, although in our simulations we were not quite able to reach the system sizes necessary to determine the fully developed power law dependence on W . When the ribbon length L >ℓp , where ℓp is the W -dependent thermally renormalized ribbon persistence length, we observe a scaling collapse and the beginnings of large scale random walk behavior.

  7. Anthropometric growth study of the ear in a Chinese population.

    PubMed

    Zhao, Shichun; Li, Dianguo; Liu, Zhenzhong; Wang, Yibiao; Liu, Lei; Jiang, Duyin; Pan, Bo

    2018-04-01

    A large number of anthropometric studies of the auricle have been reported in different nations, but little data were available in the Chinese population. The aim of this study was to analyze growth changes in the ear by measuring the width and length of ears in a Chinese population. A total of 480 participants were enrolled and classified into 1-, 3-, 5-, 7-, 9-, 12-, 14-, and 18-year groups (half were boys and half were girls in each group). Ear length, ear width, body weight, and body length were measured and recorded; ear index was calculated according to ear length and ear width. The growth of auricle and differences between genders were analyzed. Growth of ear in relation to body height and weight and the degree of emphasis on the length and width of the auricle were also analyzed. Ear length and width increased with age. Ear length achieved its mature size in both 14-year-old males and females. Ear width reached its mature size in males at 7 years and in females at 5 years. Different trends of ear index were shown between males and females. People in this population paid more attention to the length than the width of the auricle. The data indicated that ear development followed increase in age. There were gender and ethnic difference in the development of ear. These results may have potential implications for the diagnosis of congenital malformations, syndromes, and planning of ear reconstruction surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. EDITORIAL: Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, Technical University of Denmark, 21 25 Mark 2006

    NASA Astrophysics Data System (ADS)

    Tvergaard, Viggo

    2007-01-01

    This special issue constitutes the Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, held at the Technical University of Denmark, 21-25 May 2006. The purpose of this symposium was to gather a group of leading scientists working in areas of importance to length scale dependent plasticity. This includes work on phenomenological strain gradient plasticity models, studies making use of discrete dislocation models, and even atomic level models. Experimental investigations are central to all this, as all the models focus on developing an improved understanding of real observed phenomena. The opening lecture by Professor N A Fleck, Cambridge University, discussed experimental as well as theoretical approaches. Also, recent results for the surface roughness at grain boundaries were presented based on experiments and crystal plasticity modelling. A number of presentations focused on experiments for metals at a small length scale, e.g. using indenters or a small single crystal compression test. It was found that there are causes of the size effects other than the geometrically necessary dislocations related to strain gradients. Several lectures on scale dependent phenomenological plasticity theories discussed different methods of incorporating the characteristic material length. This included lower order plasticity theories as well as higher order theories, within standard plasticity models or crystal plasticity. Differences in the ways of incorporating higher order boundary conditions were the subject of much discussion. Various methods for discrete dislocation modelling of plastic deformation were used in some of the presentations to obtain a more detailed understanding of length scale effects in metals. This included large scale computations for dislocation dynamics as well as new statistical mechanics approaches to averaging of dislocation plasticity. Furthermore, at a somewhat larger length scale, applications of scale dependent plasticity to granular media and to cellular solids were discussed. The symposium consisted of thirty-six lectures, all of which were invited based on strong expertise in the area. Some of the lectures are not represented in this special issue, mainly because of prior commitments to publish elsewhere. The international Scientific Committee responsible for the symposium comprised the following: Professor V Tvergaard (Chairman) Denmark Professor A Benallal France Professor N A Fleck UK Professor L B Freund (IUTAM Representative) USA Professor E van der Giessen The Netherlands Professor J W Hutchinson USA Professor A Needleman USA Professor B Svendsen Germany The Committee gratefully acknowledges financial support for the symposium from the International Union of Theoretical and Applied Mechanics, from Novo Nordisk A/S and from the Villum Kann Rasmussen Foundation. In the organization of all parts of the symposium the enthusiastic participation of Dr C F Niordson and Dr P Redanz was invaluable. The smooth running of the symposium also owes much to the efforts and organizational skills of Bente Andersen.

  9. Effect of course length and corridor width on the 2-minute walk test performance in geriatric patients.

    PubMed

    Lindemann, Ulrich; Beck, Luisa; Becker, Clemens

    2017-02-01

    To evaluate the effect of course length and corridor width on 2-minute walk test results in older adults. Cross-sectional and experimental study with different test conditions. Geriatric rehabilitation clinic. A total of 21 patients (median age 81 years). Patients walked two minutes on a 20 m and 40 m course with a 2 m or 1 m corridor width and on a continuous course without any turning in a corridor of 2 m width, five walks in total. The distance traveled within the 2 minutes was recorded. Compared with the 20 m course length, median walking distances measured by the 2-minute walk test in a walk way 2 m broad were better on the continuous corridor without any turn (136.9 m vs. 129.3 m, p = 0.002) and on the 40 m course (131.8 m vs. 129.3 m, p = 0.003). Walking distance on a 20 m course length was longer in a corridor of 2 m width compared with the 1 m corridor width (129.3 m vs. 119.2 m, p = 0.005). The walking distance was not affected by corridor width on the 40 m course length. Performance of elderly patients on the 2-minute walk test is influenced by the width of the corridor and the length of the course used.

  10. FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes.

    PubMed

    Lee, Kilbock; Song, Seok Ho; Ahn, Jinho

    2014-03-24

    We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

  11. Biopersistences of man-made vitreous fibers and crocidolite fibers in rat lungs following short-term exposures.

    PubMed Central

    Musselman, R P; Miiller, W C; Eastes, W; Hadley, J G; Kamstrup, O; Thevenaz, P; Hesterberg, T W

    1994-01-01

    Biopersistence of commercial man-made vitreous fibers (MMVF) and crocidolite were studied in Fischer 344 rats. MMVF used were size-selected to be rat-respirable, and rats were exposed nose-only 6 h/day for 5 days to gravimetric concentrations (30 mg/m3) of two fiber glass compositions--a rockwool, and a slagwool--or to 10 mg/m3 of long-fibered crocidolite, or to filtered air. Animals were sacrificed at 1 hr, 1, 5, 31, 90, 180, 270, 365, and 545 days after exposure stopped. Fibers were recovered from digested lung tissue to determine changes in concentrations (fibers/mg dry lung) and fiber retentions (expressed as percent of day 1 retention [PR]) for selected dimension categories. One-day average concentrations of lung-retained MMVF and crocidolite fibers, of diameter > or = 0.5 micron or > 20 microns in length, were nearly equal, permitting direct comparisons between MMVF and crocidolite. At 270 days average PR for MMVF > or = 0.5 micron in diameter were from 3 to 6 +/- 2% and 27 +/- 9% for crocidolite. For fibers > 20 microns, PR were 1 to 4 +/- 4% for MMVF and 37 +/- 20% for crocidolite. At 545 days, MMVF > 20 microns in length were at background level while concentration of crocidolite fibers > 20 microns in length remained at 2000 +/- 400 f/mg DL (dry lung), or 38 +/- 9% of day-1 retention. These results suggest strongly that MMVF dissolved or fractured in vivo whereas crocidolite fibers did not change. PMID:7882918

  12. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  13. Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1981-01-01

    The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.

  14. Turbulent transport of He II in active and passive phase separators using slit devices and porous media

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Frederking, T. H. K.

    1988-01-01

    The turbulent transport mode of vapor liquid phase separators (VLPS) for He II has been investigated comparing passive porous plug separators with active phase separators (APS) using slits of variable flow paths within a common frame of reference. It is concluded that the basic transport regimes in both devices are identical. An integrated Gorter-Mellink (1949) equation, found previously to predict VLPS results of porous plugs, is employed to analyze APS data published in the literature. It is found that the Gorter-Mellink flow rate parameter for 9-micron and 14-micron APS slit widths are relatively independent of the slit width, having a rate constant of about 9 + or - 10 percent. This agrees with the early heat flow results for He II entropy transport at zero net mass flow in wide capillaries and slits.

  15. The 3 micron spectrum of the classical Be star Beta Monocerotis A

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Smith, R. G.

    1992-01-01

    A 3.1-3.7-micron spectrum of the classical Be star Beta Mon A is presented at a resolution of lambda/Delta-lambda of 700-800. The spectrum shows strong hydrogen recombination lines, including Pf-delta and a series of Humphreys lines from Hu 19 to Hu 28. The relative recombination line strengths suggest that Pf-delta has a large optical depth. The Humphreys lines have relative strengths consistent with case B and may be optically thin. The line widths observed are broader than the Balmer lines and similar in width to Fe II lines, consistent with a disk model in which optically thinner lines arise primarily from a faster rotating inner disk, while optically thicker lines come mainly from a slower rotating outer disk. The apparent lack of Stark broadening of the Humphreys lines is used to place an upper limit on the circumstellar electron density of about 10 exp 12/cu cm.

  16. Theoretical Investigation of Absorptive Processes.

    DTIC Science & Technology

    1981-05-01

    sections are plotted (log-log scale, MKS units throughout) vs. wavelength over the range from 0 . 1 to 100 microns, for a specified radius, length, and...long compared to wavelength (although one should note that no difficulties arise in the example shown, provided kL I’ 3. 5 ). It was thus decided to use...of the fiber, in that n is chosen as AoceslonFor n = Nearest integer to (ki + 1). 1NTIS GRA&I (1) jDTIC TAB 0 Unnnounced By __ 2 -vo-.-. ---. 1-- MS

  17. Cracking of Clay Due to Contact with Waste Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Otero, M.; Ayral, D.; Shipan, J.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2012-12-01

    Clays are known to crack upon desiccation. Desiccation cracks of up to 3 cm wide have been reported in natural soils. This raises the question if a similar behavior is seen when a dense non-aqueous phase liquids (DNAPL) waste is in contact with clay. The contact with organic liquids causes the clay structure to shrink, leading to the formation of cracks. Moreover, DNAPL waste not only contains the organic liquid solvent but also includes surface-active solutes or surfactants. Such solutes can enhance the interaction of the organic solvents with the clay. This research will assess whether or not contact with chlorinated organic waste causes cracking. In order to evaluate the possibility of cracking in the clay, microcosms have been constructed that mimic aquifer systems, consisting of a saturated layer of sand, a saturated layer of bentonite clay and a 2.5 cm layer of either pure chlorinated solvents or DNAPL waste. The onset of cracking for the microcosm with tetrachloroethylene (PCE) waste as the DNAPL layer occurred after ten days of contact. Similarly, at eight days, cracks were observed in a microcosm containing trichloroethylene (TCE) waste . Forty-four days later, the length and number of cracks have grown considerably; with a total crack length of 50 cm on a surface of 80 cm2 in the microcosm containing PCE waste. On the other hand it took approximately 161 days for the clay layer in the microcosm containing pure PCE to crack. To quantity the degree of cracking, crack maps were developed using the image software, Image J. Characteristics like crack length, crack aperture, and the percentage of total length for a range of apertures were calculated using this software. For example, for the PCE waste microcosm, it was calculated that 3.7% of the crack length had an aperture of 100-300 microns, 15.1% of the crack length had an aperture of 300-500 microns, 29.7% of the crack length had an aperture of 500-700 microns, 40.1% of the crack length had an aperture of 700-900 microns, 6.3% had an aperture of 900-1,100 microns and 5.1% had an aperture of over 1,100 microns. These data suggest that aquitards in the field might crack when in contact with the DNAPL waste. Moreover, it is apparent that the waste contains solutes that accelerate the cracking of the clay layer. Thus, models examining the impact of storage in low permeability layers need to consider the possible impact of cracking.

  18. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  19. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  20. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  1. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  2. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...

    2015-09-21

    In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.

  3. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  4. Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting

    NASA Astrophysics Data System (ADS)

    Shi, Qiongfeng; Wang, Tao; Kobayashi, Takeshi; Lee, Chengkuo

    2016-05-01

    Acoustic energy transfer (AET) has been widely used for contactless energy delivery to implantable devices. However, most of the energy harvesters (ultrasonic receivers) for AET are macro-scale transducers with large volume and limited operation bandwidth. Here, we propose and investigate two microelectromechanical systems diaphragm based piezoelectric ultrasonic energy harvesters (PUEHs) as an alternative for AET. The proposed PUEHs consist of micro-scale diaphragm array with different geometric parameter design. Diaphragms in PUEH-1 have large length to width ratio to achieve broadband property, while its energy harvesting performance is compromised. Diaphragms in PUEH-2 have smaller length to width ratio and thinner thickness to achieve both broadband property and good energy harvesting performance. Both PUEHs have miniaturized size and wide operation bandwidth that are ideally suitable to be integrated as power source for implantable biomedical devices. PUEH-1 has a merged -6 dB bandwidth of 74.5% with a central frequency of 350 kHz. PUEH-2 has two separate -6 dB bandwidth of 73.7%/30.8% with central frequencies of 285 kHz/650 kHz. They can adapt to various ultrasonic sources with different working frequency spectrum. Maximum output power is 34.3 nW and 84.3 nW for PUEH-1 and PUEH-2 at 1 mW/cm2 ultrasound intensity input, respectively. The associated power density is 0.734 μW/cm2 and 4.1 μW/cm2, respectively. Better energy harvesting performance is achieved for PUEH-2 because of the optimized length to width ratio and thickness design. Both PUEHs offer more alignment flexibility with more than 40% power when they are in the range of the ultrasound transmitter.

  5. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  6. Theory based scaling of edge turbulence and implications for the scrape-off layer width

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Russell, D. A.; Zweben, S. J.

    2016-11-01

    Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [Zweben et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λq and its scaling. An explicit proportionality of the width λq to the safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λq in NSTX, at least for high plasma current discharges.

  7. Theory based scaling of edge turbulence and implications for the scrape-off layer width

    DOE PAGES

    Myra, J. R.; Russell, D. A.; Zweben, S. J.

    2016-11-01

    Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database. These are compared with theoretical estimates for drift and interchange rates, profile modificationmore » saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width λ q and its scaling. An explicit proportionality of the width λ q to the safety factor and major radius (qR) is obtained under these conditions. Lastly, quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining λ q in NSTX, at least for high plasma current discharges.« less

  8. Intraobserver Repeatability and Interobserver Reproducibility of Ellipsoid Zone Measurements in Retinitis Pigmentosa.

    PubMed

    Strampe, Margaret R; Huckenpahler, Alison L; Higgins, Brian P; Tarima, Sergey; Visotcky, Alexis; Stepien, Kimberly E; Kay, Christine N; Carroll, Joseph

    2018-05-01

    To examine repeatability and reproducibility of ellipsoid zone (EZ) width measurements in patients with retinitis pigmentosa (RP) using a longitudinal reflectivity profile (LRP) analysis. We examined Bioptigen optical coherence tomography (OCT) scans from 48 subjects with RP or Usher syndrome. Nominal scan lengths were 6, 7, or 10 mm, and the lateral scale of each scan was calculated using axial length measurements. LRPs were generated from OCT line scans, and the peak corresponding to EZ was manually identified using ImageJ. The locations at which the EZ peak disappeared were used to calculate EZ width. Each scan was analyzed twice by each of two observers, who were masked to their previous measurements and those of the other observer. On average, horizontal width (HW) was significantly greater than vertical width (VW), and there was high interocular symmetry for both HW and VW. We observed excellent intraobserver repeatability with intraclass correlation coefficients (ICCs) ranging from 0.996 to 0.998 for HW and VW measurements. Interobserver reproducibility was also excellent for both HW (ICC = 0.989; 95% confidence interval [CI] = 0.983-0.995) and VW (ICC = 0.991; 95% CI = 0.985-0.996), with no significant bias observed between observers. EZ width can be measured using LRPs with excellent repeatability and reproducibility. Our observation of greater HW than VW is consistent with previous observations in RP, though the reason for this anisotropy remains unclear. We describe repeatability and reproducibility of a method for measuring EZ width in patients with RP or Usher syndrome. This approach could facilitate measurement of retinal band thickness and/or intensity.

  9. Cubic law with aperture-length correlation: implications for network scale fluid flow

    NASA Astrophysics Data System (ADS)

    Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.

    2010-06-01

    Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.

  10. Overestimation of Susceptibility Vessel Sign: A Predictive Marker of Stroke Cause.

    PubMed

    Zhang, Ruiting; Zhou, Ying; Liu, Chang; Zhang, Meixia; Yan, Shenqiang; Liebeskind, David S; Lou, Min

    2017-07-01

    The extent of blooming artifact may reflect the amount of paramagnetic material. We thus assessed the overestimation ratio of susceptibility vessel sign (SVS) on susceptibility-weighted imaging, defined as the extent of SVS width beyond the lumen and examined its value for predicting the stroke cause in acute ischemic stroke patients. We included consecutive acute ischemic stroke patients with proximal large artery occlusion who underwent both susceptibility-weighted imaging and time-of-flight magnetic resonance angiography within 8 hours poststroke onset. We calculated the length, width, and overestimation ratio of SVS on susceptibility-weighted imaging and then investigated their values for predicting the stroke cause, respectively. One-hundred eleven consecutive patients (72 female; mean age, 66.6±13.4 years) were enrolled, among whom 39 (35.1%) were diagnosed with cardiogenic embolism, 43 (38.7%) with large artery atherosclerosis, and 29 (26.1%) with undetermined cause. The presence, length, width, and overestimation ratio of SVS were all independently associated with the cause of cardiogenic embolism after adjusting for baseline National Institute of Health Stroke Scale and infarct volume. After excluded patients with undetermined cause, the sensitivity and specificity of overestimation ratio of SVS for cardiogenic embolism were 0.971 and 0.913; for the length of SVS, they were 0.629 and 0.739; for the width of SVS, they were 0.829 and 0.826, respectively. The overestimation ratio of SVS can predict cardiogenic embolism, with both high sensitivity and specificity, which can be helpful for the management of acute ischemic stroke patients in hyperacute stage. © 2017 American Heart Association, Inc.

  11. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  12. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation

    PubMed Central

    Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid

    2014-01-01

    Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687

  13. Dependence of SOL widths on plasma parameters in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Maingi, Rajesh; Boedo, Jose; Soukhanovskii, Vlad; Leblanc, Ben; Kaita, Robert

    2008-11-01

    The dependence of various upstream Scrape-Off Layer (SOL) widths on the line-averaged density (n e), plasma current (Ip), and power into the SOL (PSOL) for H-mode plasmas was investigated, using the mid-plane fast reciprocating probe and Thomson scattering diagnostics, in the National Spherical Torus Experiment (NSTX). The heat flux width (λq) at the divertor plate, measured by the IR camera, was also measured and compared with the upstream SOL widths. The edge density profile remains fixed during the H-mode, such that the separatrix density is constant even though n e is ramping. Thus λq, λTe, and λne are insensitive to n e. λTe and λjsat have strong negative dependence on Ip, whereas there was only a very weak change in λne when Ip was varied. These empirical results have been compared with scaling laws in the literature. The λTe dependence on Ip is consistent with an H-mode λTe scaling law, while the insensitivity of λne to n e is not consistent with the λne scaling law. Dependence of decay lengths on plasma parameters in a wide range of plasma conditions will be presented. This work was supported by the US Department of Energy, contract numbers DE-FG02-03ER54731, DE-AC02-76CH03073, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  14. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.

    PubMed

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Albrecht, Thomas; Collins, David J; Winkler, Andreas; Schmidt, Hagen; Neild, Adrian

    2018-06-26

    Acoustic forces arising from high-frequency surface acoustic waves (SAW) underpin an exciting range of promising techniques for non-contact manipulation of fluid and objects at micron scale. Despite increasing significance of SAW-driven technologies in microfluidics, the understanding of a broad range of phenomena occurring within an individual SAW system is limited. Acoustic effects including streaming and radiation force fields are often assumed to result from wave propagation in a simple planar fashion. The propagation patterns of a single SAW emanating from a finite-width source, however, cause a far richer range of physical effects. In this work, we seek a better understanding of the various effects arising from the incidence of a finite-width SAW beam propagating into a quiescent fluid. Through numerical and experimental verification, we present five distinct mechanisms within an individual system. These cause fluid swirling in two orthogonal planes, and particle trapping in two directions, as well as migration of particles in the direction of wave propagation. For a range of IDT aperture and channel dimensions, the relative importance of these mechanisms is evaluated.

  15. Far infrared spectroscopy of star formation regions in M82

    NASA Technical Reports Server (NTRS)

    Duffy, P. B.; Erickson, E. F.; Haas, M. R.; Houck, J. R.

    1986-01-01

    Emission lines of (O III) at 52 microns and 88 microns and of (N III) at 57 microns in the nucleus of the galaxy M82 have been observed from the Kuiper Airborne Observatory with the facility's cooled grating spectrometer. The (N III) line has not been previously detected in any extragalactic source. The fluxes in the lines indicate approx 4 x 10 to the 7th power M of ionized gas and a large population of massive stars (equivalent to 5 x 10 to the 5th power 08.5 stars), sufficient to power the infrared luminosity of the nucleus. We use the 52 to 88 micron line intensity ratio to find an average electron density of 210 + or 75 in the nucleus; this is 10 to 100 times lower than values typically observed in individual compact HII regions in our Galaxy. The relative line strengths of the (O III) and (N III) lines imply an N(++)/O(++) ratio of 0.45 + or - 0.1, significantly lower than is measured by the same method in individual HII regions at similar galactocentric distances (equal to or less than 400 pc) in our Galaxy. This lower N(++)/O(++) ratio may be due to a lower N/O ratio, higher stellar temperatures, or both, in M82. At spectral resolutions of approx. 90 km/s, all three line profiles are similarly asymmetric. They can be well fitted by two Gaussian distributions with widths of approx. 150 km/s and central velocities of approx. 110 and approx. 295 km/s, bracketing the systemic velocity of the nucleus of approx. 210 km/s. Within uncertainties, both the N(++)/O(++) ratio and the electron density are the same for both Gaussian components; this indicates no major large-scale gradient in either quantity within the nucleus.

  16. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  17. Effect of strained Ge-based NMOSFETs with Ge0.93Si0.07 stressors on device layout

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Wen; Lee, Chang-Chun

    2017-12-01

    This research proposes a germanium (Ge)-based n-channel MOSFET with Ge0.93Si0.07 S/D stressor. A simulation technique is utilized to understand the layout effect of shallow trench isolation (STI) length, gate width, dummy active of diffusion (OD) length, and extended poly width on stress distribution in a channel region. Stress distribution in a channel region was simulated by ANSYS software based on finite element analysis. Furthermore, carrier mobility gain was evaluated by a second-order piezoresistance model. The piezoresistance coefficient of Ge nMOSFET varies from that of Si nMOSFET. The piezoresistance coefficient shows that longitudinal and transverse stresses are the dominant factors affecting the change in electron mobility in the channel region. For Ge-based nMOSFET, longitudinal stress tends to be tensile, whereas transverse stress tends to be compressive. Stress along channel length becomes more tensile when STI length decreases. By contrast, stress along the channel width becomes more compressive when gate width or extended poly width decreases. Electron mobility in Ge-based nMOSFET could be enhanced under the aforementioned conditions. The enhanced electron mobility becomes more significant as the device combines with a contact etching stop layer stressor. Moreover, the mobility can be improved by changing the STI length, gate width, dummy OD length, or extended poly width. This investigation systematically analyzed the relationship between layout factor and stress distribution.

  18. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  19. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and the application of this new capability to the study of early-stage damage.

  20. Optical manipulation of lipid and polymer nanotubes with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reiner, Joseph E.; Kishore, Rani; Pfefferkorn, Candace; Wells, Jeffrey; Helmerson, Kristian; Howell, Peter; Vreeland, Wyatt; Forry, Samuel; Locascio, Laurie; Reyes-Hernandez, Darwin; Gaitan, Michael

    2004-10-01

    Using optical tweezers and microfluidics, we stretch either the lipid or polymer membranes of liposomes or polymersomes, respectively, into long nanotubes. The membranes can be grabbed directly with the optical tweezers to produce sub-micron diameter tubes that are several hundred microns in length. We can stretch tubes up to a centimeter in length, limited only by the travel of our microscope stage. We also demonstrate the cross linking of a pulled polymer nanotube.

  1. Neutron reflectometry as a tool to study magnetism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felcher, G. P.

    1999-09-21

    Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane ofmore » the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.« less

  2. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    NASA Astrophysics Data System (ADS)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing effects of transport dynamics and reaction kinetics were investigated in the context of profiles of the precipitated minerals and permeability behavior of the fracture flow path. This study contributes rich knowledge toward mastering the subsurface for energy production and storage and for the management of energy waste streams.

  3. Width/Length Ratio in Maxillary Anterior Teeth. Comparative Study of Esthetic Preferences among Professionals and Laypersons.

    PubMed

    Álvarez-Álvarez, Lorena; Orozco-Varo, Ana; Arroyo-Cruz, Gema; Jiménez-Castellanos, Emilio

    2017-05-17

    Many studies have examined the esthetic preferences of professionals in the maxillary anterior region; however, only a few have taken into account the ratios that are more frequent within the population or other ratios suggested in the literature as ideal. Previous studies also failed to compare them with the esthetic preferences of the lay population with regards to the smile. The purpose of this study is to highlight the differences when perceiving the esthetics of smiles between general dentists and laypersons, and linking them with the width/length of the maxillary anterior teeth. Photographs of the full face of a female subject were modified with Photoshop CS regarding the length/width relationships of the 6 maxillary anterior teeth. The three modifications made were: (a) 80% length/width, (b) 85%, length/width, and (c) 85% length/width in central incisors, 80% length/width in lateral incisors and canines. Three sequences of photograph pairs were created with different ratios and presented in PowerPoint to a sample of 100 general dentists and 100 laypersons. The ratio considered as the most esthetic by the majority of the judges was 85% for central incisors and 80% for lateral incisors and canines, with a statistically significant difference (p < 0.01). There was no statistically significant difference in the esthetic preferences of the studied populations either due to gender or professional experience of the dentists (p > 0.01). According to the results obtained in this study, professionals and laypersons considered a width/length ratio of 85% for maxillary central incisors and 80% for lateral incisors and canines as the most esthetic for maxillary anterior teeth. These results do not support findings from other studies previously published with similar ratios in central incisors, lateral incisors, and canines. Today clinicians practice in a treatment environment where not only function and utility but also esthetics is demanded in almost every procedure. Restoring/maintaining function is considered essential in any restorative dentistry treatment, but the esthetic aspects of any treatment should never be forgotten. This study was motivated by the increasing importance of obtaining a better appreciation of the perception of smile beauty, and of the role of maxillary teeth width/length ratio on the perception of dental esthetics. © 2017 by the American College of Prosthodontists.

  4. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Smith, Stephen J.; Bandler, SImon R.; Chervenak, James A.; Clem, John R.

    2009-01-01

    We have found experimentally that the critical current of a square superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. The observed behavior has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. We have observed the proximity effect in these devices over extraordinarily long lengths exceeding 100 microns.

  5. Physical Habitat Characteristics on the North and South Forks of the Shenandoah River, VA in 2002-2007

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Hayes, Donald C.

    2010-01-01

    Data collected with the GeoXT Trimble GPS unit using ArcPad 6.1. (summer 2006-2007). Files were created within a geodatabase to create a data dictionary for use in ArcPad during data collection. Drop down lists for habitat type, substrate, depth, width, length, and descriptions were included. Data files produced on the GeoXT were point shapefiles that could be checked back into the geodatabase and viewable as a layer. Points were gathered while canoeing along the South Fork Shenandoah River. Each location marked a change in meso-scale habitat type. GPS points were supplemented with GIS-derived points in areas where manual measurements were made. The points were used to generate a line coverage. This coverage represents physical habitat at a meso-scale (width of stream).

  6. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  7. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    PubMed

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  8. Correlation between morphometry of the suprascapular notch and anthropometric measurements of the scapula.

    PubMed

    Polguj, M; Jędrzejewski, K S; Podgórski, M; Topol, M

    2011-05-01

    The concept of the study was to find the correlation between the morphometry of the suprascapular notch and basic anthropometric measurements of the human scapula. The measurements of the human scapulae included: morphological length and width, maximal width and length projection of scapular spine, length of acromion, and maximal length of the coracoid process. The glenoid cavity was measured in two perpendicular directions to evaluate its width and length. The width-length scapular and glenoid cavity indexes were calculated for every bone. In addition to standard anthropometric measurements two other measurements were defined and evaluated for every suprascapular notch: maximal depth (MD) and superior transverse diameter (STD). The superior transverse suprascapular ligament was completely ossified in 7% of cases. Ten (11.6%) scapulae had a discrete notch. In the studied material, in 21 (24.4%) scapulae the MD was longer than the STD. Two (2.3%) scapulae had equal maximal depth and superior transverse diameter. In 47 (57.7%) scapulae the superior transverse diameter was longer than the maximal depth. There was no statistically significant difference between anthropometric measurements in the group with higher MD and the group with higher STD. The maximal depth of the suprascapular notch negatively correlated with the scapular width-length index. The maximal depth of the scapular notch correlated with the morphological length of the scapulae.

  9. Quantum Well Infrared Photodetectors (QWIP)

    NASA Technical Reports Server (NTRS)

    Levine, B. F.

    1990-01-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  10. Quantum Well Infrared Photodetectors (QWIP)

    NASA Astrophysics Data System (ADS)

    Levine, B. F.

    1990-07-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  11. Reversing flow development in a separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew

    2016-11-01

    Fast swimming sharks have micro-structures on their skin consisting of bristling scales. These scales are hypothesized to bristle in response to backflow generated from the separated turbulent boundary layer (TBL) in regions of adverse pressure gradient (APG) on the shark body. Vortices are trapped in the cavities between the scales, which induce momentum exchange between the higher momentum fluid in the outer flow and that in the separated region. This momentum exchange causes reattachment of the separated TBL, causing the scales to return to the unbristled location, and the cycle continues. The rows of scales have widths that are comparable to the spanwise length scale of the intermittent backflow patches that appear in the region of incipient detachment of TBLs. In this experimental investigation, correlations between the shark scale's width and the spanwise size of the low backflow streaks are examined, as well as details of the incipient detachment region. The experiments are conducted in a water tunnel facility and the flow field is measured using PIV. Turbulent boundary layers are subjected to an APG via a rotating cylinder. Separated TBLs are investigated on a flat plate. The authors would like to greatfully acknowledge the Army Research Office for funding this project.

  12. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    PubMed

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  13. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  14. Unraveling the 10 micron "silicate" feature of protostars: the detection of frozen interstellar ammonia

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Faraji, H.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    We present infrared spectra of four embedded protostars in the 750-1230 cm-1 (13.3-8.1 microns) range. For NGC 7538 IRS 9, a new band is reported at 1110 cm-1 (9.01 microns, and several others may be present near 785, 820, 900, 1030, and 1075 cm-1 (12.7, 12.2, 11.1, 9.71, and 9.30 microns). The band 1110 cm-1 is attributed to frozen NH3. Its position and width imply that the NH3 is frozen in a polar, H2O-rich interstellar ice component. The NH3/H2O ice ratio inferred for NGC 7538 IRS 9 is 0.1, making NH3 as important a component as CH3OH and CO2 in the polar ices along this line of sight. At these concentrations, hydrogen bonding between the NH3 and H2O can account for much of the enigmatic low-frequency wing on the 3240 cm-1 (3.09 microns) H2O interstellar ice band. The strength of the implied NH3 deformation fundamental at 1624 cm-1 (6.158 microns) can also account for the absorption at this position reported by ISO.

  15. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  16. Measurements of air-broadened and nitrogen-broadened half-widths and shifts of ozone lines near 9 microns

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, Malathy V.; Benner, D. Chris; Thakur, K. B.

    1988-01-01

    Air- and nitrogen-broadened half-widths and line shifts at room temperature for more than 60 individual vibration-rotation transitions in the nu1 fundamental band of (O-16)3 and several transitions in the nu3 band were determined from infrared absorption spectra. These spectra were recorded at 0.005/cm resolution with a Fourier-transform spectrometer. A tunable-diode-laser spectrometer operating in the 1090-1150/cm region was also used to record data on oxygen-, nitrogen-, and air-broadened half-widths for selected individual transitions. The nitrogen- and air-broadened half-widths determined by these two different measurement techniques are consistent to within 4 percent. The results are in good agreement with other published measurements and calculations.

  17. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  18. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.

    PubMed

    Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A

    2006-02-01

    Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.

  19. Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Maingi, R.; Boedo, J. A.; Soukhanovskii, V.; NSTX Team

    2009-06-01

    The dependence of various SOL widths on the line-averaged density ( n) and plasma current ( Ip) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ( λq), measured by the IR camera, is virtually insensitive to n and has a strong negative dependence on Ip. This insensitivity of λq to n¯e is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ( λTe, λjsat, λne, and λpe, respectively) measured by the probe showed that λTe and λjsat have strong negative dependence on Ip, whereas λne and λpe revealed only a little or no dependence. The dependence of λTe on Ip is consistent with the scaling law in the literature, while λne and λpe dependence shows a different trend.

  20. First Direct Detection of Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  1. Proportions of maxillary anterior teeth relative to each other and to golden standard in tabriz dental faculty students.

    PubMed

    Parnia, Fereydoun; Hafezeqoran, Ali; Mahboub, Farhang; Moslehifard, Elnaz; Koodaryan, Rodabeh; Moteyagheni, Rosa; Saleh Saber, Fariba

    2010-01-01

    Various methods are used to measure the size and form of the teeth, including the golden pro-portion, and the width-to-length ratio of central teeth, referred to as the golden standard. The aim of this study was to eval-uate the occurrence of golden standard values and golden proportion in the anterior teeth. Photographs of 100 dentistry students (50 males and 50 females) were taken under standard conditions. The visible widths and lengths of maxillary right and left incisors were calculated and the ratios were compared with golden standard. Data was analyzed using SPSS 14 software. Review of the results of the means showed statistically significant differences between the width ratio of right lateral teeth to the central teeth width with golden proportion (P<0.001). Likewise, the difference was significant for the left side, too (P<0.001). Test results of mean differences showed that the mean difference between proportion of right laterals to centrals with golden proportion was significant (P<0.001). The difference was significant for the left side, too (P<0.001). As a result, there is no golden proportion among maxillary incisors. The review of results of mean differences for single samples showed that the mean differences between the proportion of width-to-length of left and right central teeth was statistically significant by golden standard (P<0.001). Therefore, considering the width-to-length proportion of maxillary central teeth, no golden standard exists. In the evaluation of the width-to-width and width-to-length proportions of maxillary incisors no golden proportions and standards were detected, respectively.

  2. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  3. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  4. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  5. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  6. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    NASA Astrophysics Data System (ADS)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  7. Verification of a SEU model for advanced 1-micron CMOS structures using heavy ions

    NASA Technical Reports Server (NTRS)

    Cable, J. S.; Carter, J. R.; Witteles, A. A.

    1986-01-01

    Modeling and test results are reported for 1 micron CMOS circuits. Analytical predictions are correlated with experimental data, and sensitivities to process and design variations are discussed. Unique features involved in predicting the SEU performance of these devices are described. The results show that the critical charge for upset exhibits a strong dependence on pulse width for very fast devices, and upset predictions must factor in the pulse shape. Acceptable SEU error rates can be achieved for a 1 micron bulk CMOS process. A thin retrograde well provides complete SEU immunity for N channel hits at normal incidence angle. Source interconnect resistance can be important parameter in determining upset rates, and Cf-252 testing can be a valuable tool for cost-effective SEU testing.

  8. 1984-1995 Evolution of Stratospheric Aerosol Size, Surface Area, and Volume Derived by Combining SAGE II and CLAES Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bauman, Jill J.

    2000-01-01

    This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).

  9. Pulmonary and pleural responses in Fischer 344 rats following short-term inhalation of a synthetic vitreous fiber. I. Quantitation of lung and pleural fiber burdens.

    PubMed

    Gelzleichter, T R; Bermudez, E; Mangum, J B; Wong, B A; Everitt, J I; Moss, O R

    1996-03-01

    The pleura is an important target tissue of fiber-induced disease, although it is not known whether fibers must be in direct contact with pleural cells to exert pathologic effects. In the present study, we determined the kinetics of fiber movement into pleural tissues of rats following inhalation of RCF-1, a ceramic fiber previously shown to induce neoplasms in the lung and pleura of rats. Male Fischer 344 rats were exposed by nose-only inhalation to RCF-1 at 89 mg/m3 (2645 WHO fibers/cc), 6 hr/day for 5 consecutive days. On Days 5 and 32, thoracic tissues were analyzed to determine pulmonary and pleural fiber burdens. Mean fiber counts were 22 x 10(6)/lung (25 x 10(3)/pleura) at Day 5 and 18 x 10(6)/lung (16 x 10(3)/pleura) at Day 32. Similar geometric mean lengths (GML) and diameters (GMD) of pulmonary fiber burdens were observed at both time points. Values were 5 microns for GML (geometric standard deviation GSD approximately 2.3) and 0.3 micron for GMD (GSD approximately 1.9), with correlations between length and diameter (tau) of 0.2-0.3. Size distributions of pleural fiber burdens at both time points were approximately 1.5 microns GML (GSD approximately 2.0) and 0.09 micron GMD (GSD approximately 1.5; tau approximately 0.2-0.5). Few fibers longer than 5 microns were observed at either time point. These findings demonstrate that fibers can rapidly translocate to pleural tissues. However, only short, thin (< 5 microns in length) fibers could be detected over the 32-day time course of the experiment.

  10. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE PAGES

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  11. Normative data for uterine size according to age and gravidity and possible role of the classical golden ratio.

    PubMed

    Verguts, J; Ameye, L; Bourne, T; Timmerman, D

    2013-12-01

    To document normal measurements (length, width, anteroposterior (AP) diameter) and proportions of the non-pregnant uterus according to age and gravidity. We hypothesized that uterine proportions conform to the classical 'golden ratio' (1.618). This was a retrospective study of ultrasonographic measurements of the length, width and AP diameter of non-pregnant uteri recorded in our database between 1 January 2000 and 31 July 2012. All patients for whom abnormal findings were reported were excluded and only the first set of measurements for each patient was retained for analysis. Loess (local regression) analysis was performed using age and gravidity as explanatory variables. Measurements of 5466 non-pregnant uteri were retrieved for analysis. The mean length was found to increase to 72 mm at the age of 40 and decrease to 42 mm at the age of 80 years. Gravidity was associated with greater uterine length, width and AP diameter. Mean length/width ratio was found to be 1.857 at birth, decreasing to 1.452 at the age of 91 years. At the age of 21 years, the mean ratio was found to be 1.618, i.e. equal to the golden ratio. Increasing gravidity was associated with lower mean length/width ratio. Uterine size in non-pregnant women varies in relation to age and gravidity. Mean length/width ratio conformed to the golden ratio at the age of 21, coinciding with peak fertility. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  12. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    PubMed

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  13. Deforestation and Benthic Indicators: How Much Vegetation Cover Is Needed to Sustain Healthy Andean Streams?

    PubMed Central

    Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941

  14. Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging

    PubMed Central

    Bainbridge, A. R.; Barlow Myers, C. W.; Bryan, W. A.

    2016-01-01

    Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics. PMID:27158637

  15. Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Smith, Stephen J.; Robinson, Ian K.; Finkbeiner, Fred M.; Chervenak, James A.; Bandler, Simon R.; Eckart, Megan E.; Kilbourne, Caroline A.

    2011-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.l Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE) 1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mol Au bilayer TESs with lengths ranging from 8 to 130 {\\mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 \\times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  16. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.

    PubMed

    Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang

    2017-07-24

    In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

  17. Small queens and big-headed workers in a monomorphic ponerine ant

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tomonori; Miyazaki, Satoshi; Ohnishi, Hitoshi; Takahashi, Junichi; Nakajima, Yumiko; Tsuji, Kazuki

    2008-10-01

    Evolution of caste is a central issue in the biology of social insects. Comparative studies on their morphology so far suggest the following three patterns: (1) a positive correlation between queen worker size dimorphism and the divergence in reproductive ability between castes, (2) a negative correlation among workers between morphological diversity and reproductive ability, and (3) a positive correlation between queen worker body shape difference and the diversity in worker morphology. We conducted morphological comparisons between castes in Pachycondyla luteipes, workers of which are monomorphic and lack their reproductive ability. Although the size distribution broadly overlapped, mean head width, head length, and scape length were significantly different between queens and workers. Conversely, in eye length, petiole width, and Weber’s length, the size differences were reversed. The allometries (head length/head width, scape length/head width, and Weber’s length/head width) were also significantly different between queens and workers. Morphological examinations showed that the body shape was different between queens and workers, and the head part of workers was disproportionately larger than that of queens. This pattern of queen worker dimorphism is novel in ants with monomorphic workers and a clear exception to the last pattern. This study suggests that it is possible that the loss of individual-level selection, the lack of reproductive ability, influences morphological modification in ants.

  18. Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies

    NASA Astrophysics Data System (ADS)

    Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.

    2017-09-01

    Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient. DustPedia is a project funded by the EU under the heading "Exploitation of space science and exploration data". It has the primary goal of exploiting existing data in the Herschel Space Observatory and Planck Telescope databases.

  19. lakemorpho: Calculating lake morphometry metrics in R.

    PubMed

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  20. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  1. Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds.

    PubMed

    Qiu, Xianjin; Gong, Rong; Tan, Youbin; Yu, Sibin

    2012-12-01

    Seed shape in rice (Oryza sativa) is an important factor that determines grain appearance, cooking quality and grain yield. Here, we report a major quantitative trait locus qSS7 on the long arm of chromosome 7 for seed length, seed width and the ratio of seed length to width, identified using a segregating population derived from a cross between an indica variety Zhenshan97 and a chromosomal segment substitution line of a japonica variety Cypress within the genetic background of Zhenshan97. The Cypress allele at qSS7 contributes to an increase in seed length and the ratio of length to width, but a decrease in seed width, without significantly changing seed weight, plant height, heading date or number of spikelets per panicle. Using a large F(2) population generated from a substitution line that carries only a heterozygous single segment surrounding qSS7, we delimited the QTL to a 23-kb region containing two annotated genes. Progeny testing of the informative recombinants suggested that this qSS7 region is a composite QTL in which at least two genes contribute to seed length and width. Sequence comparison and expression analysis of two probable candidate genes revealed differences between the parental lines. These results will facilitate cloning of the gene(s) underlying qSS7 as well as marker-assisted transfer of desirable genes for seed shape in rice improvement.

  2. Study of near SOL decay lengths in ASDEX Upgrade under attached and detached divertor conditions

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Wolfrum, E.; Kurzan, B.; Eich, T.; Lackner, K.; Scarabosio, A.; Paradela Pérez, I.; Kardaun, O.; Faitsch, M.; Potzel, S.; Stroth, U.; the ASDEX Upgrade Team

    2017-10-01

    A database with attached, partially detached and completely detached divertors has been constructed in ASDEX Upgrade discharges in both H-mode and L-mode plasmas with Thomson Scattering data suitable for the analysis of the upstream SOL electron profiles. By comparing upstream temperature decay width, {λ }{Te,u}, with the scaling of the SOL power decay width, {λ }{q\\parallel e}, based on the downstream IR measurements, it is found that a simple relation based on classical electron conduction can relate {λ }{Te,u} and {λ }{q\\parallel e} well. The combined dataset can be described by both a single scaling and a separate scaling for H-modes and L-modes. For the single scaling, a strong inverse dependence of, {λ }{Te,u} on the separatrix temperature, {T}e,u, is found, suggesting the classical parallel Spitzer-Harm conductivity as dominant mechanism controlling the SOL width in both L-mode and H-mode over a large set of plasma parameters. This dependence on {T}e,u explains why, for the same global plasma parameters, {λ }{q\\parallel e} in L-mode is approximately twice that in H-mode and under detached conditions, the SOL upstream electron profile broadens when the density reaches a critical value. Comparing the derived scaling from experimental data with power balance, gives the cross-field thermal diffusivity as {χ }\\perp \\propto {T}e{1/2}/{n}e, consistent with earlier studies on Compass-D, JET and Alcator C-Mod. However, the possibility of the separate scalings for different regimes cannot be excluded, which gives results similar to those previously reported for the H-mode, but here the wider SOL width for L-mode plasmas is explained simply by the larger premultiplying coefficient. The relative merits of the two scalings in representing the data and their theoretical implications are discussed.

  3. The evolution of slip surface roughness during earthquake propagation in carbonate faults

    NASA Astrophysics Data System (ADS)

    Zhu, B.; De Paola, N.; Llewellin, E. W.; Holdsworth, R.

    2014-12-01

    Slip surface roughness is understood to control the dynamics of earthquake propagation. Quantifying the micro- and nano-scale roughness of slip surfaces can give insight into the grain-scale processes controlling the strength of faults during earthquake propagation. Friction experiments were performed on fine-grained calcite gouges, at speed 1 ms-1, normal stress 18 MPa, displacements 0.009-1.46 m, and room temperature and humidity. Results show a two stage-evolution (S1-2) of the fault strength, with an initial increase up to peak value 0.82 (S1), followed by a sudden decrease to a low, steady-state value 0.18 (S2). Samples retrieved at the end of S1 show the development of a cohesive slip zone (SZ), made of micron-scale, angular clasts formed by brittle fracturing and cataclasis. The SZ of samples deformed up to S2, is composed of nanograin aggregates which exhibit polygonal grain boundaries indicating high temperature grain boundary sliding creep deformation. In both cases, the SZ is bounded by a sharply defined slip surface. The 3-D geometry of seven experimental slip surfaces (40μm×40μm) has been reconstructed by digital processing of sets of 1800 images of SZ cross sections acquired at 20 nm intervals perpendicular to the slip direction, using a slicing (Focussed Ion Beam) and viewing (Field Emission Scanning Electron Microscope) technique. Spectrum power density analyses show that nano- and micron-scale slip surface roughness is anisotropic for both S1 and S2 slip surfaces. At the nano- and micron-scale, root mean square values decrease with length for S1 slip surfaces, but only slightly for S2 surfaces, and are anisotropic in the slip-normal and slip-parallel directions. The anisotropy is reduced at the nano-scale, although S2 slip surfaces are still smoother parallel to slip than normal to slip. Hurst exponents vary through scales, and are anisotropic in the directions parallel and normal to slip. Variable Hurst exponents indicate that slip surface roughness is scale-dependent with anisotropic, not self-affine behaviour at the micro/nano-scale, in contrast to the self-affine behaviour inferred at the mm to km scales. Dynamic weakening and creep deformation, observed during S2, coincide with an evolution towards less anisotropic and scale-dependent slip surface roughness at the nanoscale.

  4. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...

    2016-02-03

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less

  5. Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles

    PubMed Central

    Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian

    2016-01-01

    Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877

  6. Focus of a multilayer Laue lens with an aperture of 102 microns determined by ptychography at beamline 1-BM at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Macrander, Albert; Wojcik, Michael; Maser, Jörg; Bouet, Nathalie; Conley, Raymond

    2017-09-01

    Ptychography was used to determine the focus of a Multilayer-Laue-Lens (MLL) at beamline 1-BM at the Advanced Photon Source (APS). The MLL had a record aperture of 102 microns with 15170 layers. The measurements were made at 12 keV. The focal length was 9.6 mm, and the outer-most zone was 4 nm thick. MLLs with ever larger apertures are under continuous development since ever longer focal lengths, ever larger working distances, and ever increased flux in the focus are desired. A focus size of 25 nm was determined by ptychographic phase retrieval from a gold grating sample with 1 micron lines and spaces over 3.0 microns horizontal distance. The MLL was set to focus in the horizontal plane of the bending magnet beamline. A CCD with 13.0 micron pixel size positioned 1.13 m downstream of the sample was used to collect the transmitted intensity distribution. The beam incident on the MLL covered the whole 102 micron aperture in the horizontal focusing direction and 20 microns in the vertical direction. 160 iterations of the difference map algorithm were sufficient to obtain a reconstructed image of the sample. The present work highlights the utility of a bending magnet source at the APS for performing coherence-based experiments. Use of ptychography at 1-BM on MLL optics opens the way to study diffraction-limited imaging of other hard x-ray optics.

  7. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  8. Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated.

    PubMed

    Tilney, L G; Tilney, M S; Cotanche, D A

    1988-02-01

    The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases so that at the extreme distal end the length of the tallest row of the staircase is 5.5 micron and the shortest row is 2 micron. During development hair cells form their staircases in four phases of growth separated from each other by developmental time. First, stereocilia sprout from the apical surfaces of the hair cells (8-10-d embryos). Second (10-12-d embryos), what will be the longest row of the staircase begins to elongate. As the embryo gets older successive rows of stereocilia initiate elongation. Thus the staircase is set up by the sequential initiation of elongation of stereociliary rows located at increased distances from the row that began elongation. Third (12-17-d embryos), all the stereocilia in the newly formed staircase elongate until those located on the first step of the staircase have reached the prescribed length. In the final phase (17-d embryos to hatchlings) there is a progressive cessation of elongation beginning with the shortest step and followed by taller and taller rows with the tallest step stopping last. Thus, to obtain a pattern of stereocilia in rows of increasing height what transpires are progressive go signals followed by a period when all the stereocilia grow and ending with progressive stop signals. We discuss how such a sequence could be controlled.

  9. A new species of Lobocheilos (Teleostei: Cyprinidae) from East Kalimantan, Indonesian Borneo.

    PubMed

    Ciccotto, Patrick J; Tan, Heok Hui

    2018-03-22

    Lobocheilos aurolineatus, new species, is described from the Mahakam River basin in East Kalimantan, Indonesian Borneo. It is distinguished from all other species of Lobocheilos except for L. ixocheilos and L. tenura in having one pair of barbels (maxillary) and by the presence of a broad, black midlateral stripe, approximately ¾ scale height in thickness, extending from the operculum to the caudal-peduncle base. Lobocheilos aurolineatus differs from both species in possessing a thin cream to yellow stripe on the anterior ⅔ of the flank, separating the black midlateral stripe from the brown dorso-lateral scales, and by a smaller mouth width (23.5-29.9% head length in L. aurolineatus vs. 32.1-45.0% and 34.4-46.4% head length in L. ixocheilos and L. tenura, respectively).

  10. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  11. Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance

    NASA Technical Reports Server (NTRS)

    Sachs, E. M.

    1984-01-01

    The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.

  12. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.

    2018-02-01

    Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.

  13. Characterization of lunar ferromagnetic phases by the effective linewidth method

    NASA Technical Reports Server (NTRS)

    Patton, C. E.; Schmidt, H.

    1978-01-01

    The effective line-width technique, first developed to study the physics of microwave relaxation in ferrites, has been successfully applied to lunar matter. Effective line-width measurements have been made on two selected samples containing disperse spherical metallic iron particles below 40 microns in diam. The data were obtained for fields from 7 to 12 kOe and a temperature range 125 - 300 K. The effective line width was field-independent and temperature-independent at 650 - 750 Oe. The high-field tails of the ferromagnetic resonance absorption were highly Lorentzian. From the relatively large and temperature-independent high-field effective line widths, it appears that (1) the metallic iron phases in lunar soil are rather impure; (2) the impurities are passive, in that there is no evidence for a temperature peak process; and (3) these samples contain no appreciable magnetite.

  14. Two new species of shovel-jaw carp Onychostoma (Teleostei: Cyprinidae) from southern Vietnam.

    PubMed

    Hoang, Huy Duc; Pham, Hung Manh; Tran, Ngan Trong

    2015-05-22

    Two new species of large shovel-jaw carps in the genus Onychostoma are described from the upper Krong No and middle Dong Nai drainages of the Langbiang Plateau in southern Vietnam. These new species are known from streams in montane mixed pine and evergreen forests between 140 and 1112 m. Their populations are isolated in the headwaters of the upper Sre Pok River of the Mekong basin and in the middle of the Dong Nai basin. Both species are differentiated from their congeners by a combination of the following characters: transverse mouth opening width greater than head width, 14-17 predorsal scales, caudal-peduncle length 3.9-4.2 times in SL, no barbels in adults and juveniles, a strong serrated last simple ray of the dorsal fin, and small eye diameter (20.3-21.5% HL). Onychostoma krongnoensis sp. nov. is differentiated from Onychostoma dongnaiensis sp. nov. by body depth (4.0 vs. 3.2 times in SL), predorsal scale number (14-17 vs. 14-15), dorsal-fin length (4.5 vs. 4.2 times in SL), caudal-peduncle length (3.9 vs. 4.2 times in SL), colour in life (dark vs. bright), and by mitochondrial DNA (0.2% sequence divergence). Molecular evidence indicates that both species are members of Onychostoma and are distinct from all congeners sampled (uncorrected sequence divergences at the 16S rRNA gene of >2.0% for all Onychostoma for which homologous 16S rRNA sequences are available).

  15. Validation of Born Traveltime Kernels

    NASA Astrophysics Data System (ADS)

    Baig, A. M.; Dahlen, F. A.; Hung, S.

    2001-12-01

    Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.

  16. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments aremore » described and claimed.« less

  17. Modeling of dislocation channel width evolution in irradiated metals

    DOE PAGES

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2017-11-08

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less

  18. Modeling of dislocation channel width evolution in irradiated metals

    NASA Astrophysics Data System (ADS)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2018-02-01

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.

  19. Modeling of dislocation channel width evolution in irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less

  20. Biometric analysis of the clinical crown and the width/length ratio in the maxillary anterior region.

    PubMed

    Orozco-Varo, Ana; Arroyo-Cruz, Gema; Martínez-de-Fuentes, Rafael; Jiménez-Castellanos, Emilio

    2015-06-01

    Restorative dentistry often involves correcting tooth size discrepancies. Therefore, dental biometrics should play an important role in the planning of an esthetic restoration. The purpose of this study was to analyze the clinical crown width, length, and width/length ratio of maxillary central incisors, lateral incisors, and canines in an adult population. The study also aimed to determine whether a correlation exists between natural tooth dimensions and the optimal tooth dimension guidelines suggested for planning esthetic restorations. Stone casts were poured from irreversible hydrocolloid impressions of 412 healthy adult participants. These casts were used to measure the maximum mesiodistal width and maximum crown-root length of the maxillary central incisors, lateral incisors, and canines with a digital precision caliper (0.01 mm). The width/length ratio was calculated for each tooth, and 40 casts were selected to test the reliability of the measuring method. The mean age of the participants in the sample was 33.94 years; 60.7% were women and 39.3% were men. The mean width value was 8.71 mm for central incisors, 6.75 mm for lateral incisors, and 7.81 mm for canines. The mean length was 10.23 mm for central incisors, 8.59 mm for lateral incisors, and 9.93 mm for canines. The average width/length ratio was 85% for central incisors and 79% for lateral incisors and canines. The data obtained from the population studied are similar to those from previous research studies with similar methodology. However, great discrepancies in the absolute values were found when compared with other studies of ideal tooth dimension guidelines on the personal preferences and the esthetic perception of dentists. The perception of what is considered natural seems to differ from what is considered esthetically perfect. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Effect of cane length and swing arc width on drop-off and obstacle detection with the long cane

    PubMed Central

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh

    2017-01-01

    A repeated-measures design with block randomization was used for the study, in which 15 adults with visual impairments attempted to detect the drop-offs and obstacles with the canes of different lengths, swinging the cane in different widths (narrow vs wide). Participants detected the drop-offs significantly more reliably with the standard-length cane (79.5% ± 6.5% of the time) than with the extended-length cane (67.6% ± 9.1%), p <.001. The drop-off detection threshold of the standard-length cane (4.1 ± 1.1 cm) was also significantly smaller than that of the extended-length cane (6.5±1.8cm), p <.001. In addition, participants detected drop-offs at a significantly higher percentage when they swung the cane approximately 3 cm beyond the widest part of the body (78.6% ± 7.6%) than when they swung it substantially wider (30 cm; 68.5% ± 8.3%), p <.001. In contrast, neither cane length (p =.074) nor cane swing arc width (p =.185) had a significant effect on obstacle detection performance. The findings of the study may help orientation and mobility specialists recommend appropriate cane length and cane swing arc width to visually impaired cane users. PMID:29276326

  2. Effect of cane length and swing arc width on drop-off and obstacle detection with the long cane.

    PubMed

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh

    2017-09-01

    A repeated-measures design with block randomization was used for the study, in which 15 adults with visual impairments attempted to detect the drop-offs and obstacles with the canes of different lengths, swinging the cane in different widths (narrow vs wide). Participants detected the drop-offs significantly more reliably with the standard-length cane (79.5% ± 6.5% of the time) than with the extended-length cane (67.6% ± 9.1%), p <.001. The drop-off detection threshold of the standard-length cane (4.1 ± 1.1 cm) was also significantly smaller than that of the extended-length cane (6.5±1.8cm), p <.001. In addition, participants detected drop-offs at a significantly higher percentage when they swung the cane approximately 3 cm beyond the widest part of the body (78.6% ± 7.6%) than when they swung it substantially wider (30 cm; 68.5% ± 8.3%), p <.001. In contrast, neither cane length ( p =.074) nor cane swing arc width ( p =.185) had a significant effect on obstacle detection performance. The findings of the study may help orientation and mobility specialists recommend appropriate cane length and cane swing arc width to visually impaired cane users.

  3. Campaign 2 Level 2 Milestone Review 2009: Milestone # 3131 Grain Scale Simulation of Pore Collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A J

    2009-09-28

    The milestone reviewed on Sept. 16, 2009 was 'High-fidelity simulation of shock initiation of high explosives at the grain scale using coupled hydrodynamics, thermal transport and chemistry'. It is the opinion of the committee that the team has satisfied the milestone. A detailed description of how the goals were met is provided. The milestone leveraged capabilities from ASC Physics and Engineering Materials program combined with experimental input from Campaign 2. A combined experimental-multiscale simulation approach was used to create and validate the various TATB model components. At the lowest length scale, quantum chemical calculations were used to determine equations ofmore » state, thermal transport properties and reaction rates for TATB as it is decomposing. High-pressure experiments conducted in diamond anvil cells, gas guns and the Z machine were used to validate the EOS, thermal conductivity, specific heat and predictions of water formation. The predicted reaction networks and chemical kinetic equations were implemented in Cheetah and validated against the lower length scale data. Cheetah was then used within the ASC code ALE3D for high-resolution, thermo-mechanically coupled simulations of pore collapse at the micron size scale to predict conditions for detonation initiation.« less

  4. Characteristics of square pore and low noise microchannel plate stacks. [for x-ray astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Marsh, Daniel; Stock, Joseph; Gaines, Geoffrey

    1992-01-01

    An evaluation is conducted of several square-pore microchannel plates (MCPs) with either 25- or 85-micron diameter pores and 80:1 or 50:1 channel length/diameter ratio. Flat field measurements show that the 25-micron-pored MCPs, unlike those with 85-micron pores, exhibit periodic modulation; this may be due to the MCP stacking configurations. Attention is given to the relative quantum detection efficiency advantages of the two MCPs.

  5. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  6. Factors Influencing Perception of Facial Attractiveness: Gender and Dental Education.

    PubMed

    Jung, Ga-Hee; Jung, Seunggon; Park, Hong-Ju; Oh, Hee-Kyun; Kook, Min-Suk

    2018-03-01

    This study was conducted to investigate the gender- and dental education-specific differences in perception of facial attractiveness for varying ratio of lower face contour. Two hundred eleven students (110 male respondents and 110 female respondents; aged between 20-38 years old) were requested to rate facial figures with alterations to the bigonial width and the vertical length of the lower face. We produced a standard figure which is based on the "golden ratio" and 4 additional series of figures with either horizontal or vertical alterations to the contour of lower face. The preference for each figure was evaluated using a Visual Analog Scale. The Kruskal Wallis test was used for differences in the preferences for each figure and the Mann-Whitney U test was used to evaluate gender-specific differences and differences by dental education. In general, the highest preference score was indicated for the standard figure, whereas facial figure with large bigonial width and chin length had the lowest score.Male respondents showed significantly higher preference score for facial contour that had a 0.1 proportional increase in the facial height-bigonial width ratio over that of the standard figure.For horizontal alterations to the facial profiles, there were no significant differences in the preferences by the level of dental education. For vertically altered images, the average Visual Analog Scale was significantly lower among the dentally-educated for facial image that had a proportional 0.22 and 0.42 increase in the ratio between the vertical length of the chin and the lip. Generally, the standard image based on the golden ratio was the most. Slender face was appealed more to males than to females, and facial image with an increased lower facial height were perceived to be much less attractive to the dentally-educated respondents, which suggests that the dental education might have some influence in sensitivity to vertical changes in lower face.

  7. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    NASA Astrophysics Data System (ADS)

    Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-01

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  8. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study.

    PubMed

    Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas

    2014-07-01

    This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.

  9. 23 CFR Appendix D to Part 658 - Devices That Are Excluded From Measurement of the Length or Width of a Commercial Motor Vehicle

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or Width of a Commercial Motor Vehicle D Appendix D to Part 658 Highways FEDERAL HIGHWAY... DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS Pt. 658, App. D Appendix D to Part 658—Devices That Are... operations; (c) Aerodynamic devices, air deflector; (d) Air compressor; (e) Certificate holder (manifest box...

  10. Eyelashes divert airflow to protect the eye

    PubMed Central

    Amador, Guillermo J.; Mao, Wenbin; DeMercurio, Peter; Montero, Carmen; Clewis, Joel; Alexeev, Alexander; Hu, David L.

    2015-01-01

    Eyelashes are ubiquitous, although their function has long remained a mystery. In this study, we elucidate the aerodynamic benefits of eyelashes. Through anatomical measurements, we find that 22 species of mammals possess eyelashes of a length one-third the eye width. Wind tunnel experiments confirm that this optimal eyelash length reduces both deposition of airborne particles and evaporation of the tear film by a factor of two. Using scaling theory, we find this optimum arises because of the incoming flow's interactions with both the eye and eyelashes. Short eyelashes create a stagnation zone above the ocular surface that thickens the boundary layer, causing shear stress to decrease with increasing eyelash length. Long eyelashes channel flow towards the ocular surface, causing shear stress to increase with increasing eyelash length. These competing effects result in a minimum shear stress for intermediate eyelash lengths. This design may be employed in creating eyelash-inspired protection for optical sensors. PMID:25716186

  11. X-ray imaging of fibers

    NASA Astrophysics Data System (ADS)

    Moosman, B.; Song, Y.; Weathers, L.; Wessel, F.

    1996-11-01

    A pulsed x-ray backlighter was developed to image exploding wires and cryogenic fibers. The x-ray pulse width is between 10-20 ns, with an output of 100-150 mJ, mostly in the Al k-shell (1.486 keV). The backlighter is located 50 cm from the 20-50 micron diameter target (typically, a copper wire). A 15 micron Al filter eliminates UV emission from the backlighter and target. It is placed 3 cm from the target with SB-5 film directly behind it. From the optical density of the film, target absorption and density can be calculated. The spatial resolution of this system is better than 40 microns. The wire is exploded using a 10 kA, 1 microsecond pulser. Analysis with simultaneous Moire imaging will also be presented. Supported by Los Alamos National Laboratories

  12. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  13. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry

    NASA Astrophysics Data System (ADS)

    Grove, Timothy L.; Baker, Michael B.; Kinzler, Rosamond J.

    1984-10-01

    The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An 80-81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D˜ = 10.99 ( cm 2/sec) exp (-123.4( kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1¯) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures. The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions ( e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids. The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions ( e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.

  14. FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M., E-mail: kbchai@caltech.edu, E-mail: pbellan@caltech.edu

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length tomore » width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.« less

  15. Micro-computed tomography: Applications for high-resolution skeletal density determinations: An example using annually banded crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.

    2017-09-01

    Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.

  16. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  17. 46 CFR 160.061-2 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... feathers, blade length 13/32 inches, width 15/32 inch, weight 1/20 ounce, polished copper finish 1 ea. 13 Lure, spoon, removable No. 5/0 hook, yellow feathers, blade length 3 inches, width 7/8 inch, weight 2/5...

  18. 46 CFR 160.061-2 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... feathers, blade length 13/32 inches, width 15/32 inch, weight 1/20 ounce, polished copper finish 1 ea. 13 Lure, spoon, removable No. 5/0 hook, yellow feathers, blade length 3 inches, width 7/8 inch, weight 2/5...

  19. 46 CFR 160.061-2 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... feathers, blade length 13/32 inches, width 15/32 inch, weight 1/20 ounce, polished copper finish 1 ea. 13 Lure, spoon, removable No. 5/0 hook, yellow feathers, blade length 3 inches, width 7/8 inch, weight 2/5...

  20. Numerical analysis of scalar dissipation length-scales and their scaling properties

    NASA Astrophysics Data System (ADS)

    Vaishnavi, Pankaj; Kronenburg, Andreas

    2006-11-01

    Scalar dissipation rate, χ, is fundamental to the description of scalar-mixing in turbulent non-premixed combustion. Most contributions to the statistics for χ come from the finest turbulent mixing-scales and thus its adequate characterisation requires good resolution. Reliable χ-measurement is complicated by the trade-off between higher resolution and greater signal-to-noise ratio. Thus, the present numerical study utilises the error-free mixture fraction, Z, and fluid mechanical data from the turbulent reacting jet DNS of Pantano (2004). The aim is to quantify the resolution requirements for χ-measurement in terms of easily measurable properties of the flow like the integral-scale Reynolds number, Reδ, using spectral and spatial-filtering [cf. Barlow and Karpetis (2005)] analyses. Analysis of the 1-D cross-stream dissipation spectra enables the estimation of the dissipation length scales. It is shown that these spectrally-computed scales follow the expected Kolmogorov scaling with Reδ-0.75 . The work also involves local smoothening of the instantaneous χ-field over a non-overlapping spatial-interval (filter-width, wf), to study the smoothened χ-value as a function of wf, as wf is extrapolated to the smallest scale of interest. The dissipation length-scales thus captured show a stringent Reδ-1 scaling, compared to the usual Kolmogorov-type. This concurs with the criterion of 'resolution adequacy' of the DNS, as set out by Sreenivasan (2004) using the theory of multi-fractals.

  1. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model. The radial macrosegregation and "steepling" caused by thermosolutal convection during terrestrial growth of the Al-7Si was not observed in the space-grown MICAST samples.

  2. High-resolution mid-infrared spectra of Co II, Ni I, and Fe II in SN 1987A

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyle, R. J.; Wiedemann, G. R.; Moseley, S. H.

    1993-01-01

    Ground-based infrared observations of SN 1987A on day 612 after the explosion have yielded resolved line profiles of Co II, Ni I, Fe II at 10.52, 11.31, and 17.94 micron, respectively. The spectra were taken at a resolving power of about 1000 with an array grating spectrometer on the 4 m telescope of Cerro Tololo Inter-American Observatory. Based on the observed line intensities we have estimated the minimum mass of each ion: M(Co II) = (6.0 +/- 1.8) x 10 exp -5 solar mass; M(Ni I) = (1.1 +/- 0.1) x 10 exp -3 solar mass; and M(Fe II) = (8.0 +/- 1.5) x 10 exp -3 solar mass. From these we infer total masses for cobalt, nickel, and iron in the ejecta. The nickel and iron line profiles are markedly asymmetric. We interpret these as arising from two components, one centered on the stellar rest velocity with an approximately 3250 km/s full width, and the second at about +1200 km/s with an approximately 1100 km/s full width. The asymmetry may represent a large-scale fracturing of the ejecta by Rayleigh-Taylor instabilities.

  3. Extended 60 μm Emission from Nearby Mira Variables

    NASA Astrophysics Data System (ADS)

    Bauer, W. H.; Stencel, R. E.

    1993-01-01

    Circumstellar dust envelopes around some optically visible late-type stars are so extensive that they are detectable as extended at an arc-minute scale by the IRAS survey observations (Stencel, Pesce and Bauer 1988, Astron. J 95, 141; Hawkins 1990, Astron. Ap. 229, L8). The width of the IRAS scan profiles at 10% of peak intensity is an indicator of source extension. Wyatt and Cahn (1983, Ap. J. 275, 225) presented a sample of 124 Mira variables in the solar neighborhood. Of this sample, 11 Miras which show silicate emission are bright enough at 60 microns for a significant determination of the width of a scan at 10% of peak flux. Individual scans and maps were examined in order to determine whether any observed extension was associated with the central star. Five stars showed significant extension apparently due to mass loss from the central star: R Leo, o Cet, U Ori, R Cas and R Hor. IRAS LRS spectra, point source fluxes and observed extensions of these sources are compared to the predictions of model dust shells which assume steady mass loss. This work was supported in part by NASA grant NAG 5-1213 to Wellesley College.

  4. Effects of milking stall dimensions on behavior of dairy cows during milking in different milking parlor types.

    PubMed

    Gómez, Y; Terranova, M; Zähner, M; Hillmann, E; Savary, P

    2017-02-01

    Dairy cow body size has increased over time because of breeding selection for higher milk yield, but milking stall dimensions have never been adjusted and are based on the practical experience of milking-machine manufacturers and advisory institutions. Narrow, limited milking stall dimensions might lead to behavioral changes during milking due to lack of comfort. The aim of this study was to examine the current space allowance in milking stalls on dairy farms and assess the effect of space allowance on cow behavior during milking. On 15 Swiss dairy farms, we measured clear milking stall dimensions and cow body dimensions. We calculated space ratios for length (SR length ) and width (SR width ) by dividing the milking stall length or width by cow body length or belly width, respectively. When the space ratio was >1, we assumed that the body length or width of cow was smaller than the milking stall length or width. On each farm, 10 healthy cows were chosen for behavioral observation during 1 evening milking. We recorded rumination, elimination, and latency to enter the milking stall by direct observation. Hind leg activity was recorded using acceleration loggers. Data were analyzed using general linear mixed-effects models with farm as a random effect. Due to a strong collinearity between SR width and SR length , we chose SR length for further analysis, because it is based on skeletal characteristics. The SR length was smallest in side-by-side parlors (1.07 ± 0.01) and largest in tandem parlors (1.18 ± 0.01). More cows had a tendency to ruminate with increasing SR length (odds ratio: 1.8). None of hind leg activity, maximum peaks of hind leg accelerations, or latency to enter the milking stall were significantly affected by SR length . Latency to enter the milking stall was longer for group milking parlors (side-by-side: 44.0 ± 3.2 s; herringbone: 34.3 ± 2.9 s) than for tandem parlors (19.0 ± 2.7 s). Milking parlor type had no effect on hind leg activity, maximum peaks of hind leg accelerations or rumination. The SR length affected rumination behavior to some extent, indicating that cow comfort was positively affected by larger milking stall length. Because cow comfort is important for good milking performance, further investigations of milking stall dimensions for cow comfort and thus welfare are needed. Furthermore, the results showed that parlor type affected cow behavior, irrespective of SR length , making future research necessary to identify the factors leading to this effect of parlor type. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  6. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder. "Fracture Toughness of Metallic Glasses: Annealing-Induced Embrittlement." Physical review letters 109.19 (2012): 194301. [7] Buehler, Markus J., Farid F. Abraham, and Huajian Gao. "Hyperelasticity governs dynamic fracture at a critical length scale." Nature 426.6963 (2003): 141-146.

  7. Relative growth and morphological sexual maturity size of the freshwater crab Trichodactylus borellianus (Crustacea, Decapoda, Trichodactylidae) in the Middle Paraná River, Argentina

    PubMed Central

    Williner, Verónica; Torres, María Victoria; Carvalho, Débora Azevedo; König, Natalia

    2014-01-01

    Abstract The relative growth of a number of morphological dimensions of the South American freshwater crab Trichodactylus borellianus (Trichodactylidae) were compared and related to sexual dimorphism. Crabs were collected from ponds in the Middle Paraná River in Argentina. A regression model with segmented relationship was used to test for relative growth between these measurements where breakpoints infer the body size at which crabs reach sexual maturity. In both sexes the carapace width and the length, height, and thickness of the right and left chelae were measured, as well as the male pleopod length and the female abdomen width. All of these measurements were found to show positive allometry with the exception of the male pleopod length and the left chelae, which did not show a breakpoint. In females the breakpoint for the abdomen width inferred a morphological sexual maturity at carapace width 6.9 mm. In males the break point for the pleopod length was at carapace width 6.6 mm, with that for the chelae measurements was between carapace widths 6.4 and 6.9 mm. The relative growth pattern in Trichodactylus borellianus was found to be similar to that recorded for other species of the family Trichodactylidae. PMID:25561835

  8. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.

  9. Statistical evidence of anasymptotic geometric structure to the momentum transporting motions in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Morrill-Winter, Caleb; Philip, Jimmy; Klewicki, Joseph

    2017-03-01

    The turbulence contribution to the mean flow is reflected by the motions producing the Reynolds shear stress (<-uv>) and its gradient. Recent analyses of the mean dynamical equation, along with data, evidence that these motions asymptotically exhibit self-similar geometric properties. This study discerns additional properties associated with the uv signal, with an emphasis on the magnitudes and length scales of its negative contributions. The signals analysed derive from high-resolution multi-wire hot-wire sensor data acquired in flat-plate turbulent boundary layers. Space-filling properties of the present signals are shown to reinforce previous observations, while the skewness of uv suggests a connection between the size and magnitude of the negative excursions on the inertial domain. Here, the size and length scales of the negative uv motions are shown to increase with distance from the wall, whereas their occurrences decrease. A joint analysis of the signal magnitudes and their corresponding lengths reveals that the length scales that contribute most to <-uv> are distinctly larger than the average geometric size of the negative uv motions. Co-spectra of the streamwise and wall-normal velocities, however, are shown to exhibit invariance across the inertial region when their wavelengths are normalized by the width distribution, W(y), of the scaling layer hierarchy, which renders the mean momentum equation invariant on the inertial domain.

  10. Deploying Liquid Filaments and Suspensions with an Electrohydrodynamic Liquid Bridge

    NASA Astrophysics Data System (ADS)

    Saville, D. A.

    2005-11-01

    We show that a dynamic liquid bridge can be formed by deploying the filament issuing from a Taylor Cone onto a surface with the nozzle and surface held at different electric potentials. This configuration differs sharply form the familiar `electrospinning' configuration where the filament whips violently. Nevertheless, although the aspect ratio (length/diameter) exceeds the Plateau limit by more than two orders of magnitude the bridge is stable. Here we report on the stability characteristics and show that such a bridge can be used to `print' sub-micron scale features on a moving surface with both clear fluids and suspensions.

  11. Potential Interference of Oil Vehicles on Genital Tubercle Development during the Fetal Period in ICR Mice.

    PubMed

    Nishioka, Yasushi; Tamai, Kazuki; Onda, Masanari; Hiromori, Youhei; Kimura, Tomoki; Hu, Jianying; Nagase, Hisamitsu; Nakanishi, Tsuyoshi

    2018-01-01

    Corn oil, sesame oil, and 10% ethanol in corn oil are commonly used as dosing vehicles in toxicology studies. Since these vegetable oils contain bioactive compounds, it is important for toxicology studies to characterize the toxicities of the dosing vehicles themselves. It has been recently proposed that the width of the genital tubercle (GT), the dorsal-ventral length (D-V length) of the GT, and urethral tube closure in mouse fetuses can be used as novel markers for monitoring sexual development in mice. However, how these parameters are influenced by the dosing vehicles themselves remains unclear. Therefore, we evaluated the effects of corn oil, sesame oil, and 10% ethanol in corn oil on GT width, D-V length, and GT morphology in ICR mice. Our results showed that all three vehicles influenced GT width and D-V length, but not GT morphology, suggesting that the effects of dosing vehicles themselves might need to be considered when GT width or D-V length is used as a parameter to evaluate the effects of chemicals on GT development.

  12. Do cyanobacteria swim using traveling surface waves?

    PubMed Central

    Ehlers, K M; Samuel, A D; Berg, H C; Montgomery, R

    1996-01-01

    Bacteria that swim without the benefit of flagella might do so by generating longitudinal or transverse surface waves. For example, swimming speeds of order 25 microns/s are expected for a spherical cell propagating longitudinal waves of 0.2 micron length, 0.02 micron amplitude, and 160 microns/s speed. This problem was solved earlier by mathematicians who were interested in the locomotion of ciliates and who considered the undulations of the envelope swept out by ciliary tips. A new solution is given for spheres propagating sinusoidal waveforms rather than Legendre polynomials. The earlier work is reviewed and possible experimental tests are suggested. Images Fig. 1 PMID:8710872

  13. Role of special cross-links in structure formation of bacterial DNA polymer

    NASA Astrophysics Data System (ADS)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  14. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  15. Tumorigenicity of fine man-made fibers after intratracheal administrations to hamsters.

    PubMed

    Adachi, S; Takemoto, K; Kimura, K

    1991-02-01

    Six types of man-made fibers were administered intratracheally (2.0 mg/animal each a week, for 5 weeks; total 10 mg/animal) to female Syrian hamsters that were observed histologically for 2 years after administration. The fibers were rock wool [average diameter (D) = 6.1 microns, average length (L) = 296 microns], fiberglass (D = 0.65 microns, L = 16.8 microns), potassium titanate fiber (D = 0.36 microns, L = 7.17 microns), calcium sulfate fiber (D = 1.0 microns, L = 17.8 microns), basic magnesium sulfate fiber (D = 0.45 microns, L = 22.4 microns), and metaphosphate fiber (D = 2.38 microns, L = 64.1 microns). Tumors were observed in hamsters that had received basic magnesium sulfate fiber (9/20), metaphosphate fiber (6/20), calcium sulfate fiber (3/20), and fiberglass (2/20) but not in the control, rock wool, or potassium titanate fiber groups. The primary sites of the tumors were not only in the pleural cavity but also in the intracelial organs, kidney, adrenal gland, bladder, and uterus. Only a few of the tumors were identified as mesotheliomas by histological examination. In addition to neoplastic lesions, fibrosis, pleural thickening, and chronic inflammatory changes in the lungs were observed in the hamsters, but these changes appeared too mild to foster a pneumoconiosis such as asbestosis.

  16. Observation of radiation damage induced by single-ion hits at the heavy ion microbeam system

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomihiro; Sakai, Takuro; Hirao, Toshio; Oikawa, Masakazu

    2001-07-01

    A single-ion hit system combined with the JAERI heavy ion microbeam system can be applied to observe individual phenomena induced by interactions between high-energy ions and a semiconductor device using a technique to measure the pulse height of transient current (TC) signals. The reduction of the TC pulse height for a Si PIN photodiode was measured under irradiation of 15 MeV Ni ions onto various micron-sized areas in the diode. The data containing damage effect by these irradiations were analyzed with least-square fitting using a Weibull distribution function. Changes of the scale and the shape parameters as functions of the width of irradiation areas brought us an assumption that a charge collection in a diode has a micron level lateral extent larger than a spatial resolution of the microbeam at 1 μm. Numerical simulations for these measurements were made with a simplified two-dimensional model based on this assumption using a Monte Carlo method. Calculated data reproducing the pulse-height reductions by single-ion irradiations were analyzed using the same function as that for the measurement. The result of this analysis, which shows the same tendency in change of parameters as that by measurements, seems to support our assumption.

  17. Motion-compensated optical coherence tomography using envelope-based surface detection and Kalman-based prediction

    NASA Astrophysics Data System (ADS)

    Irsch, Kristina; Lee, Soohyun; Bose, Sanjukta N.; Kang, Jin U.

    2018-02-01

    We present an optical coherence tomography (OCT) imaging system that effectively compensates unwanted axial motion with micron-scale accuracy. The OCT system is based on a swept-source (SS) engine (1060-nm center wavelength, 100-nm full-width sweeping bandwidth, and 100-kHz repetition rate), with axial and lateral resolutions of about 4.5 and 8.5 microns respectively. The SS-OCT system incorporates a distance sensing method utilizing an envelope-based surface detection algorithm. The algorithm locates the target surface from the B-scans, taking into account not just the first or highest peak but the entire signature of sequential A-scans. Subsequently, a Kalman filter is applied as predictor to make up for system latencies, before sending the calculated position information to control a linear motor, adjusting and maintaining a fixed system-target distance. To test system performance, the motioncorrection algorithm was compared to earlier, more basic peak-based surface detection methods and to performing no motion compensation. Results demonstrate increased robustness and reproducibility, particularly noticeable in multilayered tissues, while utilizing the novel technique. Implementing such motion compensation into clinical OCT systems may thus improve the reliability of objective and quantitative information that can be extracted from OCT measurements.

  18. Investigation on the biodurability of chemically different stone wool fibres.

    PubMed

    Bellmann, B; Muhle, H; Kamstrup, O; Draeger, U F

    1995-05-01

    The biodurability is one of the essential factors for a carcinogenic potential of mineral fibres. The in vivo solubility of commercial fibre products can be influenced by modifications of the chemical composition. Two types of experimental stone wool samples with new chemical composition were compared to a commercial stone wool sample. Sized fractions of these samples with median lengths of 7.1, 9.3 and 6.7 microns, respectively, and median diameters of 0.76, 1.02 and 0.63 microns, respectively, were intratracheally instilled into female Wistar rats with a single dose of 2 mg in 0.3 ml. 5 animals per group were sacrificed after 2 days, 1, 3, 6, 12 and 18 months. After low-temperature ashing of the lungs about 1,000 fibres per group and sacrifice date were analysed in SEM for length and diameter. The number of fibres in the total lung was calculated. An analysis of fibre number of different length and diameter fractions was used to estimate whether dissolution, breakage or mechanical clearance is responsible for the elimination of fibres from the lung. Results indicate that the breakage of fibres with length above 20 microns and the dissolution of fibres was faster in the experimental stone wool samples compared to the commercial sample.

  19. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words

    PubMed Central

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants’ performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words. PMID:26909052

  20. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words.

    PubMed

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants' performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words.

  1. [Measurement and analysis of human head-face dimensions].

    PubMed

    DU, Li-Li; Wang, Li-Min; Zhuang, Ziqing

    2008-05-01

    To probe into the physical changes on the head and face of Chinese adults, find the representative indexes and provide references for head-face products design especially in the field of labor protection. The ISO7250-1996 and GB/T5703-99 Basic Human Body Measurements for Technological Design was used. Twenty items of head-face referential parameters and 4 items of body indexes (height, weight, waist circumference and buttock circumference) were measured by using sliding caliper, spreading caliper and pupillometer. The populations were sampled by age, gender and region and their influences on the head and face dimensions were statistically analyzed. By studying the relationship between these parameters with correlation and cluster analysis, the representative indexes of head and face dimensions were concluded. 3000 objectives (2026 men and 974 women) were involved in this survey. The results enunciated that the values of the items in male were larger than those in female. For example, the mean values of face length, face width, jaw width, lip length and nose protrusion were 117.0, 147.6, 118.5, 51.7, 18.7 mm for male and 109.7, 140.1, 114.5, 49.3, 17.7 mm for female. The regional disparity and obesity were significant factors. The sizes of head and face of north-eastern population were significantly bigger than those of south-western population except of maximum length of head, the length of lip and face configuration length. The sizes of head and face of obesity population were significantly bigger than those of non-obesity population (P < 0.01). By the cluster analysis, five representative indexes (face length, face width, jaw width, lip length and nose protrusion) were obtained. Further correction analysis suggested that these indexes could well represent the head-face dimensions. The influence of gender, region and obesity on the head-face dimensions is significant. The age is not a significant influential factor. Five representative indexes (face length, face width, jaw width, lip length and nose protrusion) are obtained to provide foundation in the standard design of head-face products.

  2. SURPHEX (tm): New dry photopolymers for replication of surface relief diffractive optics

    NASA Technical Reports Server (NTRS)

    Shvartsman, Felix P.

    1993-01-01

    High efficiency, deep groove, surface relief Diffractive Optical Elements (DOE) with various optical functions can be recorded in a photoresist using conventional interferometric holographic and computer generated photolithographic recording techniques. While photoresist recording media are satisfactory for recording individual surface relief DOE, a reliable and precise method is needed to replicate these diffractive microstructures to maintain the high aspect ratio in each replicated DOE. The term 'high aspect ratio' means that the depth of a groove is substantially greater, i.e. 2, 3, or more times greater, than the width of the groove. A new family of dry photopolymers SURPHEX was developed recently at Du Pont to replicate such highly efficient, deep groove DOE's. SURPHEX photopolymers are being utilized in Du Pont's proprietary Dry Photopolymer Embossing (DPE) technology to replicate with very high degree of precision almost any type of surface relief DOE. Surfaces relief microstructures with width/depth aspect ratio of 1:20 (0.1 micron/2.0 micron) were faithfully replicated by DPE technology. Several types of plastic and glass/quartz optical substrates can be used for economical replication of DOE.

  3. Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 - 2.55 microns) and its applications in carbonate petrology

    NASA Technical Reports Server (NTRS)

    Gaffey, S. J.

    1984-01-01

    Reflection spectroscopy in the visible and near infrared (0.35 to 2.55 micron) offers a rapid, inexpensive, nondestructive tool for determining the mineralogy and investigating the minor element chemistry of the hard-to-discriminate carbonate minerals, and can, in one step, provide information previously obtainable only by the combined application of two or more analytical techniques. When light interacts with a mineral certain wavelengths are preferentially absorbed. The number, positions, widths and relative intensities of these absorptions are diagnostic of the mineralogy and chemical composition of the sample. At least seven bands due to vibrations of the carbonate radical occur between 1.60 and 2.55 micron. Positions of these bands vary from one carbonae mineral to another and can be used for mineral identification. Cation mass is the primary factor controlling band position; cation radius plays a secondary role.

  4. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  5. Characterization of the spatial variability of channel morphology

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2002-01-01

    The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0.13-0.42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional morphological variables can be scaled such that the channel width-depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley and Sons, Ltd.

  6. Neutron Scattering Studies on Large Length Scale Sample Structures

    NASA Astrophysics Data System (ADS)

    Feng, Hao

    Neutron scattering can be used to study structures of matter. Depending on the interested sample properties, different scattering techniques can be chosen. Neutron reflectivity is more often used to detect in-depth profile of layered structures and the interfacial roughness while transmission is more sensitive to sample bulk properties. Neutron Reflectometry (NR) technique, one technique in neutron reflectivity, is first discussed in this thesis. Both specular reflectivity and the first order Bragg intensity were measured in the NR experiment with a diffraction grating in order to study the in-depth and the lateral structure of a sample (polymer) deposited on the grating. However, the first order Bragg intensity solely is sometimes inadequate to determine the lateral structure and high order Bragg intensities are difficult to measure using traditional neutron scattering techniques due to the low brightness of the current neutron sources. Spin Echo Small Angle Neutron Scattering (SESANS) technique overcomes this resolution problem by measuring the Fourier transforms of all the Bragg intensities, resulting in measuring the real-space density correlations of samples and allowing the accessible length scale from few-tens of nanometers to several microns. SESANS can be implemented by using two pairs of magnetic Wollaston prims (WP) and the accessible length scale is proportional to the magnetic field intensity in WPs. To increase the magnetic field and thus increase the accessible length scale, an apparatus named Superconducting Wollaston Prisms (SWP) which has a series of strong, well-defined shaped magnetic fields created by superconducting coils was developed in Indiana University in 2016. Since then, various kinds of optimization have been implemented, which are addressed in this thesis. Finally, applications of SWPs in other neutron scattering techniques like Neutron Larmor Diffraction (NLD) are discussed.

  7. Progression of growth in the external ear from birth to maturity: a 2-year follow-up study in India.

    PubMed

    Purkait, Ruma

    2013-06-01

    This study aimed to follow the growth dynamics of auricular dimensions from birth to the age of 18 years. The norms of dimensions at different ages, the peak growth period and the maturity age of the dimensions are essential information to Physicians for early clinical diagnosis or for deciding the optimal time for surgery to correct abnormalities. For this study, 2,147 children belonging to central Indian population were measured in at least three sequential sessions. Eight dimensions including the physiognomic length and width of the ear and its morphologic width; conchal length, width, and depth; and lobular length and width were measured using anthropometric technique. Three new dimensions (tragal length and height and maximum width of the antihelix) were introduced in the study. Three indices (auricular, conchal, and lobular) also were derived. Most dimensions exhibited very rapid growth during the first 3-6 months of infancy and thereafter proceeded at a slow pace until adulthood. The smaller dimensions (conchal depth, tragal height, and maximum width of the antihelix) increased continuously throughout the growth period. At birth, most of the dimensions were 52-76 % of their adult size, while tragal length and height were less than half their adult size. Unlike the other dimensions, the lobule length was smaller in males, probably due to the higher frequency of hypoplastic and bow-shaped lobules among them. The width dimensions matured earlier, at 5.6-11 years, whereas the maturity age of lengths varied from 12 to 16 years. The data generated in the current study will be useful to Physicians as a guideline in correcting auricular deformity and in constructing age progression charts of the external ear. Knowledge concerning the maturation age of the ear will help law enforcement authorities in deciding when to use it for establishing personal identification. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  8. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE PAGES

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; ...

    2017-10-17

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  9. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details ofmore » electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF & RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF & RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.« less

  10. An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2018-01-01

    Detailed and reliable numerical modeling of laser-plasma accelerators (LPAs), where a short and intense laser pulse interacts with an underdense plasma over distances of up to a meter, is a formidably challenging task. This is due to the great disparity among the length scales involved in the modeling, ranging from the micron scale of the laser wavelength to the meter scale of the total laser-plasma interaction length. The use of the time-averaged ponderomotive force approximation, where the laser pulse is described by means of its envelope, enables efficient modeling of LPAs by removing the need to model the details of electron motion at the laser wavelength scale. Furthermore, it allows simulations in cylindrical geometry which captures relevant 3D physics at 2D computational cost. A key element of any code based on the time-averaged ponderomotive force approximation is the laser envelope solver. In this paper we present the accurate and efficient envelope solver used in the code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde). The features of the INF&RNO laser solver enable an accurate description of the laser pulse evolution deep into depletion even at a reasonably low resolution, resulting in significant computational speed-ups.

  11. Overland flow connectivity on planar patchy hillslopes - modified percolation theory approaches and combinatorial model of urns

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal

    2017-04-01

    Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.

  12. Turning the tide: effects of river inflow and tidal amplitude on sandy estuaries in laboratory landscape experiments

    NASA Astrophysics Data System (ADS)

    Kleinhans, Maarten; Braat, Lisanne; Leuven, Jasper; Baar, Anne; van der Vegt, Maarten; van Maarseveen, Marcel; Markies, Henk; Roosendaal, Chris; van Eijk, Arjan

    2016-04-01

    Many estuaries formed over the Holocene through a combination of fluvial and coastal influxes, but how estuary planform shape and size depend on tides, wave climate and river influxes remains unclear. Here we use a novel tidal flume setup of 20 m length by 3 m width, the Metronome (http://www.uu.nl/metronome), to create estuaries and explore a parameter space for the simple initial condition of a straight river in sandy substrate. Tidal currents capable of transporting sediment in both the ebb and flood phase because they are caused by periodic tilting of the flume rather than the classic method of water level fluctuation. Particle imaging velocimetry and a 1D shallow flow model demonstrate that this principle leads to similar sediment mobility as in nature. Ten landscape experiments recorded by timelapse overhead imaging and AGIsoft DEMs of the final bed elevation show that absence of river inflow leads to short tidal basins whereas even a minor discharge leads to long convergent estuaries. Estuary width and length as well as morphological time scale over thousands of tidal cycles strongly depend on tidal current amplitude. Paddle-generated waves subdue the ebb delta causing stronger tidal currents in the basin. Bar length-width ratios in estuaries are slightly larger to those in braided rivers in experiments and nature. Mutually evasive ebb- and flood-dominated channels are ubiquitous and appear to be formed by an instability mechanism with growing bar and bifurcation asymmetry. Future experiments will include mud flats and live vegetation.

  13. Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor

    NASA Astrophysics Data System (ADS)

    Lee, Ryoongbin; Kwon, Dae Woong; Kim, Sihyun; Kim, Sangwan; Mo, Hyun-Sun; Kim, Dae Hwan; Park, Byung-Gook

    2017-12-01

    In this study, we investigated the effects of nanowire size on the current sensitivity of silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs). The changes in on-current (I on) and resistance according to pH were measured in fabricated SiNW ISFETs of various lengths and widths. As a result, it was revealed that the sensitivity expressed as relative I on change improves as the width decreases. Through technology computer-aided design (TCAD) simulation analysis, the width dependence on the relative I on change can be explained by the observation that the target molecules located at the edge region along the channel width have a stronger effect on the sensitivity as the SiNW width is reduced. Additionally, the length dependence on the sensitivity can be understood in terms of the resistance ratio of the fixed parasitic resistance, including source/drain resistance, to the varying channel resistance as a function of channel length.

  14. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  15. Cellular convection in a chamber with a warm surface raft

    NASA Astrophysics Data System (ADS)

    Whitehead, J. A.; Shea, Erin; Behn, Mark D.

    2011-10-01

    We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that floats along the top surface for Rayleigh number up to Ra = 20 000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L' and depth D'. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. In the case with an insulated raft over a fluid, there are only three parameters that govern the system: Rayleigh number (Ra), scaled chamber length (L = L'/D'), and scaled raft width (W). For W = 0 and L = 1, linear theory shows that the marginal state without a raft is at a Rayleigh number of 23π4=779.3, but we find that for the smallest W (determined by numerical grid size) the raft approaches the center monotonically in time for Ra<790. For 790871. For larger raft widths, there is a range of W that produces raft oscillation at each Ra up to 20 000. Rafts in longer cavities (L = 2 and 4) have almost no oscillatory behavior. With a raft of temperature set to different values of Tr rather than insulating, a fixed Rayleigh number Ra =20000, a square chamber (L = 1), fixed raft width, and with internal heat generation, there are two ranges of oscillating flow.

  16. Surface-Based 3d measurements of aeolian bedforms on Mars

    NASA Astrophysics Data System (ADS)

    Balme, Matthew; Robson, Ellen; Barnes, Robert; Huber, Ben; Butcher, Frances; Fawdon, Peter; Gupta, Sanjeev; Paar, Gerhard

    2017-04-01

    The surface of Mars hosts many different types of aeolian bedforms, from small wind-ripples with cm-scale wavelength, through decametre-scale "Transverse Aeolian Ridges" (TARs), to km-scale dunes. To date, all mobile Mars surface-missions ('Rovers') have encountered aeolian bedforms of one kind or another. Aeolian deposits of loose, unconsolidated material provide hazards to Mars Rovers: sinkage into the aeolian material and enhanced slippage can prevent traction and forward progress, forcing the Rover to backtrack (e.g., MER Opportunity) and can even 'trap' the rover ending the mission (e.g., MER Spirit). Here, we present morphometry measurements of meter-scale ripple-like bedforms on Mars, as observed by the MER Opportunity Rover during its traverse across the Meridiani Planum region of Mars. The aim is to assess whether there is a relationship between bedforms parameters that can be measured from orbit such as length and width, and bedform height, which can only be reliably measured from orbit for larger features such as TARs. If such a relationship can be found, it might allow estimates of ripple-height to be made from remote sensing data alone. This could help understand the formation mechanism and provide a better characterization of the hazard presented by these features. For much of the first 30 km of the traverse, Opportunity travelled across flat plains with meter-scale, ripple-like aeolian bedforms ("plains ripples") superposed upon them. During the traverse, the Rover acquired stereo imaging data of its surroundings using both its scientific Pancam cameras system and the navigational Navcam system. Using these data, and newly developed Pro3D™ and PRoViP™ software from Joanneum Research, we obtained Digital Elevation Models of many areas along the traverse, allowing us to measure the heights, widths and lengths of aeolian bedforms. In addition, the same bedforms were digitized from orbital HiRISE image data (25 cm/pix resolution) in ArcGIS software to check for agreement between the ground-based and space-based measurements. We found that there is a clear correlation between bedform height and bedform length (as measured perpendicular to the bedform ridge crest and thus, by inference, parallel to the bedform forming wind). We find that bedform height is about 1/15th of bedform length (or bedform wavelength where bedforms are "saturated") - in agreement with terrestrial measurements of granule ripples. This relationship, and the distribution of bedforms heights observed for different bedforms lengths, can be used to provide a probabilistic method of determining the height distributions of bedforms in a given area, simply by measuring their lengths from orbit. This will be useful for determining traversability by Rovers, and so is helpful both for landing site selection and strategic planning of Rover routes.

  17. Scaling behavior of fully spin-coated TFT

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip; Kumar, Arvind; Rao, K. S. R. Koteswara; Venkataraman, V.

    2017-05-01

    We studied channel scaling behavior of fully spin coated, low temperature solution processed thin film transistor (TFT) fabricated on p++ - Si (˜1021 cm-3) as bottom gate. The solution processed, spin coated 40 nm thick amorphous Indium Gallium Zinc Oxide (a-IGZO) and 50 nm thick amorphous zirconium di-oxide (a-ZrO2) has been used as channel and low leakage dielectric at 350°C respectively. The channel scaling effect of the TFT with different width/length ratio (W/L= 2.5, 5 and 15) for same channel length (L = 10 μm) has been demonstrated. The lowest threshold voltage (Vth) is 6.25 V for the W/L=50/10. The maximum field effect mobility (μFE) has been found to be 0.123 cm2/Vs from W/L of 50/10 with the drain to source voltage (VD) of 10V and 20V gate to source voltage (VG). We also demonstrated that there is no contact resistance effect on the mobility of the fully sol-gel spin coated TFT.

  18. Large increase in fracture resistance of stishovite with crack extension less than one micrometer

    PubMed Central

    Yoshida, Kimiko; Wakai, Fumihiro; Nishiyama, Norimasa; Sekine, Risako; Shinoda, Yutaka; Akatsu, Takashi; Nagoshi, Takashi; Sone, Masato

    2015-01-01

    The development of strong, tough, and damage-tolerant ceramics requires nano/microstructure design to utilize toughening mechanisms operating at different length scales. The toughening mechanisms so far known are effective in micro-scale, then, they require the crack extension of more than a few micrometers to increase the fracture resistance. Here, we developed a micro-mechanical test method using micro-cantilever beam specimens to determine the very early part of resistance-curve of nanocrystalline SiO2 stishovite, which exhibited fracture-induced amorphization. We revealed that this novel toughening mechanism was effective even at length scale of nanometer due to narrow transformation zone width of a few tens of nanometers and large dilatational strain (from 60 to 95%) associated with the transition of crystal to amorphous state. This testing method will be a powerful tool to search for toughening mechanisms that may operate at nanoscale for attaining both reliability and strength of structural materials. PMID:26051871

  19. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  20. Breaking Through the Multi-Mesa-Channel Width Limited of Normally Off GaN HEMTs Through Modulation of the Via-Hole-Length.

    PubMed

    Chien, Cheng-Yen; Wu, Wen-Hsin; You, Yao-Hong; Lin, Jun-Huei; Lee, Chia-Yu; Hsu, Wen-Ching; Kuan, Chieh-Hsiung; Lin, Ray-Ming

    2017-12-01

    We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC structures and widths as well as via-hole-lengths of 100 nm/2 μm and 300 nm/6 μm, respectively, exhibited positive threshold voltages (V th ) of 0.79 and 0.46 V, respectively. The on-resistances of the MMC and via-hole-length structures were lower than those of typical tri-gate nanoribbon GaN HEMTs. In addition, the devices not only achieved the E-mode but also improved the power performance of the GaN HEMTs and effectively mitigated the device thermal effect. We controlled the via-hole-length sidewall surface pinning effect to obtain the E-mode GaN HEMTs. Our findings suggest that via-hole-length normally off GaN HEMTs have great potential for use in next-generation power electronics.

  1. High-Spatial-Resolution OH PLIF Visualization in a Cavity-Stabilized Ethylene-Air Turbulent Flame

    NASA Technical Reports Server (NTRS)

    Geipel, Clayton M.; Rockwell, Robert D.; Chelliah, Harsha K.; Cutler, Andrew D.; Spelker, Christopher A.; Hashem, Zeid; Danehy, Paul M.

    2017-01-01

    High-spatial-resolution OH planar laser-induced fluorescence was measured for a premixed ethylene-air turbulent flame in an electrically-heated Mach 2 continuous-flow facility (University of Virginia Supersonic Combustion Facility, Configuration E.) The facility comprised a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with optical access, and an extender. The flame was anchored at a cavity flameholder with a backward-facing step of height 9 mm. The temperature-insensitive Q1(8) transition of OH was excited using laser light of wavelength 283.55 nm. A spatial filter was used to create a laser sheet approximately 25 microns thick based on full-width at half maximum (FWHM). Extension tubes increased the magnification of an intensified camera system, achieving in-plane resolution of 40 microns based on a 50% modulation transfer function (MTF). The facility was tested with total temperature 1200 K, total pressure 300 kPa, local fuel/air equivalence ratios of approximately 0.4, and local Mach number of approximately 0.73 in the combustor. A test case with reduced total temperature and another with reduced equivalence ratio were also tested. PLIF images were acquired along a streamwise plane bisecting the cavity flameholder, from the backward facing step to 120 mm downstream of the step. The smallest observed features in the flow had width of approximately 110 microns. Flame surface density was calculated for OH PLIF images.

  2. Lightning Optical Pulse Statistics from Storm Overflights During the Altus Cumulus Electrification Study

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2004-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect time resolved optical pulse data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses. Most of these observations were made while close to the top of the storms. We divided our data into two amplitude groups based on prior NASA U2 aircraft optical data and our pulse characteristics. The group of large pulses with radiance greater than 2.1 mW /sq m sr had mean and median 10 - 10% optical pulse widths of 765 and 735 microns respectively, the 50-50% pulse widths of 396 and 355 microns respectively, and 10-90% rise times of 290 and 260 microns. These values are very similar to the previous U2 based optical results The other group of pulses consisting of slightly more than a quarter of the total pulses observed had radiances less than the minimum values detected in the U2 study. The small pulses were narrower than the large pulses with 5040% mean and median values of 198 and 160 ps respectively. Only 12 % of the flashes contained only small pulses, minimizing the impact of this data on the estimates of detection efficiencies of the orbital instruments, the Lightning Imaging Sensor and Optical Transient Detector.

  3. Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereociliary lengths is generated

    PubMed Central

    1988-01-01

    The stereocilia on each hair cell are arranged into rows of ascending height, resulting in what we refer to as a "staircase-like" profile. At the proximal end of the cochlea the length of the tallest row of stereocilia in the staircase is 1.5 micron, with the shortest row only 0.3 micron. As one proceeds towards the distal end of the cochlea the length of the stereocilia progressively increases so that at the extreme distal end the length of the tallest row of the staircase is 5.5 micron and the shortest row is 2 micron. During development hair cells form their staircases in four phases of growth separated from each other by developmental time. First, stereocilia sprout from the apical surfaces of the hair cells (8-10-d embryos). Second (10-12-d embryos), what will be the longest row of the staircase begins to elongate. As the embryo gets older successive rows of stereocilia initiate elongation. Thus the staircase is set up by the sequential initiation of elongation of stereociliary rows located at increased distances from the row that began elongation. Third (12-17-d embryos), all the stereocilia in the newly formed staircase elongate until those located on the first step of the staircase have reached the prescribed length. In the final phase (17-d embryos to hatchlings) there is a progressive cessation of elongation beginning with the shortest step and followed by taller and taller rows with the tallest step stopping last. Thus, to obtain a pattern of stereocilia in rows of increasing height what transpires are progressive go signals followed by a period when all the stereocilia grow and ending with progressive stop signals. We discuss how such a sequence could be controlled. PMID:3339095

  4. The 3.4 micron emission in comets

    NASA Technical Reports Server (NTRS)

    Brooke, Tim Y.; Knacke, Roger F.; Owen, T. C.; Tokunaga, Alan T.

    1989-01-01

    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics will require comet spectra with signal-to-noise and spectral resolution comparable to that available in spectra of the interstellar medium. Such observations are currently being planned.

  5. Sources of the 13 microns Emission Feature Associated with Silicate Dust

    NASA Astrophysics Data System (ADS)

    Levan, P. D.; Sloan, G. C.; Little-Marenin, I. R.

    1993-05-01

    We have carefully searched the Atlas of Low-resolution Spectra (IRAS Science Team 1986, A&A Suppl., 65, 607; Volk and Cohen 1989, AJ, 98, 931) for sources of the 13 microns emission feature associated with silicate emission at 10 microns first discussed by Little-Marenin and Little (1988, ApJ, 303, 305). We have identified 73 spectra for which the 13 microns feature is detected at 4sigma or better. In several cases, we have confirmed the existence of the feature using GLADYS, the Air Force long-slit 10 microns spectrometer, at the Wyoming Infrared Observatory. Our sample of 13 microns emission sources are nearly all late M giants, the majority of type M6 or M7. Variability types exist for 54; over half are SRb variables, while the remainder are fairly evenly divided among Miras and classes SRa and Lb. Most of the sources have LRS characterizations of 14, 15, or 21-24, i.e. weak silicate emission at 10 microns. The shape of the silicate emission feature varies from a nearly classic 10 microns profile broadened at longer wavelengths to a double-humped profile with peaks at both 10 and 11 microns. In the scheme of Little-Marenin and Little, these shapes would be characterized as Sil+, Sil++, and 3-component. The root mean square radial velocity of our sample is 31 km/sec. The mean angle from the galactic plane is 29 degrees, and there are no obvious dependencies with galactic longitude. These properties indicate that our sample consists of old Population I AGB stars. We have also investigated how the strength of the 13 microns emission varies with spectral type, class and period of variability, LRS characterization, 10 microns feature width, and galactic position. We find no correlation with any of these properties, indicating that the 13 microns emission is not unique to any specific class of Population I AGB stars. There is no strong evidence for the contention that the 13 microns sources are precursors to S stars.

  6. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  7. Fan noise caused by the ingestion of anisotropic turbulence - A model based on axisymmetric turbulence theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Gliebe, P. R.

    1980-01-01

    An analytical model of fan noise caused by inflow turbulence, a generalization of earlier work by Mani, is presented. Axisymmetric turbulence theory is used to develop a statistical representation of the inflow turbulence valid for a wide range of turbulence properties. Both the dipole source due to rotor blade unsteady forces and the quadrupole source resulting from the interaction of the turbulence with the rotor potential field are considered. The effects of variations in turbulence properties and fan operating conditions are evaluated. For turbulence axial integral length scales much larger than the blade spacing, the spectrum is shown to consist of sharp peaks at the blade passing frequency and its harmonics, with negligible broadband content. The analysis can then be simplified considerably and the total sound power contained within each spectrum peak becomes independent of axial length scale, while the width of the peak is inversely proportional to this parameter. Large axial length scales are characteristic of static fan test facilities, where the transverse contraction of the inlet flow produces highly anisotropic turbulence. In this situation, the rotor/turbulence interaction noise is mainly caused by the transverse component of turbulent velocity.

  8. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing

    DOE PAGES

    Morgan, Brandon E.; Schilling, Oleg; Hartland, Tucker A.

    2018-01-10

    The three-equation k-L-a turbulence model [B. Morgan and M. Wickett, Three-equation model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities," Phys. Rev. E 91 (2015)] is extended by the addition of a second length scale equation. It is shown that the separation of turbulence transport and turbulence destruction length scales is necessary for simultaneous prediction of the growth parameter and turbulence intensity of a Kelvin-Helmholtz shear layer when model coeficients are constrained by similarity analysis. Constraints on model coeficients are derived that satisfy an ansatz of self-similarity in the low-Atwood-number limit and allow the determination of model coeficients necessarymore » to recover expected experimental behavior. The model is then applied in one-dimensional simulations of Rayleigh-Taylor, reshocked Richtmyer-Meshkov, Kelvin{Helmholtz, and combined Rayleigh-Taylor/Kelvin-Helmholtz instability mixing layers to demonstrate that the expected growth rates are recovered numerically. Finally, it is shown that model behavior in the case of combined instability is to predict a mixing width that is a linear combination of Rayleigh-Taylor and Kelvin-Helmholtz mixing processes.« less

  9. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  10. Deviations from Newton's law in supersymmetric large extra dimensions

    NASA Astrophysics Data System (ADS)

    Callin, P.; Burgess, C. P.

    2006-09-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case.

  11. Low speed streak formation in a separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew

    2017-11-01

    Separation control mechanisms present on the skin of the shortfin mako shark may permit higher swimming speeds. The morphology of the scales varies over the entire body, with maximum scale flexibility found on the flank region with an adverse pressure gradient(APG). It is hypothesized that reversing flow close the skin bristles the scales inhibiting further flow reversal and controlling flow separation. Experiments are conducted in water tunnel facility and the flow field of a separating turbulent boundary layer(TBL) is measured using DPIV and Insight V3V. Flow separation is induced by a rotating cylinder which generates a controlled APG over a flat plate (Re = 510000 and 620000). Specifically, the low speed streak(LSS) formation is documented and matches predicted sizing based on viscous length scale calculations. It is surmised that shark scale width corresponds to this LSS sizing for real swimming TBL conditions. However, flow separation control has been demonstrated over real skin specimens under much lower speed conditions which indicates the mechanism is fairly Re independent if multiple scales are bristled as the width of the LSS increases. The formation of reversing flow within the streaks is studied specifically to better understand the process by which this flow initiates scale bristling on shortfin mako skin as a passive, flow actuated separation control mechanism. The authors would like to greatefully acknowledge the Army Research Office for funding this project.

  12. The effect of magnetic islands on Ion Temperature Gradient turbulence driven transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, P., E-mail: peter.hill@york.ac.uk; York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD; Hariri, F.

    2015-04-15

    In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulencemore » is able to re-establish the temperature gradient across the island for islands widths w ≲ λ{sub turb}, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λ{sub turb}, turbulence is able to maintain finite temperature gradients across the island.« less

  13. Determination of the position of nucleus cochlear implant electrodes in the inner ear.

    PubMed

    Skinner, M W; Ketten, D R; Vannier, M W; Gates, G A; Yoffie, R L; Kalender, W A

    1994-09-01

    Accurate determination of intracochlear electrode position in patients with cochlear implants could provide a basis for detecting migration of the implant and could aid in the selection of stimulation parameters for sound processor programming. New computer algorithms for submillimeter resolution and 3-D reconstruction from spiral computed tomographic (CT) scans now make it possible to accurately determine the position of implanted electrodes within the cochlear canal. The accuracy of these algorithms was tested using an electrode array placed in a phantom model. Measurements of electrode length and interelectrode distance from spiral CT scan reconstructions were in close agreement with those from stereo microscopy. Although apparent electrode width was increased on CT scans due to partial volume averaging, a correction factor was developed for measurements from conventional radiographs and an expanded CT absorption value scale added to detect the presence of platinum electrodes and wires. The length of the cochlear canal was calculated from preoperative spiral CT scans for one patient, and the length of insertion of the electrode array was calculated from her postoperative spiral CT scans. The cross-sectional position of electrodes in relation to the outer bony wall and modiolus was measured and plotted as a function of distance with the electrode width correction applied.

  14. Experimental studies of MOS inversion and accumulation layers: Quantum mechanical effects and mobility

    NASA Astrophysics Data System (ADS)

    Chindalore, Gowrishankar L.

    The development of fast, multi-functional, and energy efficient integrated circuits, is made possible by aggressively scaling the gate lengths of the MOS devices into the sub-quarter micron regime. However, with the increasing cost of fabrication, there is a strong need for the development of reliable and accurate device simulation capabilities. The development of the theoretical models for simulators is guided by extensive experimental data, which enable an experimental verification of the models, and lead to a better understanding of the underlying physics. This dissertation presents the methodology and the results for one such experimental effort, where two important physical effects in the inversion layer and the accumulation layer of a MOS device, namely, the quantum mechanical (QM) effects and the carrier mobility are investigated. Accordingly, this dissertation has been divided into two parts, with the first part discussing the increase in the threshold voltage and the accumulation electrical oxide thickness due to QM effects. The second part discusses the methodology and the experimental results for the extraction of the majority carrier mobilities in the accumulation layers of a MOSFET. The continued scaling of the MOS gate length requires decreased gate oxide thickness (tox) and increased channel doping (NB) in order to improve device performance while suppressing the short- channel effects. The combination of the two result in large enough transverse electric fields to cause significant quantization of the carriers in the potential well at the Si/SiO2 interface. Hence, compared to the classical calculations (where the QM effects are ignored), the QM effects are found to lead to an increase in the experimental threshold voltage by approximately 100mV, and an overestimation of the physical oxide thickness by approximately 3-4A, in MOSFET devices with a gate oxide thickness and the doping level anticipated for technologies with sub-quarter micron gate lengths. Thus, the experimental results indicate the need for using accurate QM models for simulating sub-quarter micron devices. Carrier mobility is a fundamental semiconductor device transport parameter that has been extensively characterized for both electrons and holes in the silicon bulk and MOS inversion layers. Accumulation layer mobility (μacc) has become increasingly important as the MOS devices have scaled to deep submicron gate lengths, and much effort has been required to achieve increased drive current. However, very little experimental data has been reported for carrier mobility in the MOS accumulation layers (Sun80, Man89). Hence, in this research work, the accumulation layer mobilities were extracted using buried-channel MOSFETs for both the electrons and holes, and for a wide range of doping levels at temperatures ranging from 25C to 150C. The experimental μacc is found to be greater than the corresponding bulk and the inversion layer mobilities, at low to moderate effective fields. However, at very high effective fields, where phonon and surface roughness scattering are dominant, the mobility behavior is found to be very similar to that of the inversion carriers. The extensive set of experimental data will enable the development of accurate local accumulation mobility models for inclusion in 2-D device simulators.

  15. Non-Volatile High Speed & Low Power Charge Trapping Devices

    NASA Astrophysics Data System (ADS)

    Kim, Moon Kyung; Tiwari, Sandip

    2007-06-01

    We report the operational characteristics of ultra-small-scaled SONOS (below 50 nm gate width and length) and SiO2/SiO2 structural devices with 0.5 um gate width and length where trapping occurs in a very narrow region. The experimental work summarizes the memory characteristics of retention time, endurance cycles, and speed in SONOS and SiO2/SiO2 structures. Silicon nitride has many defects to hold electrons as charge storage media in SONOS memory. Defects are also incorporated during growth and deposition in device processing. Our experiments show that the interface between two oxides, one grown and one deposited, provides a remarkable media for electron storage with a smaller gate stack and thus lower operating voltage. The exponential dependence of the time on the voltage is reflected in the characteristic energy. It is ˜0.44 eV for the write process and ˜0.47 eV for the erase process in SiO2/SiO2 structural device which is somewhat more efficient than those of SONOS structure memory.

  16. Thumb rule of visual angle: a new confirmation.

    PubMed

    Groot, C; Ortega, F; Beltran, F S

    1994-02-01

    The classical thumb rule of visual angle was reexamined. Hence, the visual angle was measured as a function of a thumb's width and the distance between eye and thumb. The measurement of a thumb's width when held at arm's length was taken on 67 second-year students of psychology. The visual angle was about 2 degrees as R. P. O'Shea confirmed in 1991. Also, we confirmed a linear relationship between the size of a thumb's width at arm's length and the visual angle.

  17. Highly sensitive sites for guanine-O6 ethylation in rat brain DNA exposed to N-ethyl-N-nitrosourea in vivo.

    PubMed Central

    Nehls, P; Rajewsky, M F; Spiess, E; Werner, D

    1984-01-01

    Brain chromosomal DNA isolated from fetal BDIX-rats 1 h after i.v. administration of the ethylating N-nitroso carcinogen N-ethyl-N-nitrosourea (75 micrograms/g body weight), statistically contained one molecule of O6-ethyl-2'-deoxyguanosine (O6-EtdGuo) per 81 micron of DNA, as determined in enzymatic DNA hydrolysates by competitive radio-immunoassay using a high-affinity anti-(O6-EtdGuo) monoclonal antibody (ER-6). After fragmentation of the DNA by the restriction enzyme AluI (average fragment length, Lav = 0.28 micron = 970 bp; length range, Lr = 1.87-0.02 micron = 6540 - 60 bp), a small (approximately 2%) fraction of DNA enriched in specific polypeptides tightly associated with DNA was separated from the bulk DNA by a glass fiber binding technique. As analyzed by immune electron microscopy, approximately 1% of the DNA molecules in this fraction contained clusters of 2-10 (O6-EtdGuo)-antibody binding sites (ABS). On the cluster-bearing fragments (Lav, 0.85 micron +/- 0.50 micron S.D.; corresponding to 2970 +/- 1760 bp) the average ABS-ABS interspace distance was 110 nm (= 390 bp; range approximately 9-600 nm), indicating a highly non-random distribution of O6-EtdGuo in target cell DNA. Images Fig. 2. PMID:6370677

  18. Resurrection of Anolis ustus Cope, 1864 from synonymy with Anolis sericeus Hallowell, 1856 (Squamata, Dactyloidae).

    PubMed

    Lara-Tufiño, José Daniel; de Oca, Adrián Nieto-Montes; Ramírez-Bautista, Aurelio; Gray, Levi N

    2016-01-01

    In this study, based on a morphological analysis, the resurrection of the name Anolis ustus Cope 1864, is proposed for populations from the Yucatán Peninsula (Campeche, Yucatán, and Quintana Roo, Mexico, and Belize), formerly referred as Anolis sericeus Hallowell, 1856. Anolis ustus differs from Anolis sericeus by its mean snout-vent length and number of gorgetal scales in males, in tibia length and head width in females, and dorsal and ventral scales for both sexes. In addition, Anolis ustus has a small dewlap of similar size between males and females, whereas in Anolis sericeus males have a dewlap much larger than that of the females. These characteristics allow Anolis ustus to be identified within the Anolis sericeus complex. In this study, a description of the characteristics of the hemipenis is also provided, and its importance in the taxonomy of Anolis is discussed.

  19. Resurrection of Anolis ustus Cope, 1864 from synonymy with Anolis sericeus Hallowell, 1856 (Squamata, Dactyloidae)

    PubMed Central

    Lara-Tufiño, José Daniel; de Oca, Adrián Nieto-Montes; Ramírez-Bautista, Aurelio; Gray, Levi N.

    2016-01-01

    Abstract In this study, based on a morphological analysis, the resurrection of the name Anolis ustus Cope 1864, is proposed for populations from the Yucatán Peninsula (Campeche, Yucatán, and Quintana Roo, Mexico, and Belize), formerly referred as Anolis sericeus Hallowell, 1856. Anolis ustus differs from Anolis sericeus by its mean snout-vent length and number of gorgetal scales in males, in tibia length and head width in females, and dorsal and ventral scales for both sexes. In addition, Anolis ustus has a small dewlap of similar size between males and females, whereas in Anolis sericeus males have a dewlap much larger than that of the females. These characteristics allow Anolis ustus to be identified within the Anolis sericeus complex. In this study, a description of the characteristics of the hemipenis is also provided, and its importance in the taxonomy of Anolis is discussed. PMID:27829791

  20. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    PubMed

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field theory of colloidal interactions that accurately predicts clay swelling in a narrow range of conditions (low salinity, low compaction, Na + counterion). An important feature of clay swelling that is not predicted by these models is the coexistence, in most conditions of aqueous chemistry and dry bulk density, of two types of pores between parallel smectite particles: mesopores with a pore width of >3 nm that are controlled by long-range interactions (the osmotic swelling regime) and nanopores with a pore width <1 nm that are controlled by short-range interactions (the crystalline swelling regime). Nanogeochemical characterization and simulation techniques, including coarse-grained and all-atom molecular dynamics simulations, hold significant promise for the development of advanced constitutive relations that predict this coexistence and its dependence on aqueous chemistry.

  1. Isoxyl aerosols for tuberculosis treatment: preparation and characterization of particles.

    PubMed

    Wang, Chenchen; Hickey, Anthony J

    2010-06-01

    Isoxyl is a potent antituberculosis drug effective in treating various multidrug-resistant strains in the absence of known side effects. Isoxyl has been used exclusively, but infrequently, via the oral route and has exhibited very poor and highly variable bioavailability due to its sparing solubility in water. These properties resulted in failure of some clinical trials and, consequently, isoxyl's use has been limited. Delivery of isoxyl to the lungs, a major site of Mycobacterium tuberculosis infection, is an attractive alternative route of administration that may rescue this abandoned drug for a disease that urgently requires new therapies. Particles for pulmonary delivery were prepared by antisolvent precipitation. Nanofibers with a width of 200 nm were obtained by injecting isoxyl solution in ethanol to water at a volume ratio of solvent to antisolvent of 1:5. Based on this preliminary result, a well-controlled method, involving nozzle mixing, was employed to prepare isoxyl particles. All the particles were 200 to 400 nm in width but had different lengths depending on properties of the solvents. However, generating these nanoparticles by simultaneous spray drying produced isoxyl microparticles (Feret's diameter, 1.19-1.77 microm) with no discernible nanoparticle substructure. The bulking agent, mannitol, helped to prevent these nanoparticles from agglomeration during process and resulted in nanoparticle aggregates in micron-sized superstructures. Future studies will focus on understanding difference of these isoxyl microparticles and nanoparticles/nanoparticle aggregates in terms of in vivo disposition and efficacy.

  2. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1987-08-01

    This interim technical report presents results of research on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. A specific objective is to extend the state-of-the-art of the Computer Aided Design (CAD) of the monolithic microwave and millimeter wave integrated circuits (MIMIC). In this reporting period, we have derived a new model for the high electron mobility transistor (HEMT) based on a nonlinear charge control formulation which takes into consideration the variation of the 2DEG distance offset from the heterointerface as a function of bias. Pseudomorphic InGaAs/GaAs HEMT devices have been successfully fabricated at UCSD. For a 1 micron gate length, a maximum transconductance of 320 mS/mm was obtained. In cooperation with TRW, devices with 0.15 micron and 0.25 micron gate lengths have been successfully fabricated and tested. New results on the design of ultra-wideband distributed amplifiers using 0.15 micron pseudomorphic InGaAs/GaAs HEMT's have also been obtained. In addition, two-dimensional models of the submicron MESFET's, HEMT's and HBT's are currently being developed for the CRAY X-MP/48 supercomputer. Preliminary results obtained are also presented in this report.

  3. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  4. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  5. Characterization biometric and morphophysiological of Peach rootstock seeds using images of their seedling vigor.

    PubMed

    Souza, Aline Das Graças; Smiderle, Oscar Jose; Bianchi, Valmor Joao

    2018-04-26

    This study aimed to evaluate the efficiency of using the computerized imaging seed analysis system (SAS) in the biometric and morphophysiological characterization of seeds and the initial growth of seedlings from peach rootstocks. The experimental design was completely randomized with five replicates of 20 seeds. The variables analyzed were degree of seed humidity, length and width of seeds measured by SAS technology and manual measurements, mean germination time, germination percentage, radicle length and width, taproot length, length of the aerial part and taproot/aerial part ratio. The highest seed length, germination percentage (100%) and lower germination time (11.3), were obtained with the cv. Capdeboscq while, 'Tsukuba 1', 2' and 3' had intermediate seedlings length, varying from 1.55 to 1.65 cm with mean germination times between 14.5 and 18.0 days and average germination percentage of 96%. The computerized analysis of images is fast and efficient for biometric evaluations such as seed width and length, as well as initial growth of peach tree seedlings. The cvs Capdeboscq, Flordaguard and Tsukuba 2 presented greater radicle width, length and a mean taproot/aerial part ratio equal to 2, as well as higher number of adventitious roots, which indicated a strong positive correlation between radicle length, taproot length and initial seedling growth. The continuity of the research will certainly allow the development of reliable procedures for other species, besides allowing the identification of wider alternatives for the use of this system for the expansion of knowledge in the areas of physiology and evaluation of the physiological potential of seeds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Benjamin R.; Baldridge, W. Scott; Gable, Carl W.

    Finite volume calculations of the flow of rhyolite are presented to investigate the fate of viscous magmas flowing in planar fractures with realistic length to width ratios of up to 2500:1. Heat and mass transfer for a melt with a temperature dependent viscosity and the potential to undergo phase change are considered. Magma driving pressures and dike widths are chosen to satisfy simple elastic considerations. These models are applied within a parameter space relevant to the Banco Bonito rhyolite flow, Valles caldera, New Mexico. We estimate a maximum eruption duration for the event of ~200 days, realized at a minimummore » possible dike width of 5-6 m and driving pressure of 7-8 MPa. Simplifications in the current model may warrant scaling of these results. However, we demonstrate the applicability of our model to magma dynamics issues and suggest that such models may be used to infer information about both the timing of an eruption and the evolution of the associated magma source.« less

  7. A new failure mechanism in thin film by collaborative fracture and delamination: Interacting duos of cracks

    NASA Astrophysics Data System (ADS)

    Marthelot, Joël; Bico, José; Melo, Francisco; Roman, Benoît

    2015-11-01

    When a thin film moderately adherent to a substrate is subjected to residual stress, the cooperation between fracture and delamination leads to unusual fracture patterns, such as spirals, alleys of crescents and various types of strips, all characterized by a robust characteristic length scale. We focus on the propagation of a duo of cracks: two fractures in the film connected by a delamination front and progressively detaching a strip. We show experimentally that the system selects an equilibrium width on the order of 25 times the thickness of the coating and independent of both fracture and adhesion energies. We investigate numerically the selection of the width and the condition for propagation by considering Griffith's criterion and the principle of local symmetry. In addition, we propose a simplified model based on the criterion of maximum of energy release rate, which provides insights of the physical mechanisms leading to these regular patterns, and predicts the effect of material properties on the selected width of the detaching strip.

  8. Metal-free magnetic conductor substrates for placement-immune antenna assemblies

    DOEpatents

    Eubanks, Travis Wayne; Loui, Hung; McDonald, Jacob Jeremiah

    2015-09-29

    A magnetic conductor substrate produced for mounting to an antenna includes a sheet of dielectric lattice material having a length, a width and a thickness that is less than the length and less than the width. Within the sheet of dielectric lattice material is disposed an array of dielectric elements.

  9. A Military Guide to Terrorism in the Twenty-First Century. U.S. Army DCSINT Handbook No. 1 (Version 3.0)

    DTIC Science & Technology

    2005-08-15

    or varnished brown Length: 102mm Width: 61mm Weight: 773g Filler: Amatol Characteristics Color: Black and unmarked Length: 131mm Width: 55mm...isocyanate Diborane Boron tribromide Nitrogen dioxide Ethylene oxide Carbon monoxide Phosphine Fluorine Carbonyl sulfide Phosphorus oxychloride

  10. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors

    USGS Publications Warehouse

    Sun, Shaojie; Hu, Chuanmin; Feng, Lian; Swayze, Gregg A.; Holmes, Jamie; Graettinger, George; MacDonald, Ian R.; Garcia, Oscar; Leifer, Ira

    2016-01-01

    Using fine spatial resolution (~ 7.6 m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N = 52,100 continuous features) binned into four thickness classes (≤ 50 μm but thicker than sheen, 50–200 μm, 200–1000 μm, and > 1000 μm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7–11 m, and 2.5–3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin. Overall, if 50% fractional pixel coverage were to be required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor would be needed.

  11. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  13. River meanders and channel size

    USGS Publications Warehouse

    Williams, G.P.

    1986-01-01

    This study uses an enlarged data set to (1) compare measured meander geometry to that predicted by the Langbein and Leopold (1966) theory, (2) examine the frequency distribution of the ratio radius of curvature/channel width, and (3) derive 40 empirical equations (31 of which are original) involving meander and channel size features. The data set, part of which comes from publications by other authors, consists of 194 sites from a large variety of physiographic environments in various countries. The Langbein-Leopold sine-generated-curve theory for predicting radius of curvature agrees very well with the field data (78 sites). The ratio radius of curvature/channel width has a modal value in the range of 2 to 3, in accordance with earlier work; about one third of the 79 values is less than 2.0. The 40 empirical relations, most of which include only two variables, involve channel cross-section dimensions (bankfull area, width, and mean depth) and meander features (wavelength, bend length, radius of curvature, and belt width). These relations have very high correlation coefficients, most being in the range of 0.95-0.99. Although channel width traditionally has served as a scale indicator, bankfull cross-sectional area and mean depth also can be used for this purpose. ?? 1986.

  14. Riparian vegetation controls on the hydraulic geometry of streams

    NASA Astrophysics Data System (ADS)

    McBride, M.

    2010-12-01

    A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.

  15. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.

    PubMed

    Zhu, Meiling; Worthington, Emma; Tiwari, Ashutosh

    2010-01-01

    This paper presents a design study on the geometric parameters of a cantilever-based piezoelectric energy-harvesting devices (EHD), which harvest energy from motion (vibration), for the purpose of scavenging more energy from ambient vibration energy sources. The design study is based on the coupled piezoelectric-circuit finite element method (CPCFEM), previously presented by Dr. Zhu. This model can calculate the power output of piezoelectric EHDS directly connected to a load resistor and is used in this paper to obtain the following simulation results for variations in geometric parameters such as the beam length, width and thickness, and the mass length, width, and height: 1) the current flowing through and the voltage developed across the load resistor, 2) the power dissipated by the resistor and the corresponding vibrational displacement amplitude, and 3) the resonant frequency. By studying these results, straightforward design strategies that enable the generation of more power are obtained for each geometric parameter, and a physical understanding of how each parameter affects the output power is given. It is suggested that, in designing with the aim of generating more power, the following strategies be used: 1) for the beam, a shorter length, larger width, and lower ratio of piezoelectric layer thickness to total beam thickness are preferred in the case of a fixed mass; 2) for the mass, a shortened mass length and a higher mass height are preferred in the case of variation in the mass length and the mass height with mass width and mass value remain fixed, and a wider width and small mass height are preferred in the case of variation in mass width and height (mass length and value remain fixed; and 3) for the case of a fixed total length, a shorter beam length and longer mass length are preferred. With the design strategies, output powers from the device can reach above 1 to 2 mW/cm(3), much higher than the 200 microW/cm(3) currently achieved in the published literature. This is an encouraging prospect for enabling a wider range of applications of the EHDs. In addition, physical insights into how each parameter influences output power are also discussed in detail.

  16. Cell adhesion on nanotopography

    NASA Astrophysics Data System (ADS)

    Tsai, Irene; Kimura, Masahiro; Stockton, Rebecca; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell adhesion, a key element in understanding the cell-biomaterial interactions, underpins proper cell growth, function and survival. Understanding the parameters influencing cell adhesion is critical for applications in biosensors, implants and bioreactors. A gradient surface is used to study the effect of the surface topography on cell adhesion. A gradient surface is generated by block copolymer and homopolymer blends. The two homopolymers will phase separate on the micron scale and gradually decrease to nano-scale by the microphase separation of the diblock. Gradient surfaces offer a unique opportunity to probe lateral variations in the topography and interactions. Using thin films of mixtures of diblock copolymers of PS-b-MMA with PS and PMMA homopolymers, where the concentration of the PS-b-MMA varies across the surface, a gradient in the size scale of the morphology, from the nanoscopic to microscopic, was produced. By UV exposure, the variation in morphology translated into a variation in topography. The extent of cell spreading and cytoskeleton formation was investigated and marked dependence on the length scale of the surface topography was found.

  17. Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics

    PubMed Central

    Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E. B.; Hyoung Lee, Wi; Wook Lee, Sang

    2015-01-01

    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices. PMID:25959389

  18. Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.

    PubMed

    Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E B; Hyoung Lee, Wi; Wook Lee, Sang

    2015-05-11

    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.

  19. Characteristics of 0.8- and 0.2-microns gate length In(x)Ga(1-x) As/In(0.52)Al(0.48)As/InP (0.53 less than or equal to x less than or equal to 0.70) modulation-doped field-effect transistors at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Lai, Richard; Bhattacharya, Pallab K.; Yang, David; Brock, Timothy L.; Alterovitz, Samuel A.; Downey, Alan N.

    1993-01-01

    The performance characteristics of InP-based In(x)Ga(1-x)As/In(0.52)Al(0.48)As (0.53 is less than or equal to x is less than or equal to 0.70) pseudomorphic modulation-doped field-effect transistors (MODFET's) as a function of strain in the channel, gate, length, and temperature were investigated analytically and experimentally. The strain in the channel was varied by varying the In composition x. The temperature was varied in the range of 40-300 K and the devices have gate lengths L(sub g) of 0.8 and 0.2 microns. Analysis of the device was done using a one-dimensional self consistent solution of the Poisson and Schroedinger equations in the channel, a two-dimensional Poisson solver to obtain the channel electric field, and a Monte Carlo simulation to estimate the carrier transit times in the channel. An increase in the value of the cutoff frequency is predicted for an increase in In composition, a decrease in temperature, and a decrease in gate length. The improvements seen with decreasing temperature, decreasing gate length, and increased In composition were smaller than those predicted by analysis. The experimental results on pseudomorphic InGaAs/InAlAs MODFET's showed that there is a 15-30 percent improvement in cutoff frequency in both the 0.8- and 0.2-micron gate length devices when the temperature is lowered from 300 to 40 K.

  20. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    PubMed

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  1. Formation and field-driven dynamics of nematic spheroids.

    PubMed

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  2. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  3. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  4. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE PAGES

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; ...

    2018-01-01

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  5. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  6. Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.

    NASA Astrophysics Data System (ADS)

    Shindler, Joseph Daniel

    X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.

  7. Magnetoresistance and magnetization in submicron ferromagnetic gratings

    NASA Astrophysics Data System (ADS)

    Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.

    1994-05-01

    A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.

  8. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  9. Analysis of the boundary conditions for a Hele--Shaw bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, D.; Foster, M.R.

    1990-07-01

    Effective boundary conditions are derived to be used with the classical Hele--Shaw equations in calculating the shape and motion of a Hele--Shaw bubble. The main assumptions of this analysis are that the displaced fluid wets the plates, and that the capillary number Ca and the ratio of gap width to characteristic bubble length {epsilon} are both small. In a small region at the sides of the bubble, it is found that the thin-film thickness scales with {epsilon}{sup 2/5} Ca{sup 4/5}, rather than the Ca{sup 2/3} scaling that is valid over most of the thin film above and below the bubble.

  10. Measuring river from the cloud - River width algorithm development on Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Yang, X.; Pavelsky, T.; Allen, G. H.; Donchyts, G.

    2017-12-01

    Rivers are some of the most dynamic features of the terrestrial land surface. They help distribute freshwater, nutrients, sediment, and they are also responsible for some of the greatest natural hazards. Despite their importance, our understanding of river behavior is limited at the global scale, in part because we do not have a river observational dataset that spans both time and space. Remote sensing data represent a rich, largely untapped resource for observing river dynamics. In particular, publicly accessible archives of satellite optical imagery, which date back to the 1970s, can be used to study the planview morphodynamics of rivers at the global scale. Here we present an image processing algorithm developed using the Google Earth Engine cloud-based platform, that can automatically extracts river centerlines and widths from Landsat 5, 7, and 8 scenes at 30 m resolution. Our algorithm makes use of the latest monthly global surface water history dataset and an existing Global River Width from Landsat (GRWL) dataset to efficiently extract river masks from each Landsat scene. Then a combination of distance transform and skeletonization techniques are used to extract river centerlines. Finally, our algorithm calculates wetted river width at each centerline pixel perpendicular to its local centerline direction. We validated this algorithm using in situ data estimated from 16 USGS gauge stations (N=1781). We find that 92% of the width differences are within 60 m (i.e. the minimum length of 2 Landsat pixels). Leveraging Earth Engine's infrastructure of collocated data and processing power, our goal is to use this algorithm to reconstruct the morphodynamic history of rivers globally by processing over 100,000 Landsat 5 scenes, covering from 1984 to 2013.

  11. Practical considerations in the use of ultrabrief ECT in clinical practice.

    PubMed

    Galletly, Cherrie; Clarke, Patrick; Paterson, Tom; Rigby, Ashlee; Gill, Shane

    2014-03-01

    Electroconvulsive therapy (ECT) is the most effective treatment for major depression. Brief pulse width (BPW; pulse width, 1.0 m/s) ECT is often associated with cognitive impairment. Ultrabrief (UB; pulse width, 0.3 m/s) ECT is better tolerated and causes less cognitive impairment so has been introduced as an alternative. Previous research has shown that more treatments are needed with UB ECT; however, there has not been any previous research into the impact of prescribing UB ECT on length of stay. This study reports naturalistic data collected from 258 inpatients in a private psychiatric hospital for 2 years since the introduction of UB ECT. Clinician and self-rated scales of depression severity and hospital service data were used to evaluate the number of ECT treatments, length of stay, and efficacy. Patients prescribed UB ECT had, on average, 10.9 treatments compared to 8.8 for BPW ECT. They also spent more time in hospital; 30.3 days from the first ECT treatment to discharge compared to 24.7 days for patients prescribed BPW ECT. Excluding patients who switched treatments, 54% of patients prescribed UB ECT responded compared to 66.7% of patients prescribed BPW ECT. More patients (n = 42) switched from UB to BPW than from BPW to UB (n = 3). In the 4 years since the introduction of UB ECT, the number of patients prescribed ECT has increased, and the mean number of treatments per patient (for all patients receiving ECT) has increased from 7.7 to 11.6. Ultrabrief ECT has significant advantages, reflected in the increased use of ECT since UB ECT became available. However, the greater number of treatments and the increased length of stay have important implications for service delivery, costs, and bed accessibility.

  12. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  13. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOEpatents

    Senyarich, Stephane; Cocciantelli, Jean-Michel

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  14. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  15. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  16. Stream classification of the Apalachicola-Chattahoochee-Flint River System to support modeling of aquatic habitat response to climate change

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.

    2014-01-01

    A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the benefit of hydrological, soil erosion, and coarser ecological modeling. Reach attributes are summarized for each segment. In six subbasins segments are assigned additional attributes about barriers (usually impoundments) to fish migration and stream isolation. Segments in the six sub-basins are also attributed with percent urban area for the watershed upstream from the stream segment for each decade from 2010–2100 from models of urban growth. On a broader scale, for application in a coarse-scale species-response model, the stream-network information is aggregated and summarized by 256 drainage subbasins (Hydrologic Response Units) used for watershed hydrologic and stream-temperature models. A model of soil erodibility based on the Revised Universal Soil Loss Equation also was developed at this scale to parameterize a model to evaluate stream condition. The reach-scale network was classified using multivariate clustering based on modeled channel width, valley width, and mean reach gradient as variables. The resulting classification consists of a 6-cluster and a 12-cluster classification for every reach in the Apalachicola-Chattahoochee-Flint Basin. We present an example of the utility of the classification that was tested using the occurrence of two species of darters and two species of minnows in the Apalachicola-Chattahoochee-Flint River Basin, the blackbanded darter and Halloween darter, and the bluestripe shiner and blacktail shiner.

  17. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    NASA Technical Reports Server (NTRS)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  18. Comparison of Facial Proportions Between Beauty Pageant Contestants and Ordinary Young Women of Korean Ethnicity: A Three-Dimensional Photogrammetric Analysis.

    PubMed

    Kim, Sung-Chan; Kim, Hyung Bae; Jeong, Woo Shik; Koh, Kyung S; Huh, Chang Hun; Kim, Hee Jin; Lee, Woo Shun; Choi, Jong Woo

    2018-06-01

    Although the harmony of facial proportions is traditionally perceived as an important element of facial attractiveness, there have been few objective studies that have investigated this esthetic balance using three-dimensional photogrammetric analysis. To better understand why some women appear more beautiful, we investigated differences in facial proportions between beauty pageant contestants and ordinary young women of Korean ethnicity using three-dimensional (3D) photogrammetric analyses. A total of 43 prize-winning beauty pageant contestants (group I) and 48 ordinary young women (group II) of Korean ethnicity were photographed using 3D photography. Numerous soft tissue landmarks were identified, and 3D photogrammetric analyses were performed to evaluate 13 absolute lengths, 5 angles, 3 volumetric proportions, and 12 length proportions between soft tissue landmarks. Group I had a greater absolute length of the middle face, nose height, and eye height and width; a smaller absolute length of the lower face, intercanthal width, and nasal width; a larger nasolabial angle; a greater proportion of the upper and middle facial volume, nasal height, and eye height and width; and a lower proportion of the lower facial volume, lower face height, intercanthal width, nasal width, and mouth width. All these differences were statistically significant. These results indicate that there are significant differences between the faces of beauty pageant contestants and ordinary young women, and help elucidate which factors contribute to facial beauty. The group I mean values could be used as reference values for attractive facial profiles. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  19. The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.

    PubMed

    Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian

    2018-05-01

    The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.

  20. Size dependence of yield strength simulated by a dislocation-density function dynamics approach

    NASA Astrophysics Data System (ADS)

    Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.

    2015-04-01

    The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.

  1. Creating a standardized and simplified cutting bill using group technology

    Treesearch

    Urs Buehlmann; Janice K. Wiedenbeck; R., Jr. Noble; D. Earl Kline

    2008-01-01

    From an analytical viewpoint, the relationship between rough mill cutting bill part requirements and lumber yield is highly complex. Part requirements can have almost any length, width, and quantity distribution within the boundaries set by physical limitations, such as maximum length and width of parts. This complexity makes it difficult to understand the specific...

  2. A Glimpse of the Milky Way

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    In visible light, the bulk of our Milky Way galaxy's stars are eclipsed behind thick clouds of galactic dust and gas. But to the infrared eyes of NASA's Spitzer Space Telescope, distant stars and dust clouds shine with unparalleled clarity and color.

    In this panoramic image (center row, fig. 1) from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire project, a plethora of stellar activity in the Milky Way's galactic plane, reaching to the far side of our galaxy, is exposed. This image spans 9 degrees of sky (approximately the width of a fist held out at arm's length).

    The red clouds indicate the presence of large organic molecules (mixed with the dust), which have been illuminated by nearby star formation. The patches of black are dense obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators.

    With over 160 megapixels, the full detail in this panorama cannot be appreciated without zooming in to various areas of interest (top and bottom rows, fig. 1). Bubbles, or holes, in the red clouds are formed by the powerful outflows from massive groups of forming stars. Wisps of green indicate the presence of hot hydrogen gas. Star clusters can also be seen as the groupings of blue, yellow, and green specks inside some of the red nebulae, or star-forming clouds.

    In contrast to the plentiful examples of stellar youth in this montage, Spitzer also sees an object called a planetary nebula (top row, middle, fig. 1). Such nebulae are the final gasp of dying stars like our sun, whose outer layers are blown into space, leaving a burnt out core of a star, called a white dwarf, behind.

    Although this panoramic image captures a large range of the galaxy, it represents only 7.5 percent of the primary Glimpse survey, which will image most of the star formation regions in our galaxy.

    The infrared images were captured with the Spitzer's infrared array camera. The pictures are 4-channel false-color composites, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red).

    Caution: Images are best resolution available and are very large.

  3. Effect of idler absorption in pulsed optical parametric oscillators.

    PubMed

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  4. Rapidly solidified titanium alloys by melt overflow

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  5. Method of synthesizing silica nanofibers using sound waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Jaswinder K.; Datskos, Panos G.

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up tomore » an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.« less

  6. Method of synthesizing silica nanofibers using sound waves

    DOEpatents

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  7. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  8. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  9. Measurements Of The Effects Of Grain Boundary And Alloy Scattering On Spectral Phonon Mean Free Path Distributions.

    NASA Astrophysics Data System (ADS)

    Lubner, Sean; Khan, Md. Imran; Dames, Chris

    In the electronics and clean energy fields, it is increasingly necessary to reliably model the dissipation of heat from micro and nanostructures or nanostructured materials such as in batteries, computer chips, and thermoelectrics. In these regimes where length scales are comparable to the mean free paths (MFPs) of energy carriers, the diffusion law of heat conduction begins to break down. In this talk, I present our recent results from using a time domain thermoreflectance (TDTR) technique with laser spot 1/e-squared radii less than 2 microns to measure sub-diffusion thermal transport in silicon, nanograined-silicon (ng-Si), and silicon germanium (SiGe) alloys. Our results experimentally demonstrate that alloy scattering skews phonon spectra toward longer MFPs, while nanostructuring skews phonon spectra toward shorter MFPs. As a consequence, we show that a significant fraction of the heat-carrying phonons in SiGe have MFPs greater than 10 microns at room temperature, and that the thermal conductivity of ng-Si overtakes that of SiGe after microstructuring. NSF.

  10. A Preliminary Study of Ice-Accretion Scaling for SLD Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    2003-01-01

    Proposed changes to aircraft icing certification rules are being considered by European, Canadian, and American regulatory agencies to include operation in super-cooled large droplet conditions (SLD). This paper reports results of an experimental study in the NASA Glenn Icing Research Tunnel (IRT) to evaluate how well scaling methods developed for Appendix C conditions might apply to SLD conditions. Until now, scaling studies have been confined to the FAA FAR-25 Appendix C envelope of atmospheric cloud conditions. Tests were made in which it was attempted to scale to a droplet MVD of 50 microns from clouds having droplet MVDs of 175, 120, 100, and 70 microns. Scaling was based on the Ruff method with scale velocities found either by maintaining constant Weber number or by using the average of the velocities obtained by maintaining constant Weber number and constant Reynolds number. Models were unswept NACA 0012 wing sections. The reference model had a chord of 91.4 cm. Scale models had chords of 91.4, 80.0, and 53.3 cm. Tests were conducted with reference airspeeds of 100 and 150 kt (52 and 77 m/s) and with freezing fractions of 1.0, 0.6, and 0.3. It was demonstrated that the scaled 50-micron cloud simulated well the non-dimensional ice shapes accreted in clouds with MVD's of 120 microns or less.

  11. Gate length variation effect on performance of gate-first self-aligned In₀.₅₃Ga₀.₄₇As MOSFET.

    PubMed

    Mohd Razip Wee, Mohd F; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y

    2013-01-01

    A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.

  12. Gate Length Variation Effect on Performance of Gate-First Self-Aligned In0.53Ga0.47As MOSFET

    PubMed Central

    Mohd Razip Wee, Mohd F.; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y.

    2013-01-01

    A multi-gate n-type In0.53Ga0.47As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm2/Vs are achieved for the gate length and width of 0.2 µm and 30µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10−8 A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared. PMID:24367548

  13. Development of mid-infrared solid state lasers for spaceborne lidar

    NASA Technical Reports Server (NTRS)

    Whitney, Donald A.

    1990-01-01

    Researchers investigated laser performance of Ho(3+):Tm(3+):Cr(3+):YAG crystals under both Cr:GSAG laser and flashlamp pumping. A flashlamp pumped Cr:GSAG laser was built to simulate high power quasi-CW laser diode pumping of a 2.1 micron holmium laser. The 2.1 micron output laser energy exceeded more than 14 mJ, the highest value reported to date under laser pumping near 785 nm. This was obtained in a pulse length of nearly 650 microns from a 3 x 3 mm Ho:Tm:Cr:YAG rod by using the flashlamp-pumped Cr:GSAG laser as a pumping source at the diode laser wavelength, 785 microns. In addition, Ho:Tm:Cr:YAG crystals with various Tm(3+) concentrations have been evaluated for flashlamp-pumped normal mode and Q-switched 2.1 micron laser operations under a wide variety of experimental conditions in order to understand internal dynamic processes among the ions and to determine an optimum lasing condition. An increase of the laser slope efficiency was observed with the increase of the Tm(3+) concentration from 2.5 atomic percent to 4.5 atomic percent. The thermal dependence of the laser performance was also investigated. Q-switched laser output energies corresponding to nearly 100 percent of the normal-mode laser energies were obtained in a strong single spike of 200 ns pulse length by optimizing the opening time of a lithium niobate Q-switch.

  14. The importance of costoclavicular space on possible compression of the subclavian artery in the thoracic outlet region: a radio-anatomical study.

    PubMed

    Kaplan, Tevfik; Comert, Ayhan; Esmer, Ali Firat; Ataç, Gökçe Kaan; Acar, Halil Ibrahim; Ozkurt, Bulent; Tekdemir, Ibrahim; Han, Serdar

    2018-04-16

    The purposes of this study were to identify possible compression points along the transit route of the subclavian artery and to provide a detailed anatomical analysis of areas that are involved in the surgical management of the thoracic outlet syndrome (TOS). The results of the current study are based on measurements from cadavers, computed tomography (CT) scans and dry adult first ribs. The width and length of the interscalene space and the width of the costoclavicular passage were measured on 18 cervical dissections in 9 cadavers, on 50 dry first ribs and on CT angiography sections from 15 patients whose conditions were not related to TOS. The average width and length of the interscalene space in cadavers were 15.28 ± 1.94 mm and 15.98 ± 2.13 mm, respectively. The widths of the costoclavicular passage (12.42 ± 1.43 mm) were significantly narrower than the widths and lengths of the interscalene space in cadavers (P < 0.05). The average width and length of the interscalene space (groove for the subclavian artery) in 50 dry ribs were 15.53 ± 2.12 mm and 16.12 ± 1.95 mm, respectively. In CT images, the widths of the costoclavicular passage were also significantly narrower than those of the interscalene space (P < 0.05). The measurements from cadavers, dry first ribs and CT images were not significantly different (P > 0.05). Our results showed that the costoclavicular width was the narrowest space along the passage route of the subclavian artery. When considering the surgical decompression of the subclavian artery for TOS, this narrowest area should always be kept in mind. Since measurements from CT images and cadavers were significantly similar, CT measurements may be used to evaluate the thoracic outlet region in patients with TOS.

  15. Chromatic control in coextruded layered polymer microlenses

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Oder, Tom N.; Andrews, James H.; Zhou, Chuanhong; Petrus, Joshua B.; Merlo, Cory; Bagheri, Cameron; Hetzel, Connor; Tancabel, James; Singer, Kenneth D.; Baer, Eric

    2014-12-01

    We describe the formation, characterization and theoretical understanding of microlenses comprised of alternating polystyrene and polymethylmethacrylate layers produced by multilayer coextrusion. These lenses are fabricated by photolithography, using a grayscale mask followed by plasma etching, so that the refractive index alternation of the bilayer stack appears across the radius of the microlens. The alternating quarter-wave thick layers form a one-dimensional photonic crystal whose dispersion augments the material dispersion, allowing one to sculpt the chromatic dispersion of the lens by adjusting the layered structure. Using Huygen's principle, we model our experimental measurements of the focal length of these lenses across the reflection band of the multilayer polymer film from which the microlens is fashioned. For a 56 micron diameter multilayered lens of focal length 300 microns, we measured a nearly 25 percent variation in the focal length across a shallow, 50 nm-wide reflection band.

  16. Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana

    2018-06-01

    We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.

  17. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution

    PubMed Central

    1991-01-01

    The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide- stimulated cells was examined. F-actin was quantified by the TRITC- labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar. PMID:1918158

  18. The change is length and width of the Sertoli cell nuclei in cytologic smears of testes with depopulation of the seminiferous epithelium.

    PubMed

    Banek, L; Posinovec, J

    1980-09-15

    The appearance of the Sertoli cells in cytological smears of tests with depopulation of the seminiferous epithelium is described. The mean values of the lengths and widths of the Sertoli cell nuclei in smears differed significantly between the depopulation and the control group (p < 0.01).

  19. A note on sound radiation from distributed sources

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1979-01-01

    The power output from a normally vibrating strip radiator is expressed in alternative general forms, one of these being chosen to refine and correct some particular estimates given by Heckl for different numerical ratios of strip width to wave length. An exact and explicit calculation is effected for sinusoidal velocity profiles when the strip width equals an integer number of half wave lengths.

  20. 46 CFR 164.009-17 - Density measurement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) If the sample is a solid material, a specimen that has a length of 305 mm, a width of 305 mm, and thickness equal to that of the sample is prepared. The length and width are measured to the nearest 0.80 mm and the thickness to the nearest 0.25 mm. Allowance is made for any irregularity in the surfaces of...

  1. 46 CFR 164.009-17 - Density measurement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) If the sample is a solid material, a specimen that has a length of 305 mm, a width of 305 mm, and thickness equal to that of the sample is prepared. The length and width are measured to the nearest 0.80 mm and the thickness to the nearest 0.25 mm. Allowance is made for any irregularity in the surfaces of...

  2. 46 CFR 164.009-17 - Density measurement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) If the sample is a solid material, a specimen that has a length of 305 mm, a width of 305 mm, and thickness equal to that of the sample is prepared. The length and width are measured to the nearest 0.80 mm and the thickness to the nearest 0.25 mm. Allowance is made for any irregularity in the surfaces of...

  3. 46 CFR 164.009-17 - Density measurement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) If the sample is a solid material, a specimen that has a length of 305 mm, a width of 305 mm, and thickness equal to that of the sample is prepared. The length and width are measured to the nearest 0.80 mm and the thickness to the nearest 0.25 mm. Allowance is made for any irregularity in the surfaces of...

  4. Passive mode lockers for lasers generating at a wavelength of 1.06 micron

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. P.; Demchuk, M. I.; Lugovskii, A. P.; Sosnovskii, G. M.; Iumashev, K. V.

    1983-04-01

    New polymethine dyes that can be used for the passive mode locking of lasers generating at 1.06 micron are investigated using YAG:Nd as the active element. The effect of introducing various substituents into the heterocyclic nuclei of the end groups of polymethine dyes is discussed. It is shown that substituents generally increase the energy of the ultrashort pulse while also increasing its length.

  5. Laser frequency multiplication

    NASA Astrophysics Data System (ADS)

    1991-11-01

    A high quality mode locked pulse train was obtained at 9.55 microns, the CO2 wavelength chosen for frequency doubling into the atmospheric window at 4.8 microns. The pulse train consists of a 3 micro sec burst of 1.5 nsec pulses separated by 40 nsec, in a TEM (sub 00) mode and with a total energy of 100 mJ. The pulse intensity without focussing is about 3 MW/sq.cm., already quite close to the target intensity of 10 MW/sq.cm. for frequency doubling in a AgGaSe2 crystal. The mode-locked train is obtained by intracavity modulation at 12.5 MHz using a germanium crystal driven with a power of about 30 Watts. Line selection is achieved firstly by the use of a 0.92 mm thick CaF2 plate at the Brewster angle within the cavity, which completely suppresses 10.6 micron band radiation. Secondly, a particular rotational line, the P20 at 9.55 micron, is selected by the injection of a continuous beam is mode-matched to the pulsed laser cavity using a long focal length lens, and for best line-locking it is necessary to fine tune the length of the pulsed laser resonator. Injection causes substantial depression of the gain switched spike.

  6. Innovative virtual reality measurements for embryonic growth and development.

    PubMed

    Verwoerd-Dikkeboom, C M; Koning, A H J; Hop, W C; van der Spek, P J; Exalto, N; Steegers, E A P

    2010-06-01

    Innovative imaging techniques, using up-to-date ultrasonic equipment, necessitate specific biometry. The aim of our study was to test the possibility of detailed human embryonic biometry using a virtual reality (VR) technique. In a longitudinal study, three-dimensional (3D) measurements were performed from 6 to 14 weeks gestational age in 32 pregnancies (n = 16 spontaneous conception, n = 16 IVF/ICSI). A total of 125 3D volumes were analysed in the I-Space VR system, which allows binocular depth perception, providing a realistic 3D illusion. Crown-rump length (CRL), biparietal diameter (BPD), occipito-frontal diameter (OFD), head circumference (HC) and abdominal circumference (AC) were measured as well as arm length, shoulder width, elbow width, hip width and knee width. CRL, BPD, OFD and HC could be measured in more than 96% of patients, and AC in 78%. Shoulder width, elbow width, hip width and knee width could be measured in more than 95% of cases, and arm length in 82% of cases. Growth curves were constructed for all variables. Ear and foot measurements were only possible beyond 9 weeks gestation. This study provides a detailed, longitudinal description of normal human embryonic growth, facilitated by a VR system. Growth curves were created for embryonic biometry of the CRL, BPD, HC and AC early in pregnancy and also of several 'new' biometric measurements. Applying virtual embryoscopy will enable us to diagnose growth and/or developmental delay earlier and more accurately. This is especially important for pregnancies at risk of severe complications, such as recurrent late miscarriage and early growth restriction.

  7. Effects of ballet training of children in Turkey on foot anthropometric measurements and medial longitudinal arc development.

    PubMed

    Ozdinc, Sevgi Anar; Turan, Fatma Nesrin

    2016-07-01

    To investigate the effects of ballet training on foot structure and the formation of the medial longitudinal arc in childhood, and the association of body mass index with structural change secondary to ballet training. This study was conducted at Öykü Ballet and Dance School and Trakya University, Edirne, Turkey, from September 2007 to November 2008, and comprised girl students who were taking ballet classes, and a group of those who were not taking such who acted as the controls. Static footprints of both feet of all participants were taken with an ink paedogram. Parameters evaluated from footprints included foot length, metatarsal width, heel width and medial longitudinal arch. The relationship between the parameters, the ballet starting age, training duration and body mass index was investigated. Of the 67 participants, there were 36(53.7%) in the experimental group and 31(48.3%) in the control group. The difference between age, height, weight and body mass index between the two groups was insignificant (p>0.05). The average ballet starting age was 6.47±1.55 years and duration was 4.36±2.002 years. Positive correlations were found between body mass index and foot length, metatarsal width, heel width, medial longitudinal arch contact width and halluxvalgus angle; between ballet starting age and metatarsal width, heel width; between duration of training and foot length, metatarsal width and hallux valgus angle (p?0.05 each). Evidence supporting the education in children on foot anthropometric measurements and medial longitudinal arc development could not be found.

  8. The Effect of Casting Ring Liner Length and Prewetting on the Marginal Adaptation and Dimensional Accuracy of Full Crown Castings.

    PubMed

    Haralur, Satheesh B; Hamdi, Osama A; Al-Shahrani, Abdulaziz A; Alhasaniah, Sultan

    2017-01-01

    To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups ( n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners.

  9. The Effect of Casting Ring Liner Length and Prewetting on the Marginal Adaptation and Dimensional Accuracy of Full Crown Castings

    PubMed Central

    Haralur, Satheesh B.; Hamdi, Osama A.; Al-Shahrani, Abdulaziz A.; Alhasaniah, Sultan

    2017-01-01

    Aim: To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. Materials and Methods: The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups (n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. Results: The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. Conclusion: The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners. PMID:28316950

  10. PNS calculations for 3-D hypersonic corner flow with two turbulence models

    NASA Technical Reports Server (NTRS)

    Smith, Gregory E.; Liou, May-Fun; Benson, Thomas J.

    1988-01-01

    A three-dimensional parabolized Navier-Stokes code has been used as a testbed to investigate two turbulence models, the McDonald Camarata and Bushnell Beckwith model, in the hypersonic regime. The Bushnell Beckwith form factor correction to the McDonald Camarata mixing length model has been extended to three-dimensional flow by use of an inverse averaging of the resultant length scale contributions from each wall. Two-dimensional calculations are compared with experiment for Mach 18 helium flow over a 4-deg wedge. Corner flow calculations have been performed at Mach 11.8 for a Reynolds number of .67 x 10 to the 6th, based on the duct half-width, and a freestream stagnation temperature of 1750-deg Rankine.

  11. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget

    NASA Astrophysics Data System (ADS)

    Wesley Lauer, J.; Echterling, Caitlyn; Lenhart, Christian; Belmont, Patrick; Rausch, Rachel

    2017-11-01

    The Minnesota River and major tributaries have experienced large increases in discharge over the past century. Aerial photograph-based measurements of channel width were made for the 1938-2015 period at 16 multibend subreaches by digitizing the area between vegetation lines and dividing by centerline length. Results show considerable increases in width for the main stem (0.62 ± 0.10%/y) and major tributaries (0.31 ± 0.08%/y) but are inconclusive for smaller channels (width < 25 m). Width change for a 146.5-km reach of the lower Minnesota River between 1938 and 2008 is similar to that from the subreach-scale analysis. Widening was associated with lateral centerline movement and temporal change in at-a-station hydraulic geometry for water surface width, indicating that widening is associated with cross-sectional change and not simply upward movement of the vegetation line. Digital elevation model analysis and regional hydraulic geometry show that the main stem and larger tributaries account for the vast majority ( 85%) of bankfull channel volume. High-order channels are thus disproportionately responsible for sediment production through cross section enlargement, although floodplains or off-channel water bodies adjacent to these channels likely represent important sediment sinks. Because channel enlargement can play an important role in sediment production, it should be considered in sediment reduction strategies in the Minnesota River basin and carefully evaluated in other watersheds undergoing long-term increases in discharge.

  12. Experimental Determination of Ultra-Sharp Stray Field Distribution from a Magnetic Vortex Core Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L.; Zhu, Y.; Zhong, H.

    2009-08-01

    The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less

  13. Echocardiographic Linear Dimensions for Assessment of Right Ventricular Chamber Volume as Demonstrated by Cardiac Magnetic Resonance

    PubMed Central

    Kim, Jiwon; Srinivasan, Aparna; Garcia, Tania S.; Franco, Antonino Di; Peskin, Charles S.; McQueen, David M.; Paul, Tracy K.; Feher, Attila; Geevarghese, Alexi; Rozenstrauch, Meenakshi; Devereux, Richard B.; Weinsaft, Jonathan W.

    2016-01-01

    Background Echo-derived linear dimensions offer straightforward indices of right ventricular (RV) structure but have not been systematically compared to RV volumes on cardiac magnetic resonance (CMR). Methods Echo and CMR were interpreted among CAD patients imaged via prospective (90%) or retrospective (10%) registries. For echo, American Society of Echocardiography (ASE) recommended RV dimensions were measured in apical 4-chamber (basal RV width, mid RV width, RV length), parasternal long (proximal RV outflow tract [pRVOT]) and short axis (distal RVOT) views. For CMR, RV end-diastolic (RV-EDV) and end-systolic (RV-ESV) volumes were quantified via border planimetry. Results 272 patients underwent echo and CMR within a narrow interval (0.4±1.0 days); complete acquisition of all ASE dimensions was feasible in 98%. All echo dimensions differed between patients with and without RV dilation on CMR (p<0.05). Basal RV width (r=0.70), pRVOT width (r=0.68), and RV length (r=0.61) yielded highest correlations with RV-EDV on CMR; end-systolic dimensions yielded similar correlations (r=0.68, 0.66, 0.65 respectively). In multivariable regression, basal RV width (regression coefficient 1.96 per mm [CI 1.22–2.70], p<0.001), RV length (0.97[0.56–1.37], p<0.001) and pRVOT width (2.62 [1.79–3.44], p<0.001) were independently associated with CMR RV-EDV[r= 0.80]. RV-ESV was similarly associated with echo dimensions (basal RV width; 1.59 per mm [CI 1.06–2.13], p<0.001) | RV length; 1.00 [0.66–1.34], p<0.001) | pRVOT width; 1.80 [1.22–2.39], p<0.001) [r= 0.79]. Conclusions RV linear dimensions provide readily obtainable markers of RV chamber size. Proximal RVOT and basal width are independently associated with CMR volumes, supporting use of multiple linear dimensions when assessing RV size on echo. PMID:27297619

  14. The NH3 spectrum in Saturn's 5 micron window

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Fink, U.; Larson, H. P.; Johnson, J. R.

    1983-01-01

    Spectra of Saturn's 5-micron window were obtained at the Infrared Telescope Facility on Mauna Kea, Hawaii. The spectra have a resolution of 1.2/cm, and some exhibit extremely low amounts of approximately 300-micron ppt telluric H2O. The Saturn spectra show absorptions by the 2nu2 band of NH3. Long-path laboratory comparison spectra of NH3 were acquired and show considerable deviations in intensity from theoretical predictions. The calibration of Saturn's observed NH3 features with the laboratory data gives 2.0 + or - 0.5 m-amagat of NH3 using the 2nu2 Q-branch at 5.32 microns. The R(1) and R(2) lines yield an abundance about 3 times greater. Absorptions outside the range of the Q-branch can be accounted for by solid NH3 of 10-20 microns equivalent path length. The origin of Saturn's 5-micron flux is mostly thermal with some admixture of solar reflected radiation. A depletion of Saturn's NH3 abundance below the solar value is indicated, but confirmation of this conclusion will require a better understanding of the atmospheric penetration depth at 5 microns and more rigorous modeling of the spectral line formation.

  15. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  16. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    NASA Astrophysics Data System (ADS)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  17. Early Onset of Kinetic Roughening due to a Finite Step Width in Hematin Crystallization

    NASA Astrophysics Data System (ADS)

    Olafson, Katy N.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2017-11-01

    The structure of the interface of a growing crystal with its nutrient phase largely determines the growth dynamics. We demonstrate that hematin crystals, crucial for the survival of malaria parasites, transition from faceted to rough growth interfaces at increasing thermodynamic supersaturation Δ μ . Contrary to theoretical predictions and previous observations, this transition occurs at moderate values of Δ μ . Moreover, surface roughness varies nonmonotonically with Δ μ , and the rate constant for rough growth is slower than that resulting from nucleation and spreading of layers. We attribute these unexpected behaviors to the dynamics of step growth dominated by surface diffusion and the loss of identity of nuclei separated by less than the step width w . We put forth a general criterion for the onset of kinetic roughening using w as a critical length scale.

  18. An investigation into preserving spatially-distinct pore systems in multi-component rocks using a fossiliferous limestone example

    NASA Astrophysics Data System (ADS)

    Jiang, Zeyun; Couples, Gary D.; Lewis, Helen; Mangione, Alessandro

    2018-07-01

    Limestones containing abundant disc-shaped fossil Nummulites can form significant hydrocarbon reservoirs but they have a distinctly heterogeneous distribution of pore shapes, sizes and connectivities, which make it particularly difficult to calculate petrophysical properties and consequent flow outcomes. The severity of the problem rests on the wide length-scale range from the millimetre scale of the fossil's pore space to the micron scale of rock matrix pores. This work develops a technique to incorporate multi-scale void systems into a pore network, which is used to calculate the petrophysical properties for subsequent flow simulations at different stages in the limestone's petrophysical evolution. While rock pore size, shape and connectivity can be determined, with varying levels of fidelity, using techniques such as X-ray computed tomography (CT) or scanning electron microscopy (SEM), this work represents a more challenging class where the rock of interest is insufficiently sampled or, as here, has been overprinted by extensive chemical diagenesis. The main challenge is integrating multi-scale void structures derived from both SEM and CT images, into a single model or a pore-scale network while still honouring the nature of the connections across these length scales. Pore network flow simulations are used to illustrate the technique but of equal importance, to demonstrate how supportable earlier-stage petrophysical property distributions can be used to assess the viability of several potential geological event sequences. The results of our flow simulations on generated models highlight the requirement for correct determination of the dominant pore scales (one plus of nm, μm, mm, cm), the spatial correlation and the cross-scale connections.

  19. Pahoehoe toe dimensions, morphology, and branching relationships at Mauna Ulu, Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Baloga, Stephen M.

    Pahoehoe toe dimensions, morphology, and branching relationships were analyzed in flows emplaced during 1972 at Mauna Ulu, a satellitic shield on the east rift zone of Kilauea Volcano, Hawai'i. In order to characterize regions within flow fields dominated by networks of pahoehoe toes, measurements of toe length, width, thickness, and orientation were completed for 445 toes at 13 sites. Variations in site characteristics, including slope, substrate, and position in the flow field allow an evaluation of the effects of such parameters on toe dimensions. Toe surface morphology (ropy or smooth), local flow lobe position (interior or margin), and connective relationships between toes were documented in the form of detailed toe maps. These maps show the number of branches connecting a given toe to other toes in its local pahoehoe network and illustrate branching patterns. Statistical analyses of toe dimensions and comparisons of pahoehoe toe study sites and sub-populations combined with field observations, evaluation of toe maps, and qualitative examination of toe dimension size distributions show the following: (a) Although there are significant variations at a given site, toes typically have mean lengths (101cm) greater than mean widths (74cm) and mean widths greater than mean thicknesses (19cm) sites that have mean widths greater than mean lengths are those with lower slopes. (b) Where significant site-to-site variations in mean values of a given toe dimension were apparent, these differences could not be directly related to site characteristics. (c) Ropy toes have significantly larger mean values of length, width, and number of branches than smooth toes, and toes with three or more branches have greater lengths, widths, and thicknesses than toes with two or fewer branches, suggesting concentration of flow in these toe types. (d) The skewness of all size distributions of toe length and width to larger values suggests that toes are transitional to larger sheets and channels, consistent with field observations; and (e) Two distinct types of branching patterns (called monolayer and centrally ridged) were observed in preserved pahoehoe flow lobes. The significant variability in measured toe dimensions at Mauna Ulu suggests that toe dimensions are influenced by numerous locally defined, random factors, and that an approach based on stochastic methods can be used to model pahoehoe flow emplacement.

  20. Variable-Period Undulators For Synchrotron Radiation

    DOEpatents

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  1. Diode laser trabeculoplasty in open angle glaucoma: 50 micron vs. 100 micron spot size.

    PubMed

    Veljko, Andreić; Miljković, Aleksandar; Babić, Nikola

    2011-01-01

    The study was aimed at evaluating the efficacy of diode laser trabeculoplsaty in lowering intraocular pressure in patients with both primary open-angle glaucoma and exfoliation glaucoma by using different size of laser spot. This six-month, unmasked, controlled, prospective study included sixty-two patients with the same number of eyes, who were divided into two groups. Trabeculoplasty was performed with 50 micron and 100 micron laser spot size in the group I and group II, respectively. Other laser parameters were the same for both groups: the wave length of 532 nm, 0.1 second single emission with the power of 600-1200 mW was applied on the 180 degrees of the trabeculum. The mean intraocular pressure decrease in the 50 micron group (group 1) on day 7 was 24% from the baseline and after six-month follow-up period the intraocular pressure decrease was 29.8% (p < 0.001). In the 100 micron group (group II), the mean intraocular pressure decrease on day 7 was 26.5% and after six months it was 39% (p < 0.001).

  2. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    NASA Astrophysics Data System (ADS)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and materials science.

  3. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observablesa)

    NASA Astrophysics Data System (ADS)

    Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-05-01

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  4. Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Reeves, Matthew T.; Billam, Thomas P.; Yu, Xiaoquan; Bradley, Ashton S.

    2017-11-01

    We report evidence for an enstrophy cascade in large-scale point-vortex simulations of decaying two-dimensional quantum turbulence. Devising a method to generate quantum vortex configurations with kinetic energy narrowly localized near a single length scale, the dynamics are found to be well characterized by a superfluid Reynolds number Res that depends only on the number of vortices and the initial kinetic energy scale. Under free evolution the vortices exhibit features of a classical enstrophy cascade, including a k-3 power-law kinetic energy spectrum, and constant enstrophy flux associated with inertial transport to small scales. Clear signatures of the cascade emerge for N ≳500 vortices. Simulating up to very large Reynolds numbers (N =32 768 vortices), additional features of the classical theory are observed: the Kraichnan-Batchelor constant is found to converge to C'≈1.6 , and the width of the k-3 range scales as Res1 /2 .

  5. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... remainder in inches or common or decimal fractions of the yard or foot except that a dimension of less than... dimension of less than 2 feet (60.96 cm) may be stated in inches. (4) For any commodity for which the... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch...

  6. Grid-Independent Large-Eddy Simulation in Turbulent Channel Flow using Three-Dimensional Explicit Filtering

    NASA Technical Reports Server (NTRS)

    Gullbrand, Jessica

    2003-01-01

    In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM consists of the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in linear combination with the DSM. In the DRM, the RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term, while the USFS stresses are modeled by the DSM. The DSM and the DMM are two commonly used turbulence-closure models, while the DRM is a more recent model.

  7. An ultrashort mixing length micromixer: the shear superposition micromixer.

    PubMed

    Bottausci, Frédéric; Cardonne, Caroline; Meinhart, Carl; Mezić, Igor

    2007-03-01

    We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.

  8. Genetic variability and phenotypic plasticity of metric thoracic traits in an invasive drosophilid in America.

    PubMed

    Bitner-Mathé, Blanche Christine; David, Jean Robert

    2015-08-01

    Thermal phenotypic plasticity of 5 metric thoracic traits (3 related to size and 2 to pigmentation) was investigated in Zaprionus indianus with an isofemale line design. Three of these traits are investigated for the first time in a drosophilid, i.e. thorax width and width of pigmented longitudinal white and black stripes. The reaction norms of white and black stripes were completely different: white stripes were insensitive to growth temperature while the black stripes exhibited a strong linear decrease with increasing temperatures. Thorax width exhibited a concave reaction norm, analogous but not identical to those of wing length and thorax length: the temperatures of maximum value were different, the highest being for thorax width. All traits exhibited a significant heritable variability and a low evolvability. Sexual dimorphism was very variable among traits, being nil for white stripes and thorax width, and around 1.13 for black stripes. The ratio thorax length to thorax width (an elongation index) was always >1, showing that males have a more rounded thorax at all temperatures. Black stripes revealed a significant increase of sexual dimorphism with increasing temperature. Shape indices, i.e. ratios between size traits all exhibited a linear decrease with temperature, the least sensitive being the elongation index. All these results illustrate the complexity of developmental processes but also the analytical strength of biometrical plasticity studies in an eco-devo perspective.

  9. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    PubMed

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  10. Functional anatomy and ultrasound examination of the canine penis.

    PubMed

    Goericke-Pesch, Sandra; Hölscher, Catharina; Failing, Klaus; Wehrend, Axel

    2013-07-01

    The aim of this study was to identify the functional-anatomical structures of the canine penis during and after erection to demonstrate the respective changes to provide a basis for further examinations of pathological conditions like priapism. Additionally, a gray-scale analysis was performed to quantify results from the ultrasound examination. In total, 80 dogs were examined. In group (Gr.) A, 44 intact or castrated dogs were examined, and in Gr. B, 36 dogs were examined during erection and after complete detumescence of the penis. The following parameters were assessed: (1) using physical measurements: length of the Pars longa glandis [Plg] and length of the Bulbus glandis [Bg]; and (2) using ultrasound: total penile diameter, width of the erectile tissue of the Plg, diameter of the Corpus spongiosum [Cs] including the penile bone and urethra, vertical diameter, circumference of the penis, cross-sectional area, and area of the Cs including the urethra. The mentioned parameters could be assessed in all dogs of Gr. A and Gr. B with the only exception being the urethra that could be visualized using ultrasound in some dogs only and predominantly in the erected penis (Gr. B). Concomitantly, the erectile tissue of the Plg and the Cs was more heterogenous and hypo- to anechoic during erection compared with dogs in Gr. A and Gr. B after detumescence. Comparing the results in Gr. B, the length of the Plg and the Bg were decreased approximately 40.6% and 38.0%, the total width of the penis 40.5%, the total width of the erectile tissue of the Plg 48.0%, and the width of the Cs 15.6% during detumescence compared with erection. Comparing the decrease in size at the different locations (apex penis, middle of Plg, middle of Bg) for vertical diameter, total circumference, and cross-section area, it was largest at the Bg. B-mode ultrasound is a suitable tool to investigate not only the morpho-functional structures of the resting canine penis, but also of the erected and detumescent penis, and to investigate the underlying changes during erection and detumenscence. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Cluster Analysis of Longidorus Species (Nematoda: Longidoridae), a New Approach in Species Identification

    PubMed Central

    Ye, Weimin; Robbins, R. T.

    2004-01-01

    Hierarchical cluster analysis based on female morphometric character means including body length, distance from vulva opening to anterior end, head width, odontostyle length, esophagus length, body width, tail length, and tail width were used to examine the morphometric relationships and create dendrograms for (i) 62 populations belonging to 9 Longidorus species from Arkansas, (ii) 137 published Longidorus species, and (iii) 137 published Longidorus species plus 86 populations of 16 Longidorus species from Arkansas and various other locations by using JMP 4.02 software (SAS Institute, Cary, NC). Cluster analysis dendograms visually illustrated the grouping and morphometric relationships of the species and populations. It provided a computerized statistical approach to assist by helping to identify and distinguish species, by indicating morphometric relationships among species, and by assisting with new species diagnosis. The preliminary species identification can be accomplished by running cluster analysis for unknown species together with the data matrix of known published Longidorus species. PMID:19262809

  12. An arthroscopic evaluation of the anatomical "critical zone".

    PubMed

    Naidoo, N; Lazarus, L; Osman, S A; Satyapal, K S

    2017-01-01

    The "critical zone", a region of speculated vascularity, is situated approximately 10 mm proximal to the insertion of the supraspinatus tendon. Despite its obvious role as an anatomical landmark demarcator, its patho-anatomic nature has been identified as the source of rotator cuff pathology. Although many studies have attempted to evaluate the vascularity of this region, the architecture regarding the exact length, width and shape of the critical zone, remains unreported. This study aimed to determine the shape and morphometry of the "critical zone" arthroscopically. The sample series, which was comprised of 38 cases (n = 38) specific to pathological types, employed an anatomical investigation of the critical zone during routine real-time arthroscopy. Demographic representation: i) sex: 19 males, 19 females; ii) age range: 18-76 years; iii) race: white (n = 29), Indian (n = 7) and coloured (n = 2). The incidence of shape and the mean lengths and widths of the critical zone were determined in accordance with the relevant demographic factors and patient history. Although the cresenteric shape was predominant, hemispheric and sail-shaped critical zones were also identified. The lengths and widths of the critical zone appeared markedly increased in male individuals. While the increase in age may account for the increased incidence of rotator cuff degeneration due to poor end-vascular supply, the additional factors of height and weight presented as major determinants of the increase in size of the critical zone. In addition, the comparisons of length and width with each other and shape yielded levels of significant difference, therefore indicating a directly proportional relationship between the length and width of the critical zone. This detailed understanding of the critical zone may prove beneficial for the success of post-operative rotator cuff healing.

  13. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    PubMed

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  15. Shear-banding and superdiffusivity in entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Shin, Seunghwan; Dorfman, Kevin D.; Cheng, Xiang

    2017-12-01

    Using high-resolution confocal rheometry, we study the shear profiles of well-entangled DNA solutions under large-amplitude oscillatory shear in a rectilinear planar shear cell. With increasing Weissenberg number (Wi), we observe successive transitions from normal Newtonian linear shear profiles to wall-slip dominant shear profiles and, finally, to shear-banding profiles at high Wi. To investigate the microscopic origin of the observed shear banding, we study the dynamics of micron-sized tracers embedded in DNA solutions. Surprisingly, tracer particles in the shear frame exhibit transient superdiffusivity and strong dynamic heterogeneity. The probability distribution functions of particle displacements follow a power-law scaling at large displacements, indicating a Lévy-walk-type motion, reminiscent of tracer dynamics in entangled wormlike micelle solutions and sheared colloidal glasses. We further characterize the length and time scales associated with the abnormal dynamics of tracer particles. We hypothesize that the unusual particle dynamics arise from localized shear-induced chain disentanglement.

  16. Variations in tooth size and arch dimensions in Malay schoolchildren.

    PubMed

    Hussein, Khalid W; Rajion, Zainul A; Hassan, Rozita; Noor, Siti Noor Fazliah Mohd

    2009-11-01

    To compare the mesio-distal tooth sizes and dental arch dimensions in Malay boys and girls with Class I, Class II and Class III malocclusions. The dental casts of 150 subjects (78 boys, 72 girls), between 12 and 16 years of age, with Class I, Class II and Class III malocclusions were used. Each group consisted of 50 subjects. An electronic digital caliper was used to measure the mesio-distal tooth sizes of the upper and lower permanent teeth (first molar to first molar), the intercanine and intermolar widths. The arch lengths and arch perimeters were measured with AutoCAD software (Autodesk Inc., San Rafael, CA, U.S.A.). The mesio-distal dimensions of the upper lateral incisors and canines in the Class I malocclusion group were significantly smaller than the corresponding teeth in the Class III and Class II groups, respectively. The lower canines and first molars were significantly smaller in the Class I group than the corresponding teeth in the Class II group. The lower intercanine width was significantly smaller in the Class II group as compared with the Class I group, and the upper intermolar width was significantly larger in Class III group as compared with the Class II group. There were no significant differences in the arch perimeters or arch lengths. The boys had significantly wider teeth than the girls, except for the left lower second premolar. The boys also had larger upper and lower intermolar widths and lower intercanine width than the girls. Small, but statistically significant, differences in tooth sizes are not necessarily accompanied by significant arch width, arch length or arch perimeter differences. Generally, boys have wider teeth, larger lower intercanine width and upper and lower intermolar widths than girls.

  17. A 12-year anthropometric evaluation of the nose in bilateral cleft lip-cleft palate patients following nasoalveolar molding and cutting bilateral cleft lip and nose reconstruction.

    PubMed

    Garfinkle, Judah S; King, Timothy W; Grayson, Barry H; Brecht, Lawrence E; Cutting, Court B

    2011-04-01

    Patients with bilateral cleft lip-cleft palate have nasal deformities including reduced nasal tip projection, widened ala base, and a deficient or absent columella. The authors compare the nasal morphology of patients treated with presurgical nasoalveolar molding followed by primary lip/nasal reconstruction with age-matched noncleft controls. A longitudinal, retrospective review of 77 nonsyndromic patients with bilateral cleft lip-cleft palate was performed. Nasal tip protrusion, alar base width, alar width, columella length, and columella width were measured at five time points spanning 12.5 years. A one-sample t test was used for statistical comparison to an age-matched noncleft population published by Farkas. All five measurements demonstrated parallel, proportional growth in the treatment group relative to the noncleft group. The nasal tip protrusion, alar base width, alar width, columella length, and columella width were not statistically different from those of the noncleft, age-matched control group at age 12.5 years. The nasal tip protrusion also showed no difference in length at 7 and 12.5 years. The alar width and alar base width were significantly wider at the first four time points. This is the first study to describe nasal morphology following nasoalveolar molding and primary surgical repair in patients with bilateral cleft lip-cleft palate through the age of 12.5 years. In this investigation, the authors have shown that patients with bilateral cleft lip-cleft palate treated at their institution with nasoalveolar molding and primary nasal reconstruction, performed at the time of their lip repair, attained nearly normal nasal morphology through 12.5 years of age.

  18. Comparison of Film Thickness of Two Commercial Brands of Glass lonomer Cement and One Dual-cured Composite: An in vitro Study.

    PubMed

    Khajuria, Rajat R; Singh, Rishav; Barua, Pranamee; Hajira, Nausheen; Gupta, Naveen; Thakkar, Rohit R

    2017-08-01

    The present study is undertaken to examine the film thickness of three most commonly used luting cements and to determine their usage as a luting agent. This study was carried out strictly according to the guidelines of American Dental Association (ADS) specification no. 8. Two glass slabs of 5 cm in length and 2 cm in width were used. One glass slab was kept over the other glass slab and the space between the two glass slabs was measured using metallurgical microscope at the power of 10*. Two brands of glass ionomer cement (GIC) and one dual-cured resin cement were used in this study. The test cement is sandwiched between two glass slabs. A static load of 15 kg was applied using universal testing machine on the glass slabs for 1 hour and the space present between the two glass slabs was measured using metallurgical microscope at the power of 10*. Greatest film thickness was found in group III (Paracore) followed by group II (micron) and lowest in group I (GC luting and lining cement). All the tested samples can be used for luting purposes. Greatest film thickness was observed in Paracore followed by micron and lowest in GC luting and lining cement. This suggests that the 25 to 27°C is ideal for mixing of the cement when used for luting consistency. The cement with film thickness more than 30 urn should never be used for luting purposes. The dentist should choose the luting cement with utmost care noting the film thickness and bond strength of the cement. The cement with low exothermic heat production and good bond strength should be encouraged.

  19. Synthesis of cerium oxide (CeO 2) by co-precipitation for application as a reference material for X-ray powder diffraction peak widths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Lima Batista, Anderson Márcio; Miranda, Marcus Aurélio Ribeiro; Martins, Fátima Itana Chaves Custódio

    Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However,more » this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO 2that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.« less

  20. Methodology to set up nozzle-to-substrate gap for high resolution electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Park, Ji-Woon; Nasrabadi, Ali Mohamadi; Hwang, Jungho

    2016-09-01

    Several efforts have been made for the prediction of jet diameter in electrohydrodynamic jet printing; however, not much attention has been paid to the jet length, which is the distance from the cone apex to the location where the jet is unstable and is broken into atomized droplets. In this study, we measured both the cone length and the jet length using a high-speed camera, and measured the line pattern width with an optical microscope to investigate the effects of cone length and jet length on the pattern quality. Measurements were carried out with variations in nozzle diameter, flow rate, and applied voltage. The pattern width was theoretically predicted for the case when the nozzle-to-substrate distance was more than the cone length, and smaller than the summation of the cone and jet lengths (which is the case when there is no jet breakup).

  1. Beam-width spreading of vortex beams in free space

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  2. Optimization of H2 thermal annealing process for the fabrication of ultra-low loss sub-micron silicon-on-insulator rib waveguides

    NASA Astrophysics Data System (ADS)

    Bellegarde, Cyril; Pargon, Erwine; Sciancalepore, Corrado; Petit-Etienne, Camille; Lemonnier, Olivier; Ribaud, Karen; Hartmann, Jean-Michel; Lyan, Philippe

    2018-02-01

    The superior confinement of light provided by the high refractive index contrast in Si/SiO2 waveguides allows the use of sub-micron photonic waveguides. However, when downscaling waveguides to sub-micron dimensions, propagation losses become dominated by sidewall roughness scattering. In a previous study, we have shown that hydrogen annealing after waveguide patterning yielded smooth silicon sidewalls. Our optimized silicon patterning process flow allowed us to reduce the sidewall roughness down to 0.25 nm (1σ) while maintaining rectangular Strip waveguides. As a result, record low optical losses of less than 1 dB/cm were measured at telecom wavelengths for waveguides with dimensions larger than 350 nm. With Rib waveguides, losses are expected to be even lower. However, in this case the Si reflow during the H2 anneal leads to the formation of a foot at the bottom of the structure and to a rounding of its top. A compromise is thus to be found between low losses and conservation of the rectangular shape of the Rib waveguide. This work proposes to investigate the impact of temperature and duration of the H2 anneal on the Rib profile, sidewalls roughness and optical performances. The impact of a Si/SiO2 interface is also studied. The introduction of H2 thermal annealing allows to obtain very low losses of 0.5 dB/cm at 1310 nm wavelength for waveguide dimensions of 300-400 nm, but it comes along an increase of the pattern bottom width of 41%, with a final bottom width of 502 nm.

  3. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  4. Microgravity Droplet Combustion in CO2 Enriched Environments at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Nayagam, V.; Williams, F. A.

    2007-01-01

    Microgravity droplet combustion experiments were performed in elevated concentrations of CO2 at pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating suppression agent in space applications. Methanol and n-heptane droplets, with an initial diameter of 2.0 mm supported on a quartz fiber, were used in these experiments. The ambient O2 concentration was held constant at 21% and the CO2 concentrations ranged from 0% to a maximum of 70%, by volume with the balance consisting of N2 . Results from the methanol tests showed slight decreases in burning rates with increased CO2 concentrations at all ambient pressures. The n-heptane tests show slight increases in burning rates with increasing CO2 concentrations at each pressure level. Instantaneous radiative heat flux was also measured using both a broadband radiometer (i.e., wavelengths from 0.6 microns to 40.0 microns) and a narrowband radiometer (i.e., centered at 5.6 microns with a filter width at half maximum of 1.5 microns). Radiative exchanges between the droplet and surrounding gases as well as the soot field produce departures from the classical quasisteady theory which would predict a decrease in burning rates with increasing CO2 concentrations in microgravity.

  5. Fabrication of biomimetic nanomaterials and their effect on cell behavior

    NASA Astrophysics Data System (ADS)

    Porri, Teresa Jane

    Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.

  6. An Evanescent Microwave Probe for Super-Resolution Nondestructive Imaging of Metals, Semiconductors, Dielectrics, Composites and Biological Specimens

    NASA Technical Reports Server (NTRS)

    Pathak, P. S.; Tabib-Azar, M.; Ponchak, G.

    1998-01-01

    Using evanescent microwaves with decay lengths determined by a combination of microwave wavelength (lambda) and waveguide termination geometry, we have imaged and mapped material non-uniformities and defects with a resolving capability of lambda/3800=79 microns at 1 GHz. In our method a microstrip quarter wavelength resonator was used to generate evanescent microwaves. We imaged materials with a wide range of conductivities. Carbon composites, dielectrics (Duroid, polymers), semiconductors (3C-SiC, polysilicon, natural diamond), metals (tungsten alloys, copper, zinc, steel), high-temperature superconductors, and botanical samples were scanned for defects, residual stresses, integrity of brazed junctions, subsurface features, areas of different film thickness and moisture content. The evanescent microwave probe is a versatile tool and it can be used to perform very fast, large scale mapping of a wide range of materials. This method of characterization compares favorably with ultrasound testing, which has a resolution of about 0.1 mm and suffers from high absorption in composite materials and poor transmission across boundaries. Eddy current methods which can have a resolution on the order of 50 microns are restricted to evaluating conducting materials. Evanescent microwave imaging, with careful choice of operating frequency and probe geometry, can have a resolution of up to 1 micron. In this method we can scan hot and moving objects, sample preparation is not required, testing is non-destructive, non-invasive and non-contact, and can be done in air, in liquid or in vacuum.

  7. Influence of an irregular surface and low light on the step variability of patients with peripheral neuropathy during level gait.

    PubMed

    Thies, Sibylle B; Richardson, James K; Demott, Trina; Ashton-Miller, James A

    2005-08-01

    Patients with peripheral neuropathy (PN) report greater difficulty walking on irregular surfaces with low light (IL) than on flat surfaces with regular lighting (FR). We tested the primary hypothesis that older PN patients would demonstrate greater step width and step width variability under IL conditions than under FR conditions. Forty-two subjects (22 male, 20 female: mean +/- S.D.: 64.7 +/- 9.8 years) with PN underwent history, physical examination, and electrodiagnostic testing. Subjects were asked to walk 10 m at a comfortable speed while kinematic and force data were measured at 100 Hz using optoelectronic markers and foot switches. Ten trials were conducted under both IL and FR conditions. Step width, time, length, and speed were calculated with a MATLAB algorithm, with the standard deviation serving as the measure of variability. The results showed that under IL, as compared to FR, conditions subjects demonstrated greater step width (197.1 +/- 40.8 mm versus 180.5 +/- 32.4 mm; P < 0.001) and step width variability (40.4 +/- 9.0 mm versus 34.5 +/- 8.4 mm; P < 0.001), step time and its variability (P < 0.001 and P = 0.003, respectively), and step length variability (P < 0.001). Average step length and gait speed decreased under IL conditions (P < 0.001 for both). Step width variability and step time variability correlated best under IL conditions with a clinical measure of PN severity and fall history, respectively. We conclude that IL conditions cause PN patients to increase the variability of their step width and other gait parameters.

  8. 23 CFR 658.9 - National Network criteria.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... length of grades, pavement width, horizontal curvature, shoulder width, bridge clearances and load limits, traffic volumes and vehicle mix, and intersection geometry. (5) The route consists of lanes designed to be...

  9. 23 CFR 658.9 - National Network criteria.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... length of grades, pavement width, horizontal curvature, shoulder width, bridge clearances and load limits, traffic volumes and vehicle mix, and intersection geometry. (5) The route consists of lanes designed to be...

  10. 23 CFR 658.9 - National Network criteria.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... length of grades, pavement width, horizontal curvature, shoulder width, bridge clearances and load limits, traffic volumes and vehicle mix, and intersection geometry. (5) The route consists of lanes designed to be...

  11. 23 CFR 658.9 - National Network criteria.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... length of grades, pavement width, horizontal curvature, shoulder width, bridge clearances and load limits, traffic volumes and vehicle mix, and intersection geometry. (5) The route consists of lanes designed to be...

  12. 23 CFR 658.9 - National Network criteria.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... length of grades, pavement width, horizontal curvature, shoulder width, bridge clearances and load limits, traffic volumes and vehicle mix, and intersection geometry. (5) The route consists of lanes designed to be...

  13. Development of Turbulent Magnetic Reconnection in a Magnetic Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Can; Lu, Quanming; Wang, Rongsheng

    In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.

  14. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'Ar, A.; Kotler, Z.

    2015-11-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  15. The influence of digit size and proportions on dexterity during cold exposure.

    PubMed

    Payne, Stephanie; Macintosh, Alison; Stock, Jay

    2018-04-20

    The current study investigated whether size and proportions of the hands and digits affect dexterity during severe cold exposure. As wide hands are known to lose less heat than narrow hands, and narrow digits are associated with greater dexterity, this study aimed to test whether there was a direct trade-off between dexterity and thermoregulation that shapes hand morphology. Participants (25 women, 15 men) carried out the Purdue Pegboard test before and after a 3-min ice-water immersion of the hand. Their hand length, hand width, digit lengths, and digit widths were measured using standard anthropometric methods. Wide first and third digits associated with significantly reduced dexterity after immersion relative to individuals with narrower first and third digits. Second digit width positively correlated with average digit temperature after immersion. Hand length and hand width did not influence dexterity. The current study suggests that digit width influences dexterity in cold conditions, reflecting patterns found at room temperature. Hand and digit morphology may be the product of two significant constraints on the hand: dexterity and thermoregulation. In cold conditions, hand morphology appears to be predominantly constrained by thermal stress, at the expense of dexterity. This may have important implications for interpreting the morphology of extinct and extant hominins. © 2018 Wiley Periodicals, Inc.

  16. Atomic oxygen in the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Lin, Florence J.; Chance, Kelly V.; Traub, Wesley A.

    1987-01-01

    The 63-micron line due to thermospheric atomic oxygen O(P-3), using a far-infrared spectrometer on a balloon platform at 37 km altitude over Palestine, TX, on June 20, 1983. From measurements of the equivalent width of this line at two elevation angles, a weak angular dependence is found: the equivalent width increases by a factor of 1.5 + or - 0.3 as the angle decreases from +30 deg to +1 deg. Since the optical depth of the O(P-3) line is large, the measured line intensity cannot be directly converted to a column abundance. Instead, the measurements are interpreted in terms of radiative transfer through a 16-layer atmosphere extending to 200 km. A model atmosphere for summer at 30 deg N, with an exospheric temperature of 1300 K, including an assumed daytime atomic oxygen abundance profile constructed from recent chemical and dynamical models and a water vapor abundance profile constructed from recent experimental and model results is used. For this assumed O(P-3) vertical profile shape a multiplicative scaling factor of 0.8, with an altitude-dependent uncertainty is determined. In the best-determined layer the uncertainty in the multiplier is + or - 0.2 at 119 km. The model-dependent peak atomic oxygen density is 3.6 (+ or - 1.9) x 10 to the 11th/cu cm at an altitude of about 101 km.

  17. The fabrication of integrated carbon pipes with sub-micron diameters

    NASA Astrophysics Data System (ADS)

    Kim, B. M.; Murray, T.; Bau, H. H.

    2005-08-01

    A method for fabricating integrated carbon pipes (nanopipettes) of sub-micron diameters and tens of microns in length is demonstrated. The carbon pipes are formed from a template consisting of the tip of a pulled alumino-silicate glass capillary coated with carbon deposited from a vapour phase. This method renders carbon nanopipettes without the need for ex situ assembly and facilitates parallel production of multiple carbon-pipe devices. An electric-field-driven transfer of ions in a KCl solution through the integrated carbon pipes exhibits nonlinear current-voltage (I-V) curves, markedly different from the Ohmic I-V curves observed in glass pipettes under similar conditions. The filling of the nanopipette with fluorescent suspension is also demonstrated.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Pratikash P.; Hecht, Ethan S.

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less

  19. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less

  20. Two- and three-dimensional CT measurements of urinary calculi length and width: a comparative study.

    PubMed

    Lidén, Mats; Thunberg, Per; Broxvall, Mathias; Geijer, Håkan

    2015-04-01

    The standard imaging procedure for a patient presenting with renal colic is unenhanced computed tomography (CT). The CT measured size has a close correlation to the estimated prognosis for spontaneous passage of a ureteral calculus. Size estimations of urinary calculi in CT images are still based on two-dimensional (2D) reformats. To develop and validate a calculus oriented three-dimensional (3D) method for measuring the length and width of urinary calculi and to compare the calculus oriented measurements of the length and width with corresponding 2D measurements obtained in axial and coronal reformats. Fifty unenhanced CT examinations demonstrating urinary calculi were included. A 3D symmetric segmentation algorithm was validated against reader size estimations. The calculus oriented size from the segmentation was then compared to the estimated size in axial and coronal 2D reformats. The validation showed 0.1 ± 0.7 mm agreement against reference measure. There was a 0.4 mm median bias for 3D estimated calculus length compared to 2D (P < 0.001), but no significant bias for 3D width compared to 2D. The length of a calculus in axial and coronal reformats becomes underestimated compared to 3D if its orientation is not aligned to the image planes. Future studies aiming to correlate calculus size with patient outcome should use a calculus oriented size estimation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  2. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  3. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  4. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  5. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  6. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  7. Wyeomyia (Prosopolepis) Confusa (Lutz): Subgeneric Validation, Species Description, and Recognition of Wyeomyia Flui (Bonne-Wepster and Bonne) as the Senior Synonym of Wyeomyia Kerri Del Ponte and Cerqueira

    DTIC Science & Technology

    1999-01-01

    Short, length about 0.5 mm; widest at base, tapering distally; index 2.5-3.3 (width mea- sured at base); lightly and evenly tanned. Pecten with 3-9...compressed and expanded distally, with hooked tip. Segment X: Saddle incomplete; lightly tanned; length about 0.25 mm, siphon/saddle index about...cylindrical; index about 3.6 (2.5-4.1) (width measured at midlength). Ab- domen: Lightly tanned, anterior margins of sterna II-VI noticeably darker; length

  8. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; hide

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  9. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  10. The measured performance of a grazing incidence relay optics telescope for solar X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Moses, Dan; Krieger, Allen S.; Davis, John M.

    1986-01-01

    The design, fabrication, and test performance of a grazing-incidence diverging magnifier (GIDM) for use in high-resolution X-ray imaging of the solar corona are described. The GIDM, designed to be mounted in front of the focus of a 30.48-cm Wolter-Schwarzschild primary, is an Ni-coated Be hyperboloid-hyperboloid structure of principal diameter 3.15 cm; the two components are mounted on a central steel plate which acts as a support and spacer. The combined instrument has overall length 1.9 m, effective focal length 5.4 m, and plate scale 26.0 micron/arcsec. In point- and line-source measurements in an 89.5-m vacuum test facility, the on-axis resolution is shown to be equal to that of the primary alone. The field of view for 1-arcsec resolution is limited to 1.25 arcmin in radius, but the effective-area limitation is less significant when CCD detectors of high quantum efficiency are used instead of film.

  11. Aharanov-Bohm quantum interference in a reconfigurable electron system

    NASA Astrophysics Data System (ADS)

    Irvin, P.; Lu, S.; Annadi, A.; Cheng, G.; Tomczyk, M.; Huang, M.; Levy, J.; Lee, J.-W.; Lee, H.; Eom, C.-B.

    Aharanov-Bohm (AB) interference can arise in transport experiments when magnetic flux threads through two or more transport channels. The existence of this behavior requires long-range ballistic transport and is typically observed only in exceptionally clean materials. We observe AB interference in wide (w 100 nm) channels created at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Interference occurs above a critical field B 4 T and increases in magnitude with increasing magnetic field. The period of oscillation implies a ballistic length that greatly exceeds the micron-scale length of the channel, consistent with Fabry-Perot interference in 1D channels. The conditions under which AB oscillations are observed will be discussed in the context of the electron pairing mechanism in LaAlO3/SrTiO3. We gratefully acknowledge financial support from AFOSR FA9550-12-1-0342 (CBE), NSF DMR-1234096 (CBE), and ONR N00014-15-1-2847 (JL).

  12. Nonlinear unstable viscous fingers in Hele--Shaw flows. I. Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopf-Sill, A.R.; Homsy, G.M.

    1988-02-01

    Post-instability viscous fingering in rectilinear flow in a Hele--Shaw cell has been studied experimentally. Of particular interest was the characterization of the range of length scales associated with tip splitting, over a reasonably wide range of parameters. A digital imaging system was used to record the patterns as a function of time, which allowed properties such as the tip velocity, finger width, perimeter, and area to be studied as functions of time and capillary number. The tip velocity was observed to be approximately constant regardless of the occurrence of splitting events, and the average finger width decreased as the degreemore » of supercriticality increased. Quantitative measures of the fact that there is a limit to the complexity of viscous fingers are provided, and that over the range of parameters studied, no evidence for fractal fingering exists. A discussion of the dynamics of tip splitting explains why this is so.« less

  13. A MAGNETIC RIBBON MODEL FOR STAR-FORMING FILAMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auddy, Sayantan; Basu, Shantanu; Kudoh, Takahiro, E-mail: sauddy3@uwo.ca, E-mail: basu@uwo.ca, E-mail: kudoh@nagasaki-u.ac.jp

    2016-11-01

    We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which ismore » essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.« less

  14. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.

    PubMed

    Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank

    2017-11-07

    In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.

  15. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fubiani, Gwenael G.J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 10 18 - 10 19 cm -3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams wasmore » recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.« less

  16. Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Singer, Robert B.

    1991-01-01

    As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.

  17. Scaling Relations of Earthquakes on Inland Active Mega-Fault Systems

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Matsushima, S.; Azuma, T.; Irikura, K.; Kitagawa, S.

    2010-12-01

    Since 2005, The Headquarters for Earthquake Research Promotion (HERP) has been publishing 'National Seismic Hazard Maps for Japan' to provide useful information for disaster prevention countermeasures for the country and local public agencies, as well as promote public awareness of disaster prevention of earthquakes. In the course of making the year 2009 version of the map, which is the commemorate of the tenth anniversary of the settlement of the Comprehensive Basic Policy, the methods to evaluate magnitude of earthquakes, to predict strong ground motion, and to construct underground structure were investigated in the Earthquake Research Committee and its subcommittees. In order to predict the magnitude of earthquakes occurring on mega-fault systems, we examined the scaling relations for mega-fault systems using 11 earthquakes of which source processes were analyzed by waveform inversion and of which surface information was investigated. As a result, we found that the data fit in between the scaling relations of seismic moment and rupture area by Somerville et al. (1999) and Irikura and Miyake (2001). We also found that maximum displacement of surface rupture is two to three times larger than the average slip on the seismic fault and surface fault length is equal to length of the source fault. Furthermore, compiled data of the source fault shows that displacement saturates at 10m when fault length(L) is beyond 100km, L>100km. By assuming the fault width (W) to be 18km in average of inland earthquakes in Japan, and the displacement saturate at 10m for length of more than 100 km, we derived a new scaling relation between source area and seismic moment, S[km^2] = 1.0 x 10^-17 M0 [Nm] for mega-fault systems that seismic moment (M0) exceeds 1.8×10^20 Nm.

  18. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  19. Development and applications of tunable, narrow band lasers and stimulated Raman scattering devices for atmospheric lidar

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.

    1993-01-01

    The main thrust of the program was the study of stimulated Raman processes for application to atmospheric lidar measurements. This has involved the development of tunable lasers, the detailed study of stimulated Raman scattering, and the use of the Raman-shifted light for new measurements of molecular line strengths and line widths. The principal spectral region explored in this work was the visible and near-IR wavelengths between 500 nm and 1.5 microns. Recent alexandrite ring laser experiments are reported. The experiments involved diode injection-locking, Raman shifting, and frequency-doubling. The experiments succeeded in producing tunable light at 577 and 937 nm with line widths in the range 80-160 MHz.

  20. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

Top