Ziv-Gal, A; Gao, L; Karman, B N; Flaws, J A
2015-03-01
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A.; Killian, J. Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S.; van de Rijn, Matt; Debiec-Rychter, Maria; O’Sullivan, Maureen
2013-01-01
In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly. PMID:23717541
Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A; Killian, J Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S; van de Rijn, Matt; Debiec-Rychter, Maria; O'Sullivan, Maureen
2013-01-01
In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly.
The Drosophila TRPA channel, Painless, regulates sexual receptivity in virgin females
Sakai, Takaomi; Kasuya, Junko; Kitamoto, Toshihiro; Aigaki, Toshiro
2009-01-01
Transient receptor potential (TRP) channels play crucial roles in sensory perception. Expression of the Drosophila painless (pain) gene, a homolog of the mammalian TRPA1/ANKTM1 gene, in the peripheral nervous system is required for avoidance behavior of noxious heat or wasabi. Here we report a novel role of the Pain TRP channel expressed in the nervous system in the sexual receptivity in Drosophila virgin females. Compared with wild-type females, pain mutant females copulated with wild-type males significantly earlier. Wild-type males showed comparable courtship latency and courtship index toward wild-type and pain mutant females. Therefore, the early copulation observed in wild-type male and pain mutant female pairs is the result of enhanced sexual receptivity in pain mutant females. Involvement of pain in enhanced female sexual receptivity was confirmed by rescue experiments in which expression of a pain transgene in a pain mutant background restored the female sexual receptivity to the wild-type level. Targeted expression of pain RNAi in putative cholinergic or GABAergic neurons phenocopied the mutant phenotype of pain females. On the other hand, target expression of pain RNAi in dopaminergic neurons did not affect female sexual receptivity. In addition, conditional suppression of neurotransmission in putative GABAergic neurons resulted in a similar enhanced sexual receptivity. Our results suggest that Pain TRP channels expressed in cholinergic and/or GABAergic neurons are involved in female sexual receptivity. PMID:19531155
The Drosophila TRPA channel, Painless, regulates sexual receptivity in virgin females.
Sakai, T; Kasuya, J; Kitamoto, T; Aigaki, T
2009-07-01
Transient receptor potential (TRP) channels play crucial roles in sensory perception. Expression of the Drosophila painless (pain) gene, a homolog of the mammalian TRPA1/ANKTM1 gene, in the peripheral nervous system is required for avoidance behavior of noxious heat or wasabi. In this study, we report a novel role of the Pain TRP channel expressed in the nervous system in the sexual receptivity in Drosophila virgin females. Compared with wild-type females, pain mutant females copulated with wild-type males significantly earlier. Wild-type males showed comparable courtship latency and courtship index toward wild-type and pain mutant females. Therefore, the early copulation observed in wild-type male and pain mutant female pairs is the result of enhanced sexual receptivity in pain mutant females. Involvement of pain in enhanced female sexual receptivity was confirmed by rescue experiments in which expression of a pain transgene in a pain mutant background restored the female sexual receptivity to the wild-type level. Targeted expression of pain RNA interference (RNAi) in putative cholinergic or GABAergic neurons phenocopied the mutant phenotype of pain females. However, target expression of pain RNAi in dopaminergic neurons did not affect female sexual receptivity. In addition, conditional suppression of neurotransmission in putative GABAergic neurons resulted in a similar enhanced sexual receptivity. Our results suggest that Pain TRP channels expressed in cholinergic and/or GABAergic neurons are involved in female sexual receptivity.
Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta
2011-05-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.
Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq
Loeffler-Wirth, Henry; Hopp, Lydia; Schadendorf, Dirk; Schartl, Manfred; Anderegg, Ulf; Camp, Gray; Treutlein, Barbara; Binder, Hans; Kunz, Manfred
2017-01-01
Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy. PMID:27903987
Ding, Jianqiang; Yannam, Govardhana R.; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I.; Wong, Ronald J.; Avsar, Yesim; Guha, Chandan; Perlmutter, David H.; Fox, Ira J.; Roy-Chowdhury, Jayanta
2011-01-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z–expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%–98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z–expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals. PMID:21505264
Heritage, Mandy L; Murphy, Therese L; Bridle, Kim R; Anderson, Gregory J; Crawford, Darrell H G; Fletcher, Linda M
2009-08-01
Expression of Hamp1, the gene encoding the iron regulatory peptide hepcidin, is inappropriately low in HFE-associated hereditary hemochromatosis and Hfe knockout mice (Hfe(-/-)). Since chronic alcohol consumption is also associated with disturbances in iron metabolism, we investigated the effects of alcohol consumption on hepcidin mRNA expression in Hfe(-/-) mice. Hfe(-/-) and C57BL/6 (wild-type) mice were pair-fed either an alcohol liquid diet or control diet for up to 8 weeks. The mRNA levels of hepcidin and ferroportin were measured at the mRNA level by RT-PCR and protein expression of hypoxia inducible factor-1 alpha (HIF-1alpha) was measured by western blot. Hamp1 mRNA expression was significantly decreased and duodenal ferroportin expression was increased in alcohol-fed wild-type mice at 8 weeks. Time course experiments showed that the decrease in hepcidin mRNA was not immediate, but was significant by 4 weeks. Consistent with the genetic defect, Hamp1 mRNA was decreased and duodenal ferroportin mRNA expression was increased in Hfe(-/-) mice fed on the control diet compared with wild-type animals and alcohol further exacerbated these effects. HIF-1alpha protein levels were elevated in alcohol-fed wild-type animals compared with controls. Alcohol may decrease Hamp1 gene expression independently of the HFE pathway possibly via alcohol-induced hypoxia.
Zhenzhen, Zhou; De'an, Tian; Limin, Xia; Wei, Yan; Min, Luo
2012-01-01
This study aimed to detect the expression of newly discovered zinc finger transcriptional factor KLF6 and its splice variant KLF6 SV2 in primary hepatocarcinoma (PHC) tissues and hepatoma cell strains, and to evaluate their clinicopathologic relationship with PHC. Wild-type KLF6 and KLF6 SV2 mRNA expression was determined by RTPCR in 27 cases of PHC tissues and cell strains of HepG2, SMMC7721 and LO2. Western blotting and immunohistochemical staining were adopted to detect KLF6 protein expression. Positive area ratio of wild-type KLF6 protein expression and its relationship with clinicopathological parameters of PHC was analyzed. Wild-type KLF6 expression in PHC tissues was lower than that in paracancerous tissues. In contrast, KLF6 SV2 mRNA expression was higher in PHC tissues and hepatoma cell strains (p<0.05). Positive area ratio of wild-type KLF6 protein expression was positively correlated with cellular differentiation degree of PHC (p<0.01), but negatively correlated not only with liver cirrhosis, tumor size and extrahepatic metastases (p<0.01), but also with portal vein thrombus and the number of lymph nodes with metastasis (p<0.05). Wild-type KLF6 deletion and inactivation was involved in the growth, cell differentiation and other physiological processes of PHC. The upregulation of KLF6 splice variant might counterbalance the wildtype KLF6 and contribute to the occurrence and development of PHC.
Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo
2012-01-01
Background Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. Methods Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. Results Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. Conclusions Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury. PMID:22901501
Mohanty, Madhu C; Deshpande, Jagadish M
2013-01-01
Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.
Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang
2013-01-01
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.
Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N
2011-01-14
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.
Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert
2003-01-01
Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.
Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.
2016-01-01
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795
Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J
2016-02-17
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.
Fei, Dennis Liang; Motowski, Hayley; Chatrikhi, Rakesh; Gao, Shaojian; Kielkopf, Clara L.; Varmus, Harold
2016-01-01
We have asked how the common S34F mutation in the splicing factor U2AF1 regulates alternative splicing in lung cancer, and why wild-type U2AF1 is retained in cancers with this mutation. A human lung epithelial cell line was genetically modified so that U2AF1S34F is expressed from one of the two endogenous U2AF1 loci. By altering levels of mutant or wild-type U2AF1 in this cell line and by analyzing published data on human lung adenocarcinomas, we show that S34F-associated changes in alternative splicing are proportional to the ratio of S34F:wild-type gene products and not to absolute levels of either the mutant or wild-type factor. Preferential recognition of specific 3′ splice sites in S34F-expressing cells is largely explained by differential in vitro RNA-binding affinities of mutant versus wild-type U2AF1 for those same 3′ splice sites. Finally, we show that lung adenocarcinoma cell lines bearing U2AF1 mutations do not require the mutant protein for growth in vitro or in vivo. In contrast, wild-type U2AF1 is required for survival, regardless of whether cells carry the U2AF1S34F allele. Our results provide mechanistic explanations of the magnitude of splicing changes observed in U2AF1-mutant cells and why tumors harboring U2AF1 mutations always retain an expressed copy of the wild-type allele. PMID:27776121
Zhang, Ning; Xie, Yong-Dun; Guo, Hui-Jun; Zhao, Lin-Shu; Xiong, Hong-Chun; Gu, Jia-Yu; Li, Jun-Hui; Kong, Fu-Quan; Sui, Li; Zhao, Zi-Wei; Zhao, Shi-Rong; Liu, Lu-Xiang
2016-10-01
Gibberellin (GA) is essential for determining plant height. Alteration of GA content or GA signaling results in a dwarf or slender phenotype. Here, we characterized a novel wheat mutant, quick development (qd), in which GA regulates stem elongation but does not affect mature plant height. qd and wild-type plants did not exhibit phenotypic differences at the seedling stage. From jointing to heading stage, qd plants were taller than wild-type plants due to elongated cells. However, wild-type and qd plants were the same height at heading. Unlike wild-type plants, qd plants were sensitive to exogenous GA due to mutation of Rht-B1. With continuous GA stimulation, qd seedlings and adult plants were taller than wild-type. Thus, the GA content of qd plants might differ from that of wild-type during the growth process. Analysis of GA biosynthetic gene expression verified this hypothesis and showed that TaKAO, which is involved in catalyzing the early steps of GA biosynthesis, was differentially expressed in qd plants compared with wild-type. The bioactive GA associated gene TaGA20ox was downregulated in qd plants during the late growth stages. Measurements of endogenous GA content were consistent with the gene-expression analysis results. Consistent with the GA content variation, the first three basal internodes were longer and the last two internodes were shorter in qd than in wild-type plants. The qd mutant might be useful in dissecting the mechanism by which GA regulates stem-growing process, and it may be serve as a GA responsive semi-dwarf germplasm in breeding programs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kenessey, István; Kói, Krisztina; Horváth, Orsolya; Cserepes, Mihály; Molnár, Dávid; Izsák, Vera; Dobos, Judit; Hegedűs, Balázs
2016-01-01
Background In non-small cell lung cancer (NSCLC) KRAS-mutant status is a negative prognostic and predictive factor. Nitrogen-containing bisphosphonates inhibit prenylation of small G-proteins (e.g. Ras, Rac, Rho) and thus may affect proliferation and migration. In our preclinical work, we investigated the effect of an aminobisphosphonate compound (zoledronic acid) on mutant and wild type KRAS-expressing human NSCLC cell lines. Results We confirmed that zoledronic acid was unable to inhibit the prenylation of mutant K-Ras unlike in the case of wild type K-Ras. In case of in vitro proliferation, the KRAS-mutant human NSCLC cell lines showed resistance to zoledronic acid wild-type KRAS-cells proved to be sensitive. Combinatory application of zoledronic acid enhanced the cytostatic effect of cisplatin. Zoledronic acid did not induce significant apoptosis. In xenograft model, zoledronic acid significantly reduced the weight of wild type KRAS-EGFR-expressing xenograft tumor by decreasing the proliferative capacity. Futhermore, zoledronic acid induced VEGF expression and improved in vivo tumor vascularization. Materials and methods Membrane association of K-Ras was examined by Western-blot. In vitro cell viability, apoptotic cell death and migration were measured in NSCLC lines with different molecular background. The in vivo effect of zoledronic acid was investigated in a SCID mouse subcutaneous xenograft model. Conclusions The in vitro and in vivo inhibitory effect of zoledronic acid was based on the blockade of cell cycle in wild type KRAS-expressing human NSCLC cells. The zoledronic acid induced vascularization supported in vivo cytostatic effect. Our preclinical investigation suggests that patients with wild type KRAS-expressing NSCLC could potentially benefit from aminobisphosphonate therapy. PMID:27780929
Manicone, Anne M.; Huizar, Isham; McGuire, John K.
2009-01-01
The E-cadherin receptor CD103 (αEβ7-integrin) is expressed on specific populations of pulmonary dendritic cells (DC) and T cells. However, CD103 function in the lung is not well understood. Matrilysin (MMP-7) expression is increased in lung injury and cleaves E-cadherin from injured lung epithelium. Thus, to assess matrilysin effects on CD103-E-cadherin interactions in lung injury, wild-type, CD103−/−, and Mmp7−/− mice, in which E-cadherin isn’t cleaved in the lung, were treated with bleomycin or bleomycin with nFMLP to reverse the defect in acute neutrophil influx seen in Mmp7−/− mice. Pulmonary CD103+ DC were significantly increased in injured wild-type compared with Mmp7−/− mice, and CD103+ leukocytes showed significantly enhanced interaction with E-cadherin on injured wild-type epithelium than with Mmp7−/− epithelium in vitro and in vivo. Bleomycin-treated CD103−/− mice had persistent neutrophilic inflammation, increased fibrosis, and increased mortality compared with wild-type mice, a phenotype that was partially recapitulated in bleomycin/nFMLP-treated Mmp7−/− mice. Soluble E-cadherin increased IL-12 and IL-10 and reduced IL-6 mRNA expression in wild-type bone marrow-derived DC but not in CD103−/− bone marrow-derived DC. Similar mRNA patterns were seen in lungs of bleomycin-injured wild-type, but not CD103−/− or Mmp7−/−, mice. In conclusion, matrilysin regulates pulmonary localization of DC that express CD103, and E-cadherin cleavage may activate CD103+ DC to limit inflammation and inhibit fibrosis. PMID:19893044
Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis.
Inno, Alessandro; Di Noia, Vincenzo; Martini, Maurizio; D'Argento, Ettore; Di Salvatore, Mariantonietta; Arena, Vincenzo; Schinzari, Giovanni; Orlandi, Armando; Larocca, Luigi Maria; Cassano, Alessandra; Barone, Carlo
2018-03-20
Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.
Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A
2001-10-01
Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.
Influence of Gene Expression on Hardness in Wheat.
Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J
2016-01-01
Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.
Canela, Andrés; Martín-Caballero, Juan; Flores, Juana M; Blasco, María A
2004-05-01
Here we describe a new mouse model with constitutive expression of the catalytic subunit of telomerase (Tert) targeted to thymocytes and peripheral T cells (Lck-Tert mice). Two independent Lck-Tert mouse lines showed higher incidences of spontaneous T-cell lymphoma than the corresponding age-matched wild-type controls, indicating that constitutive expression of Tert promotes lymphoma. Interestingly, T-cell lymphomas in Lck-Tert mice were more disseminated than those in wild-type controls and affected both lymphoid and nonlymphoid tissues, while nonlymphoid tissues were never affected with lymphoma in age-matched wild-type controls. Importantly, these roles of Tert constitutive expression in promoting tumor progression and dissemination were independent of the role of telomerase in telomere length maintenance, since telomere length distributions on a single-cell basis were identical in Lck-Tert and wild-type thymocytes. Finally, Tert constitutive expression did not interfere with telomere capping in Lck-Tert primary thymocytes, although it resulted in greater chromosomal instability upon gamma irradiation in Lck-Tert primary lymphocytes than in controls, suggesting that Tert overexpression may interfere with the cellular response to DNA damage.
Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X
2013-01-01
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.
Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.
2013-01-01
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517
Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu
2016-12-01
Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na + transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na + efflux and K + influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na + efflux and K + influx, resulting in less Na + and more K + accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo
1994-01-01
ADP-ribosylation factor (ARF) proteins and inhibitory peptides derived from ARFs have demonstrated activities in a number of in vitro assays that measure ER-to-Golgi and intra-Golgi transport and endosome fusion. To better understand the roles of ARF proteins in vivo, stable cell lines were obtained from normal rat kidney (NRK) cells transfected with either wild-type or a dominant activating allele ([Q71L]) of the human ARF1 gene under the control of the interferon-inducible mouse Mx1 promoter. Upon addition of interferon, expression of ARF1 proteins increased with a half-time of 7-8 h, as determined by immunoblot analysis. Induction of mutant ARF1, but not wild-type ARF1, led to an inhibition of protein secretion with kinetics similar to that observed for induction of protein expression. Examination of the Golgi apparatus and the ER by indirect immunofluorescence or transmission electron microscopy revealed that expression of low levels of mutant ARF1 protein correlated with a dramatic increase in vesiculation of the Golgi apparatus and expansion of the ER lumen, while expression of substantially higher levels of wild-type ARF1 had no discernible effect. Endocytosis was also inhibited by expression of mutant ARF1, but not by the wild-type protein. Finally, the expression of [Q71L]ARF1, but not wild-type ARF1, antagonized the actions of brefeldin A, as determined by the delayed loss of ARF and beta-COP from Golgi membranes and disruption of the Golgi apparatus. General models for the actions of ARF1 in membrane traffic events are discussed. PMID:8294513
Kim, Seung Tae; Ahn, Tae Jin; Lee, Eunjin; Do, In-Gu; Lee, Su Jin; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Kim, Suk Hyeong; Lee, Jeeyun; Kim, Hee Cheol
2015-10-20
More than half of the patients selected based on KRAS mutation status fail to respond to the treatment with cetuximab in metastatic colorectal cancer (mCRC). We designed a study to identify additional biomarkers that could act as indicators for cetuximab treatment in mCRC. We investigated 58 tumor samples from wild type KRAS CRC patients treated with cetuximab plus irinotecan (CI). We conducted the genotyping for mutations in either BRAF or PIK3CA and profiled comprehensively the expression of 522 kinase genes. BRAF mutation was detected in 5.1 % (3/58) of patients. All 50 patients showed wild type PIK3CA. Gene expression patterns that categorized patients with or without the disease control to CI were compared by supervised classification analysis. PSKH1, TLK2 and PHKG2 were overexpressed significantly in patients with the disease control to IC. The higher expression value of PSKH1 (r = 0.462, p < 0.001) and TLK2 (r = 0.361, p = 0.005) had the significant correlation to prolonged PFS. The result of this work demonstrated that expression nature of kinase genes such as PSKH1, TLK2 and PHKG2 may be informative to predict the efficacy of CI in wild type KRAS CRC. Mutations in either BRAF or PIK3CA were rare subsets in wild type KRAS CRC.
Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng
2017-01-01
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502
Wilhelm, Annika; Aldridge, Victoria; Haldar, Debashis; Naylor, Amy J; Weston, Christopher J; Hedegaard, Ditte; Garg, Abhilok; Fear, Janine; Reynolds, Gary M; Croft, Adam P; Henderson, Neil C; Buckley, Christopher D; Newsome, Philip N
2016-07-01
CD248 (endosialin) is a stromal cell marker expressed on fibroblasts and pericytes. During liver injury, myofibroblasts are the main source of fibrotic matrix. To determine the role of CD248 in the development of liver fibrosis in the rodent and human setting. CD248 expression was studied by immunostaining and quantitative PCR in both normal and diseased human and murine liver tissue and isolated hepatic stellate cells (HSCs). Hepatic fibrosis was induced in CD248(-/-) and wild-type controls with carbon tetrachloride (CCl4) treatment. Expression of CD248 was seen in normal liver of humans and mice but was significantly increased in liver injury using both immunostaining and gene expression assays. CD248 was co-expressed with a range of fibroblast/HSC markers including desmin, vimentin and α-smooth muscle actin (α-SMA) in murine and human liver sections. CD248 expression was restricted to isolated primary murine and human HSC. Collagen deposition and α-SMA expression, but not inflammation and neoangiogenesis, was reduced in CD248(-/-) mice compared with wild-type mice after CCl4 treatment. Isolated HSC from wild-type and CD248(-/-) mice expressed platelet-derived growth factor receptor α (PDGFR-α) and PDGFR-β at similar levels. As expected, PDGF-BB stimulation induced proliferation of wild-type HSC, whereas CD248(-/-) HSC did not demonstrate a proliferative response to PDGF-BB. Abrogated PDGF signalling in CD248(-/-) HSC was confirmed by significantly reduced c-fos expression in CD248(-/-) HSC compared with wild-type HSC. Our data show that deletion of CD248 reduces susceptibility to liver fibrosis via an effect on PDGF signalling, making it an attractive clinical target for the treatment of liver injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.
Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L
1999-12-01
The goal of this study was to determine whether adenoviral vector-mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53. The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase-polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation. The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p<0.01). The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy, not only in human gliomas that express mutant p53, but also in those that express wild-type p53.
Yamaura, Takumi; Ezaki, Junji; Okabe, Naoyuki; Takagi, Hironori; Ozaki, Yuki; Inoue, Takuya; Watanabe, Yuzuru; Fukuhara, Mitsuro; Muto, Satoshi; Matsumura, Yuki; Hasegawa, Takeo; Hoshino, Mika; Osugi, Jun; Shio, Yutaka; Waguri, Satoshi; Tamura, Hirosumi; Imai, Jun-Ichi; Ito, Emi; Yanagisawa, Yuka; Honma, Reiko; Watanabe, Shinya; Suzuki, Hiroyuki
2018-02-01
Lung adenocarcinoma (ADC) patients with tumors that harbor no targetable driver gene mutation, such as epidermal growth factor receptor ( EGFR ) gene mutations, have unfavorable prognosis, and thus, novel therapeutic targets are required. Family with sequence similarity 83, member B ( FAM83B ) is a biomarker for squamous cell lung cancer. FAM83B has also recently been shown to serve an important role in the EGFR signaling pathway. In the present study, the molecular and clinical impact of FAM83B in lung ADC was investigated. Matched tumor and adjacent normal tissue samples were obtained from 216 patients who underwent complete lung resection for primary lung ADC and were examined for FAM83B expression using cDNA microarray analysis. The associations between FAM83B expression and clinicopathological parameters, including patient survival, were examined. FAM83B was highly expressed in tumors from males, smokers and in tumors with wild-type EGFR . Multivariate analyses further confirmed that wild-type EGFR tumors were significantly positively associated with FAM83B expression. In survival analysis, FAM83B expression was associated with poor outcomes in disease-free survival and overall survival, particularly when stratified against tumors with wild-type EGFR . Furthermore, FAM83B knockdown was performed to investigate its phenotypic effect on lung ADC cell lines. Gene silencing by FAM83B RNA interference induced growth suppression in the HLC-1 and H1975 lung ADC cell lines. FAM83B may be involved in lung ADC tumor proliferation and can be a predictor of poor survival. FAM83B is also a potential novel therapeutic target for ADC with wild-type EGFR .
pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability
Carmean, V.; Yonkers, M. A.; Tellez, M. B.; Willer, J. R.; Willer, G. B.; Gregg, R. G.; Geisler, R.; Neuhauss, S. C.
2015-01-01
The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons. PMID:26133798
Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R
2005-01-01
It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735
Influence of Gene Expression on Hardness in Wheat
Nirmal, Ravi C.; Wrigley, Colin
2016-01-01
Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295
Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants.
Blanco, Elias H; Ramos-Molina, Bruno; Lindberg, Iris
2015-10-01
Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.
Waggoner, S E; Baunoch, D A; Anderson, S A; Leigh, F; Zagaja, V G
1998-09-01
Clear cell adenocarcinomas (CCAs) of the vagina and cervix are rare tumors that often overexpress wild-type p53. In vitro, expression of protooncogene bcl-2 can block p53-mediated apoptosis. The objective of this study was to determine if bcl-2 is expressed in CCAs and whether this expression is associated with inhibition of apoptosis. Twenty-one paraffin-embedded clear cell adenocarcinomas were immunohistochemically stained for bcl-2 (antibody M 887, Dako, Carpinteria, CA) and DNA fragmentation (ApopTag, Oncor, Gaithersburg, MD), a marker for apoptosis. Fifteen tumors were associated with in utero exposure to diethylstilbestrol (DES). Prior p53 gene analysis had indicated the presence of wild-type p53 in each tumor. Human lymphoid tissue containing bcl-2-expressing lymphocytes and DNase I-exposed CCA tissue sections were used as positive controls for the bcl-2 and apoptosis assays, respectively. Expression of bcl-2 and DNA fragmentation was classified (0 to 3+) according to percentage of positive cells and intensity of staining. Expression of bcl-2 was identified in each CCA examined, and was strongly positive (2+ to 3+) in 18 of 21 samples. Despite the presence of wild-type p53, only 4 of 21 tumors showed evidence of apoptosis as assessed through DNA fragmentation. DNA damage leads to increased intracellular p53 levels. Overexpression of p53 induces apoptosis as a means of protecting organisms from the development of malignancy. CCAs of the vagina and cervix, which contain wild-type p53 genes and often overexpress p53 protein, presumably have evolved mechanisms to avoid p53-induced apoptosis. Our observations are consistent with the hypothesis that overexpression of bcl-2 can inhibit p53-mediated apoptosis and suggest a mechanism by which these rare tumors can arise without mutation of the p53 gene.
Nair, Aswathy; Bhargava, Sujata
2012-01-01
Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant. PMID:23221680
Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.
2003-01-01
The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974
Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development
Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.
2009-01-01
Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074
Pratter, S M; Eixelsberger, T; Nidetzky, B
2015-12-01
A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor*
Veldhuis, Nicholas A.; Lew, Michael J.; Abogadie, Fe C.; Poole, Daniel P.; Jennings, Ernest A.; Ivanusic, Jason J.; Eilers, Helge; Bunnett, Nigel W.; McIntyre, Peter
2012-01-01
The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca2+]i) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1−/− mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission. PMID:22570472
Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng
2013-09-15
The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general. Copyright © 2013 Elsevier B.V. All rights reserved.
Analyzing Cold Tolerance Mechanism in Transgenic Zebrafish (Danio rerio)
Wang, Qian; Tan, Xungang; Jiao, Shuang; You, Feng; Zhang, Pei-Jun
2014-01-01
Low temperatures may cause severe growth inhibition and mortality in fish. In order to understand the mechanism of cold tolerance, a transgenic zebrafish Tg (smyd1:m3ck) model was established to study the effect of energy homeostasis during cold stress. The muscle-specific promoter Smyd1 was used to express the carp muscle form III of creatine kinase (M3-CK), which maintained enzymatic activity at a relatively low temperature, in zebrafish skeletal muscle. In situ hybridization showed that M3-CK was expressed strongly in the skeletal muscle. When exposed to 13°C, Tg (smyd1:m3ck) fish maintained their swimming behavior, while the wild-type could not. Energy measurements showed that the concentration of ATP increased in Tg (smyd1:m3ck) versus wild-type fish at 28°C. After 2 h at 13°C, ATP concentrations were 2.16-fold higher in Tg (smyd1:m3ck) than in wild-type (P<0.05). At 13°C, the ATP concentration in Tg (smyd1:m3ck) fish and wild-type fish was 63.3% and 20.0%, respectively, of that in wild-type fish at 28°C. Microarray analysis revealed differential expression of 1249 transcripts in Tg (smyd1:m3ck) versus wild-type fish under cold stress. Biological processes that were significantly overrepresented in this group included circadian rhythm, energy metabolism, lipid transport, and metabolism. These results are clues to understanding the mechanisms underlying temperature acclimation in fish. PMID:25058652
[Upregulation of P2X3 receptors in dorsal root ganglion of TRPV1 knockout female mice].
Fang, Xiao; Shi, Xiao-Han; Huang, Li-Bin; Rong, Wei-Fang; Ma, Bei
2014-08-25
The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 μL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getachew, Yonas, E-mail: yonas.getachew@utsouthwestern.edu; Cusimano, Frank A.; James, Laura P.
The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activationmore » marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells.« less
Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo
Rockenstein, Edward; Nuber, Silke; Overk, Cassia R.; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H.; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H.; Winner, Beate
2014-01-01
In Parkinson’s disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson’s disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction. PMID:24662516
Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.
Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer
2014-05-01
In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction.
Fiddyment, Sarah; Barceló-Batllori, Sílvia; Pocoví, Miguel; García-Otín, Angel-Luis
2011-11-01
Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies. Copyright © 2011 Elsevier Inc. All rights reserved.
Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit.
Liu, Cheng-Qian; Hu, Kang-Di; Li, Ting-Ting; Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan; Zhang, Hua
2017-01-01
Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.
Taguchi, Ayumi; Kawana, Kei; Tomio, Kensuke; Yamashita, Aki; Isobe, Yosuke; Nagasaka, Kazunori; Koga, Kaori; Inoue, Tomoko; Nishida, Haruka; Kojima, Satoko; Adachi, Katsuyuki; Matsumoto, Yoko; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki
2014-01-01
Cancer associated fibroblasts (CAFs) are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP)-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA) have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV) oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.
Ethylene Regulates Monomeric GTP-Binding Protein Gene Expression and Activity in Arabidopsis1
Moshkov, Igor E.; Mur, Luis A.J.; Novikova, Galina V.; Smith, Aileen R.; Hall, Michael A.
2003-01-01
Ethylene rapidly and transiently up-regulates the activity of several monomeric GTP-binding proteins (monomeric G proteins) in leaves of Arabidopsis as determined by two-dimensional gel electrophoresis and autoradiographic analyses. The activation is suppressed by the receptor-directed inhibitor 1-methylcyclopropene. In the etr1-1 mutant, constitutive activity of all the monomeric G proteins activated by ethylene is down-regulated relative to wild type, and ethylene treatment has no effect on the levels of activity. Conversely, in the ctr1-1 mutant, several of the monomeric G proteins activated by ethylene are constitutively up-regulated. However, the activation profile of ctr1-1 does not exactly mimic that of ethylene-treated wild type. Biochemical and molecular evidence suggested that some of these monomeric G proteins are of the Rab class. Expression of the genes for a number of monomeric G proteins in response to ethylene was investigated by reverse transcriptase-PCR. Rab8 and Ara3 expression was increased within 10 min of ethylene treatment, although levels fell back significantly by 40 min. In the etr1-1 mutant, expression of Rab8 was lower than wild type and unaffected by ethylene; in ctr1-1, expression of Rab8 was much higher than wild type and comparable with that seen in ethylene treatments. Expression in ctr1-1 was also unaffected by ethylene. Thus, the data indicate a role for monomeric G proteins in ethylene signal transduction. PMID:12692329
Comparison of body weight and gene expression in amelogenin null and wild-type mice.
Li, Yong; Yuan, Zhi-An; Aragon, Melissa A; Kulkarni, Ashok B; Gibson, Carolyn W
2006-05-01
Amelogenin (AmelX) null mice develop hypomineralized enamel lacking normal prism structure, but are healthy and fertile. Because these mice are smaller than wild-type mice prior to weaning, we undertook a detailed analysis of the weight of mice and analyzed AmelX expression in non-dental tissues. Wild-type mice had a greater average weight each day within the 3-wk period. Using reverse transcription-polymerase chain reaction (RT-PCR), products of approximately 200 bp in size were generated from wild-type teeth, brain, eye, and calvariae. DNA sequence analysis of RT-PCR products from calvariae indicated that the small amelogenin leucine-rich amelogenin peptide (LRAP), both with and without exon 4, was expressed. No products were obtained from any of the samples from the AmelX null mice. We also isolated mRNAs that included AmelX exons 8 and 9, and identified a duplication within the murine AmelX gene with 91% homology. Our results add additional support to the hypothesis that amelogenins are multifunctional proteins, with potential roles in non-ameloblasts and in non-mineralizing tissues during development. The smaller size of AmelX null mice could potentially be explained by the lack of LRAP expression in some of these tissues, leading to a delay in development.
Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S
2007-05-01
Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.
Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo
2017-12-01
Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Synaptopodin Limits TRPC6 Podocyte Surface Expression and Attenuates Proteinuria.
Yu, Hao; Kistler, Andreas; Faridi, Mohd Hafeez; Meyer, James Otto; Tryniszewska, Beata; Mehta, Dolly; Yue, Lixia; Dryer, Stuart; Reiser, Jochen
2016-11-01
Gain-of-function mutations of classic transient receptor potential channel 6 (TRPC6) were identified in familial FSGS, and increased expression of wild-type TRPC6 in glomeruli is observed in several human acquired proteinuric diseases. Synaptopodin, an actin binding protein that is important in maintaining podocyte function, is downregulated in various glomerular diseases. Here, we investigated whether synaptopodin maintains podocyte function by regulating podocyte surface expression and activity of TRPC6. We show indirect interaction and nonrandom association of synaptopodin and TRPC6 in podocytes. Knockdown of synaptopodin in cultured mouse podocytes increased the expression of TRPC6 at the plasma membrane, whereas overexpression of synaptopodin decreased it. Mechanistically, synaptopodin-dependent TRPC6 surface expression required functional actin and microtubule cytoskeletons. Overexpression of wild-type or FSGS-inducing mutant TRPC6 in synaptopodin-depleted podocytes enhanced TRPC6-mediated calcium influx and induced apoptosis. In vivo, knockdown of synaptopodin also caused increased podocyte surface expression of TRPC6. Administration of cyclosporin A, which stabilizes synaptopodin, reduced LPS-induced proteinuria significantly in wild-type mice but to a lesser extent in TRPC6 knockout mice. Furthermore, administration of cyclosporin A reversed the LPS-induced increase in podocyte surface expression of TRPC6 in wild-type mice. Our findings suggest that alteration in synaptopodin levels under disease conditions may modify intracellular TRPC6 channel localization and activity, which further contribute to podocyte dysfunction. Reducing TRPC6 surface levels may be a new approach to restoring podocyte function. Copyright © 2016 by the American Society of Nephrology.
Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant
Han, Yan; Wang, Congzhou; Park, Jae Seon; Niu, Li
2012-01-01
GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. The low surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the wild-type GluK1-2b C-terminus, the receptor is significantly retained in the ER. Conversely, when this sequence is lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus) and in a GluK1-2b mutant (i.e., R896A, R897A, R900A and K901A) that disrupts the ER retention signal, there is higher surface expression and greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that the wild-type GluK1-2a, wild-type GluK1-2b and the mutant GluK1-2b have identical channel-opening and channel-closing rate constants. These results indicate that the C-terminal ER retention signal sequence, which affects receptor trafficking/expression, does not affect channel-gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least two-fold, yet the EC50 value of GluK1 is similar to that of GluK2. PMID:22191429
Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays.
Kumar, M A Suresh; Laiakis, Evagelia C; Ghandhi, Shanaz A; Morton, Shad R; Fornace, Albert J; Amundson, Sally A
2018-05-10
There is a current interest in the development of biodosimetric methods for rapidly assessing radiation exposure in the wake of a large-scale radiological event. This work was initially focused on determining the exposure dose to an individual using biological indicators. Gene expression signatures show promise for biodosimetric application, but little is known about how these signatures might translate for the assessment of radiological injury in radiosensitive individuals, who comprise a significant proportion of the general population, and who would likely require treatment after exposure to lower doses. Using Parp1 -/- mice as a model radiation-sensitive genotype, we have investigated the effect of this DNA repair deficiency on the gene expression response to radiation. Although Parp1 is known to play general roles in regulating transcription, the pattern of gene expression changes observed in Parp1 -/- mice 24 h postirradiation to a LD 50/30 was remarkably similar to that in wild-type mice after exposure to LD 50/30 . Similar levels of activation of both the p53 and NFκB radiation response pathways were indicated in both strains. In contrast, exposure of wild-type mice to a sublethal dose that was equal to the Parp1 -/- LD 50/30 , which resulted in a lower magnitude gene expression response. Thus, Parp1 -/- mice displayed a heightened gene expression response to radiation, which was more similar to the wild-type response to an equitoxic dose than to an equal absorbed dose. Gene expression classifiers trained on the wild-type data correctly identified all wild-type samples as unexposed, exposed to a sublethal dose or exposed to an LD 50/30 . All unexposed samples from Parp1 -/- mice were also correctly classified with the same gene set, and 80% of irradiated Parp1 -/- samples were identified as exposed to an LD 50/30 . The results of this study suggest that, at least for some pathways that may influence radiosensitivity in humans, specific gene expression signatures have the potential to accurately detect the extent of radiological injury, rather than serving only as a surrogate of physical radiation dose.
PD-L1 expression according to the EGFR status in primary lung adenocarcinoma.
Takada, Kazuki; Toyokawa, Gouji; Tagawa, Tetsuzo; Kohashi, Kenichi; Shimokawa, Mototsugu; Akamine, Takaki; Takamori, Shinkichi; Hirai, Fumihiko; Shoji, Fumihiro; Okamoto, Tatsuro; Oda, Yoshinao; Maehara, Yoshihiko
2018-02-01
It was reported that programmed cell death-ligand 1 (PD-L1) expression is associated with smoking and wild-type epidermal growth factor receptor (EGFR) in lung adenocarcinoma. However, the association between PD-L1 expression and EGFR mutation site in EGFR mutation-positive lung adenocarcinoma is unclear. We retrospectively examined the relationship between PD-L1 expression and EGFR status in 441 surgically resected primary lung adenocarcinomas. Membrane PD-L1 expression on tumor cells was evaluated by immunohistochemical analysis using a PD-L1 antibody (clone SP142) and defined by tumor proportion scores (TPSs) of 0%, 1-4%, 5-49%, and ≥50%, respectively. Two hundred and eighteen (49.4%) patients had wild-type EGFR, and 223 (50.6%) had mutant EGFR-98 (44.0%) with exon 19 deletion, 116 (52.0%) with exon 21 L858R point mutation, and nine (4.0%) with another EGFR mutation. Overall, Fisher's exact test showed that PD-L1 positivity was associated with wild-type EGFR, and there was only one case with PD-L1 TPS ≥50% among the cases with mutant EGFR. The analysis of cases with mutant EGFR indicated no significant association between EGFR mutation site and PD-L1 expression. However, the prevalence of PD-L1 TPS 5-49% was higher among patients with EGFR exon 19 deletion than with EGFR exon 21 L858R point mutation. PD-L1 expression was significantly associated with wild-type EGFR, and PD-L1 TPS ≥50% seldom overlaps with presence of driver oncogene EGFR. There was no significant difference in PD-L1 expression among the EGFR mutation sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Friend or Foe: MicroRNAs in the p53 network.
Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo
2018-04-10
The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.
CCN3 Protein Participates in Bone Regeneration as an Inhibitory Factor*
Matsushita, Yuki; Sakamoto, Kei; Tamamura, Yoshihiro; Shibata, Yasuaki; Minamizato, Tokutaro; Kihara, Tasuku; Ito, Masako; Katsube, Ken-ichi; Hiraoka, Shuichi; Koseki, Haruhiko; Harada, Kiyoshi; Yamaguchi, Akira
2013-01-01
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy. PMID:23653360
Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates.
Kalbassi, Shireene; Bachmann, Sven O; Cross, Ellen; Roberton, Victoria H; Baudouin, Stéphane J
2017-01-01
In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3 , a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other's behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals' behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers' behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3 , being more influential in males than females.
Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates
Kalbassi, Shireene; Cross, Ellen
2017-01-01
Abstract In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3, a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other’s behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals’ behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers’ behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3, being more influential in males than females. PMID:28795135
Grewal, S I; Han, B; Johnstone, K
1995-01-01
Pseudomonas tolaasii, the causal agent of brown blotch disease of Agaricus bisporus, spontaneously gives rise to morphologically distinct stable sectors, referred to as the phenotypic variant form, at the margins of the wild-type colonies. The phenotypic variant form is nonpathogenic and differs from the wild type in a range of biochemical and physiological characteristics. A genomic cosmid clone (pSISG29) from a wild-type P. tolaasii library was shown to be capable of restoring a range of characteristics of the phenotypic variant to those of the wild-type form, when present in trans. Subcloning and saturation mutagenesis analysis with Tn5lacZ localized a 3.0-kb region from pSISG29, designated the pheN locus, required for complementation of the phenotypic variant to the wild-type form. Marker exchange of the Tn5lacZ-mutagenized copy of the pheN locus into the wild-type strain demonstrated that a functional copy of the pheN gene is required to maintain the wild-type pathogenic phenotype and that loss of the pheN gene or its function results in conversion of the wild-type form to the phenotypic variant form. The pheN locus contained a 2,727-bp open reading frame encoding an 83-kDa protein. The predicted amino acid sequence of the PheN protein showed homology to the sensor and regulator domains of the conserved family of two component bacterial sensor regulator proteins. Southern hybridization analysis of pheN genes from the wild type and the phenotypic variant form revealed that DNA rearrangement occurs within the pheN locus during phenotypic variation. Analysis of pheN expression with a pheN::lacZ fusion demonstrated that expression is regulated by environmental factors. These results are related to a model for control for phenotypic variation in P. tolaasii. PMID:7642492
Aggressive behavior of the white-eye mutant crickets, Gryllus bimaculatus.
Sakura, Midori; Watanabe, T; Aonuma, H
2012-01-01
Aggressive behavior of white-eye mutant crickets was investigated and compared with that of wild-type crickets. In the dark, wild-type pairs performed long-lasting fights with significantly higher aggressive levels compared to those in the light. In contrast, fights between two white-eye mutants were not significantly different with those between two wild-type crickets both in duration and the aggressive levels. Ethograms of aggressive behavior showed that the mutants could show typical sequentially escalating fight with the same behavioral categories as the wild-type crickets. These results indicate that the white-eye mutants are able to express normal aggressive behavior.
van der Hoeven, Ransome; Forst, Steven
2009-09-01
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.
Kim, Hee Jin; Hinchliffe, Doug J.; Triplett, Barbara A.; Chen, Z. Jeffrey; Stelly, David M.; Yeater, Kathleen M.; Moon, Hong S.; Gilbert, Matthew K.; Thyssen, Gregory N.; Turley, Rickie B.; Fang, David D.
2015-01-01
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta. PMID:25927364
Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D
2009-02-01
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.
Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit
Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan
2017-01-01
Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit. PMID:28257463
Muñoz-Félix, José M; López-Novoa, José M; Martínez-Salgado, Carlos
2014-02-01
Tubulointerstitial fibrosis is characterized by an accumulation of extracellular matrix in the renal interstitium, myofibroblast activation, cell infiltration, and tubular cell apoptosis, leading to chronic renal failure. Activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β1 type I receptor with a pivotal role in endothelial proliferation and migration, but its role in the development of renal fibrosis is unknown. To assess this we used the unilateral ureteral obstruction model of tubulointerstitial fibrosis in ALK1 haploinsufficient (ALK1(+/-)) and wild-type mice. After 15 days, there was an increase in extracellular matrix protein expression in the obstructed kidneys from both ALK1(+/+) and ALK1(+/-) mice, but obstructed kidneys from ALK1(+/-) mice showed significantly higher expression of type I collagen than those from wild-type mice. Ureteral obstruction increased kidney myofibroblasts markers (α-smooth muscle actin and S100A4), without differences between mouse genotypes. ALK1 expression was increased after ureteral obstruction, and this increased expression was located in myofibroblasts. Moreover, cultured renal fibroblasts from ALK1(+/-) mice expressed more collagen type I and fibronectin than fibroblasts derived from wild-type mice. Thus, ALK1 modulates obstruction-induced renal fibrosis by increased extracellular matrix synthesis in myofibroblasts, but without differences in myofibroblast number.
Jeon, Jin; Kim, Jungmook
2013-01-01
The Arabidopsis (Arabidopsis thaliana) two-component signaling system, which is composed of sensor histidine kinases, histidine phosphotransfer proteins, and response regulators, mediates the cytokinin response and various other plant responses. We have previously shown that ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and cold-inducible type A ARABIDOPSIS RESPONSE REGULATORS (ARRs) play roles in cold signaling. However, the roles of type B ARRs and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs) have not been investigated in cold signaling. Here, we show that ARR1 and AHP2, AHP3, and AHP5 play positive roles in the cold-inducible expression of type A ARRs. arr1 mutants showed greatly reduced cold-responsive expression of type A ARRs compared with the wild type, whereas ARR1-overexpressing Arabidopsis exhibited the hypersensitive cold response of type A ARRs as well as enhanced freezing tolerance with cytokinin, suggesting that ARR1 functions as a positive factor of cold signaling. Transgenic Arabidopsis expressing ARR1ΔDDK:GR lacking the amino-terminal receiver domain showed wild-type expression levels of type A ARRs in response to cold, indicating that the signal receiver domain of ARR1 might be important for cold-responsive expression of type A ARRs. ahp2 ahp3 ahp5 triple mutations greatly reduced type A ARR expression in response to cold, whereas the single or double ahp mutants displayed wild-type levels of ARR expression, suggesting that AHP2, AHP3, and AHP5 are redundantly involved in cold signaling. Taken together, these results suggest that ARR1 mediates cold signal via AHP2, AHP3, or AHP5 from AHK2 and AHK3 to express type A ARRs. We further identified a cold transcriptome affected by ahk2 ahk3 mutations by microarray analysis, revealing a new cold-responsive gene network regulated downstream of AHK2 and AHK3. PMID:23124324
Ness, J C; Morse, D E
1985-08-25
Intracellular concentrations of catecholamines were determined in wild-type and mutant Tetrahymena thermophila, using the highly sensitive techniques of high-performance liquid chromatography and electro-chemical detection. Catecholamines were determined in these cell strains grown under various steady-state conditions, including those which initiate and maintain repression of galactokinase gene expression. Wild-type cells grown in defined minimal medium supplemented with 1% glycerol, exhibiting derepressed galactokinase synthesis, were found to contain considerable quantities of dopa (3,4-dihydroxyphenylalanine) and dopamine, but no detectable levels of either norepinephrine or epinephrine. Analyses of wild-type cells revealed a strong positive correlation between the internal concentration of dopa and expression of the galactokinase gene, both of which are regulated by exogenous carbohydrates, catecholamine agonists, or dibutyryl-cAMP; an analogous relationship between intracellular dopamine concentrations and galactokinase activity was not found. In addition, a correlation between intracellular dopa content and the phenotypic expression of galactokinase in various mutants deficient in the catecholamine biosynthetic pathway or in glucokinase further confirms the role of dopa as a primary effector in the regulation of galactokinase gene expression.
2016-01-01
Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants. PMID:26893475
Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin
2014-01-01
Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857
Persistent hyperplastic primary vitreous due to somatic mosaic deletion of the arf tumor suppressor.
Thornton, J Derek; Swanson, Doug J; Mary, Michelle N; Pei, Deqing; Martin, Amy C; Pounds, Stanley; Goldowitz, Dan; Skapek, Stephen X
2007-02-01
Mice lacking the Arf tumor-suppressor gene develop eye disease reminiscent of persistent hyperplastic primary vitreous (PHPV). The current work explores mechanisms by which Arf promotes eye development, and its absence causes a PHPV-like disease. Chimeric mice were made by fusing wild-type and Arf(-/-) morulae. In these experiments, wild-type cells are identified by transgenic expression of GFP from a constitutive promoter. PCR-based genotyping and quantitative analyses after immunofluorescence staining of tissue and cultured cells documented the relative contribution of wild-type and Arf(-/-) cells to different tissues in the eye and different types of cells in the vitreous. The contributions of the Arf(-/-) lineage to the tail DNA, cornea, retina, and retina pigment epithelium (RPE) correlated with each other in wild-type<-->Arf(-/-) chimeric mice. Newborn chimeras had primary vitreous hyperplasia, evident as a retrolental mass. The mass was usually present when the proportion of Arf(-/-) cells was relatively high and absent when the Arf(-/-) proportion was low. The Pdgfrbeta- and Sma-expressing cells within the mass arose predominantly from the Arf(-/-) population. Ectopic Arf expression induced smooth muscle proteins in cultured pericyte-like cells, and Arf and Sma expression overlapped in hyaloid vessels. In the mouse model, loss of Arf in only a subset of cells causes a PHPV-like disease. The data indicate that both cell autonomous and non-cell autonomous effects of Arf may contribute to its role in vitreous development.
Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi
2013-02-01
UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.
Wang, Weina; Wang, Aimei; Luo, Guochang; Ma, Fengqiao; Wei, Xiaoming; Bi, Yongyi
2018-06-13
Ischemia/reperfusion (I/R) is a major cause of acute kidney injury (AKI), along with delayed graft function, which can trigger chronic kidney injury by stimulating epithelial to mesenchymal transition (EMT) in the kidney canaliculus. Sphingosine 1-phosphate receptor 1 (S1P1) is a G protein-coupled receptor that is indispensable for vessel homeostasis. This study aimed to investigate the influence of S1P1 on the mechanisms underlying I/R-induced EMT in the kidney using in vivo and in vitro models. Wild-type (WT) and S1P1-overexpressing kidney canaliculus cells were subject to hypoxic conditions followed by reoxygenation in the presence or absence of FTY720-P, a potent S1P1 agonist. In vivo, bilateral arteria renalis in wild-type mice and mice with silenced S1P1 were clamped for 30 min to obtain I/R models. We found that hypoxia/reoxygenation (H/R) significantly enhanced the expressions of EMT biomarkers and down-regulated S1P1 expression in wild-type canaliculus cells. In contrast, FTY720-P treatment or overexpression of S1P1 significantly suppressed EMT in wild-type canaliculus cells. Furthermore, after 48-72 h, a significant upregulation of EMT biomarker expression was triggered by I/R in mice with silenced S1P1, while the expressions of these markers did not change in wild-type mice. A kt activity was increased with H/R-induced EMT, suggesting that the protective influence of FTY720-P was due to its inhibition of PI3K/Akt. Therefore, the results of this study provide evidence that down-regulation of S1P1 expression is essential for the generation and progression of EMT triggered by I/R. S1P1 exhibits a prominent inhibitory effect on kidney I/R-induced EMT in the kidney by affecting the PI3K/Akt pathway.
Balance of Go1α and Go2α expression regulates motor function via the striatal dopaminergic system.
Baron, J; Bilbao, A; Hörtnagl, H; Birnbaumer, L; Leixner, S; Spanagel, R; Ahnert-Hilger, G; Brunk, I
2018-05-10
The heterotrimeric G-protein Go with its splice variants, Go1α and Go2α, seems to be involved in the regulation of motor function but isoform specific effects are still unclear. We found that Go1α-/- knockouts performed worse on the rota-rod than Go2α-/- and wild type (WT) mice. In Go1+2α-/- mice motor function was partially recovered. Furthermore, Go1+2α-/- mice showed an increased spontaneous motor activity. Compared to wild types or Go2α-/- mice, Go1+2α-/- mice developed increased behavioural sensitization following repetitive cocaine treatment, but failed to develop conditioned place preference. Analysis of dopamine concentration and expression of D1 and D2 receptors unravelled splice-variant specific imbalances in the striatal dopaminergic system: In Go1α-/- mice dopamine concentration and vesicular monoamine uptake were increased compared to wild types. The expression of the D2 receptor was higher in Go1α-/- compared to wild type littermates, but unchanged in Go2α-/- mice. Deletion of both Go1α and Go2α re-established both dopamine and D2 receptor levels comparable to those in the wild type. Cocaine treatment had no effect on the ratio of D1 receptor to D2 receptor in Go1+2α-/- mutants, but decreased this ratio in Go2α-/- mice. Finally, we observed that the deletion of Go1α led to a threefold higher striatal expression of Go2α. Taken together our data suggest that a balance in the expression of Go1α and Go2α sustains normal motor function. Deletion of either splice variant results in divergent behavioural and molecular alterations in the striatal dopaminergic system. Deletion of both splice variants partially restores the behavioural and molecular changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.
2015-01-01
Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. PMID:25618404
Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M
2015-01-24
Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Microbiota-induced obesity requires farnesoid X receptor
Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik
2017-01-01
Objective The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. Design We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr−/− mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. Results The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr−/− and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr−/− and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Conclusions Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. PMID:26740296
Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.
Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H
1997-05-15
Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.
Epigenetic Control of Prostate Cancer Metastasis: Role of Runx2 Phosphorylation
2014-04-01
prostate cancer cells. In the third budget year, we achieved the following: a. Generation of retrovirus and lentivirus vectors expressing WT RUNX2 and S301A... retrovirus vectors will be developed that express β-galactosidase (negative control), wild type Runx2, S301A/S319A (non-phosphorylated) or S301E/S310E...constitutively active) Runx2 mutants. As described last year, retrovirus and lentivirus vectors were constructed to stably introduce wild type and mutant
Mirabito, Katrina M; Hilliard, Lucinda M; Kett, Michelle M; Brown, Russell D; Booth, Sean C; Widdop, Robert E; Moritz, Karen M; Evans, Roger G; Denton, Kate M
2014-10-15
Sex hormones regulate the renin-angiotensin system. For example, estrogen enhances expression of the angiotensin type 2 receptor. We hypothesized that activation of the angiotensin type 2 receptor shifts the chronic pressure-natriuresis relationship leftward in females compared with males and that this effect is lost with age. Mean arterial pressure was measured by radiotelemetry in adult (4 mo old) and aged (14 mo old) wild-type and angiotensin type 2 receptor knockout male and female mice. Chronic pressure-natriuresis curves were constructed while mice were maintained on a normal-salt (0.26%) diet and following 6 days of high salt (5.0%) diet. Mean arterial pressure was lower in adult wild-type females than males (88 ± 1 and 97 ± 1 mmHg, respectively), a difference that was maintained with age, but was absent in adult knockout mice. In wild-type females, the chronic pressure-natriuresis relationship was shifted leftward compared with knockout females, an effect that was lost with age. In males, the chronic pressure-natriuresis relationship was not influenced by angiotensin type 2 receptor deficiency. Compared with age-matched females, the chronic pressure-natriuresis relationships in male mice were shifted rightward. Renal expression of the angiotensin type 2 receptor was fourfold greater in adult wild-type females than males. With age, the angiotensin type 2 receptor-to-angiotensin type 1 receptor balance was reduced in females. Conversely, in males, angiotensin receptor expression did not vary significantly with age. In conclusion, the angiotensin type 2 receptor modulates the chronic pressure-natriuresis relationship in an age- and sex-dependent manner. Copyright © 2014 the American Physiological Society.
Generation of a parvovirus B19 vaccine candidate.
Chandramouli, Sumana; Medina-Selby, Angelica; Coit, Doris; Schaefer, Mary; Spencer, Terika; Brito, Luis A; Zhang, Pu; Otten, Gillis; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Settembre, Ethan C
2013-08-20
Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
van der Hoeven, Ransome; Forst, Steven
2009-01-01
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded β-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the ΔopnS strain. Coinjection of the wild-type and ΔopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or ΔopnS strain were colonized by the wild-type strain. In addition, the ΔopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The ΔopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment. PMID:19465651
Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B
2017-10-01
In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p < 0.04) and 8 g/L (p = 0.05) treatments. HAMP expression showed alternating elevations and increased upon 1 g/L (p < 0.05) and 5 g/L (p < 0.05). However, in the recombinant cells that showed higher intracellular iron levels than wild-type cells, HFE and HAMP expressions were elevated only at low 1 g/L treatment (p < 0.03) and were repressed at 2 g/L treatment (p < 0.03). Under holotransferrin-untreated conditions, the iron-loaded recombinant cells showed higher expressions of HFE (p < 0.03) and HAMP (p = 0.05) than wild-type cells. HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.
HlyU Is a Positive Regulator of Hemolysin Expression in Vibrio anguillarum ▿
Li, Ling; Mou, Xiangyu; Nelson, David R.
2011-01-01
The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5′ random amplification of cDNA ends (5′-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays. PMID:21764937
Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice
Suo, Meng; Wang, Ping
2016-01-01
Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985
Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin
2017-12-19
Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.
Orlandi, A; Oliva, F; Taurisano, G; Candi, E; Di Lascio, A; Melino, G; Spagnoli, L G; Tarantino, U
2009-04-01
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFbeta-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.
Jones, Jennifer C; Kroscher, Kellie A; Dilger, Anna C
2014-03-28
Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.
Kim, Hye Y.; Mathews, Joel A.; Verbout, Norah G.; Williams, Alison S.; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Neto, Felippe L.; Benedito, Leandro A. P.; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.
2013-01-01
Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/− mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/− vs. wild-type mice, but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. IL-17A+ F4/80+ cells and IL-17A+ γδ T cells were also reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/− vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c− cells, whereas in Adipo−/− mice F4/80+CD11c+ cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/− vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/− vs. wild-type mice but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/− mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF. PMID:24381131
Microarray analysis of retinal gene expression in Egr-1 knockout mice
Schippert, Ruth; Schaeffel, Frank
2009-01-01
Purpose We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days. Methods The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT–PCR. Results Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT–PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT–PCR. Changes in four of the ten genes could be confirmed by real-time RT–PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1), and Pcdhb9. Except for Pcdhb9, the genes whose mRNA expression levels were validated were listed in one of the networks proposed by Ingenuity pathway analysis software. In addition to these genes, the software proposed several key-regulators which did not change in our study: retinoic acid, vascular endothelial growth factor A (VEGF-A), FBJ murine osteosarcoma viral oncogene homolog (cFos), and others. Conclusions Identification of genes that are differentially regulated during the development period between postnatal day 30 (when both homozygous and wild-type mice still have the same axial length) and day 42 (where the difference in eye length is apparent) could improve the understanding of mechanisms for the control of axial eye growth and may lead to potential targets for pharmacological intervention. With the aid of pathway-analysis software, a coarse picture of possible biochemical pathways could be generated. Although the mRNA expression levels of proteins proposed by the software, like VEGF, FOS, retinoic acid (RA) receptors, or cellular RA binding protein, did not show any changes in our experiment, these molecules have previously been implicated in the signaling cascades controlling axial eye growth. According to the pathway-analysis software, they represent links between several proteins whose mRNA expression was changed in our study. PMID:20019881
Microarray analysis of retinal gene expression in Egr-1 knockout mice.
Schippert, Ruth; Schaeffel, Frank; Feldkaemper, Marita Pauline
2009-12-10
We found earlier that 42 day-old Egr-1 knockout mice had longer eyes and a more myopic refractive error compared to their wild-types. To identify genes that could be responsible for the temporarily enhanced axial eye growth, a microarray analysis was performed in knockout and wild-type mice at the postnatal ages of 30 and 42 days. The retinas of homozygous and wild-type Egr-1 knockout mice (Taconic, Ry, Denmark) were prepared for RNA isolation (RNeasy Mini Kit, Qiagen) at the age of 30 or 42 days, respectively (n=12 each). Three retinas were pooled and labeled cRNA was made. The samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Hybridization signals were calculated using GC-RMA normalization. Genes were identified as differentially expressed if they showed a fold-change (FC) of at least 1.5 and a p-value <0.05. A false-discovery rate of 5% was applied. Ten genes with potential biologic relevance were examined further with semiquantitative real-time RT-PCR. Comparing mRNA expression levels between wild-type and homozygous Egr-1 knockout mice, we found 73 differentially expressed genes at the age of 30 days and 135 genes at the age of 42 days. Testing for differences in gene expression between the two ages (30 versus 42 days), 54 genes were differently expressed in wild-type mice and 215 genes in homozygous animals. Based on three networks proposed by Ingenuity pathway analysis software, nine differently expressed genes in the homozygous Egr-1 knockout mice were chosen for further validation by real-time RT-PCR, three genes in each network. In addition, the gene that was most prominently regulated in the knockout mice, compared to wild-type, at both 30 days and 42 days of age (protocadherin beta-9 [Pcdhb9]), was tested with real-time RT-PCR. Changes in four of the ten genes could be confirmed by real-time RT-PCR: nuclear prelamin A recognition factor (Narf), oxoglutarate dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1), and Pcdhb9. Except for Pcdhb9, the genes whose mRNA expression levels were validated were listed in one of the networks proposed by Ingenuity pathway analysis software. In addition to these genes, the software proposed several key-regulators which did not change in our study: retinoic acid, vascular endothelial growth factor A (VEGF-A), FBJ murine osteosarcoma viral oncogene homolog (cFos), and others. Identification of genes that are differentially regulated during the development period between postnatal day 30 (when both homozygous and wild-type mice still have the same axial length) and day 42 (where the difference in eye length is apparent) could improve the understanding of mechanisms for the control of axial eye growth and may lead to potential targets for pharmacological intervention. With the aid of pathway-analysis software, a coarse picture of possible biochemical pathways could be generated. Although the mRNA expression levels of proteins proposed by the software, like VEGF, FOS, retinoic acid (RA) receptors, or cellular RA binding protein, did not show any changes in our experiment, these molecules have previously been implicated in the signaling cascades controlling axial eye growth. According to the pathway-analysis software, they represent links between several proteins whose mRNA expression was changed in our study.
Beinfeld, Margery C; Blum, Alissa; Vishnuvardhan, Daesety; Fanous, Sanya; Marchand, James E
2005-11-18
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.
Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E
2010-02-01
We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.
Regulation of c–myc expression by IFN–γ through Stat1-dependent and -independent pathways
Ramana, Chilakamarti V.; Grammatikakis, Nicholas; Chernov, Mikhail; Nguyen, Hannah; Goh, Kee Chuan; Williams, Bryan R.G.; Stark, George R.
2000-01-01
Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c–myc expression. IFN–γ suppresses c–myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c–myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c–myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c–myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c–myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c–myc mRNA is induced, not suppressed, in response to IFN–γ. A role for Raf–1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50cdc37 that is unable to recruit HSP90 to the Raf–1 complex. Both agents abrogated the IFN–γ-dependent induction of c–myc expression in Stat1-null cells. PMID:10637230
Expression of BCR-ABL1 oncogene relative to ABL1 gene changes overtime in chronic myeloid leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Manu; Milani, Lili; Hermansson, Monica
Using a quantitative single nucleotide polymorphism (SNP) assay we have investigated the changes in the expression of the BCR-ABL1 oncogene relative to the wild-type ABL1 and BCR alleles in cells from chronic myeloid leukemia (CML) patients not responding to therapy. The results show a progressive increase in the BCR-ABL1 oncogene expression at the expense of decreased expression of the ABL1 allele, not involved in the fusion. No relative changes in the expression of the two BCR alleles were found. These results demonstrate that allele-specific changes in gene expression, with selective, progressive silencing of the wild-type ABL1 allele in favor ofmore » the oncogenic BCR-ABL1 allele occur in CML patients with therapy-resistant disease.« less
Steenhard, Brooke M.; Vanacore, Roberto; Friedman, David; Zelenchuk, Adrian; Stroganova, Larysa; Isom, Kathryn; St. John, Patricia L.; Hudson, Billy G.; Abrahamson, Dale R.
2012-01-01
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM. PMID:23236390
2000-01-01
recombinant human BUChE; Sf, Spodoptera frugiperda ; VX, 0-ethyl S-[2-[bis(I -methylethyl)amino]ethyl]methyl phosphonothiolate; wt, wild-type. 1 To whom...ATCC (Rockville, MD, U.S.A.). Insect cells ( Spodoptera frugiperda Sf9 cells and T. ni High 5 cells) and wild-type (wt)-AcNPV were purchased from
Wiberley-Bradford, Amy E; Busse, James S; Jiang, Jiming; Bethke, Paul C
2014-11-16
Storing potato tubers at low temperatures minimizes sprouting and disease but can cause an accumulation of reducing sugars in a process called cold-induced sweetening. Tubers with increased amounts of reducing sugars produce dark-colored, bitter-tasting fried products with elevated amounts of acrylamide, a possible carcinogen. Vacuolar invertase (VInv), which converts sucrose produced by starch breakdown to glucose and fructose, is the key determinant of reducing sugar accumulation during cold-induced sweetening. In this study, wild-type tubers and tubers in which VInv expression was reduced by RNA interference were used to investigate time- and temperature-dependent changes in sugar contents, chip color, and expression of VInv and other genes involved in starch metabolism in tubers during long-term cold storage. VInv activities and tuber reducing sugar contents were much lower, and tuber sucrose contents were much higher, in transgenic than in wild-type tubers stored at 3-9°C for up to eight months. Large differences in VInv mRNA accumulation were not observed at later times in storage, especially at temperatures below 9°C, so differences in invertase activity were likely established early in the storage period and maintained by stability of the invertase protein. Sugar contents, chip color, and expression of several of the studied genes, including AGPase and GBSS, were affected by storage temperature in both wild-type and transgenic tubers. Though transcript accumulation for other sugar-metabolism genes was affected by storage temperature and duration, it was essentially unaffected by invertase silencing and altered sugar contents. Differences in stem- and bud-end sugar contents in wild-type and transgenic tubers suggested different compartmentalization of sucrose at the two ends of stored tubers. VInv silencing significantly reduced cold-induced sweetening in stored potato tubers, likely by means of differential VInv expression early in storage. Transgenic tubers retained sensitivity to storage temperature, and accumulated greater amounts of sucrose, glucose and fructose at 3°C than at 7-9°C. At each storage temperature, suppression of VInv expression and large differences in tuber sugar contents had no effect on expression of AGPase and GBSS, genes involved in starch metabolism, suggesting that transcription of these genes is not regulated by tuber sugar content.
Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.
Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui
2006-06-02
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.
Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.
Tanami, Hideaki; Imoto, Issei; Hirasawa, Akira; Yuki, Yasuhiro; Sonoda, Itaru; Inoue, Jun; Yasui, Kohichiro; Misawa-Furihata, Akiko; Kawakami, Yutaka; Inazawa, Johji
2004-11-18
Comparative genomic hybridization (CGH) using 40 cell lines derived from malignant melanomas (MMs) revealed frequent amplification at 7q33-q34 containing BRAF gene, which often is mutated in MM. We found this gene to be amplified to a remarkable degree in the MM cell lines that exhibited high-level gains at 7q33-q34 in CGH. Among 40 cell lines, the eight lines that revealed neither BRAF nor NRAS mutations showed even higher levels of BRAF mRNA expression than the 32 mutated lines, although DNA amplification at 7q33-q34 was not detected in every lines overexpressing BRAF. MM cells that carried wild-type BRAF and NRAS showed constitutive overexpression of B-Raf protein and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), even after serum starvation. Not only downregulation of the endogenously overexpressed wild-type B-Raf by antisense oligonucleotide but also a treatment with an inhibitor of mitogen-activated protein kinase kinase (MAPKK, MEK) reduced phosphorylated ERK1/2 and cell growth, whereas the exogenously expressed wild-type B-Raf promoted cell growth in MM cells. Our results provide the evidence that overexpression of wild-type B-Raf, in part but not always as a result of gene amplification, is one of the mechanisms underlying constitutive activation of the MAPK pathway that stimulates growth of MM cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulet, L.; Karpati, G.; Shoubridge, E.A.
1992-12-01
The authors investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA[sup Lys] gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to thatmore » in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA[sup Lys] is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype. 40 refs., 7 figs., 2 tabs.« less
Melo, Sônia C; Santos, Regineide X; Melgaço, Ana C; Pereira, Alanna C F; Pungartnik, Cristina; Brendel, Martin
2015-06-01
Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet-C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.
Melo, Sônia C.; Santos, Regineide X.; Melgaço, Ana C.; Pereira, Alanna C. F.; Pungartnik, Cristina; Brendel, Martin
2015-01-01
Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae. PMID:26039235
Kano, Kiyoshi; Marín de Evsikova, C.; Young, James; Wnek, Christopher; Maddatu, Terry P.; Nishina, Patsy M.; Naggert, Jürgen K.
2008-01-01
Smallie (slie), a spontaneous, autosomal-recessive mutation causes dwarfing and infertility in mice. The purpose of this study was to determine and characterize the underlying molecular genetic basis for its phenotype. The slie locus was mapped to chromosome 1, and fine-structure mapping narrowed the slie allele within 2 Mb between genetic markers D1Mit36 and Mpz. To pinpoint the underlying mutation quantitative real-time PCR was used to measure the relative expression levels for the genes residing within this region. Expression of one gene, Ddr2, which encodes discoidin domain receptor 2 (DDR2), was absent in slie homozygote mice. Genomic sequencing analysis detected a 150-kb deletion that extended into the Ddr2 gene transcript. Detailed phenotype analysis revealed that gonadal dysregulation underlies infertility in slie mice because all females were anovulatory and most adult males lacked spermatogenesis. The pituitary gland of prepubertal slie mice was smaller than in wild-type mice. The basal levels and gene expression for pituitary and hypothalamic hormones, and gene expression for hypothalamic-releasing hormones, were not significantly different between slie and wild-type mice. Circulating levels of IGF-1 did not differ in slie mice despite lower Igf-1 mRNA expression in the liver. After exogenous gonadotropin administration, the levels of secreted steroid hormones in both male and female adult slie mice were blunted compared to adult wild-type, but was similar to prepubertal wild-type mice. Taken together, our results indicate that the absence of DDR2 leads to growth retardation and gonadal dysfunction due to peripheral defects in hormonal-responsive pathways in slie mice. PMID:18483174
Responses of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature.
Ranganathan, Kapilan; El Kayal, Walid; Cooke, Janice E K; Zwiazek, Janusz J
2016-03-15
Aquaporins mediate the movement of water across cell membranes. Plasma membrane intrinsic protein 2;5 from Populus trichocarpa×deltoides (PtdPIP2;5) was previously demonstrated to be a functionally important water conducting aquaporin. To study the relevance of aquaporin-mediated root water transport at low temperatures, we generated transgenic Populus tremula×alba over-expressing PtdPIP2;5 under control of the maize ubiquitin promoter, and compared the physiological responses and water transport properties of the PtdPIP2;5 over-expressing lines (PtdPIP2;5ox) with wild-type plants. We hypothesized that over-expression of PtdPIP2;5 would reduce temperature sensitivity of root water transport and gas exchange. Decreasing root temperatures to 10 and 5°C significantly decreased hydraulic conductivities (Lp) in wild-type plants, but had no significant effect on Lp in PtdPIP2;5ox plants. Recovery of Lp in the transgenic lines returned to 20°C from 5°C was faster than in the wild-type plants. Low root temperature did not induce major changes in transcript levels for other PIPs. When roots were exposed to 5°C in solution culture and shoots were exposed to 20°C, wild-type plants had significantly lower net photosynthetic and transpiration rates compared to PtdPIP2;5ox plants. Taken together, our results demonstrate that over-expression of PtdPIP2;5 in P. tremula×alba was effective in alleviating the effects of low root temperature on Lp and gas exchange. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wang, Lu; Waters, Mark T; Smith, Steven M
2018-07-01
The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure
Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.
2015-01-01
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120
Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin
2013-03-01
On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.
Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W
2009-05-01
Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.
Finiguerra, Michael; Avery, David E.; Dam, Hans G.
2015-01-01
The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST). Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI) or wild-type isoforms (PWI), while most individuals express relatively equal amounts of each (EI). There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR), ingestion rate (I), and gross growth efficiency (GGE) for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed. PMID:26075900
Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice
Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid
2016-01-01
Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789
Assessment of Dental Fluorosis in Mmp20+/− Mice
Sharma, R.; Tye, C.E.; Arun, A.; MacDonald, D.; Chatterjee, A.; Abrazinski, T.; Everett, E.T.; Whitford, G.M.; Bartlett, J.D.
2011-01-01
The molecular mechanisms that underlie dental fluorosis are poorly understood. The retention of enamel proteins hallmarking fluorotic enamel may result from impaired hydrolysis and/or removal of enamel proteins. Previous studies have suggested that partial inhibition of Mmp20 expression is involved in the etiology of dental fluorosis. Here we ask if mice expressing only one functional Mmp20 allele are more susceptible to fluorosis. We demonstrate that Mmp20+/− mice express approximately half the amount of MMP20 as do wild-type mice. The Mmp20 heterozygous mice have normal-appearing enamel, with Vickers microhardness values similar to those of wild-type control enamel. Therefore, reduced MMP20 expression is not solely responsible for dental fluorosis. With 50-ppm-fluoride (F−) treatment ad libitum, the Mmp20+/− mice had F− tissue levels similar to those of Mmp20+/+ mice. No significant difference in enamel hardness was observed between the F−-treated heterozygous and wild-type mice. Interestingly, we did find a small but significant difference in quantitative fluorescence between these two groups, which may be attributable to slightly higher protein content in the Mmp20+/− mouse enamel. We conclude that MMP20 plays a nominal role in dental enamel fluorosis. PMID:21386097
Lee, Bheong-Uk; Choi, Moon-Seop; Oh, Kye-Heon
2015-01-01
Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 10(2)-10(4)-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress.
Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.
2012-01-01
Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK−/− mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 hr of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK−/− mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK −/− mice. Whereas F4/80+ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK−/− mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK−/− mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity. PMID:22575169
Harrison-Findik, Duygu Dee; Lu, Sizhao
2015-05-06
This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2017-01-01
Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2015-12-01
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
2009-01-01
Background The ornamental crop Calluna vulgaris is of increasing importance to the horticultural industry in the northern hemisphere due to a flower organ mutation: the flowers of the 'bud-flowering' phenotype remain closed i.e. as buds throughout the total flowering period and thereby maintain more colorful flowers for a longer period of time than the wild-type. This feature is accompanied and presumably caused by the complete lack of stamens. Descriptions of this botanical particularity are inconsistent and partially conflicting. In order to clarify basic questions of flower organ identity in general and stamen loss in detail, a study of the wild-type and the 'bud-flowering' flower type of C. vulgaris was initiated. Results Flowers were examined by macro- and microscopic techniques. Organ development was investigated comparatively in both the wild-type and the 'bud-flowering' type by histological analyses. Analysis of epidermal cell surface structure of vegetative tissues and perianth organs using scanning electron microscopy revealed that in wild-type flowers the outer whorls of colored organs may be identified as sepals, while the inner ones may be identified as petals. In the 'bud-flowering' type, two whorls of sepals are directly followed by the gynoecium. Both, petals and stamens, are completely missing in this flower type. The uppermost whorl of green leaves represents bracts in both flower types. In addition, two MADS-box genes (homologs of AP3/DEF and SEP1/2) were identified in C. vulgaris using RACE-PCR. Expression analysis by qRT-PCR was conducted for both genes in leaves, bracts, sepals and petals. These experiments revealed an expression pattern supporting the organ classification based on morphological characteristics. Conclusions Organ identity in both wild-type and 'bud-flowering' C. vulgaris was clarified using a combination of microscopic and molecular methods. Our results for bract, sepal and petal organ identity are supported by the 'ABCDE model'. However, loss of stamens in the 'bud-flowering' phenotype is an exceptional flower organ modification that cannot be explained by modified spatial expression of known organ identity genes. PMID:20003430
Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity.
Townsend, Danyelle M; Tew, Kenneth D; He, Lin; King, Jarrod B; Hanigan, Marie H
2009-02-01
One of the dose-limiting toxicities of cisplatin is nephrotoxicity. Renal toxicity is localized to quiescent proximal tubule cells, where the formation of DNA-adducts cannot account for the dose-limiting toxicity. Our earlier results have shown that a glutathione conjugate of cisplatin is metabolized to a nephrotoxicant via gamma-glutamyl transpeptidase (GGT) and a cysteine S-conjugate beta-lyase. The present study was designed to evaluate the potential role of glutathione S-transferase Pi (GSTP) in the initial steps of the bioactivation of cisplatin. Wild-type mice and mice deficient in both murine GSTP genes (GstP1/P2) were treated with cisplatin. Toxicity in both male and female mice was evaluated 5 days after treatment and renal damage was most severe in wild-type male mice. Wild-type males have approximately 10-fold higher levels of GSTP expression in the liver than females, suggesting that hepatic GSTP in the wild-type males contributed to the formation of the nephrotoxic platinum-glutathione conjugate. In GstP1/P2 null mice the gender difference in toxicity was eliminated. Our data show that GSTP expression is a determinant in cisplatin-induced nephrotoxicity and its levels contribute to sex-dependent differences.
Role of Glutathione S-Transferase Pi in Cisplatin Induced Nephrotoxicity
Townsend, Danyelle M.; Tew, Kenneth D.; He, Lin; King, Jarrod B.; Hanigan, Marie H.
2009-01-01
SUMMARY One of the dose-limiting toxicities of cisplatin is nephrotoxicity. Renal toxicity is localized to quiescent proximal tubule cells, where the formation of DNA-adducts cannot account for the dose-limiting toxicity. Our earlier results have shown that a glutathione-conjugate of cisplatin is metabolized to a nephrotoxicant via gamma-glutamyltranspeptidase (GGT) and a cysteine S-conjugate beta-lyase. The present study was designed to evaluate the potential role of glutathione-S-transferase Pi (GSTP) in the initial steps of the bioactivation of cisplatin. Wild-type mice and mice deficient in both murine GSTP genes (GstP1/P2) were treated with cisplatin. Toxicity in both male and female mice was evaluated 5 days after treatment and renal damage was most severe in wild-type male mice. Wild-type males have ~10-fold higher levels of GSTP expression in the liver than females, suggesting that hepatic GSTP in the wild-type males contributed to the formation of the nephrotoxic platinum-glutathione conjugate. In GstP1/P2 null mice the gender difference in toxicity was eliminated. Our data show that GSTP expression is a determinant in cisplatin-induced nephrotoxicity and its levels contribute to sex-dependent differences. PMID:18819770
Charoensakdi, Ratiya; Murakami, Shuichiro; Aoki, Kenji; Rimphanitchayakit, Vichien; Limpaseni, Tipaporn
2007-05-31
Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower K(m) for coupling reaction using cellobiose and cyclodextrins as substrates.
Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy
Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.
2006-01-01
The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686
Locomotor differences in mice expressing wild-type human α-synuclein.
Giraldo, Genesys; Brooks, Mieu; Giasson, Benoit I; Janus, Christopher
2018-05-01
Parkinson's disease manifests as a progressive movement disorder with underlying degeneration of dopaminergic neurons in the substantia nigra, consequent depletion of dopamine levels, and the accumulation of Lewy bodies in the brain. Because α-synuclein (α-Syn) protein is the major component of Lewy bodies, mouse models expressing wild-type or mutant SNCA/α-Syn genes provide a useful tool to investigate canonical characteristics of the disease. We evaluated a mouse model (denoted M20) that expresses human wild-type SNCA gene. The M20 mice showed abnormal locomotor behavior and reduced species-specific home cage activity. However, the direction of behavioral changes was task specific. In comparison with their control littermates, the M20 mice exhibited shorter grip endurance, and longer times to traverse elevated beams, but they descended the vertical pole faster and stayed longer on the accelerated rod than the control mice. The M20 mice were also impaired in burrowing and nest building activities. These results indicate a possible role of α-Syn in motor coordination and the motivation to perform species-specific behaviors in the presymptomatic model of synucleinopathy. Published by Elsevier Inc.
Park, Miseon; Mitchell, Wilfrid J.
2016-01-01
Trehalose has been shown to protect bacterial cells from environmental stress. Its uptake and osmoprotective effect in Clostridium perfringens were investigated by comparing wild type C. perfringens ATCC 13124 with a fluoroquinolone- (gatifloxacin-) resistant mutant. In a chemically defined medium, trehalose and sucrose supported the growth of the wild type but not that of the mutant. Microarray data and qRT-PCR showed that putative genes for the phosphorylation and transport of sucrose and trehalose (via phosphoenolpyruvate-dependent phosphotransferase systems, PTS) and some regulatory genes were downregulated in the mutant. The wild type had greater tolerance than the mutant to salts and low pH; trehalose and sucrose further enhanced the osmotolerance of the wild type to NaCl. Expression of the trehalose-specific PTS was lower in the fluoroquinolone-resistant mutant. Protection of C. perfringens from environmental stress could therefore be correlated with the ability to take up trehalose. PMID:28058047
Microbiota-induced obesity requires farnesoid X receptor.
Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik
2017-03-01
The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr -deficient mice to GF wild-type mice. The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
fat-1 mice prevent high-fat plus high-sugar diet-induced non-alcoholic fatty liver disease.
Guo, Xiao-Fei; Gao, Jin-Long; Li, Jiao-Mei; Li, Duo
2017-11-15
High-fat and high-sugar (HFS) diets have been suggested to play a causal role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate whether fat-1 transgenic mice with a higher tissue content of n-3 polyunsaturated fatty acids (PUFAs) could prevent HFS diet-induced NAFLD, compared with wild-type mice. The fat-1 and wild-type littermates had free access to a 15% fructose solution plus high-fat diet, a 15% glucose solution plus high-fat diet, or a 15% sucrose solution plus high-fat diet, respectively. Caloric intake, weight gain, biochemical parameters, histology, and gene and protein expression levels were measured after 8 weeks of intervention. Liquid intake in glucose- or sucrose-fed mice was about 2-fold compared with that in fructose-fed mice. The wild-type mice given glucose showed the highest total caloric intake and weight gain compared to the other groups. The serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and alanine transaminase (ALT) were significantly lowered in fat-1 groups compared with their paired wild-type groups. Histological analysis showed that the wild-type groups fed the HFS diets developed hepatic lipid accumulation and steatosis, compared with the fat-1 groups. The gene and protein expression levels involved in fatty acid synthesis and the toll-like receptor (TLR)-4 signaling pathway were significantly inhibited in the fat-1 groups compared with the wild-type groups. The endogenously synthesized n-3 PUFAs of the three fat-1 groups, which inhibit fatty acid synthesis and the TLR-4 signaling pathway, prevent HFS diet-induced NAFLD.
Bezzi, Siham; Kessler, Danny; Diezel, Celia; Muck, Alexander; Anssour, Samir; Baldwin, Ian T.
2010-01-01
Native flower visitors removed less nectar from trypsin proteinase inhibitor (TPI)-silenced Nicotiana attenuata plants (ir-pi) than from wild-type plants in four field seasons of releases, even when the nectar repellant, nicotine, was also silenced. Analysis of floral chemistry revealed no differences in the emission of the floral attractants benzylacetone and benzaldehyde or in the concentrations of nectar sugar and nicotine between wild-type and ir-pi flowers, suggesting that these two lines are equally able to attract insect visitors. TPI activity was found in all wild-type flower parts and was highest in anther heads, while TPI activity was not found in any parts of ir-pi flowers. The nectar of ir-pi flowers contained 3.6-fold more total proteins than the nectar of wild-type flowers. Proteomics analysis and hydrogen peroxide (H2O2) measurements revealed that ir-pi nectar contained more nectarins and nectar germin-like proteins and about 1.5-fold more H2O2 compared with wild-type nectar. Field experiments with wild-type flowers supplemented with a solution containing sugar and glucose oxidase demonstrated a causal association between the accumulation of H2O2 and the reduction in nectar removal. These results showed that silencing TPI expression increases the accumulation of nectar proteins and H2O2 levels, which in turn reduces nectar removal by native insect floral visitors. The effect of silencing TPIs on nectar protein accumulation suggests an endogenous regulatory function for TPIs in N. attenuata flowers. The repellency of H2O2 to floral visitors raises new questions about the qualities of nectar that make it attractive for pollinators. PMID:20190094
The MAP kinase JNK2 mediates cigarette smoke-induced arterial thrombosis.
Breitenstein, Alexander; Stämpfli, Simon F; Reiner, Martin F; Shi, Yi; Keller, Stephan; Akhmedov, Alexander; Schaub Clerigué, Ariane; Spescha, Remo D; Beer, Hans-Jürg; Lüscher, Thomas F; Tanner, Felix C; Camici, Giovanni G
2017-01-05
Despite public awareness of its deleterious effects, smoking remains a major cause of death. Indeed, it is a risk factor for atherothrombotic complications and in line with this, the introduction of smoking ban in public areas reduced smoking-associated cardiovascular complications. Nonetheless, smoking remains a major concern, and molecular mechanisms by which it causes cardiovascular disease are not known. Peripheral blood monocytes from healthy smokers displayed increased JNK2 and tissue factor (TF) gene expression compared to non-smokers (n=15, p<0.05). Similarly, human aortic endothelial cells exposed to cigarette smoke total particulate matter (CS-TPM) revealed increased TF expression mediated by JNK2 (n=4; p<0.05). Wild-type and JNK2 -/- mice were exposed to cigarette smoke for two weeks after which arterial thrombosis was investigated. Wild-type mice exposed to smoke displayed reduced time to thrombotic arterial occlusion (n=8; p<0.05) and increased tissue factor activity (n=7; p<0.05) as compared to wild-type controls (n=6), while JNK2 -/- mice exposed to smoke maintained an unaltered thrombotic potential (n=8; p=NS) and tissue factor activity (n=8) comparable to that of JNK2 -/- and wild-type controls (n=6; p=NS). Smoking caused an increased production of reactive oxygen species (ROS) in wild-type but not in JNK2 -/- mice (n=7; p<0.05 for wild-type mice and n=5-6; p=NS for JNK2 -/- mice). In conclusion, the MAP kinase JNK2 mediates cigarette smoke-induced TF activation, arterial thrombosis and ROS production. These results underscore a major role of JNK2 in smoke-mediated thrombus formation and may offer an attractive target to prevent smoke-related thrombosis in those subjects which do not manage quitting.
Daumy, G O; Williams, J A; McColl, A S; Zuzel, T J; Danley, D
1986-10-01
The penicillin G acylase genes from the Proteus rettgeri wild type and from a hyperproducing mutant which is resistant to succinate repression were cloned in Escherichia coli K-12. Expression of both wild-type and mutant P. rettgeri acylase genes in E. coli K-12 was independent of orientation in the cloning vehicle and apparently resulted from recognition in E. coli of the P. rettgeri promoter sequences. The P. rettgeri acylase was secreted into the E. coli periplasmic space and was composed of subunits electrophoretically identical to those made in P. rettgeri. Expression of these genes in E. coli K-12 was not repressed by succinate as it is in P. rettgeri. Instead, expression of the enzymes was regulated by glucose catabolite repression.
Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke
2017-09-05
Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo
2006-01-01
[6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513
Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.
Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf
2006-03-01
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
Aleksunes, Lauren M; Reisman, Scott A; Yeager, Ronnie L; Goedken, Michael J; Klaassen, Curtis D
2010-04-01
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) induces a battery of cytoprotective genes after oxidative stress. Nrf2 aids in liver regeneration by altering insulin signaling; however, whether Nrf2 participates in hepatic glucose homeostasis is unknown. Compared with wild-type mice, mice lacking Nrf2 (Nrf2-null) have lower basal serum insulin and prolonged hyperglycemia in response to an intraperitoneal glucose challenge. In the present study, blood glucose, serum insulin, urine flow rate, and hepatic expression of glucose-related genes were quantified in male diabetic wild-type and Nrf2-null mice. Type 1 diabetes was induced with a single intraperitoneal dose (200 mg/kg) of streptozotocin (STZ). Histopathology and serum insulin levels confirmed depleted pancreatic beta-cells in STZ-treated mice of both genotypes. Five days after STZ, Nrf2-null mice had higher blood glucose levels than wild-type mice. Nine days after STZ, polyuria occurred in both genotypes with more urine output from Nrf2-null mice (11-fold) than wild-type mice (7-fold). Moreover, STZ-treated Nrf2-null mice had higher levels of serum beta-hydroxybutyrate, triglycerides, and fatty acids 10 days after STZ compared with wild-type mice. STZ reduced hepatic glycogen in both genotypes, with less observed in Nrf2-null mice. Increased urine output and blood glucose in STZ-treated Nrf2-null mice corresponded with enhanced gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase)- and reduced glycolysis (pyruvate kinase)-related mRNA expression in their livers. Furthermore, the Nrf2 activator oltipraz lowered blood glucose in wild-type but not Nrf2-null mice administered STZ. Collectively, these data indicate that the absence of Nrf2 worsens hyperglycemia in type I diabetic mice and Nrf2 may represent a therapeutic target for reducing circulating glucose levels.
Comparative Response of the Hepatic Transcriptomes of Domesticated and Wild Turkey to Aflatoxin B₁.
Reed, Kent M; Mendoza, Kristelle M; Abrahante, Juan E; Coulombe, Roger A
2018-01-13
The food-borne mycotoxin aflatoxin B₁ (AFB₁) poses a significant risk to poultry, which are highly susceptible to its hepatotoxic effects. Domesticated turkeys ( Meleagris gallopavo ) are especially sensitive, whereas wild turkeys ( M. g. silvestris ) are more resistant. AFB₁ toxicity entails bioactivation by hepatic cytochrome P450s to the electrophilic exo-AFB₁-8,9-epoxide (AFBO). Domesticated turkeys lack functional hepatic GST-mediated detoxification of AFBO, and this is largely responsible for the differences in resistance between turkey types. This study was designed to characterize transcriptional changes induced in turkey livers by AFB₁, and to contrast the response of domesticated (susceptible) and wild (more resistant) birds. Gene expression responses to AFB₁ were examined using RNA-sequencing. Statistically significant differences in gene expression were observed among treatment groups and between turkey types. Expression analysis identified 4621 genes with significant differential expression (DE) in AFB₁-treated birds compared to controls. Characterization of DE transcripts revealed genes dis-regulated in response to toxic insult with significant association of Phase I and Phase II genes and others important in cellular regulation, modulation of apoptosis, and inflammatory responses. Constitutive expression of GSTA3 was significantly higher in wild birds and was significantly higher in AFB₁-treated birds when compared to controls for both genetic groups. This pattern was also observed by qRT-PCR in other wild and domesticated turkey strains. Results of this study emphasize the differential response of these genetically distinct birds, and identify genes and pathways that are differentially altered in aflatoxicosis.
Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan
2014-09-01
Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Spatz, Stephen J; Volkening, Jeremy D; Mullis, Robert; Li, Fenglan; Mercado, John; Zsak, Laszlo
2013-10-01
Meleagrid herpesvirus type 1 (MeHV-1) is an ideal vector for the expression of antigens from pathogenic avian organisms in order to generate vaccines. Chicken parvovirus (ChPV) is a widespread infectious virus that causes serious disease in chickens. It is one of the etiological agents largely suspected in causing Runting Stunting Syndrome (RSS) in chickens. Initial attempts to express the wild-type gene encoding the capsid protein VP2 of ChPV by insertion into the thymidine kinase gene of MeHV-1 were unsuccessful. However, transient expression of a codon-optimized synthetic VP2 gene cloned into the bicistronic vector pIRES2-Ds-Red2, could be demonstrated by immunocytochemical staining of transfected chicken embryo fibroblasts (CEFs). Red fluorescence could also be detected in these transfected cells since the red fluorescent protein gene is downstream from the internal ribosome entry site (IRES). Strikingly, fluorescence could not be demonstrated in cells transiently transfected with the bicistronic vector containing the wild-type or non-codon-optimized VP2 gene. Immunocytochemical staining of these cells also failed to demonstrate expression of wild-type VP2, indicating that the lack of expression was at the RNA level and the VP2 protein was not toxic to CEFs. Chickens vaccinated with a DNA vaccine consisting of the bicistronic vector containing the codon-optimized VP2 elicited a humoral immune response as measured by a VP2-specific ELISA. This VP2 codon-optimized bicistronic cassette was rescued into the MeHV-1 genome generating a vectored vaccine against ChPV disease.
Mugisho, Odunayo O.; Green, Colin R.; Zhang, Jie; Binz, Nicolette; Acosta, Monica L.; Rakoczy, Elizabeth
2017-01-01
Diabetic retinopathy (DR) develops due to hyperglycemia and inflammation-induced vascular disruptions in the retina with connexin43 expression patterns in the disease still debated. Here, the effects of hyperglycemia and inflammation on connexin43 expression in vitro in a mouse model of DR and in human donor tissues were evaluated. Primary human retinal microvascular endothelial cells (hRMECs) were exposed to high glucose (HG; 25 mM) or pro-inflammatory cytokines IL-1β and TNF-α (10 ng/mL each) or both before assessing connexin43 expression. Additionally, connexin43, glial fibrillary acidic protein (GFAP), and plasmalemma vesicular associated protein (PLVAP) were labeled in wild-type (C57BL/6), Akita (diabetic), and Akimba (DR) mouse retinas. Finally, connexin43 and GFAP expression in donor retinas with confirmed DR was compared to age-matched controls. Co-application of HG and cytokines increased connexin43 expression in hRMECs in line with results seen in mice, with no significant difference in connexin43 or GFAP expression in Akita but higher expression in Akimba compared to wild-type mice. On PLVAP-positive vessels, connexin43 was higher in Akimba but unchanged in Akita compared to wild-type mice. Connexin43 expression appeared higher in donor retinas with confirmed DR compared to age-matched controls, similar to the distribution seen in Akimba mice and correlating with the in vitro results. Although connexin43 expression seems reduced in diabetes, hyperglycemia and inflammation present in the pathology of DR seem to increase connexin43 expression, suggesting a causal role of connexin43 channels in the disease progression. PMID:29186067
Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.
2014-01-01
Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528
Chu, Ruiyin; Zhang, Weihua; Lim, Hanjo; Yeldandi, Anjana V; Herring, Chris; Brumfield, Laura; Reddy, Janardan K; Davison, Matthew
2002-01-01
Peroxisome proliferators induce hepatic peroxisome proliferation and hepatocellular carcinomas in rodents. These chemicals increase the expression of the peroxisomal beta-oxidation pathway and the cytochrome P-450 4A family, which metabolizes lipids, including fatty acids. Mice lacking fatty acyl-CoA oxidase (AOX-/-), the first enzyme of the peroxisomal beta-oxidation system, exhibit extensive microvesicular steatohepatitis, leading to hepatocellular regeneration and massive peroxisome proliferation. To investigate proteins involved in peroxisome proliferation, we adopted a novel surface-enhanced laser desorption/ionization (SELDI) ProteinChip technology to compare the protein profiles of control (wild-type), AOX-/-, and wild-type mice treated with peroxisome proliferator, Wy-14,643. The results indicated that the protein profiles of AOX-/- mice were similar to the wild-type mice treated with Wy14,643, but significantly different from the nontreated wild-type mice. Using four different ProteinChip Arrays, a total of 40 protein peaks showed more than twofold changes. Among these differentially expressed peaks, a downregulated peak was identified as the major urinary protein in both AOX-/- and Wyl4,643-treated mice by SELDI. The identification of MUP was further confirmed by two-dimensional electrophoresis and liquid chromatography coupled tandem mass spectrometry (LC-MS-MS). This SELDI method offers several technical advantages for detection of differentially expressed proteins, including ease and speed of screening, no need for chromatographic processing, and small sample size.
Matsuo, Kouki; Matsumura, Takeshi
2017-08-01
The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
2011-07-01
type and mutant plants via chromatin immunoprecipitation (ChIP). Additionally, differences in centromere structure between wild-type and VIM1 RING...contexts. The proposed work is ongoing, and so far the major accomplishments include creation of relevant plant lines and development of in vitro assays...a comparative proteomics approach in wild-type plants and RING domain mutants (Months 1 - 18) This work is in early stages, with the main
Yao, Jiafeng; Sugawara, Michiko; Obara, Hiromichi; Mizutani, Takeomi; Takei, Masahiro
2017-12-01
The distinct motion of GFP-tagged histone expressing cells (Histone-GFP type cells) has been investigated under ac electrokinetics in an electrode-multilayered microfluidic device as compared with Wild type cells and GFP type cells in terms of different intracellular components. The Histone-GFP type cells were modified by the transfection of green fluorescent protein-fused histone from the human lung fibroblast cell line. The velocity of the Histone-GFP type cells obtained by particle tracking velocimetry technique is faster than Wild type cells by 24.9% and GFP type cells by 57.1%. This phenomenon is caused by the more amount of proteins in the intracellular of single Histone-GFP type cell than that of the Wild type and GFP type cells. The more amount of proteins in the Histone-GFP type cells corresponds to a lower electric permittivity ϵ c of the cells, which generates a lower dielectrophoretic force exerting on the cells. The velocity of Histone-GFP type cells is well agreed with Eulerian-Lagrangian two-phase flow simulation by 4.2% mean error, which proves that the fluid motion driven by thermal buoyancy and electrothermal force dominates the direction of cells motion, while the distinct motion of Histone-GFP type cells is caused by dielectrophoretic force. The fluid motion does not generate a distinct drag motion for Histone-GFP type cells because the Histone-GFP type cells have the same size to the Wild type and GFP type cells. These results clarified the mechanism of cells motion in terms of intracellular components, which helps to improve the cell manipulation efficiency with electrokinetics.
Zampell, Jamie C.; Avraham, Tomer; Yoder, Nicole; Fort, Nicholas; Yan, Alan; Weitman, Evan S.
2012-01-01
Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function. PMID:21940662
Surface Expression of Hsp25 and Hsp72 Differentially Regulates Tumor Growth and Metastasis
Bausero, María A.; Page, Diana T.; Osinaga, Eduardo; Asea, Alexzander
2006-01-01
The expression of unique surface structures on tumors that allow for recognition and activation of host immunocompetent cells plays an important role in determining tumor growth and/or metastasis. Recent studies have identified an important role for heat shock proteins (Hsp) in antitumor surveillance; however, the exact role of Hsp expressed on the surface of tumors has not been fully addressed. In this study, we show that 4T1 mammary adenocarcinoma cells sorted for high Hsp25 surface expression (Hsp25high) grow significantly faster than cells sorted for intermediate Hsp25 surface expression (Hsp25intermediate) or wild-type 4T1 cells implanted into the abdominal breast gland of female BALB/c mice (p < 0.05). In addition, histological examination of lung tissues revealed that Hsp25high 4T1 cells metastasized to the lungs more aggressively than either Hsp25intermediate or wild-type 4T1 cells (p < 0.05). Exposure of 4T1 cells to nonlethal heat shock (43°C, 30 min) induced the surface expression of Hsp72 and a concomitant reduction in Hsp25 surface expression. The growth and metastastic potential of Hsp72+ 4T1 cells was significantly less than that of Hsp25high, Hsp25intermediate or wild-type 4T1 cells (p < 0.05). Taken together, these studies identify an important role for expression of Hsp25 and Hsp72 during tumor growth and metastatic spread which might be helpful in the design of antimetastatic therapies. PMID:15627887
Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis.
Bausero, María A; Page, Diana T; Osinaga, Eduardo; Asea, Alexzander
2004-01-01
The expression of unique surface structures on tumors that allow for recognition and activation of host immunocompetent cells plays an important role in determining tumor growth and/or metastasis. Recent studies have identified an important role for heat shock proteins (Hsp) in antitumor surveillance; however, the exact role of Hsp expressed on the surface of tumors has not been fully addressed. In this study, we show that 4T1 mammary adenocarcinoma cells sorted for high Hsp25 surface expression (Hsp25(high)) grow significantly faster than cells sorted for intermediate Hsp25 surface expression (Hsp25(intermediate)) or wild-type 4T1 cells implanted into the abdominal breast gland of female BALB/c mice (p < 0.05). In addition, histological examination of lung tissues revealed that Hsp25(high) 4T1 cells metastasized to the lungs more aggressively than either Hsp25(intermediate) or wild-type 4T1 cells (p < 0.05). Exposure of 4T1 cells to nonlethal heat shock (43 degrees C, 30 min) induced the surface expression of Hsp72 and a concomitant reduction in Hsp25 surface expression. The growth and metastastic potential of Hsp72(+) 4T1 cells was significantly less than that of Hsp25(high), Hsp25(intermediate) or wild-type 4T1 cells (p < 0.05). Taken together, these studies identify an important role for expression of Hsp25 and Hsp72 during tumor growth and metastatic spread which might be helpful in the design of antimetastatic therapies. Copyright 2004 S. Karger AG, Basel.
Pollex, Erika K; Anger, Gregory; Hutson, Janine; Koren, Gideon; Piquette-Miller, Micheline
2010-05-01
The antidiabetic agent glyburide (glibenclamide) is frequently used for the treatment of type II diabetes and is increasingly being used for the treatment of gestational diabetes. Evidence suggests that breast cancer resistance protein/ATP-binding cassette, subfamily G, member 2 (ABCG2) expressed in the placenta protects the fetus against the accumulation of glyburide. A number of studies have investigated the significance of several single-nucleotide polymorphisms (SNPs) in the ABCG2 gene. Associations between the Q141K (C421A) SNP and ABCG2 protein expression, membrane surface translocation, efflux activity, or ATPase activity have been shown. Therefore, alterations in glyburide transport across the placenta, resulting in increased fetal glyburide exposure, may be seen in individuals carrying the C421A allele. The purpose of this study is to investigate whether the Q141K SNP causes alterations in ABCG2-mediated glyburide transport. Glyburide accumulation assays were carried out with stably transfected human embryonic kidney (HEK)-293 cells expressing wild-type ABCG2 (Arg482) and polymorphic ABCG2 (Q141K). Glyburide kinetic parameters were determined for comparison of wild-type and SNP ABCG2 activity by simultaneously fitting data for ABCG2-expressing cells (saturable transport) and empty vector-expressing cells (nonsaturable transport) by nonlinear regression analysis. The apparent K(t) and V(max) values for the transfected HEK-293 cells expressing the polymorphic variant (Q141K) of ABCG2 were significantly higher than those values determined for the wild-type ABCG2-expressing cells (p < 0.05). Our results indicate that the Q141K variant of ABCG2 may have the potential to alter the placental pharmacokinetics of glyburide used in pregnancy.
Rial, Nathaniel S; Lazennec, Gwendal; Prasad, Anil R; Krouse, Robert S; Lance, Peter; Gerner, Eugene W
2009-01-01
Elevated deoxycholic acid (DCA), mutations in the adenomatous polyposis coli (APC) gene and chronic inflammation are associated with increased risk of colorectal cancer (CRC). APC status was manipulated to determine whether DCA mediates inflammatory molecules in normal or initiated colonic mucosa. DCA increased steady state mRNA and protein levels of CXCL8 in cells which do not express wild type APC. Steady state CXCL8 mRNA and protein were suppressed when cells with conditional expression of wild type APC were exposed to DCA. Immunostaining did not detect CXCL8 in normal human colonic mucosa. CXCL8 was expressed in adenomatous polyps and adenocarcinomas. CXCL8 expression correlated with nuclear β-catenin localization in epithelial cells of adenomas, but was associated with endothelial cells and neutrophils in the adenocarcinomas. DCA-mediated CXCL8 promoter-reporter activity was elevated in a mutant APC background. Wild type APC suppressed this effect. Mutation of activator protein-1 (AP-1) or nuclear factor kappa B (NF-κB) sites suppressed the activation of the CXCL8 promoter-reporter by DCA. Chromatin immunoprecipitation (ChIP) revealed that AP-1 and NF-κB binding to the 5′-promoter of CXCL8 was induced by DCA. The β-catenin transcription factor was bound to the 5′-promoter of CXCL8 in the absence or presence of DCA. Phenotypic assays determined that DCA-mediated invasion was blocked by antibody directed against CXCL8 or wild type-APC. CXCL8 exposure lead to matrix metalloproteinase-2 (MMP-2) production and increased invasion on laminin coated filters. These data suggest that DCA-mediated CXCL8 occurs in initiated colonic epithelium and neutralizing CXCL8 could reduce the invasive potential of tumors. PMID:19173296
Matsukawa, Koji; Hashimoto, Tadafumi; Matsumoto, Taisei; Ihara, Ryoko; Chihara, Takahiro; Miura, Masayuki; Wakabayashi, Tomoko; Iwatsubo, Takeshi
2016-11-04
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons. Causative genes for familial ALS (fALS), e.g. TARDBP or FUS/TLS, have been found, among which mutations within the profilin 1 (PFN1) gene have recently been identified in ALS18. To elucidate the mechanism whereby PFN1 mutations lead to neuronal death, we generated transgenic Drosophila melanogaster overexpressing human PFN1 in the retinal photoreceptor neurons. Overexpression of wild-type or fALS mutant PFN1 caused no degenerative phenotypes in the retina. Double overexpression of fALS mutant PFN1 and human TDP-43 markedly exacerbated the TDP-43-induced retinal degeneration, i.e. vacuolation and thinning of the retina, whereas co-expression of wild-type PFN1 did not aggravate the degenerative phenotype. Notably, co-expression of TDP-43 with fALS mutant PFN1 increased the cytoplasmic localization of TDP-43, the latter remaining in nuclei upon co-expression with wild-type PFN1, whereas co-expression of TDP-43 lacking the nuclear localization signal with the fALS mutant PFN1 did not aggravate the retinal degeneration. Knockdown of endogenous Drosophila PFN1 did not alter the degenerative phenotypes of the retina in flies overexpressing wild-type TDP-43 These data suggest that ALS-linked PFN1 mutations exacerbate TDP-43-induced neurodegeneration in a gain-of-function manner, possibly by shifting the localization of TDP-43 from nuclei to cytoplasm. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines.
Schweitzer, Brock L; DeKoter, Rodney P
2004-01-01
A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.
Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin
2014-01-01
A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568
Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.
1998-01-01
To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531
Arjunan, Pachiappan; Gnanaprakasam, Jaya P.; Ananth, Sudha; Romej, Michelle A.; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D.; Martin, Pamela M.; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D.; Ganapathy, Vadivel
2016-01-01
Purpose Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv−/− mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv−/− retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Methods Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv−/− mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv−/− pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Results Expression of GPR91 was higher in Hjv−/− retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv−/− retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv−/− retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. Conclusions G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization. PMID:27046124
Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel
2016-04-01
Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.
Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M
2015-12-01
A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains. © 2015 Society for Laboratory Automation and Screening.
Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been “murinized” to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlAm) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlAm-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlAm-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen. PMID:23737746
Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been "murinized" to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlA(m)) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlA(m)-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlA(m)-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen.
Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.
Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D
2004-08-01
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.
Riddick, Nadeene E.; Hermann, Emilia A.; Loftin, Lamorris M.; Elliott, Sarah T.; Wey, Winston C.; Cervasi, Barbara; Taaffe, Jessica; Engram, Jessica C.; Li, Bing; Else, James G.; Li, Yingying; Hahn, Beatrice H.; Derdeyn, Cynthia A.; Sodora, Donald L.; Apetrei, Cristian; Paiardini, Mirko; Silvestri, Guido; Collman, Ronald G.
2010-01-01
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species. PMID:20865163
Riddick, Nadeene E; Hermann, Emilia A; Loftin, Lamorris M; Elliott, Sarah T; Wey, Winston C; Cervasi, Barbara; Taaffe, Jessica; Engram, Jessica C; Li, Bing; Else, James G; Li, Yingying; Hahn, Beatrice H; Derdeyn, Cynthia A; Sodora, Donald L; Apetrei, Cristian; Paiardini, Mirko; Silvestri, Guido; Collman, Ronald G
2010-08-26
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.
Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Shi, Yun-Liang; Wan, Xiao-Ling; Yang, Yi-Chao
2017-08-07
Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5) = 2.595, P = 0.049), 60 (t (5) = 7.838, P = 0.001) and 90 dpi (t (5) = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5) = 5.139, P = 0.004), 60 (t (5) = 6.138, P = 0.002) and 90 dpi (t (5) = 6.332, P = 0.001). However, the rising of iNOS transcripts dropped under the uninfected control level in the TLR2 mutant mice at 120 dpi (t (5) = -9.082, P < 0.0001). Both total NO and iNOS transcripts were significantly higher in the TLR2 mutant mice than those in the TLR2 wild-type mice at 30 (t (5) = 3.091/2.933, P = 0.027/0.033) and 60 dpi (t (5) = 2.667/6.331, P = 0.044/0.001), respectively. In addition, the remarkable increase of iNOS expressions was immunohistochemically detected in the splenic serial sections of TLR2 wild-type mice at 30 and 60 dpi. However, the expressions of iNOS were remarkably decreased in the splenocytes of both TLR2 wild-type and mutant mice at 120 dpi. These results demonstrate that TLR2 signal plays an important role in the regulation of iNOS expression after C. sinensis infection. TLR2 signal is also beneficial to limiting worm growth and development and contributing to the susceptibility to C. sinensis in which the iNOS/NO reactions possibly participate.
Klein, Janet D; Wang, Yanhua; Mistry, Abinash; LaRocque, Lauren M; Molina, Patrick A; Rogers, Richard T; Blount, Mitsi A; Sands, Jeff M
2016-05-01
Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1(+/+)/UT-A3(-/-)). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1(+/+)/UT-A3(-/-) and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1(+/+)/UT-A3(-/-) and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1(+/+)/UT-A3(-/-) mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1(+/+)/UT-A3(-/-) mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1(+/+)/UT-A3(-/-) mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1(+/+)/UT-A3(-/-) mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability. Copyright © 2016 by the American Society of Nephrology.
Wang, Yanhua; Mistry, Abinash; LaRocque, Lauren M.; Molina, Patrick A.; Rogers, Richard T.; Blount, Mitsi A.; Sands, Jeff M.
2016-01-01
Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1+/+/UT-A3−/−). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1+/+/UT-A3−/− and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1+/+/UT-A3−/− and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1+/+/UT-A3−/− mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1+/+/UT-A3−/− mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1+/+/UT-A3−/− mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1+/+/UT-A3−/− mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability. PMID:26407594
Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A
2016-09-01
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Klymiuk, Nikolai; van Buerck, Lelia; Bähr, Andrea; Offers, Monika; Kessler, Barbara; Wuensch, Annegret; Kurome, Mayuko; Thormann, Michael; Lochner, Katharina; Nagashima, Hiroshi; Herbach, Nadja; Wanke, Rüdiger; Seissler, Jochen; Wolf, Eckhard
2012-06-01
Islet transplantation is a potential treatment for type 1 diabetes, but the shortage of donor organs limits its routine application. As potential donor animals, we generated transgenic pigs expressing LEA29Y, a high-affinity variant of the T-cell costimulation inhibitor CTLA-4Ig, under the control of the porcine insulin gene promoter. Neonatal islet cell clusters (ICCs) from INSLEA29Y transgenic (LEA-tg) pigs and wild-type controls were transplanted into streptozotocin-induced hyperglycemic NOD-scid IL2Rγ(null) mice. Cloned LEA-tg pigs are healthy and exhibit a strong β-cell-specific transgene expression. LEA-tg ICCs displayed the same potential to normalize glucose homeostasis as wild-type ICCs after transplantation. After adoptive transfer of human peripheral blood mononuclear cells, transplanted LEA-tg ICCs were completely protected from rejection, whereas reoccurrence of hyperglycemia was observed in 80% of mice transplanted with wild-type ICCs. In the current study, we provide the first proof-of-principle report on transgenic pigs with β-cell-specific expression of LEA29Y and their successful application as donors in a xenotransplantation model. This approach may represent a major step toward the development of a novel strategy for pig-to-human islet transplantation without side effects of systemic immunosuppression.
Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.
Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C
2016-02-01
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Quilty, Janne A; Cordat, Emmanuelle; Reithmeier, Reinhart A F
2002-12-15
Autosomal dominant distal renal tubular acidosis (dRTA) has been associated with several mutations in the anion exchanger AE1 gene. The effect of an 11-amino-acid C-terminal dRTA truncation mutation (901 stop) on the expression of kidney AE1 (kAE1) and erythroid AE1 was examined in transiently transfected HEK-293 cells. Unlike the wild-type proteins, kAE1 901 stop and AE1 901 stop mutants exhibited impaired trafficking from the endoplasmic reticulum to the plasma membrane as determined by immunolocalization, cell-surface biotinylation, oligosaccharide processing and pulse-chase experiments. The 901 stop mutants were able to bind to an inhibitor affinity resin, suggesting that these mutant membrane proteins were not grossly misfolded. Co-expression of wild-type and mutant kAE1 or AE1 resulted in intracellular retention of the wild-type proteins in a pre-medial Golgi compartment. This dominant negative effect was due to hetero-oligomer formation of the mutant and wild-type proteins. Intracellular retention of kAE1 in the alpha-intercalated cells of the kidney would account for the impaired acid secretion into the urine characteristic of dRTA.
Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R
2011-11-01
We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (P<0.01) and lung (P<0.001). Activation of endogenous protein C following infusion of thrombin was decreased by 90% in knock-in mice compared with wild-type mice (P<0.05). Carotid artery thrombosis induced by photochemical injury occurred more rapidly in knock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; P<0.05). No differences in serum cytokine levels were detected between knock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.
Huang, Jie-Hong; Kortstee, Anne; Dees, Dianka C T; Trindade, Luisa M; Schols, Henk A; Gruppen, Harry
2016-08-01
Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mutant number distribution in an exponentially growing population
NASA Astrophysics Data System (ADS)
Keller, Peter; Antal, Tibor
2015-01-01
We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.
Takahashi, K; Jiang, X C; Sakai, N; Yamashita, S; Hirano, K; Bujo, H; Yamazaki, H; Kusunoki, J; Miura, T; Kussie, P
1993-01-01
Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric. Images PMID:8408659
Karow, Anne R; Theissen, Bettina; Klostermeier, Dagmar
2007-01-01
RNA helicases mediate structural rearrangements of RNA or RNA-protein complexes at the expense of ATP hydrolysis. Members of the DEAD box helicase family consist of two flexibly connected helicase domains. They share nine conserved sequence motifs that are involved in nucleotide binding and hydrolysis, RNA binding, and helicase activity. Most of these motifs line the cleft between the two helicase domains, and extensive communication between them is required for RNA unwinding. The two helicase domains of the Bacillus subtilis RNA helicase YxiN were produced separately as intein fusions, and a functional RNA helicase was generated by expressed protein ligation. The ligated helicase binds adenine nucleotides with very similar affinities to the wild-type protein. Importantly, its intrinsically low ATPase activity is stimulated by RNA, and the Michaelis-Menten parameters are similar to those of the wild-type. Finally, ligated YxiN unwinds a minimal RNA substrate to an extent comparable to that of the wild-type helicase, confirming authentic interdomain communication.
Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.
2015-01-01
Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species. PMID:25710176
Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.
Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki
2014-06-01
It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Van Gool, Inge C; Ubachs, Jef E H; Stelloo, Ellen; de Kroon, Cor D; Goeman, Jelle J; Smit, Vincent T H B M; Creutzberg, Carien L; Bosse, Tjalling
2018-01-01
POLE exonuclease domain mutations identify a subset of endometrial cancer (EC) patients with an excellent prognosis. The use of this biomarker has been suggested to refine adjuvant treatment decisions, but the necessary sequencing is not widely performed and is relatively expensive. Therefore, we aimed to identify histopathological and immunohistochemical characteristics to aid in the detection of POLE-mutant ECs. Fifty-one POLE-mutant endometrioid, 67 POLE-wild-type endometrioid and 15 POLE-wild-type serous ECs were included (total N = 133). An expert gynaecopathologist, blinded to molecular features, evaluated each case (two or more slides) for 16 morphological characteristics. Immunohistochemistry was performed for p53, p16, MLH1, MSH2, MSH6, and PMS2. POLE-mutant ECs were characterised by a prominent immune infiltrate: 80% showed peritumoral lymphocytes and 59% showed tumour-infiltrating lymphocytes, as compared with 43% and 28% of POLE-wild-type endometrioid ECs, and 27% and 13% of their serous counterparts (P < 0.01, all comparisons). Of POLE-mutant ECs, 33% contained tumour giant cells; this proportion was significantly higher than that in POLE-wild-type endometrioid ECs (10%; P = 0.003), but not significantly different from that in serous ECs (53%). Serous-like features were as often (focally) present in POLE-mutant as in POLE-wild-type endometrioid ECs (6-24%, depending on the feature). The majority of POLE-mutant ECs showed wild-type p53 (86%), negative/focal p16 (82%) and normal mismatch repair protein expression (90%). A simple combination of morphological and immunohistochemical characteristics (tumour type, grade, peritumoral lymphocytes, MLH1, and p53 expression) can assist in prescreening for POLE exonuclease domain mutations in EC, increasing the probability of a mutation being detected from 7% to 33%. This facilitates the use of this important prognostic biomarker in routine pathology. © 2017 John Wiley & Sons Ltd.
Lee, Kah Meng; Chand, Kirat K; Hammond, Luke A; Lavidis, Nickolas A; Noakes, Peter G
2017-03-14
Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice ( lama 4 -/- ). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama 4 -/- NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama 4 -/- . Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama 4 -/- . Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.
Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher
2015-01-01
The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of inflammation including acetaminophen, concanavalin A, lipopolysaccharide, and 300 nm silica particles. In conclusion, we have shown that a CAR biomarker signature coupled with a rank-based similarity method accurately predicts CAR activation. This analytical approach, when applied to a gene expression compendium, increased the universe of known chemicals that directly or indirectly activate CAR, highlighting the promiscuous nature of CAR activation and signaling through activation of other xenobiotic-activated receptors. PMID:25949234
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu; Hankey, Pamela; Mishin, Vladimir
Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects ofmore » acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity. -- Highlights: ► STK regulates alternative macrophage activation after acetaminophen intoxication. ► Loss of STK results in increased sensitivity to acetaminophen. ► Increased toxicity involves oxidative stress and decreases in repair macrophages.« less
Birkeland, Einar; Busch, Christian; Berge, Elisabet Ognedal; Geisler, Jürgen; Jönsson, Göran; Lillehaug, Johan Richard; Knappskog, Stian; Lønning, Per Eystein
2013-10-01
Metastatic melanoma is characterized by a poor response to chemotherapy. Furthermore, there is a lack of established predictive and prognostic markers. In this single institution study, we correlated mutation status and expression levels of BRAF and NRAS to dacarbazine (DTIC) treatment response as well as progression-free and overall survival in a cohort of 85 patients diagnosed with advanced melanoma. Neither BRAF nor NRAS mutation status correlated to treatment response. However, patients with tumors harboring NRAS mutations had a shorter overall survival (p < 0.001) compared to patients with tumors wild-type for NRAS. Patients having a clinical benefit (objective response or stable disease at 3 months) on DTIC therapy had lower BRAF and NRAS expression levels compared to patients progressing on therapy (p = 0.037 and 0.003, respectively). For BRAF expression, this association was stronger among patients with tumors wild-type for BRAF (p = 0.005). Further, low BRAF as well as NRAS expression levels were associated with a longer progression-free survival in the total population (p = 0.004 and <0.001, respectively). Contrasting low NRAS expression levels, which were associated with improved overall survival in the total population (p = 0.01), low BRAF levels were associated with improved overall survival only among patients with tumors wild-type for BRAF (p = 0.013). These findings indicate that BRAF and NRAS expression levels may influence responses to DTIC as well as prognosis in patients with advanced melanoma.
Resistance to collagen-induced arthritis in SHPS-1 mutant mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuzawa, Chie; Kaneko, Yoriaki; Murata, Yoji
SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII andmore » of IL-1{beta} in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.« less
Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.
Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi
2004-01-01
Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.
Identification of endogenous inducers of the mal regulon in Escherichia coli.
Ehrmann, M; Boos, W
1987-01-01
The expression of the maltose regulon in Escherichia coli is induced when maltose or maltodextrins are present in the growth medium. Mutations in malK, which codes for a component of the transport system, result in the elevated expression of the remaining mal genes. Uninduced expression in the wild type, as well as elevated expression in malK mutants, is strongly repressed at high osmolarity. In the absence of malQ-encoded amylomaltase, expression remains high at high osmolarity. We found that uninduced expression in the wild type and elevated expression in malK mutants were paralleled by the appearance of two types of endogenous carbohydrates. One, produced primarily at high osmolarity, was identified as comprising maltodextrins that are derived from glycogen or glycogen-synthesizing enzymes. The other, produced primarily at low osmolarity, consisted of an oligosaccharide that was not derived from glycogen. We isolated a mutant that no longer synthesized this oligosaccharide. The gene carrying this mutation, termed malI, was mapped at min 36 on the E. coli linkage map. A Tn10 insertion in malI also resulted in the loss of constitutivity at low osmolarity and delayed the induction of the maltose regulon by exogenous inducers. Images PMID:3038842
Nrf2-Dependent Induction of NQO1 in Mouse Aortic Endothelial Cells Overexpressing Catalase
Lin, Xinghua; Yang, Hong; Zhou, LiChun; Guo, ZhongMao
2011-01-01
Overexpression of catalase has been shown to accelerate benzo(a)pyrene (BaP) detoxification in mouse aortic endothelial cells (MAECs ). NAD(P)H:quinone oxidoreductase1 (NQO1) is an enzyme that catalyzes BaP-quinone detoxification. Aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor-2 (Nrf2) are transcription factors that control NQO1 expression. Here, we investigated the effect of catalase overexpression on NQO1, Nrf2 and AhR expressions. The levels of NQO1 mRNA and protein were comparable in MAECs isolated from wild-type and transgenic mice that overexpress human catalase (hCatTg). BaP treatment increased NQO1 mRNA and protein levels in both groups, with a significantly greater induction in hCatTg MAECs than in wild-type cells. BaP-induced NQO1 promoter activity was dramatically higher in hCatTg MAECs than in wild-type cells. Our data also showed that the basal level of AhR and the BaP-induced level of Nrf2 were significantly higher in hCatTg MAECs than in wild-type cells. Inhibition of specificity protein-1 (Sp1) binding to the AhR promoter region by mithramycin A reversed the enhanced effect of catalase overexpression on AhR expression. Knockdown of AhR by RNA interference diminished BaP-induced expression of Nrf2 and NQO1. Knockdown of Nrf2 significantly decreased NQO1 mRNA and protein levels in cells with or without BaP treatment. NQO1 promoter activity was abrogated by mutation of the Nrf2-binding site in this promoter. In contrast, mutation of the AhR-binding site in NQO1 promoter did not affect the promoter activity. These results suggest that catalase overexpression upregulates BaP-induced NQO1 expression via enhancing the Sp1-AhR-Nrf2 signaling cascade. PMID:21569840
Cui, Xuezhi; Weng, Ying-Qi; Frappé, Isabelle; Burgess, Alison; Girão da Cruz, M Teresa; Schachner, Melitta; Aubert, Isabelle
2011-01-01
Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons. PMID:22399087
Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings
Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Napier, Johnathan A.; Chye, Mee-Len
2014-01-01
Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis. PMID:25264899
Kim, Hyun Young; Baik, Jung Eun; Ahn, Ki Bum; Seo, Ho Seong; Yun, Cheol-Heui; Han, Seung Hyun
2017-02-01
Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-β expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation. Copyright © 2016 Elsevier Ltd. All rights reserved.
den Hartog, Carolina R; Beckley, Jacob T; Smothers, Thetford C; Lench, Daniel H; Holseberg, Zack L; Fedarovich, Hleb; Gilstrap, Meghin J; Homanics, Gregg E; Woodward, John J
2013-01-01
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.
den Hartog, Carolina R.; Beckley, Jacob T.; Smothers, Thetford C.; Lench, Daniel H.; Holseberg, Zack L.; Fedarovich, Hleb; Gilstrap, Meghin J.; Homanics, Gregg E.; Woodward, John J.
2013-01-01
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75–2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. PMID:24244696
Mandaokar, Ajin; Kumar, V Dinesh; Amway, Matt; Browse, John
2003-07-01
Jasmonate (JA) is a signaling compound essential for anther development and pollen fertility in Arabidopsis. Mutations that block the pathway of JA synthesis result into male sterility. To understand the processes of anther and pollen maturation, we used microarray and differential display approaches to compare gene expression pattern in anthers of wild-type Arabidopsis and the male-sterile mutant, opr3. Microarray experiment revealed 25 genes that were up-regulated more than 1.8-fold in wild-type anthers as compared to mutant anthers. Experiments based on differential display identified 13 additional genes up-regulated in wild-type anthers compared to opr3 for a total of 38 differentially expressed genes. Searches of the Arabidopsis and non-redundant databases disclosed known or likely functions for 28 of the 38 genes identified, while 10 genes encode proteins of unknown function. Northern blot analysis of eight representative clones as probes confirmed low expression in opr3 anthers compared with wild-type anthers. JA responsiveness of these same genes was also investigated by northern blot analysis of anther RNA isolated from wild-type and opr3 plants, In these experiments, four genes were induced in opr3 anthers within 0.5-1 h of JA treatment while the remaining genes were up-regulated only 1-8 h after JA application. None of these genes was induced by JA in anthers of the coil mutant that is deficient in JA responsiveness. The four early-induced genes in opr3 encode lipoxygenase, a putative bHLH transcription factor, epithiospecifier protein and an unknown protein. We propose that these and other early components may be involved in JA signaling and in the initiation of developmental processes. The four late genes encode an extensin-like protein, a peptide transporter and two unknown proteins, which may represent components required later in anther and pollen maturation. Transcript profiling has provided a successful approach to identify genes involved in anther and pollen maturation in Arabidopsis.
Cot/Tpl2 regulates IL-23 p19 expression in LPS-stimulated macrophages through ERK activation.
Kakimoto, K; Musikacharoen, T; Chiba, N; Bandow, K; Ohnishi, T; Matsuguchi, T
2010-03-01
We have previously reported that a serine/threonine protein kinase, Cot/Tpl2, is a negative regulator of Th1-type immunity through inhibiting IL-12 expression in antigen presenting cells (APCs) stimulated by Toll-like receptor (TLR) ligands. We here show that Cot/Tpl2(-/-) macrophages produce significantly less IL-23, an important regulator of Th17-type response, than the wild-type counterparts in response to lipopolysaccharide (LPS), which is a ligand for TLR4. The decreased IL-23 production in Cot/Tpl2(-/-) macrophages is, at least partly, regulated at the transcriptional level, as the LPS-mediated IL-23 p19 mRNA induction was significantly less in Cot/Tpl2(-/-) macrophages. Chemical inhibition of extracellular signal-regulated kinase (ERK) activity similarly inhibited IL-23 expression in LPS-stimulated wild-type macrophages. As Cot/Tpl2 is an essential upstream component of the ERK activation pathway of LPS, it is suggested that Cot/Tpl2 positively regulates IL-23 expression through ERK activation. These results indicate that Cot/Tpl2 may be involved in balancing Th1/Th17 differentiation by regulating the expression ratio of IL-12 and IL-23 in APCs.
Evidence against functionally significant aquaporin expression in mitochondria.
Yang, Baoxue; Zhao, Dan; Verkman, A S
2006-06-16
Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.
Kawahara, Masahiro; Ueda, Hiroshi; Tsumoto, Kouhei; Kumagai, Izumi; Nagamune, Teruyuki
2007-04-01
We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.
Du, Jiancan; Hu, Simin; Yu, Qin; Wang, Chongde; Yang, Yunqiang; Sun, Hang; Yang, Yongping; Sun, Xudong
2017-01-01
The teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips ( Brassica rapa ssp. rapa ). In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.
Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.
Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing
2014-07-01
Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous cell carcinoma, along with loss of basement membrane, by upregulation of MMP2 expression.
Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I; Reis, Henning; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke
2011-12-01
The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Eyking, Annette; Ey, Birgit; Rünzi, Michael; Roig, Andres I.; Reis, Henning; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke
2012-01-01
Background & Aims The Toll-like receptor (TLR) 4 mediates homeostasis of the intestinal epithelial cell (IEC) barrier. We investigated the effects of TLR4-D299G on IEC functions. Methods We engineered IECs (Caco-2) to stably overexpress hemagglutinin-tagged wild-type TLR4, TLR4-D299G, or TLR4-T399I. We performed gene expression profiling using DNA microarray analysis. Findings were confirmed by real-time, quantitative, reverse-transcriptase polymerase chain reaction, immunoblot, enzyme-linked immunosorbent assay, confocal immunofluorescence, and functional analyses. Tumorigenicity was tested using the CD1 nu/nu mice xenograft model. Human colon cancer specimens (N = 214) were genotyped and assessed for disease stage. Results Caco-2 cells that expressed TLR4-D299G underwent the epithelial-mesenchymal transition and morphologic changes associated with tumor progression, whereas cells that expressed wild-type TLR4 or TLR4-T399I did not. Caco-2 cells that expressed TLR4-D299G had significant increases in expression levels of genes and proteins associated with inflammation and/or tumorigenesis compared with cells that expressed other forms of TLR4. The invasive activity of TLR4-D299G Caco-2 cells required Wnt-dependent activation of STAT3. In mice, intestinal xenograft tumors grew from Caco-2 cells that expressed TLR4-D299G, but not cells that expressed other forms of TLR4; tumor growth was blocked by a specific inhibitor of STAT3. Human colon adenocarcinomas from patients with TLR4-D299G were more frequently of an advanced stage (International Union Against Cancer [UICC] ≥III, 70% vs 46%; P = .0142) with metastasis (UICC IV, 42% vs 19%; P = .0065) than those with wild-type TLR4. Expression of STAT3 messenger RNA was higher among colonic adenocarcinomas with TLR4-D299G than those with wild-type TLR4. Conclusions TLR4-D299G induces features of neoplastic progression in intestinal epithelial Caco-2 cells and associates with aggressive colon cancer in humans, implying a novel link between aberrant innate immunity and colonic cancerogenesis. PMID:21920464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya
2006-08-04
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less
Wanka, C; Brucker, D P; Bähr, O; Ronellenfitsch, M; Weller, M; Steinbach, J P; Rieger, J
2012-08-16
P53 has an important role in the processing of starvation signals. P53-dependent molecular mediators of the Warburg effect reduce glucose consumption and promote mitochondrial function. We therefore hypothesized that the retention of wild-type p53 characteristic of primary glioblastomas limits metabolic demands induced by deregulated signal transduction in the presence of hypoxia and nutrient depletion. Here we report that short hairpin RNA-mediated gene suppression of wild-type p53 or ectopic expression of mutant temperature-sensitive dominant-negative p53(V135A) increased glucose consumption and lactate production, decreased oxygen consumption and enhanced hypoxia-induced cell death in p53 wild-type human glioblastoma cells. Similarly, genetic knockout of p53 in HCT116 colon carcinoma cells resulted in reduced respiration and hypersensitivity towards hypoxia-induced cell death. Further, wild-type p53 gene silencing reduced the expression of synthesis of cytochrome c oxidase 2 (SCO2), an effector necessary for respiratory chain function. An SCO2 transgene reverted the metabolic phenotype and restored resistance towards hypoxia in p53-depleted and p53 mutant glioma cells in a rotenone-sensitive manner, demonstrating that this effect was dependent on intact oxidative phosphorylation. Supplementation with methyl-pyruvate, a mitochondrial substrate, rescued p53 wild-type but not p53 mutant cells from hypoxic cell death, demonstrating a p53-mediated selective aptitude to metabolize mitochondrial substrates. Further, SCO2 gene silencing in p53 wild-type glioma cells sensitized these cells towards hypoxia. Finally, lentiviral gene suppression of SCO2 significantly enhanced tumor necrosis in a subcutaneous HCT116 xenograft tumor model, compatible with impaired energy metabolism in these cells. These findings demonstrate that glioma and colon cancer cells with p53 wild-type status can skew the Warburg effect and thereby reduce their vulnerability towards tumor hypoxia in an SCO2-dependent manner. Targeting SCO2 may therefore represent a valuable strategy to enhance sensitivity towards hypoxia and may complement strategies targeting glucose metabolism.
Cabral, Rita M.; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M.
2015-01-01
Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. PMID:22289416
Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M
2012-04-01
Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, XQ; Shen, CR; Liao, JC
2014-03-04
Glycogen synthesis initiated by glucose-1-phosphate adenylyltransferase (glgC) represents a major carbon storage route in cyanobacteria which could divert a significant portion of assimilated carbon. Significant growth retardation in cyanobacteria with glgC knocked out (Delta glgC) has been reported in high light conditions. Here, we knocked out the glgC gene and analyzed its effects on carbon distribution in an isobutanol-producing strain of Synechococcus elongatus PCC7942 and its parental wild-type strain. We showed that isobutanol production was able to partially rescue the growth of Delta glgC mutant where the growth rescue effect positively correlated with the rate of isobutanol production. Using (NaHCO3)-C-14more » incorporation analysis, we observed a 28 % loss of total carbon fixation rate in the Delta glgC mutant compared to the wild-type. Upon expression of the isobutanol production pathway in Delta glgC mutant, the total carbon fixation rate was restored to the wild-type level. Furthermore, we showed that 52 % of the total carbon fixed was redirected into isobutanol biosynthesis in the Delta glgC mutant expressing enzymes for isobutanol production, which is 2.5 times higher than that of the wild-type expressing the same enzymes. These results suggest that biosynthesis of non-native product such as isobutanol can serve as a metabolic sink for replacing glycogen to rescue growth and restore carbon fixation rate. The rescue effect may further serve as a platform for cyanobacteria energy and carbon metabolism study.« less
Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek
2016-03-01
Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.
Sun, Lei-Ming; Ai, Xiao-Yan; Li, Wen-Yang; Guo, Wen-Wu; Deng, Xiu-Xin; Hu, Chun-Gen; Zhang, Jin-Zhi
2012-01-01
MicroRNAs (miRNAs) are a new class of small, endogenous RNAs that play a regulatory role in various biological and metabolic processes by negatively affecting gene expression at the post-transcriptional level. While the number of known Arabidopsis and rice miRNAs is continuously increasing, information regarding miRNAs from woody plants such as citrus remains limited. Solexa sequencing was performed at different developmental stages on both an early flowering mutant of trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf.) and its wild-type in this study, resulting in the obtainment of 141 known miRNAs belonging to 99 families and 75 novel miRNAs in four libraries. A total of 317 potential target genes were predicted based on the 51 novel miRNAs families, GO and KEGG annotation revealed that high ranked miRNA-target genes are those implicated in diverse cellular processes in plants, including development, transcription, protein degradation and cross adaptation. To characterize those miRNAs expressed at the juvenile and adult development stages of the mutant and its wild-type, further analysis on the expression profiles of several miRNAs through real-time PCR was performed. The results revealed that most miRNAs were down-regulated at adult stage compared with juvenile stage for both the mutant and its wild-type. These results indicate that both conserved and novel miRNAs may play important roles in citrus growth and development, stress responses and other physiological processes.
Atack, John M; Srikhanta, Yogitha N; Djoko, Karrera Y; Welch, Jessica P; Hasri, Norain H M; Steichen, Christopher T; Vanden Hoven, Rachel N; Grimmond, Sean M; Othman, Dk Seti Maimonah Pg; Kappler, Ulrike; Apicella, Michael A; Jennings, Michael P; Edwards, Jennifer L; McEwan, Alastair G
2013-06-01
NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Chad M.; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803; Chouljenko, Vladimir N.
The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion wasmore » reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of {sup 3}H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.« less
PECTIN METHYLESTERASE48 Is Involved in Arabidopsis Pollen Grain Germination1[OPEN
Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude
2015-01-01
Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48−/− pollen grains. In contrast, the PME activity was lower in pme48−/−, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48−/− with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca2+ necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination. PMID:25524442
Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy.
Song, Tieying; Zhao, Jianhui; Ma, Xiaojing; Zhang, Zaiwang; Jiang, Bo; Yang, Yunliang
2017-09-26
The neurobiological mechanisms of obesity-induced peripheral neuropathy are poorly understood. We evaluated the role of Sigma-1 receptor (Sig-1R) and NMDA receptor (NMDARs) in the spinal cord in peripheral neuropathy using an animal model of high fat diet-induced diabetes. We examined the expression of Sig-1R and NMDAR subunits GluN2A and GluN2B along with postsynaptic density protein 95 (PSD-95) in the spinal cord after 24-week HFD treatment in both wild-type and Sig-1R-/- mice. Finally, we examined the effects of repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice on peripheral neuropathy. Wild-type mice developed tactile allodynia and thermal hypoalgesia after 24-week HFD treatment. HFD-induced peripheral neuropathy correlated with increased expression of GluN2A and GluN2B subunits of NMDARs, PDS-95, and Sig-1R, as well as increased Sig-1R-NMDAR interaction in the spinal cord. In contrast, Sig-1R-/- mice did not develop thermal hypoalgesia or tactile allodynia after 24-week HFD treatment, and the levels of GluN2A, GluN2B, and PSD-95 were not altered in the spinal cord of HFD-fed Sig-1R-/- mice. Finally, repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice attenuated peripheral neuropathy. Our results suggest that obesity-associated peripheral neuropathy may involve Sig-1R-mediated enhancement of NMDAR expression in the spinal cord.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy
Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those ofmore » the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.« less
Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert
2015-06-01
To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.
Zhang, Jie; Liang, Huiting; Zhu, Lei; Gan, Weiming; Tang, Chunyan; Li, Jiao; Xu, Renshi
2018-02-01
The known proteins only explained the partial pathogenesis of amyotrophic lateral sclerosis (ALS). Therefore, this study aimed to search the novel proteins possibly involved in ALS. In this study, we analyzed the expression and distribution of the candidate protein arylsulfatase B (ARSB) in the different segments, anatomic regions, and neural cells of spinal cord at the different stages of the wild-type and [Cu/Zn] superoxide dismutase 1 (SOD1) G93A transgenic mice using the fluorescent immunohistochemistry and the western blot. The results revealed that the ARSB was extensively expressed and distributed in the entire spinal cord; the expression and distribution of ARSB was significantly different in the different regions of spinal cord, the anterior horn of gray matter (AHGM) was significantly more than that in the posterior horn of gray matter (PHGM) and significantly more than that in the central canal, and ARSB was mainly distributed in the microglia and neuron cells in the wild-type mice. The expression of ARSB significantly increased in other anatomic regions besides the thoracic PHGM, significantly decreased at the progression stage, occurred in the redistribution from the AHGM and the PHGM to the central canal at the onset and progression stages, and no any alteration of ARSB expression and distribution occurred between the different neural cells in the SOD1 G93A mice compared with the wild-type mice. The increase of ARSB expression and distribution followed with the increased of neuron death. Our data suggested that the abnormal expression and distribution of ARSB were closely associated with the neuron death in the SOD1 G93A transgenic mice.
Harrison-Findik, Duygu Dee; Lu, Sizhao
2015-01-01
This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1−/−) and catalase (catalase−/−) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1−/− displayed significantly higher hepatic H2O2 levels than catalase−/− compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1−/− mice. Alcohol increased H2O2 production in catalase−/− and wild-type, but not gpx-1−/−, mice. Hepcidin expression was inhibited in alcohol-fed catalase−/− and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1−/− mice. Gpx-1−/− mice also displayed higher level of basal liver CHOP protein expression than catalase−/− mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1−/− mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1−/− mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH. PMID:25955433
2011-07-29
not wild-type sporozoites. Glypican-3 is a heparin sulfate proteoglycan (46) secreted in the plasma of hepatocellular carcinoma patients, and...regarded as a diagnostic serum marker for hepatocellular carcinoma (47-50). Unlike wild-type sporozoites, irradiated sporozoites are believed to invade...effector cells other than Kupffer cells. Expression of glypican-3 is known to stimulate the recruitment of macrophages into human hepatocellular
The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.
Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G
2002-07-01
Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.
Zheng, Yueliang; Cao, Shuang; Huang, Yuqi; Liao, Guojian; Hu, Changhua
2014-12-04
To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.
Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis.
Qin, Mei; Tang, Xinming; Yin, Guangwen; Liu, Xianyong; Suo, Jingxia; Tao, Geru; Ei-Ashram, Saeed; Li, Yuan; Suo, Xun
2016-03-21
Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.
El Malki, F; Jacobs, M
2001-01-01
The histidine auxotroph mutant his 1(-) isolated from Nicotiana plumbaginifolia haploid protoplasts was first characterized to be deficient for the enzyme histidinol phosphate aminotransferase that is responsible for one of the last steps of histidine biosynthesis. Expression of the mutated gene at the RNA level was assessed by northern analysis of various tissues. Transcriptional activity was unimpaired by the mutation and, in contrast, a higher level of expression was obtained when compared to the wild-type. The cDNA sequence encoding the mutated gene was isolated by RT-PCR and compared to the wild-type gene. A single point mutation corresponding to the substitution of a G nucleotide by A was identified at position 1212 starting from the translation site. The alignment of the deduced amino acid sequences from the mutated and wild-type gene showed that this mutation resulted in the substitution of an Arg by a His residue at position 381. This Arg residue is a conserved amino acid for histidinol phosphate aminotransferase of many species. These results indicate that the identified mutation results in an altered histidinol phosphate aminotransferase enzyme that is unable to convert the substrate imidazole acetol phosphate to histidinol phosphate and thereby leads to the blockage of histidine biosynthesis. Possible consequences of this blockage on the expression of other amino acid biosynthesis genes were evaluated by analysing the expression of the dhdps gene encoding dihydrodipicolinate synthase, the first key enzyme of the lysine pathway.
Maeda, Hiromichi; Shigoka, Masatoshi; Wang, Yongchun; Fu, Yingxin; Wesson, Russell N.; Lin, Qing; Montgomery, Robert A.; Enzan, Hideaki; Sun, Zhaoli
2014-01-01
Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be considered in planning in vivo experiments using GFP and in interpreting their results. PMID:24796859
2011-01-01
Background High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. Results Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. Conclusions Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA. PMID:21324151
Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2[W
Varbanova, Marina; Yamaguchi, Shinjiro; Yang, Yue; McKelvey, Katherine; Hanada, Atsushi; Borochov, Roy; Yu, Fei; Jikumaru, Yusuke; Ross, Jeannine; Cortes, Diego; Ma, Choong Je; Noel, Joseph P.; Mander, Lew; Shulaev, Vladimir; Kamiya, Yuji; Rodermel, Steve; Weiss, David; Pichersky, Eran
2007-01-01
Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds. PMID:17220201
Schuck, Stefan; Camehl, Iris; Gilardoni, Paola A.; Oelmueller, Ralf; Baldwin, Ian T.; Bonaventure, Gustavo
2012-01-01
In a previous study aimed at identifying regulators of Nicotiana attenuata responses against chewing insects, a 26-nucleotide tag matching the HSPRO (ORTHOLOG OF SUGAR BEET Hs1pro-1) gene was found to be strongly induced after simulated herbivory (Gilardoni et al., 2010). Here we characterized the function of HSPRO during biotic interactions in transgenic N. attenuata plants silenced in its expression (ir-hspro). In wild-type plants, HSPRO expression was not only induced during simulated herbivory but also when leaves were inoculated with Pseudomonas syringae pv tomato DC3000 and roots with the growth-promoting fungus Piriformospora indica. Reduced HSPRO expression did not affect the regulation of direct defenses against Manduca sexta herbivory or P. syringae pv tomato DC3000 infection rates. However, reduced HSPRO expression positively influenced early seedling growth during interaction with P. indica; fungus-colonized ir-hspro seedlings increased their fresh biomass by 30% compared with the wild type. Grafting experiments demonstrated that reduced HSPRO expression in roots was sufficient to induce differential growth promotion in both roots and shoots. This effect was accompanied by changes in the expression of 417 genes in colonized roots, most of which were metabolic genes. The lack of major differences in the metabolic profiles of ir-hspro and wild-type colonized roots (as analyzed by liquid chromatography time-of-flight mass spectrometry) suggested that accelerated metabolic rates were involved. We conclude that HSPRO participates in a whole-plant change in growth physiology when seedlings interact with P. indica. PMID:22892352
Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.
2014-01-01
It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820
Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing
Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; Martínez de la Vega, Octavio; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C.; Vielle-Calzada, Jean-Philippe
2012-01-01
The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies. PMID:22442422
Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing.
Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; de la Vega, Octavio Martínez; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C; Vielle-Calzada, Jean-Philippe
2012-06-01
The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies.
Inman, Melissa; Perng, Guey-Chuen; Henderson, Gail; Ghiasi, Homayon; Nesburn, Anthony B.; Wechsler, Steven L.; Jones, Clinton
2001-01-01
The latency-associated transcript (LAT) is the only abundant herpes simplex virus type 1 (HSV-1) transcript expressed during latency. In the rabbit eye model, LAT null mutants do not reactivate efficiently from latency. We recently demonstrated that the LAT null mutant dLAT2903 induces increased levels of apoptosis in trigeminal ganglia of infected rabbits compared to LAT+ strains (G.-C. Perng, C. Jones, J. Ciacci-Zarella, M. Stone, G. Henderson, A. Yokht, S. M. Slanina, F. M. Hoffman, H. Ghiasi, A. B. Nesburn, and C. S. Wechsler, Science 287:1500–1503, 2000).The same study also demonstrated that a plasmid expressing LAT nucleotides 301 to 2659 enhanced cell survival of transfected cells after induction of apoptosis. Consequently, we hypothesized that LAT enhances spontaneous reactivation in part, because it promotes survival of infected neurons. Here we report on the ability of plasmids expressing different portions of the 5′ end of LAT to promote cell survival after induction of apoptosis. A plasmid expressing the first 1.5 kb of LAT (LAT nucleotides 1 to 1499) promoted cell survival in neuro-2A (mouse neuronal) and CV-1 (monkey fibroblast) cells. A plasmid expressing just the first 811 nucleotides of LAT promoted cell survival less efficiently. Plasmids expressing the first 661 nucleotides or less of LAT did not promote cell survival. We previously showed that a mutant expressing just the first 1.5 kb of LAT has wild-type spontaneous reactivation in rabbits, and a mutant expressing just the first 811 nucleotides of LAT has a reactivation frequency higher than that of dLAT2903 but lower than that of wild-type virus. In addition, mutants reported here for the first time, expressing just the first 661 or 76 nucleotides of LAT, had spontaneous reactivation indistinguishable from that of the LAT null mutant dLAT2903. In summary, these studies provide evidence that there is a functional relationship between the ability of LAT to promote cell survival and its ability to enhance spontaneous reactivation. PMID:11264353
CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer.
Smeby, J; Sveen, A; Merok, M A; Danielsen, S A; Eilertsen, I A; Guren, M G; Dienstmann, R; Nesbakken, A; Lothe, R A
2018-05-01
The prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer (CRC) varies with microsatellite instability (MSI) status. The gene expression-based consensus molecular subtypes (CMSs) of CRC define molecularly and clinically distinct subgroups, and represent a novel stratification framework in biomarker analysis. We investigated the prognostic value of these mutations within the CMS groups. Totally 1197 primary tumors from a Norwegian series of CRC stage I-IV were analyzed for MSI and mutation status in hotspots in KRAS (codons 12, 13 and 61) and BRAF (codon 600). A subset was analyzed for gene expression and confident CMS classification was obtained for 317 samples. This cohort was expanded with clinical and molecular data, including CMS classification, from 514 patients in the publically available dataset GSE39582. Gene expression signatures associated with KRAS and BRAFV600E mutations were used to evaluate differential impact of mutations on gene expression among the CMS groups. BRAFV600E and KRAS mutations were both associated with inferior 5-year overall survival (OS) exclusively in MSS tumors (BRAFV600E mutation versus KRAS/BRAF wild-type: Hazard ratio (HR) 2.85, P < 0.001; KRAS mutation versus KRAS/BRAF wild-type: HR 1.30, P = 0.013). BRAFV600E-mutated MSS tumors were strongly enriched and associated with metastatic disease in CMS1, leading to negative prognostic impact in this subtype (OS: BRAFV600E mutation versus wild-type: HR 7.73, P = 0.001). In contrast, the poor prognosis of KRAS mutations was limited to MSS tumors with CMS2/CMS3 epithelial-like gene expression profiles (OS: KRAS mutation versus wild-type: HR 1.51, P = 0.011). The subtype-specific prognostic associations were substantiated by differential effects of BRAFV600E and KRAS mutations on gene expression signatures according to the MSI status and CMS group. BRAFV600E mutations are enriched and associated with metastatic disease in CMS1 MSS tumors, leading to poor prognosis in this subtype. KRAS mutations are associated with adverse outcome in epithelial (CMS2/CMS3) MSS tumors.
Borst, D W; Blumenthal, R M; Matthews, R G
1996-12-01
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
Activation Of Wild-Type Hras Suppresses The Earliest Stages Of Pancreatic Cancer.
Weyandt, Jamie
2015-08-01
The RAS family of small GTPases is comprised of HRAS, NRAS, and KRAS. KRAS is invariably oncogenically mutated in pancreatic cancers, which is known to induce this disease. Beyond oncogenic KRAS, redox-dependent reactions have been implicated in the activation of the remaining wild-type RAS proteins in pancreatic cancer cell lines. These results suggest a possible involvement of wild-type RAS proteins in pancreatic cancer. To evaluate the impact of genetically suppressing wild-type RAS expression on pancreatic cancer. Hras homozygous null mice (Hras -/- ) were crossed into a Pdx-Cre; LSL-Kras G12D/+ (KC) murine background in which oncogenic Kras is activated in the pancreas to promote preinvasive pancreatic cancer. Tumor burden was then measured at different stages of disease. HRas -/- ;KC mice exhibited more precancerous lesions in the pancreas and more off-target skin papillomas compared to their wild-type counterparts, suggesting that Hras suppresses early oncogenic Kras-driven tumorigenesis, possibly at the time of initiation. Loss of Hras also reduced the survival of mice engineered to develop aggressive pancreatic cancer by the additional disruption of one allele of the tumor suppressor p53 (Trp53 R172H/+ ). However, this survival advantage was lost when both alleles of Trp53 were mutated, suggesting that wild-type Hras inhibits tumorigenesis in a p53-dependent fashion. Loss of wild-type Hras promotes the earliest stages of pancreatic tumorigenesis, and moreover results in more rapid progression of the disease. As such, mechanisms leading to activation of wild-type Ras proteins, including but not limited to redox-dependent reactions, may influence the development of pancreatic cancer. Copyright © 2015. Published by Elsevier B.V.
2011-01-01
Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses. Conclusions Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses. PMID:21936897
Transcript profiling reveals expression differences in wild-type and glabrous soybean lines
2011-01-01
Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines. PMID:22029708
Impairment of Hepcidin Upregulation by Lipopolysaccharide in the Interleukin-6 Knockout Mouse Brain.
Zhang, Fa-Li; Hou, Hui-Min; Yin, Zhi-Nan; Chang, Lan; Li, Fe-Mi; Chen, Y-J; Ke, Ya; Qian, Zhong-Ming
2017-01-01
To find out whether the Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is involved in the expression of hepcidin in the mouse brain in vivo , we investigated the phosphorylation of STAT3, as well as the expression of hepcidin mRNA, ferroportin 1 (Fpn1) and ferritin light chain (Ft-L) proteins in the cortex and hippocampus of LPS-treated wild type (IL-6+/+) and IL-6 knockout (IL-6-/-) mice. We demonstrated that IL-6 knockout could significantly reduce the response of hepcidin mRNA, phospho-STAT3, Fpn1 and Ft-L protein expression to LPS treatment, in both the cortex and hippocampus of mice. Also, Stattic, an inhibitor of STAT3, significantly reduced the expression of phospho-STAT3 and hepcidin mRNA in the cortex and hippocampus of the LPS-treated wild type mice. These findings provide in vivo evidence for the involvement of the IL-6/STAT3 signaling pathway in the expression of hepcidin.
Vincentz, M; Caboche, M
1991-01-01
A nitrate reductase (NR) deficient mutant of Nicotiana plumbaginifolia totally impaired in the production of NR transcript and protein was restored for NR activity by transformation with a chimaeric NR gene. This gene was composed of a full-length tobacco NR cDNA fused to the CaMV 35S promoter and to termination signals from the tobacco NR gene. The transgenic plants we obtained were viable and fertile and expressed from one-fifth to three times the wild-type NR activity in their leaves. The analysis of chimeric NR gene expression in these plants showed, by comparison with wild-type plants, that the regulation of NR gene expression by light, nitrate and circadian rhythm takes place at the transcriptional level. However, unlike nitrate, light was required for the accumulation of NR protein in transgenic plants, suggesting that NR expression is also controlled at the translational and/or post-translational level. Images PMID:2022181
Engineering Sialic Acid Synthesis Ability in Insect Cells.
Viswanathan, Karthik; Narang, Someet; Betenbaugh, Michael J
2015-01-01
Insect cells lack the ability to synthesize the sialic acid donor molecule CMP-sialic acid or its precursor, sialic acid. In this chapter, we describe a method to engineer CMP-sialic acid synthesis capability into Spodoptera frugiperda (Sf9) cells, a prototypical insect cell line, by recombinant expression of sialic acid synthesis pathway genes using baculovirus technology. Co-expression of a sialuria mutant UDP-GlcNAc-2-epimerase/ManNAc kinase (EKR263L), wild-type sialic acid 9-phosphate synthase (SAS), and wild-type CMP-sialic acid synthetase (CSAS) in the presence of GlcNAc leads to synthesis of CMP-sialic acids synthesis to support sialylation of N-glycans on glycoproteins.
Zhou, Q; Zhao, J; Hüsler, T; Sims, P J
1996-10-01
CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.
Uchida, Naoyuki; Shimada, Masanori; Tasaka, Masao
2013-03-01
Shoot apical meristems (SAMs), which are maintained at the tips of stems, are indeterminate structures and sources of stem cells from which all aerial organs are ultimately derived. Although mechanisms that regulate the homeostasis of the stem cells have been extensively investigated, identification of further unknown regulators should provide better understanding of the regulation. Here, we report that members of the Arabidopsis ERECTA (ER) receptor kinase family redundantly play a significant role in the regulation of stem cell homeostasis. In wild-type seedlings, the expression of WUSCHEL (WUS), a central regulator of the stem cell population, is stimulated by cytokinin. Interestingly, however, the SAM morphology and the expression of CLAVATA3 (CLV3), which is expressed in stem cells and therefore serves as a stem cell marker, are relatively stable against cytokinin treatment regardless of increased WUS expression. These findings indicate the presence of a mechanism to buffer stem cell homeostasis against an increase in cytokinin. Mutant seedlings lacking all ER-family members, which are expressed in the SAM, show an increase in the stem cell population and also the up-regulation of a cytokinin-responsive gene in the SAM. In this mutant, WUS expression is stimulated by cytokinin treatment as efficiently as in wild-type plants. However, in contrast to wild-type plants, SAM morphology and CLV3 expression respond drastically to cytokinin treatment, suggesting that the buffering mechanism to maintain stem cell homeostasis against an increase in cytokinin is severely impaired in this mutant. We suggest that the ER family regulates stem cell homeostasis via buffering its cytokinin responsiveness in the SAM.
Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang
2013-10-01
To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (p<0.05), and significantly reduced open-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (p<0.05) in knockout mice. In wild type mice, significant changes were observed in both behavior tests in some treatment groups. Lithium ameliorated P-GSK3beta expression in the hippocampus of all the treatment groups in knockout mice (p<0.05). However, lithium did not modify either GSK3beta expression in tissues of knockout mice, or P-GSK3beta or GSK3beta expression in tissues of wild type mice. Lithium ameliorated open-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.
Tonnessen-Murray, Crystal; Ungerleider, Nathan A; Rao, Sonia G; Wasylishen, Amanda R; Frey, Wesley D; Jackson, James G
2018-05-28
p53 is a transcription factor that regulates expression of genes involved in cell cycle arrest, senescence, and apoptosis. TP53 harbors mutations that inactivate its transcriptional activity in roughly 30% of breast cancers, and these tumors are much more likely to undergo a pathological complete response to chemotherapy. Thus, the gene expression program activated by wild-type p53 contributes to a poor response. We used an in vivo genetic model system to comprehensively define the p53- and p21-dependent genes and pathways modulated in tumors following doxorubicin treatment. We identified genes differentially expressed in spontaneous mammary tumors harvested from treated MMTV-Wnt1 mice that respond poorly (Trp53+/+) or favorably (Trp53-null) and those that lack the critical senescence/arrest p53 target gene Cdkn1a. Trp53 wild-type tumors differentially expressed nearly 10-fold more genes than Trp53-null tumors after treatment. Pathway analyses showed that genes involved in cell cycle, senescence, and inflammation were enriched in treated Trp53 wild-type tumors; however, no genes/pathways were identified that adequately explain the superior cell death/tumor regression observed in Trp53-null tumors. Cdkn1a-null tumors that retained arrest capacity (responded poorly) and those that proliferated (responded well) after treatment had remarkably different gene regulation. For instance, Cdkn1a-null tumors that arrested upregulated Cdkn2a (p16), suggesting an alternative, p21-independent route to arrest. Live animal imaging of longitudinal gene expression of a senescence/inflammation gene reporter in Trp53+/+ tumors showed induction during and after chemotherapy treatment, while tumors were arrested, but expression rapidly diminished immediately upon relapse. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Fedosyuk, Halyna; Peterson, Kenneth R
2007-01-01
A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.
Roos, Carolyn M.; Hagler, Michael; Zhang, Bin; Oehler, Elise A.; Arghami, Arman
2013-01-01
The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD+/+) and manganese SOD heterozygous haploinsufficient (MnSOD+/−) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16ink4a, a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD+/+ and MnSOD+/− mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD+/+ and MnSOD+/− mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD+/+ mice but significantly impaired endothelial function in MnSOD+/− mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094
Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A
1993-01-01
A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064
Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping
2014-01-01
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity. PMID:24711564
Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping; Liu, Yongjie
2014-06-01
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.
Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M
2007-05-15
The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.
Avery, Simon V.; Malkapuram, Srividya; Mateus, Carolina; Babb, Kimberly S.
2000-01-01
Saccharomyces cerevisiae, along with other eukaryotes, is resistant to tetracyclines. We found that deletion of SOD1 (encoding Cu/Zn superoxide dismutase) rendered S. cerevisiae hypersensitive to oxytetracycline (OTC): a sod1Δ mutant exhibited a >95% reduction in colony-forming ability at an OTC concentration of 20 μg ml−1, whereas concentrations of up to 1,000 μg ml−1 had no effect on the growth of the wild type. OTC resistance was restored in the sod1Δ mutant by complementation with wild-type SOD1. The effect of OTC appeared to be cytotoxic and was not evident in a ctt1Δ (cytosolic catalase) mutant or in the presence of tetracycline. SOD1 transcription was not induced by OTC, suggesting that constitutive SOD1 expression is sufficient for wild-type OTC resistance. OTC uptake levels in wild-type and sod1Δ strains were similar. However, lipid peroxidation and protein oxidation were both enhanced during exposure of the sod1Δ mutant, but not the wild type, to OTC. We propose that Sod1p protects S. cerevisiae against a mode of OTC action that is dependent on oxidative damage. PMID:10613865
Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli
Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente
2002-01-01
RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951
Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.; Grønlund, Mette
2015-01-01
Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. PMID:25944927
Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R A; Waldron, Keith W; Bongaerts, Roy J; Mayer, Melinda J; Narbad, Arjan
2013-01-01
As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions.
Jin, Shuangxia; Daniell, Henry
2014-01-01
Summary The γ-tocopherol methyltransferase (γ-TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ-TMT in regulating abiotic stress within chloroplasts. The At γ-tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to 8 layers). Such high level expression of γ-TMT converted most of γ-tocopherol to α-tocopherol in transplastomic seeds (~10 fold higher) in the absence of abiotic stress. When grown in 400 mM NaCl, α-tocopherol content in transplastomic TMT leaves increased up to 8.2-fold and 2.4-fold higher than wild-type leaves. Likewise, under heavy metal stress α-tocopherol content in the TMT leaves increased up to 7.5-fold, twice higher than in the wild-type. Under extreme salt stress, the wild-type accumulated higher starch and total soluble sugars but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild-type increased up to 3-fold within 48 hours of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild-type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α-tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signaling from chloroplast to the nucleus. PMID:25051898
In vivo evidence for unidentified leptin-induced circulating factors that control white fat mass.
Harris, Ruth B S
2015-12-15
Fat transplants increase body fat mass without changing the energy status of an animal and provide a tool for investigating control of total body fat. Early transplant studies found that small pieces of transplanted fat took on the morphology of the transplant recipient. Experiments described here tested whether this response was dependent upon expression of leptin receptors in either transplanted fat or the recipient mouse. Fat from leptin receptor deficient db/db mice or wild-type mice was placed subcutaneously in db/db mice. After 12 wk, cell size distribution in the transplant was the same as in endogenous fat of the recipient. Thus, wild-type fat cells, which express leptin receptors, were enlarged in a hyperleptinemic environment, indicating that leptin does not directly control adipocyte size. By contrast, db/db or wild-type fat transplanted into wild-type mice decreased in size, suggesting that a functional leptin system in the recipient is required for body fat mass to be controlled. In the final experiment, wild-type fat was transplanted into a db/db mouse parabiosed to either another db/db mouse to an ob/ob mouse or in control pairs in which both parabionts were ob/ob mice. Transplants increased in size in db/db-db/db pairs, decreased in db/db-ob/ob pairs and did not change in ob/ob-ob/ob pairs. We propose that leptin from db/db parabionts activated leptin receptors in their ob/ob partners. This, in turn, stimulated release of unidentified circulating factors, which travelled back to the db/db partner and acted on the transplant to reduce fat cell size. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de
1994-04-01
The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-pointmore » sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.« less
Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yangrae; Ohm, Robin A.; Grigoriev, Igor V.
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. To identify molecular determinants of pathogenicity, we created non-pathogenic mutants of a transcription factor-encoding gene, AbPf2. The frequency and timing of germination and appressorium formation on host plants were similar between the non-pathogenic abpf2 mutants and wild-type A. brassicicola. The mutants were also similar in vitro to wild-type A. brassicicola in terms of vegetative growth, conidium production, and responses to a phytoalexin, reactive oxygen species and osmolites. The hyphae of the mutants grew slowly but did not cause disease symptoms on the surface of host plants. Transcripts of the AbPf2more » gene increased exponentially soon after wild-type conidia contacted their host plants . A small amount of AbPf2 protein, as monitored using GFP fusions, was present in young, mature conidia. The protein level decreased during saprophytic growth, but increased and was located primarily in fungal nuclei during pathogenesis. Levels of the proteins and transcripts sharply decreased following colonization of host tissues beyond the initial infection site. When expression of the transcription factor was induced in the wild-type during early pathogenesis, 106 fungal genes were also induced in the wild-type but not in the abpf2 mutants. Notably, 33 of the 106 genes encoded secreted proteins, including eight putative effector proteins. Plants inoculated with abpf2 mutants expressed higher levels of genes associated with photosynthesis, the pentose phosphate pathway and primary metabolism, but lower levels of defense-related genes. Our results suggest that AbPf2 is an important regulator of pathogenesis, but does not affect other cellular processes in A. brassicicola.« less
The Structure and Function of Non-Collagenous Bone Proteins
NASA Technical Reports Server (NTRS)
Hook, Magnus; McQuillan, David J.
1997-01-01
The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.
Alvarez, J D; Anderson, S J; Loh, D Y
1995-08-01
Transcriptional activation of rearranging Ag receptor gene segments has been hypothesized to regulate their accessibility to V(D)J recombination. We analyzed the role of a functional promoter in the rearrangement of the murine TCR beta-chain locus using two transgenic minilocus constructs. These miniloci each contain an unrearranged V beta 8.3 gene. One has a wild-type V beta 8.3 gene, but the other has a V beta 8.3 gene with a promoter mutation that was previously shown to abrogate transcription in tissue culture. FACS analysis of thymus and lymph node cells from transgenic mouse lines showed that only the lines with the wild-type V beta 8.3 gene promoter express an 8.3 TCR beta-chain. Consistent with the protein expression data, V beta 8.3 gene transcripts were found only in the transgenic lines with the wild-type promoter. Using a quantitative PCR-based assay, it was shown that both types of transgenic lines recombine the V beta 8.3 gene at similar levels. Rearrangement of the transgenes was normal with respect to thymic development and junctional reading frame. Interestingly, both types of miniloci also underwent allelic exclusion in that recombination was blocked by the expression of a rearranged TCR beta-chain transgene. We conclude that a functional V beta gene promoter is not necessary for proper V(D)J recombination to occur.
Meckelin 3 Is Necessary for Photoreceptor Outer Segment Development in Rat Meckel Syndrome
Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H.; Miller, Caroline; Chernoff, Ellen A. G.; Belecky-Adams, Teri L.
2013-01-01
Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626
A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.
Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S
1995-01-01
The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione. PMID:7770518
Sham, Arjun; Moustafa, Khaled; Al-Shamisi, Shamma; Alyan, Sofyan; Iratni, Rabah
2017-01-01
The WRKY33 transcription factor was reported for resistance to the necrotrophic fungus Botrytis cinerea. Using microarray-based analysis, we compared Arabidopsis WRKY33 overexpressing lines and wrky33 mutant that showed altered susceptibility to B. cinerea with their corresponding wild-type plants. In the wild-type, about 1660 genes (7% of the transcriptome) were induced and 1054 genes (5% of the transcriptome) were repressed at least twofold at early stages of inoculation with B. cinerea, confirming previous data of the contribution of these genes in B. cinerea resistance. In Arabidopsis wild-type plant infected with B. cinerea, the expressions of the differentially expressed genes encoding for proteins and metabolites involved in pathogen defense and non-defense responses, seem to be dependent on a functional WRKY33 gene. The expression profile of 12-oxo-phytodienoic acid- and phytoprostane A1-treated Arabidopsis plants in response to B. cinerea revealed that cyclopentenones can also modulate WRKY33 regulation upon inoculation with B. cinerea. These results support the role of electrophilic oxylipins in mediating plant responses to B. cinerea infection through the TGA transcription factor. Future directions toward the identification of the molecular components in cyclopentenone signaling will elucidate the novel oxylipin signal transduction pathways in plant defense. PMID:28207847
Stat1-independent regulation of gene expression in response to IFN-γ
Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.
2001-01-01
Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994
In Vitro Evaluation of Glycoengineered RSV-F in the Human Artificial Lymph Node Reactor.
Radke, Lars; Sandig, Grit; Lubitz, Annika; Schließer, Ulrike; von Horsten, Hans Henning; Blanchard, Veronique; Keil, Karolin; Sandig, Volker; Giese, Christoph; Hummel, Michael; Hinderlich, Stephan; Frohme, Marcus
2017-08-15
Subunit vaccines often require adjuvants to elicit sustained immune activity. Here, a method is described to evaluate the efficacy of single vaccine candidates in the preclinical stage based on cytokine and gene expression analysis. As a model, the recombinant human respiratory syncytial virus (RSV) fusion protein (RSV-F) was produced in CHO cells. For comparison, wild-type and glycoengineered, afucosylated RSV-F were established. Both glycoprotein vaccines were tested in a commercial Human Artificial Lymph Node in vitro model (HuALN ® ). The analysis of six key cytokines in cell culture supernatants showed well-balanced immune responses for the afucosylated RSV-F, while immune response of wild-type RSV-F was more Th1 accentuated. In particular, stronger and specific secretion of interleukin-4 after each round of re-stimulation underlined higher potency and efficacy of the afucosylated vaccine candidate. Comprehensive gene expression analysis by nCounter gene expression assay confirmed the stronger onset of the immunologic reaction in stimulation experiments with the afucosylated vaccine in comparison to wild-type RSV-F and particularly revealed prominent activation of Th17 related genes, innate immunity, and comprehensive activation of humoral immunity. We, therefore, show that our method is suited to distinguish the potency of two vaccine candidates with minor structural differences.
Multiproteomic and Transcriptomic Analysis of Oncogenic β-Catenin Molecular Networks.
Ewing, Rob M; Song, Jing; Gokulrangan, Giridharan; Bai, Sheldon; Bowler, Emily H; Bolton, Rachel; Skipp, Paul; Wang, Yihua; Wang, Zhenghe
2018-06-01
The dysregulation of Wnt signaling is a frequent occurrence in many different cancers. Oncogenic mutations of CTNNB1/β-catenin, the key nuclear effector of canonical Wnt signaling, lead to the accumulation and stabilization of β-catenin protein with diverse effects in cancer cells. Although the transcriptional response to Wnt/β-catenin signaling activation has been widely studied, an integrated understanding of the effects of oncogenic β-catenin on molecular networks is lacking. We used affinity-purification mass spectrometry (AP-MS), label-free liquid chromatography-tandem mass spectrometry, and RNA-Seq to compare protein-protein interactions, protein expression, and gene expression in colorectal cancer cells expressing mutant (oncogenic) or wild-type β-catenin. We generate an integrated molecular network and use it to identify novel protein modules that are associated with mutant or wild-type β-catenin. We identify a DNA methyltransferase I associated subnetwork that is enriched in cells with mutant β-catenin and a subnetwork enriched in wild-type cells associated with the CDKN2A tumor suppressor, linking these processes to the transformation of colorectal cancer cells through oncogenic β-catenin signaling. In summary, multiomics analysis of a defined colorectal cancer cell model provides a significantly more comprehensive identification of functional molecular networks associated with oncogenic β-catenin signaling.
Vaessen, Stefan F C; Sierts, Jeroen A; Kuivenhoven, Jan Albert; Schaap, Frank G
2009-02-06
Variation in the apolipoprotein A5 (APOA5) gene has consistently been associated with increased plasma triglyceride (TG) levels in epidemiological studies. In vivo functionality of these variations, however, has thus far not been tested. Using adenoviral over-expression, we evaluated plasma expression levels and TG-lowering efficacies of wild-type human apoAV, two human apoAV variants associated with increased TG (S19W, G185C) and one variant (Q341H) that is predicted to have altered protein function. Injection of mice with adenovirus encoding wild-type or mutant apoAV resulted in an identical dose-dependent elevation of human apoAV levels in plasma. The increase in apoAV levels resulted in pronounced lowering of plasma TG levels at two viral dosages. Unexpectedly, the TG-lowering efficacy of all three apoAV variants was similar to wild-type apoAV. In addition, no effect on TG-hydrolysis-related plasma parameters (free fatty acids, glycerol and post-heparin lipoprotein lipase activity) was apparent upon expression of all apoAV variants. In conclusion, our data indicate that despite their association with hypertriglyceridemia and/or predicted protein dysfunction, the 19W, 185C and 341H apoAV variants are equally effective in reducing plasma TG levels in mice.
Guo, Yulong; Zhu, Qinlong; Zheng, Shangyong; Li, Mingyang
2007-06-01
A MADS box gene (GhMADS3) was cloned from cotton (Gossypium hirsutum L.) based on EST sequences. The predicted protein sequence of GhMADS3 showed 85%, 73%, and 62% identity with Theobroma cacao TcAG, Antirrhinum majus FAR, and Arabidopsis thaliana AG, respectively, and was grouped with AG homologues when the full length sequences excluding N-extensions were compared. GhMADS3 expressed in the wild type cotton flower primarily in stamens and carpels, which was comparable to AG in Arabidopsis. However, it was not expressed in floral buds of a homeotic cotton variant chv1. Ectopic expression of GhMADS3 in tobacco (Nicotiana tabacum L.) resulted in flowers with sepal-to-carpel and petal-to-stamen transformation. The carpelloid first whorl organs, with stigmatic tissue on their upper edges, had a white appearance when compared with the dark green color of the wild type sepals. At times, long filaments were observed at the fusion site of the first carpelloid oranges. The second whorl organs in staminoid were usually smaller than the wild type and the color was changed from pink to white. These results suggest that GhMADS3 has a homeotic role in flower development.
Genetic ablation of root cap cells in Arabidopsis
NASA Technical Reports Server (NTRS)
Tsugeki, R.; Fedoroff, N. V.
1999-01-01
The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.
Rodriguez-Cuenca, Sergio; Cochemé, Helena M; Logan, Angela; Abakumova, Irina; Prime, Tracy A; Rose, Claudia; Vidal-Puig, Antonio; Smith, Anthony C; Rubinsztein, David C; Fearnley, Ian M; Jones, Bruce A; Pope, Simon; Heales, Simon J R; Lam, Brian Y H; Neogi, Sudeshna Guha; McFarlane, Ian; James, Andrew M; Smith, Robin A J; Murphy, Michael P
2010-01-01
The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice. Copyright 2009 Elsevier Inc. All rights reserved.
Finding gene clusters for a replicated time course study
2014-01-01
Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression models method, takes into account the specific design of the microarray study and bases the clustering on how genes are related to sample covariates. It can find useful gene clusters for studies from complicated study designs such as replicated time course studies. Findings In this paper, we applied the clustering of regression models method to data from a time course study of yeast on two genotypes, wild type and YOX1 mutant, each with two technical replicates, and compared the clustering results with K-means clustering. We identified gene clusters that have similar expression patterns in wild type yeast, two of which were missed by K-means clustering. We further identified gene clusters whose expression patterns were changed in YOX1 mutant yeast compared to wild type yeast. Conclusions The clustering of regression models method can be a valuable tool for identifying genes that are coordinately transcribed by a common mechanism. PMID:24460656
Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.
Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D
2011-11-01
Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.
Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.
Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin
2016-01-01
Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.
Yokota, Aya; Takeuchi, Emiko; Iizuka, Misao; Ikegami, Yuko; Takayama, Hajime; Shinohara, Nobukata
2005-01-01
Using a panel of transfectant B lymphoma cells expressing varying amounts of the mutant Fas together with the endogenous wild type Fas, semi-quantitative studies on the dominant negative effect of a murine mutant Fas molecule lacking death domain were carried out. In anti-Fas antibody-mediated induction of apoptosis, the mutant molecules exerted significant dominant-negative effect only when their expression level was comparable to or higher than that of wild type molecules, or when exposed to low amounts of the antibody. The inhibitory effect was accompanied by the failure in DISC formation in spite of Fas aggregation. When they were subjected to T cell-mediated Fas-based induction of apoptosis, however, the dominant negative effect was prominent such that the expression of even a small amount of the mutant molecules resulted in significant inhibition. Such a strong inhibitory effect explains the dominant phenotype of this type of mutant Fas molecules in ALPS heterozygous patients and also implies that the physiological effectors for Fas in vivo are cells, i.e., FasL-expressing activated T cells.
Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria
2016-08-12
To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Markus; Sorensen, Susanne Oxenboll; Harholt, Jesper
2009-08-19
Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGAmore » to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.« less
Kober, Christina; Weibel, Stephanie; Rohn, Susanne; Kirscher, Lorenz; Szalay, Aladar A
2015-01-01
Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible.
Analysis of Induced Pluripotent Stem Cells from a BRCA1 Mutant Family
Soyombo, Abigail A.; Wu, Yipin; Kolski, Lauren; Rios, Jonathan J.; Rakheja, Dinesh; Chen, Alice; Kehler, James; Hampel, Heather; Coughran, Alanna; Ross, Theodora S.
2013-01-01
Summary Understanding BRCA1 mutant cancers is hampered by difficulties in obtaining primary cells from patients. We therefore generated and characterized 24 induced pluripotent stem cell (iPSC) lines from fibroblasts of eight individuals from a BRCA1 5382insC mutant family. All BRCA1 5382insC heterozygous fibroblasts, iPSCs, and teratomas maintained equivalent expression of both wild-type and mutant BRCA1 transcripts. Although no difference in differentiation capacity was observed between BRCA1 wild-type and mutant iPSCs, there was elevated protein kinase C-theta (PKC-theta) in BRCA1 mutant iPSCs. Cancer cell lines with BRCA1 mutations and hormone-receptor-negative breast cancers also displayed elevated PKC-theta. Genome sequencing of the 24 iPSC lines showed a similar frequency of reprogramming-associated de novo mutations in BRCA1 mutant and wild-type iPSCs. These data indicate that iPSC lines can be derived from BRCA1 mutant fibroblasts to study the effects of the mutation on gene expression and genome stability. PMID:24319668
G. Lavoie, Elise; Dranoff, Jonathan A.
2017-01-01
Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression. PMID:28898276
Mir Seyed Nazari, P; Riedl, J; Preusser, M; Posch, F; Thaler, J; Marosi, C; Birner, P; Ricken, G; Hainfellner, J A; Pabinger, I; Ay, C
2018-06-01
Essentials Risk stratification for venous thromboembolism (VTE) in patients with brain tumors is challenging. Patients with IDH1 wildtype and high podoplanin expression have a 6-month VTE risk of 18.2%. Patients with IDH1 mutation and no podoplanin expression have a 6-month VTE risk of 0%. IDH1 mutation and podoplanin overexpression in primary brain tumors appear to be exclusive. Background Venous thromboembolism (VTE) is a frequent complication in primary brain tumor patients. Independent studies revealed that podoplanin expression in brain tumors is associated with increased VTE risk, whereas the isocitrate dehydrogenase 1 (IDH1) mutation is associated with very low VTE risk. Objectives To investigate the interrelation between intratumoral podoplanin expression and IDH1 mutation, and their mutual impact on VTE development. Patients/Methods In a prospective cohort study, intratumoral IDH1 R132H mutation and podoplanin were determined in brain tumor specimens (mainly glioma) by immunohistochemistry. The primary endpoint of the study was symptomatic VTE during a 2-year follow-up. Results All brain tumors that expressed podoplanin to a medium-high extent showed also an IDH1 wild-type status. A score based on IDH1 status and podoplanin expression levels allowed prediction of the risk of VTE. Patients with wild-type IDH1 brain tumors and high podoplanin expression had a significantly increased VTE risk compared with those with mutant IDH1 tumors and no podoplanin expression (6-month risk 18.2% vs. 0%). Conclusions IDH1 mutation and podoplanin overexpression seem to be exclusive. Although brain tumor patients with IDH1 mutation are at very low risk of VTE, the risk of VTE in patients with IDH1 wild-type tumors is strongly linked to podoplanin expression levels. © 2018 International Society on Thrombosis and Haemostasis.
Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard
2004-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl− channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl− channel activity of wild-type CFTR and delF508-CFTR mutant. The effects of n-alkanols like octanol on CFTR activity were measured by iodide (125I) efflux and patch-clamp techniques on three distinct cellular models: (1) CFTR-expressing Chinese hamster ovary cells, (2) human airway Calu-3 epithelial cells and (3) human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated 125I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. 125I efflux and Cl− currents induced by octanol were blocked by glibenclamide but insensitive to 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, as expected for a CFTR Cl− current. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanol<1-octanol<2-octanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF. PMID:14967738
Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard
2004-03-01
1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanol<1-octanol<2-octanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.
Dilshad, Erum; Cusido, Rosa Maria; Ramirez Estrada, Karla; Bonfill, Mercedes; Mirza, Bushra
2015-01-01
The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism.
Pillidge, Katharine; Porter, Ashley J; Young, Jared W; Stanford, S Clare
2016-01-01
The underlying cause(s) of abnormalities expressed by patients with attention deficit hyperactivity disorder (ADHD) have yet to be delineated. One factor that has been associated with increased vulnerability to ADHD is polymorphism(s) of TACR1, which is the human equivalent of the rodent NK1 (substance P-preferring) receptor gene (Nk1r). We have reported previously that genetically altered mice, lacking functional NK1R (NK1R–/–), express locomotor hyperactivity, which was blunted by the first-line treatment for ADHD, methylphenidate. Here, we compared the effects of this psychostimulant (3, 10 and 30 mg/kg, intraperitoneally) on the behaviour of NK1R-/- mice and their wild types in the 5-Choice Continuous Performance Test, which emulates procedures used to study attention and response control in ADHD patients. Methylphenidate increased total trials (a measure of ‘productivity’) completed by wild types, but not by NK1R-/- mice. Conversely, this drug reduced perseveration by NK1R-/- mice, but not by wild types. Other drug-induced changes in key behaviours were not genotype dependent, especially at the highest dose: for example, % omissions (an index of inattentiveness) was increased, whereas % false alarms and % premature responses (measures of impulsivity) declined in both genotypes, indicating reduced overall response. These findings are discussed in the context of the efficacy of methylphenidate in the treatment of ADHD. Moreover, they lead to several testable proposals. First, methylphenidate does not improve attention in a subgroup of ADHD patients with a functional deficit of TACR1. Second, these patients do not express excessive false alarms when compared with other groups of subjects, but they do express excessive perseveration, which would be ameliorated by methylphenidate. PMID:27097734
Machado, Maiaro Cabral Rosa; Octacilio-Silva, Shirlei; Costa, Mara Silvia A.; Ramos, Ricardo Guelerman P.
2011-01-01
Background Drosophila retinal architecture is laid down between 24–48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level. PMID:21857931
Nikodinovic-Runic, Jasmina; Coulombel, Lydie; Francuski, Djordje; Sharma, Narain D; Boyd, Derek R; Ferrall, Rory Moore O; O'Connor, Kevin E
2013-06-01
Nine different sulfur-containing compounds were biotransformed to the corresponding sulfoxides by Escherichia coli Bl21(DE3) cells expressing styrene monooxygenase (SMO) from Pseudomonas putida CA-3. Thioanisole was consumed at 83.3 μmoles min(-1) g cell dry weight(-1) resulting mainly in the formation of R-thioanisole sulfoxide with an enantiomeric excess (ee) value of 45 %. The rate of 2-methyl-, 2-chloro- and 2-bromo-thioanisole consumption was 2-fold lower than that of thioanisole. Surprisingly, the 2-methylthioanisole sulfoxide product had the opposite (S) configuration to that of the other 2-substituted thioanisole derivatives and had a higher ee value (84 %). The rate of oxidation of 4-substituted thioanisoles was higher than the corresponding 2-substituted substrates but the ee values of the products were consistently lower (10-23 %). The rate of benzo[b]thiophene and 2-methylbenzo[b]thiophene sulfoxidation was approximately 10-fold lower than that of thioanisole. The ee value of the benzo[b]thiophene sulfoxide could not be determined as the product racemized rapidly. E. coli cells expressing an engineered SMO (SMOeng R3-11) oxidised 2-substituted thioanisoles between 1.8- and 2.8-fold faster compared to cells expressing the wild-type enzyme. SMOeng R3-11 oxidised benzo[b]thiophene and 2-methylbenzo[b]thiophene 10.1 and 5.6 times faster that the wild-type enzyme. The stereospecificity of the reaction catalysed by SMOeng was unchanged from that of the wild type. Using the X-ray crystal structure of the P. putida S12 SMO, it was evident that the entrance of substrates into the SMO active site is limited by the binding pocket bottleneck formed by the side chains of Val-211 and Asn-46 carboxyamide group.
Hook, Gregory; Hook, Vivian; Kindy, Mark
2015-01-01
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740
Bearson, Bradley L.
2013-01-01
Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively. PMID:23377937
Sharma, Vijay K; Bearson, Bradley L
2013-04-01
Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively.
Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid
2017-01-01
The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hon, Shuen; Lanahan, Anthony; Tian, Liang; ...
2016-04-22
Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (bothmore » wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hon, Shuen; Lanahan, Anthony; Tian, Liang
Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (bothmore » wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.« less
Hon, Shuen; Lanahan, Anthony A; Tian, Liang; Giannone, Richard J; Hettich, Robert L; Olson, Daniel G; Lynd, Lee R
2016-12-01
Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE . To explore the effects of overexpressing wild-type, mutant, and exogenous adhE s, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum . As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.
Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong
2016-01-01
To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P < 0.05). Additionally, significant weakened abilities of colony-formation, invasion, and chemoresistance in monoclonal HeLa cells were observed when compared to those of wild-type HeLa cells (P < 0.05). Nanog mutation attenuates the malignant behavior of HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.
Silverman, Lee R.; Phipps, Andrew J.; Montgomery, Andrew; Ratner, Lee; Lairmore, Michael D.
2004-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and exhibits high genetic stability in vivo. HTLV-1 contains four open reading frames (ORFs) in its pX region. ORF II encodes two proteins, p30II and p13II, both of which are incompletely characterized. p30II localizes to the nucleus or nucleolus and has distant homology to the transcription factors Oct-1, Pit-1, and POU-M1. In vitro studies have demonstrated that at low concentrations, p30II differentially regulates cellular and viral promoters through an interaction with CREB binding protein/p300. To determine the in vivo significance of p30II, we inoculated rabbits with cell lines expressing either a wild-type clone of HTLV-1 (ACH.1) or a clone containing a mutation in ORF II, which eliminated wild-type p30II expression (ACH.30.1). ACH.1-inoculated rabbits maintained higher HTLV-1-specific antibody titers than ACH.30.1-inoculated rabbits, and all ACH.1-inoculated rabbits were seropositive for HTLV-1, whereas only two of six ACH.30.1-inoculated rabbits were seropositive. Provirus could be consistently PCR amplified from peripheral blood mononuclear cell (PBMC) DNA in all ACH.1-inoculated rabbits but in only three of six ACH.30.1-inoculated rabbits. Quantitative competitive PCR indicated higher PBMC proviral loads in ACH.1-inoculated rabbits. Interestingly, sequencing of ORF II from PBMC of provirus-positive ACH.30.1-inoculated rabbits revealed a reversion to wild-type sequence with evidence of early coexistence of mutant and wild-type sequence. Our data provide evidence that HTLV-1 must maintain its key accessory genes to survive in vivo and that in vivo pressures select for maintenance of wild-type ORF II gene products during the early course of infection. PMID:15047799
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fabao; Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071; You, Xiaona
Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migrationmore » in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.« less
Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S
2016-08-01
Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Hirotani, Tomonori; Lee, Pui Y; Kuwata, Hirotaka; Yamamoto, Masahiro; Matsumoto, Makoto; Kawase, Ichiro; Akira, Shizuo; Takeda, Kiyoshi
2005-03-15
Macrophages play an important role in the pathogenesis of chronic colitis. However, it remains unknown how macrophages residing in the colonic lamina propria are regulated. We characterized colonic lamina proprial CD11b-positive cells (CLPMphi). CLPMphi of wild-type mice, but not IL-10-deficient mice, displayed hyporesponsiveness to TLR stimulation in terms of cytokine production and costimulatory molecule expression. We compared CLPMphi gene expression profiles of wild-type mice with IL-10-deficient mice, and identified genes that are selectively expressed in wild-type CLPMphi. These genes included nuclear IkappaB proteins such as Bcl-3 and IkappaBNS. Because Bcl-3 has been shown to specifically inhibit LPS-induced TNF-alpha production, we analyzed the role of IkappaBNS in macrophages. Lentiviral introduction of IkappaBNS resulted in impaired LPS-induced IL-6 production, but not TNF-alpha production in the murine macrophage cell line RAW264.7. IkappaBNS expression led to constitutive and intense DNA binding of NF-kappaB p50/p50 homodimers. IkappaBNS was recruited to the IL-6 promoter, but not to the TNF-alpha promoter, together with p50. Furthermore, small interference RNA-mediated reduction in IkappaBNS expression in RAW264.7 cells resulted in increased LPS-induced production of IL-6, but not TNF-alpha. Thus, IkappaBNS selectively suppresses LPS-induced IL-6 production in macrophages. This study established that nuclear IkappaB proteins differentially regulate LPS-induced inflammatory cytokine production in macrophages.
Mutations of NOTCH3 in childhood pulmonary arterial hypertension
Chida, Ayako; Shintani, Masaki; Matsushita, Yoshihisa; Sato, Hiroki; Eitoku, Takahiro; Nakayama, Tomotaka; Furutani, Yoshiyuki; Hayama, Emiko; Kawamura, Yoichi; Inai, Kei; Ohtsuki, Shinichi; Saji, Tsutomu; Nonoyama, Shigeaki; Nakanishi, Toshio
2014-01-01
Mutations of BMPR2 and other TGF-β superfamily genes have been reported in pulmonary arterial hypertension (PAH). However, 60–90% of idiopathic PAH cases have no mutations in these genes. Recently, the expression of NOTCH3 was shown to be increased in the pulmonary artery smooth muscle cells of PAH patients. We sought to investigate NOTCH3 and its target genes in PAH patients and clarify the role of NOTCH3 signaling. We screened for mutations in NOTCH3, HES1, and HES5 in 41 PAH patients who had no mutations in BMPR2, ALK1, endoglin, SMAD1/4/8, BMPR1B, or Caveolin-1. Two novel missense mutations (c.2519 G>A p.G840E, c.2698 A>C p.T900P) in NOTCH3 were identified in two PAH patients. We performed functional analysis using stable cell lines expressing either wild-type or mutant NOTCH3. The protein-folding chaperone GRP78/BiP was colocalized with wild-type NOTCH3 in the endoplasmic reticulum, whereas the majority of GRP78/BiP was translocated into the nuclei of cells expressing mutant NOTCH3. Cell proliferation and viability were higher for cells expressing mutant NOTCH3 than for those expressing wild-type NOTCH3. We identified novel NOTCH3 mutations in PAH patients and revealed that these mutations were involved in cell proliferation and viability. NOTCH3 mutants induced an impairment in NOTCH3-HES5 signaling. The results may contribute to the elucidation of PAH pathogenesis. PMID:24936512
Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity
Chittaranjan, Suganthi; Chan, Susanna; Yang, Cindy; Yang, Kevin C.; Chen, Vincent; Moradian, Annie; Firme, Marlo; Song, Jungeun; Go, Nancy E.; Blough, Michael D.; Chan, Jennifer A.; Cairncross, J. Gregory; Gorski, Sharon M.; Morin, Gregg B.; Yip, Stephen; Marra, Marco A.
2014-01-01
The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples. PMID:25277207
Bi, Huan Gai; Dong, Xu Bing; Liu, Pei Pei; Li, Qing Ming; Ai, Xi Zhen
2016-07-01
In the present work, transgenic cucumber seedlings over expressing CsRCA and wild-type cucumber seedlings '08-1'at three-leaf stage exposed to high temperature (40 ℃, PFD 600 μmol· m -2 · s -1 ) were used to study the regulatory mechanism of photosynthesis by CsRCA. The results showed that the mRNA abundance of rbcL and rbcS as well as the activities of ribulose bisphosphate carboxylic enzyme (Rubisco) and Rubisco activase (RCA) were significantly higher in CsRCA over-expressing cucumber seedlings than in wild type (WT). Following 2-h exposure to high temperature, a notable decrease was observed in photosynthetic rate (P n ), photochemical perfor-mance index based on the absorption of light energy (PI ABS ), activities of Rubisco and RCA as well as the relative expression of rbcL, rbcS and CsRCA in both wild-type cucumber seedlings and transgenic cucumber seedlings. It was found that high temperature stress led to higher W k , a parameter of chlorophyll (Chl) a fluorescence OJIP curve. Furthermore, high temperature greatly reduced the efficiency of electron transfer along the electron transport chain beyond Q A (ψ 0 ) and the quantum yield for electron transport (φ E0 ), indicating that PSII oxygen complexes (OEC) and electron transport chain downstream Q A were inhibited by high temperature. However, the inhibition could be alleviated by over expressing CsRCA in cucumber seedlings. Taken together, our data suggested that over expressing CsRCA improves photosynthesis in cucumber seedlings under high temperature stress by enhancing activities of the Rubisco and RCA, and maintaining the number of active reaction centers.
Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L.; Guttentag, Susan; Hubbard, Michael J.; Rubenstein, Ronald C.
2011-01-01
Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o− WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells. PMID:21525008
Suaud, Laurence; Miller, Katelyn; Alvey, Lora; Yan, Wusheng; Robay, Amal; Kebler, Catherine; Kreindler, James L; Guttentag, Susan; Hubbard, Michael J; Rubenstein, Ronald C
2011-06-17
Sodium 4-phenylbutyrate (4PBA) improves the intracellular trafficking of ΔF508-CFTR in cystic fibrosis (CF) epithelial cells. The underlying mechanism is uncertain, but 4PBA modulates the expression of some cytosolic molecular chaperones. To identify other 4PBA-regulated proteins that might regulate ΔF508-CFTR trafficking, we performed a differential display RT-PCR screen on IB3-1 CF bronchiolar epithelial cells exposed to 4PBA. One transcript up-regulated by 4PBA encoded ERp29, a luminal resident of the endoplasmic reticulum (ER) thought to be a novel molecular chaperone. We tested the hypothesis that ERp29 is a 4PBA-regulated ER chaperone that influences ΔF508-CFTR trafficking. ERp29 mRNA and protein expression was significantly increased (∼1.5-fold) in 4PBA-treated IB3-1 cells. In Xenopus oocytes, ERp29 overexpression increased the functional expression of both wild-type and ΔF508-CFTR over 3-fold and increased wild-type cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane expression. In CFBE41o- WT-CFTR cells, expression of and short circuit currents mediated by CFTR decreased upon depletion of ERp29 as did maturation of newly synthesized CFTR. In IB3-1 cells, ΔF508-CFTR co-immunoprecipitated with endogenous ERp29, and overexpression of ERp29 led to increased ΔF508-CFTR expression at the plasma membrane. These data suggest that ERp29 is a 4PBA-regulated ER chaperone that regulates WT-CFTR biogenesis and can promote ΔF508-CFTR trafficking in CF epithelial cells.
Esibizione, Diana; Cui, Chang-Yi; Schlessinger, David
2009-01-01
EDA, the gene mutated in anhidrotic ectodermal dysplasia, encodes ectodysplasin, a TNF superfamily member that activates NF-kB mediated transcription. To identify EDA target genes, we have earlier used expression profiling to infer genes differentially expressed at various developmental time points in Tabby (Eda-deficient) compared to wild-type mouse skin. To increase the resolution to find genes whose expression may be restricted to epidermal cells, we have now extended studies to primary keratinocyte cultures established from E19 wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 preliminary candidate genes whose expression was significantly affected by Eda loss. By comparing expression profiles to those from Eda-A1 transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. We confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in keratinocytes and in whole skin, by Q-PCR and Western blotting analyses. Thus, by the analysis of keratinocytes, novel candidate pathways downstream of EDA were detected. PMID:18848976
Lv, Xiao; Ma, Yue; Long, Zaiqiu
2018-01-01
B-Raf proto-oncogene, serine/threonine kinase (BRAF) has previously been identified as a candidate target gene in endometriosis. Wild-type and mutated BRAF serve important roles in different diseases. The aim of the present study was to explore BRAF mutation, the mRNA and protein expression of wild-type BRAF (wtBRAF) in endometriosis, and the association between the expression levels of wtBRAF and the predicted transcription factor cAMP responsive element binding protein 1 (CREB1). In the present study, BRAF mutation was detected using Sanger sequencing among 30 ectopic and matched eutopic endometrium samples of patients with endometriosis as well as 25 normal endometrium samples, and no BRAF mutation was detected in exons 11 or 15. A region of ~2,000 bp upstream of the BRAF gene was then screened using NCBI and UCSC databases, and CREB1 was identified as a potential transcription factor of BRAF by analysis with the JASPAR and the TRANSFAC databases. Quantitative polymerase chain reaction was used to analysis the mRNA expression levels of wtBRAF and CREB1, and the corresponding protein expression levels were evaluated using immunohistochemistry and western blot analysis. The results revealed that the mRNA and protein expression levels of wtBRAF and CREB1 were significantly upregulated in the eutopic endometrial tissues of patients with endometriosis compared with normal endometrial tissues (P<0.05) and no significant difference in wtBRAF and CREB1 levels was detected between the ectopic and eutopic endometrium (P>0.05). In addition, correlation analysis revealed that the protein expression of CREB1 was positively correlated with the transcript level and protein expression of wtBRAF. It is reasonable to speculate that CREB1 may activate the transcription of wtBRAF through directly binding to its promoter, increasing BRAF expression and regulating the cell proliferation, migration and invasion of endometriosis. PMID:29286077
2012-01-01
Background Serine proteases in German cockroach (GC) have been shown to mediate allergic airway inflammation through the activation of protease activated receptor (PAR)-2. Neutrophils play an important role in regulating the innate immune response, and are recruited into the airways following GC frass exposure. As such, we investigated the role of PAR-2 in airway neutrophil recruitment, activation and cytokine production following allergen exposure. Methods Wild type and PAR-2-deficient mice were administered a single intratracheal instillation of PBS or GC frass and neutrophil recruitment, expression of PAR-2, CD80, CD86, and MHC class II were assessed by flow cytometry and levels of tumor necrosis factor (TNF)α was assessed by ELISA. Uptake of AlexaFluor 405-labeled GC frass by neutrophils was performed by flow cytometry. Results Neutrophil recruitment in the lung and airways following GC frass exposure was significantly decreased in PAR-2-deficient mice compared to wild type mice. GC frass exposure increased the level of PAR-2 on pulmonary neutrophils and increased numbers of PAR-2-positive neutrophils were found in the lungs; however PAR-2 did not play a role in meditating allergen uptake. Comparing wild type and PAR-2-deficient mice, we found that a single exposure to GC frass increased levels of CD80 and CD86 on pulmonary neutrophils, an effect which was independent of PAR-2 expression. Neutrophils isolated from the whole lungs of naïve PAR-2-deficient mice treated ex vivo with GC frass produced significantly less TNFα than in similarly treated wild type neutrophils. Lastly, neutrophils were isolated from the bronchoalveolar lavage fluid of wild type and PAR-2-deficient mice following a single intratracheal exposure to GC frass. Airway neutrophils from PAR-2-deficient mice released substantially decreased levels of TNFα, suggesting a role for PAR-2 in neutrophil-derived cytokine production. Conclusions Together these data suggest PAR-2 expression can be upregulated on lung neutrophils following allergen exposure and the consequence is altered release of TNFα which could drive the early innate immune response. PMID:22954301
Altered Expression of OsNLA1 Modulates Pi Accumulation in Rice (Oryza sativa L.) Plants
Zhong, Sihui; Mahmood, Kashif; Bi, Yong-Mei; Rothstein, Steven J.; Ranathunge, Kosala
2017-01-01
Current agricultural practices rely on heavy use of fertilizers for increased crop productivity. However, the problems associated with heavy fertilizer use, such as high cost and environmental pollution, require the development of crop species with increased nutrient use efficiency. In this study, by using transgenic approaches, we have revealed the critical role of OsNLA1 in phosphate (Pi) accumulation of rice plants. When grown under sufficient Pi and nitrate levels, OsNLA1 knockdown (Osnla1-1, Osnla1-2, and Osnla1-3) lines accumulated higher Pi content in their shoot tissues compared to wild-type, whereas, over-expression lines (OsNLA1-OE1, OsNLA1-OE2, and OsNLA1-OE3) accumulated the least levels of Pi. However, under high Pi levels, knockdown lines accumulated much higher Pi content compared to wild-type and exhibited Pi toxicity symptoms in the leaves. In contrast, the over-expression lines had 50–60% of the Pi content of wild-type and did not show such symptoms. When grown under limiting nitrate levels, OsNLA1 transgenic lines also displayed a similar pattern in Pi accumulation and Pi toxicity symptoms compared to wild-type suggesting an existence of cross-talk between nitrogen (N) and phosphorous (P), which is regulated by OsNLA1. The greater Pi accumulation in knockdown lines was a result of enhanced Pi uptake/permeability of roots compared to the wild-type. The cross-talk between N and P was found to be nitrate specific since the knockdown lines failed to over-accumulate Pi under low (sub-optimal) ammonium level. Moreover, OsNLA1 was also found to interact with OsPHO2, a known regulator of Pi homeostasis, in a Yeast Two-Hybrid (Y2H) assay. Taken together, these results show that OsNLA1 is involved in Pi homeostasis regulating Pi uptake and accumulation in rice plants and may provide an opportunity to enhance P use efficiency by manipulating nitrate supply in the soil. PMID:28626465
Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin
2016-03-09
Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.
Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu
2012-01-01
Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.
Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype.
Camats, Núria; Fernández-Cancio, Mónica; Audí, Laura; Mullis, Primus E; Moreno, Francisca; González Casado, Isabel; López-Siguero, Juan Pedro; Corripio, Raquel; Bermúdez de la Vega, José Antonio; Blanco, José Antonio; Flück, Christa E
2015-01-01
MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life.
Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype
Audí, Laura; Mullis, Primus E.; Moreno, Francisca; González Casado, Isabel; López-Siguero, Juan Pedro; Corripio, Raquel; Bermúdez de la Vega, José Antonio; Blanco, José Antonio; Flück, Christa E.
2015-01-01
MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life. PMID:26580071
Arima, Hiroshi; Morishita, Yoshiaki; Hagiwara, Daisuke; Hayashi, Masayuki; Oiso, Yutaka
2014-01-01
The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone, which binds to newly synthesized secretory and transmembrane proteins to facilitate protein folding. BiP mRNA is expressed in the arginine vasopressin (AVP) neurons in the supraoptic nucleus of wild-type mice even in basal conditions, and the expression levels increase in response to dehydration. These data suggest that AVP neurons are subjected to ER stress. Familial neurohypophysial diabetes insipidus (FNDI) is caused by mutations in the gene locus of AVP. The mutant proteins could accumulate in the ER and possibly increase ER stress in the AVP neurons. We bred mice possessing a mutation causing FNDI, which manifested progressive polyuria, as do the patients with FNDI. Electron microscopic analyses demonstrated that aggregates accumulated in the ER of AVP neurons in FNDI mice. Despite polyuria, which could potentially induce dehydration, AVP mRNA expression was decreased in the supraoptic nucleus, and the AVP mRNA poly(A) tail length was shortened in FNDI mice compared with wild-type mice. Incubation of hypothalamic explants of wild-type mice with ER stressors caused shortening of the poly(A) tail length of AVP mRNA, accompanied by decreases in the expression. These data revealed a mechanism by which ER stress decreases poly(A) tail length of AVP mRNA, and this reduces the load of unfolded proteins that form the aggregates in ER of the AVP neurons in FNDI mice.
Luiken, J J F P; Koonen, D P Y; Coumans, W A; Pelsers, M M A L; Binas, B; Bonen, A; Glatz, J F C
2003-04-01
Previous studies with cardiac myocytes from homozygous heart-type fatty acid (FA)-binding protein (H-FABP) -/- mice have indicated that this intracellular receptor protein for long-chain FA is involved in the cellular uptake of these substrates. Based on the knowledge that muscle FA uptake is a process highly sensitive to regulation by hormonal and mechanical stimuli, we studied whether H-FABP would play a role in this regulation. A suitable model system to answer this question is provided by H-FABP +/- mice, because in hindlimb muscles the content of H-FABP was measured to be 34% compared to wild-type mice. In these H-FABP +/- skeletal muscles, just as in H-FABP -/- muscles, contents of FA transporters, i.e., 43-kDa FABPpm and 88-kDa FAT/CD36, were similar compared to wild-type muscles, excluding possible compensatory mechanisms at the sarcolemmal level. Palmitate uptake rates were measured in giant vesicles prepared from hindlimb muscles of H-FABP -/-, H-FABP +/-, and H-FABP +/+ mice. For comparison, giant vesicles were isolated from liver, the tissue of which expresses a distinct type of FABP (i.e., L-FABP). Whereas in H-FABP -/- skeletal muscle FA uptake was reduced by 42-45%, FA uptake by H-FABP +/- skeletal muscle was not different from that in wild-type mice. In contrast, in liver from H-FABP -/- and from H-FABP +/- mice, FA uptake was not altered compared to wild-type animals, indicating that changes in FA uptake are restricted to H-FABP expressing tissues. It is concluded that H-FABP plays an important, yet merely permissive, role in FA uptake into muscle tissues.
Belibasakis, G. N.; Johansson, A.; Wang, Y.; Chen, C.; Kalfas, S.; Lerner, U. H.
2005-01-01
Actinobacillus actinomycetemcomitans is associated with localized aggressive periodontitis, a disease characterized by rapid loss of the alveolar bone surrounding the teeth. Receptor activator of NF-κB Ligand (RANKL) and osteoprotegerin (OPG) are two molecules that regulate osteoclast formation and bone resorption. RANKL induces osteoclast differentiation and activation, whereas OPG blocks this process by acting as a decoy receptor for RANKL. The purpose of this study was to investigate the effect of A. actinomycetemcomitans on the expression of RANKL and OPG in human gingival fibroblasts and periodontal ligament cells. RANKL mRNA expression was induced in both cell types challenged by A. actinomycetemcomitans extract, whereas OPG mRNA expression remained unaffected. Cell surface RANKL protein was also induced by A. actinomycetemcomitans, whereas there was no change in OPG protein secretion. A cytolethal distending toxin (Cdt) gene-knockout strain of A. actinomycetemcomitans did not induce RANKL expression, in contrast to its wild-type strain. Purified Cdt from Haemophilus ducreyi alone, or in combination with extract from the A. actinomycetemcomitans cdt mutant strain, induced RANKL expression. Pretreatment of A. actinomycetemcomitans wild-type extract with Cdt antiserum abolished RANKL expression. In conclusion, A. actinomycetemcomitans induces RANKL expression in periodontal connective tissue cells. Cdt is crucial for this induction and may therefore be involved in the pathological bone resorption during the process of localized aggressive periodontitis. PMID:15618171
Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.
2011-01-01
Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742
MHC class I in dopaminergic neurons suppresses relapse to reward seeking
Murakami, Gen; Edamura, Mitsuhiro; Furukawa, Tomonori; Kawasaki, Hideya; Kosugi, Isao; Fukuda, Atsuo; Iwashita, Toshihide; Nakahara, Daiichiro
2018-01-01
Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking. PMID:29546241
The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses
Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G.
2002-01-01
Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants. PMID:12119374
Hook, Vivian Y H; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory
2009-08-21
Neurotoxic beta-amyloid (Abeta) peptides participate in Alzheimer's disease (AD); therefore, reduction of Abeta generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Abeta may identify targets for reducing Abeta. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decreases in brain Abeta40 and Abeta42 by 67% and decreases in levels of the C-terminal beta-secretase fragment (CTFbeta) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Abeta. The difference in reduction of Abeta in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Abeta in AD.
Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.
Rao, Suryadevara S; Hildebrand, David
2009-10-01
The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.
Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej
2015-01-01
We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682
Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli
2016-06-01
Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.
Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment.
Bialecka, Monika; Wilson, Valerie; Deschamps, Jacqueline
2010-11-01
Cdx transcription factors are required for axial extension. Cdx genes are expressed in the posterior growth zone, a region that supplies new cells for axial elongation. Cdx2(+/-)Cdx4(-/-) (Cdx2/4) mutant embryos show abnormalities in axis elongation from E8.5, culminating in axial truncation at E10.5. These data raised the possibility that the long-term axial progenitors of Cdx mutants are intrinsically impaired in their ability to contribute to posterior growth. We investigated whether we could identify cell-autonomous defects of the axial progenitor cells by grafting mutant cells into a wild type growth zone environment. We compared the contribution of GFP labeled mutant and wild type progenitors grafted to unlabeled wild type recipients subsequently cultured over the period during which Cdx2/4 defects emerge. Descendants of grafted cells were scored for their contribution to differentiated tissues in the elongating axis and to the posterior growth zone. No difference between the contribution of descendants from wild type and mutant grafted progenitors was detected, indicating that rescue of the Cdx mutant progenitors by the wild type recipient growth zone is provided non-cell autonomously. Recently, we showed that premature axial termination of Cdx mutants can be partly rescued by stimulating canonical Wnt signaling in the posterior growth zone. Taken together with the data shown here, this suggests that Cdx genes function to maintain a signaling-dependent niche for the posterior axial progenitors. Copyright © 2010 Elsevier Inc. All rights reserved.
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D.; Abe, Toyofumi; Su, Charles A.; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.
2016-01-01
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared to complete MHC-mismatched wild type cardiac allografts, IL-1R−/− allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R−/− allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R−/− cardiac allografts took 3 weeks longer than wild type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R−/−/wild type chimeric donors indicated that IL-1R signaling on graft non-hematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli provoking development and elicitation of optimal alloimmune responses to the grafts. PMID:26856697
Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica
2007-01-01
Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540
Li, Wei; Mukherjee, Abir; Wu, Jinhua; Zhang, Ling; Teves, Maria E.; Li, Hongfei; Nambiar, Shanti; Henderson, Scott C.; Horwitz, Alan R.; Strauss III, Jerome F.; Fang, Xianjun; Zhang, Zhibing
2015-01-01
Mammalian Spag6 is the orthologue of Chlamydomonas PF16, which encodes a protein localized in the axoneme central apparatus, and regulates flagella/cilia motility. Most Spag6-deficient mice are smaller in size than their littermates. Because SPAG6 decorates microtubules, we hypothesized that SPAG6 has other roles related to microtubule function besides regulating flagellar/cilia motility. Mouse embryonic fibroblasts (MEFs) were isolated from Spag6-deficient and wild-type embryos for these studies. Both primary and immortalized Spag6-deficient MEFs proliferated at a much slower rate than the wild-type MEFs, and they had a larger surface area. Re-expression of SPAG6 in the Spag6-deficient MEFs rescued the abnormal cell morphology. Spag6-deficient MEFs were less motile than wild-type MEFs, as shown by both chemotactic analysis and wound-healing assays. Spag6-deficient MEFs also showed reduced adhesion associated with a non-polarized F-actin distribution. Multiple centrosomes were observed in the Spag6-deficient MEF cultures. The percentage of cells with primary cilia was significantly reduced compared to the wild-type MEFs, and some Spag6-deficient MEFs developed multiple cilia. Furthermore, SPAG6 selectively increased expression of acetylated tubulin, a microtubule stability marker. The Spag6-deficient MEFs were more sensitive to paclitaxel, a microtubule stabilizer. Our studies reveal new roles for SPAG6 in modulation of cell morphology, proliferation, migration, and ciliogenesis. PMID:26585507
Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2014-01-01
In filamentous fungi, the expression of secretory glycoside hydrolase encoding genes, such as those for amylases, cellulases, and xylanases, is generally repressed in the presence of glucose. CreA and CreB have been observed to be regulating factors for carbon catabolite repression. In this study, we generated single and double deletion creA and/or creB mutants in Aspergillus oryzae. The α-amylase activities of each strain were compared under various culture conditions. For the wild-type strain, mRNA levels of α-amylase were markedly decreased in the later stage of submerged culture under inducing conditions, whereas this reduced expression was not observed for single creA and double creA/creB deletion mutants. In addition, α-amylase activity of the wild-type strain was reduced in submerged culture containing high concentrations of inducing sugars, whereas all constructed mutants showed higher α-amylase activities. In particular, the α-amylase activity of the double deletion mutant in a medium containing 5% starch was >10-fold higher than that of the wild-type strain under the same culture conditions. In solid-state cultures using wheat bran as a substrate, the α-amylase activities of single creA and double deletion mutants were >2-fold higher than that of the wild-type strain. These results suggested that deleting both creA and creB resulted in dramatic improvements in the production of secretory glycoside hydrolases in filamentous fungi.
Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases
Schmidt-Arras, Dirk-E.; Böhmer, Annette; Markova, Boyka; Choudhary, Chunaram; Serve, Hubert; Böhmer, Frank-D.
2005-01-01
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPα promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. PMID:15831474
Hu, Zhenyu; Wang, Jiong-Wei; Yu, Dejie; Soon, Jia Lin; de Kleijn, Dominique P V; Foo, Roger; Liao, Ping; Colecraft, Henry M; Soong, Tuck Wah
2016-10-12
Decreased expression and activity of Ca V 1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of Ca V 1.2 channel, named Ca V 1.2 e21+22 , that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca 2+ ions, it reduced the cell-surface expression of wild-type Ca V 1.2 channels and consequently decreased the whole-cell Ca 2+ influx via the Ca V 1.2 channels. In addition, the Ca V 1.2 e21+22 variant interacted with Ca V β subunits significantly more than wild-type Ca V 1.2 channels, and competition of Ca V β subunits by Ca V 1.2 e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type Ca V 1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of Ca V 1.2 channels in adult heart under stress may contribute to heart failure.
Voros, Orsolya; Szilagyi, Orsolya; Balajthy, András; Somodi, Sándor; Panyi, Gyorgy; Hajdu, Péter
2018-04-12
Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.
Perception of sweet taste is important for voluntary alcohol consumption in mice.
Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F
2008-02-01
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.
Singh, Dharmendra K.; Maximova, Siela N.; Jensen, Philip J.; Lehman, Brian L.; Ngugi, Henry K.; McNellis, Timothy W.
2010-01-01
The fibrillins are a large family of chloroplast proteins that have been linked with stress tolerance and disease resistance. FIBRILLIN4 (FIB4) is found associated with the photosystem II light-harvesting complex, thylakoids, and plastoglobules, which are chloroplast compartments rich in lipophilic antioxidants. For this study, FIB4 expression was knocked down in apple (Malus 3 domestica) using RNA interference. Plastoglobule osmiophilicity was decreased in fib4 knockdown (fib4 KD) tree chloroplasts compared with the wild type, while total plastoglobule number was unchanged. Compared with the wild type, net photosynthetic CO2 fixation in fib4 KD trees was decreased at high light intensity but was increased at low light intensity. Furthermore, fib4 KD trees produced more anthocyanins than the wild type when transferred from low to high light intensity, indicating greater sensitivity to high light stress. Relative to the wild type, fib4 KD apples were more sensitive to methyl viologen and had higher superoxide levels during methyl viologen treatment. Arabidopsis (Arabidopsis thaliana) fib4 mutants and fib4 KD apples were more susceptible than their wild-type counterparts to the bacterial pathogens Pseudomonas syringae pathovar tomato and Erwinia amylovora, respectively, and were more sensitive to ozone-induced tissue damage. Following ozone stress, plastoglobule osmiophilicity decreased in wild-type apple and remained low in fib4 KD trees; total plastoglobule number increased in fib4 KD apples but not in the wild type. These results indicate that FIB4 is required for plastoglobule development and resistance to multiple stresses. This study suggests that FIB4 is involved in regulating plastoglobule content and that defective regulation of plastoglobule content leads to broad stress sensitivity and altered photosynthetic activity. PMID:20813909
PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE
Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.
2012-01-01
To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild type mice, whereas Tas1r3 null mice were not different from wild-type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in conditioned taste aversion to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. PMID:17376151
Barazani, Oz; von Dahl, Caroline C.; Baldwin, Ian T.
2007-01-01
Sebacina vermifera, a growth-promoting endophytic fungus, significantly increases Nicotiana attenuata's growth but impairs both its herbivore resistance and its accumulation of the costly, jasmonic acid (JA)-regulated defense protein, trypsin proteinase inhibitor (TPI). To determine if the fungi's growth-promoting effects can be attributed to lower TPI-related defense costs, we inoculated transformed N. attenuata plants silenced in their ability to synthesize JA, JA-isoleucine, and TPI by antisense (lipoxygenase 3 [as-lox3] and Thr deaminase [as-td]) and inverted repeat (ir-tpi) expression, and found that inoculation promoted plant growth as in untransformed wild-type plants. Moreover, herbivore-elicited increases in JA and JA-isoleucine concentrations did not differ between inoculated and uninoculated wild-type plants. However, inoculation significantly reduced the morphological effect of 1-aminocyclopropane-1-carboxylic acid on wild-type seedlings in a triple response assay, suggesting that ethylene signaling was impaired. Furthermore, S. vermifera failed to promote the growth of N. attenuata plants transformed to silence ethylene production (1-aminocyclopropane-1-carboxylic acid oxidase [ir-aco]). Inoculating wild-type plants with S. vermifera decreased the ethylene burst elicited by applying Manduca sexta oral secretions to mechanical wounds. Accordingly, oral secretion-elicited transcript levels of the ethylene synthesis genes NaACS3, NaACO1, and NaACO3 in inoculated plants were significantly lower compared to these levels in uninoculated wild-type plants. Inoculation accelerated germination in wild-type seeds; however, uninoculated wild-type seeds germinated as rapidly as inoculated seeds in the presence of the ethylene scrubber KMnO4. In contrast, neither inoculation nor KMnO4 exposure influenced the germination of ir-aco seeds. We conclude that S. vermifera increases plant growth by impairing ethylene production independently of JA signaling and TPI production. PMID:17416638
Hill, Andrew G; Findlay, Michael P; Burge, Matthew E; Jackson, Christopher; Alfonso, Pilar Garcia; Samuel, Leslie; Ganju, Vinod; Karthaus, Meinolf; Amatu, Alessio; Jeffery, Mark; Bartolomeo, Maria Di; Bridgewater, John; Coveler, Andrew L; Hidalgo, Manuel; Kapp, Amy V; Sufan, Roxana I; McCall, Bruce B; Hanley, William D; Penuel, Elicia M; Pirzkall, Andrea; Tabernero, Josep
2018-05-15
Purpose: Duligotuzumab is a dual-action antibody directed against EGFR and HER3. Experimental Design: Metastatic colorectal cancer (mCRC) patients with KRAS ex2 wild-type received duligotuzumab or cetuximab and FOLFIRI until progression or intolerable toxicity. Mandatory tumor samples underwent mutation and biomarker analysis. Efficacy analysis was conducted in patients with RAS exon 2/3 wild-type tumors. Results: Of 134 randomly assigned patients, 98 had RAS ex2/3 wild-type. Duligotuzumab provided no progression-free survival (PFS) or overall survival (OS) benefit compared with cetuximab, although there was a trend for a lower objective response rate (ORR) in the duligotuzumab arm. No relationship was seen between PFS or ORR and ERBB3, NRG1, or AREG expression. There were fewer skin rash events for duligotuzumab but more diarrhea. Although the incidence of grade ≥3 AEs was similar, the frequency of serious AEs was higher for duligotuzumab. Conclusions: Duligotuzumab plus FOLFIRI did not appear to improve the outcomes in patients with RAS exon 2/3 wild-type mCRC compared with cetuximab + FOLFIRI. Clin Cancer Res; 24(10); 2276-84. ©2018 AACR . ©2018 American Association for Cancer Research.
Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium.
Gross, Gabriele; van der Meulen, Jan; Snel, Johannes; van der Meer, Roelof; Kleerebezem, Michiel; Niewold, Theo A; Hulst, Marcel M; Smits, Mari A
2008-11-01
Host-microorganism interactions in the intestinal tract are complex, and little is known about specific nonpathogenic microbial factors triggering host responses in the gut. In this study, mannose-specific interactions of Lactobacillus plantarum 299v with jejunal epithelium were investigated using an in situ pig Small Intestinal Segment Perfusion model. The effects of L. plantarum 299v wild-type strain were compared with those of two corresponding mutant strains either lacking the gene encoding for the mannose-specific adhesin (msa) or sortase (srtA; responsible for anchoring of cell surface proteins like Msa to the cell wall). A slight enrichment of the wild-type strain associated with the intestinal surface could be observed after 8 h of perfusion when a mixture of wild-type and msa-mutant strain had been applied. In contrast to the mutant strains, the L. plantarum wild-type strain tended to induce a decrease in jejunal net fluid absorption compared with control conditions. Furthermore, after 8 h of perfusion expression of the host gene encoding pancreatitis-associated protein, a protein with proposed bactericidal properties, was found to be upregulated by the wild-type strain only. These observations suggest a role of Msa in the induction of host responses in the pig intestine.
Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.
Balsanelli, Eduardo; Serrato, Rodrigo V; de Baura, Valter A; Sassaki, Guilherme; Yates, Marshall G; Rigo, Liu Un; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A
2010-08-01
In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Zhao, Ruozhi; Le, Khuong; Moghadasian, Mohammed H; Shen, Garry X
2013-08-01
Cardiovascular disease is the predominant cause of death in diabetic patients. Fibroblasts are one of the major types of cells in the heart or vascular wall. Increased levels of glycated low-density lipoprotein (glyLDL) were detected in diabetic patients. Previous studies in our group demonstrated that oxidized LDL increased the amounts of NADPH oxidase (NOX), plasminogen activator inhibitor-1 (PAI-1), and heat shock factor-1 (HSF1) in fibroblasts. This study examined the expression of NOX, PAI-1, and HSF1 in glyLDL-treated wild-type or HSF1-deficient mouse embryo fibroblasts (MEFs) and in leptin receptor-knockout (db/db) diabetic mice. Treatment with physiologically relevant levels of glyLDL increased superoxide and H2O2 release and the levels of NOX4 and p22phox (an essential component of multiple NOX complexes) in wild-type or HSF1-deficient MEFs. The levels of HSF1 and PAI-1 were increased by glyLDL in wild-type MEFs, but not in HSF1-deficient MEFs. Diphenyleneiodonium (a nonspecific NOX inhibitor) or small interfering RNA for p22phox prevented glyLDL-induced increases in the levels of NOX4, HSF1, or PAI-1 in MEFs. The amounts of NOX4, HSF1, and PAI-1 were elevated in hearts of db/db diabetic mice compared to wild-type mice. The results suggest that glyLDL increased the abundance of NOX4 or p22phox via an HSF1-independent pathway, but that of PAI-1 via an HSF1-dependent manner. NOX4 plays a crucial role in glyLDL-induced expression of HSF1 and PAI-1 in mouse fibroblasts. Increased expression of NOX4, HSF1, and PAI-1 was detected in cardiovascular tissue of diabetic mice. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonogaki, Katsunori; Ohba, Yukie; Sumii, Makiko; Oka, Yoshitomo
2008-07-18
NEFA/nucleobindin2 (NUCB2), a novel satiety molecule, is associated with leptin-independent melanocortin signaling in the central nervous system. Here, we show that systemic administration of m-chlorophenylpiperazine (mCPP), a serotonin 5-HT1B/2C receptor agonist, significantly increased the expression of hypothalamic NUCB2 in wild-type mice. The increases in hypothalamic NUCB2 expression induced by mCPP were attenuated in 5-HT2C receptor mutant mice. Systemic administration of mCPP suppressed food intake in db/db mice with leptin receptor mutation as well as lean control mice. On the other hand, the expression of hypothalamic NUCB2 and proopiomelanocortin (POMC) was significantly decreased in hyperphagic and non-obese 5-HT2C receptor mutants compared with age-matched wild-type mice. Interestingly, despite increased expression of hypothalamic POMC, hypothalamic NUCB2 expression was decreased in 5-HT2C receptor mutant mice with heterozygous mutation of beta-endorphin gene. These findings suggest that 5-HT systems upregulate the expression of hypothalamic NUCB2 via 5-HT2C receptors, and induce anorexia via a leptin-independent pathway in mice.
Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue
2016-06-01
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).
2013-01-01
The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed and the impact of expression of MerE on methylmercury accumulation was evaluated. The subcellular localization of transiently expressed GFP-tagged MerE was examined in Arabidopsis suspension-cultured cells. The GFP-MerE was found to localize to the plasma membrane and cytosol. The transgenic Arabidopsis expressing MerE accumulated significantly more methymercury and mercuric ions into plants than the wild-type Arabidopsis did. The transgenic plants expressing MerE was significantly more resistant to mercuric ions, but only showed more resistant to methylmercury compared with the wild type Arabidopsis. These results demonstrated that expression of the bacterial mercury transporter MerE promoted the transport and accumulation of methylmercury in transgenic Arabidopsis, which may be a useful method for improving plants to facilitate the phytoremediation of methylmercury pollution. PMID:24004544
Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors
Habib, Samy L; Simone, Simona; Barnes, Jeff J; Abboud, Hanna E
2008-01-01
Background Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat. Results Tuberin expression, OGG1 protein expression and activity were higher in kidney cortex than in medulla or papilla in both wild type and Eker rats. On the other hand, 8-oxo-dG levels were highest in the medulla, which expressed the lowest levels of OGG1. The basal levels of 8-oxo-dG were also higher in both cortex and medulla of Eker rats compared to wild type rats. In kidney tumors from Eker rats, the loss of the second TSC2 allele is associated with loss of OGG1 expression. Immunostaining of kidney tissue shows localization of tuberin and OGG1 mainly in the cortex. Conclusion These results demonstrate that OGG1 localizes with tuberin preferentially in kidney cortex. Loss of tuberin is accompanied by the loss of OGG1 contributing to tumorgenesis. In addition, the predominant expression of OGG1 in the cortex and its decreased expression and activity in the Eker rat may account for the predominant cortical localization of renal cell carcinoma. PMID:18218111
Lindvall, Jessica M; Blomberg, K Emelie M; Wennborg, Anders; Smith, C I Edvard
2005-05-01
Bruton's tyrosine kinase is crucial for B-lymphocyte development. By the use of gene expression profiling, we have identified four expressed sequence tags among 38 potential Btk target genes, which have now been characterised. Bioinformatics tools including data mining of additional unpublished gene expression profiles, sequence verification of PCR products and qualitative RT-PCR were used. Stimulations targeting the B-cell receptor and the protein kinase C were used to activate whole B-cell splenocytes. Target genes were characterised as Lim domain only 7 (Lmo7); Myosin1e (Myo1e); SAM and SH3 domain containing 1 (Sash1); and Mucolipin2 (Mcoln2). Expression was found in cell lines of different origin and developmental stages as well as in whole B-cell splenocytes and Transitional type 1 (T1) splenic B-cells from wild type and Btk-defective mice, respectively. By the use of semi-quantitative RT-PCR we found Sash1 not to be expressed in the investigated haematopoietic cell lines, while transcripts were found in whole splenic B-cells from both wild type and Btk-defective mice, whereas Lmo7, Myo1e, and Mcoln2 were expressed in both B-cell lines and primary B-lymphocytes. Except for Lmo7, the transcript level was similarly affected by stimulation in control and Btk-defective cells.
Fluorescent sperm in a transparent worm: validation of a GFP marker to study sexual selection.
Marie-Orleach, Lucas; Janicke, Tim; Vizoso, Dita B; Eichmann, Micha; Schärer, Lukas
2014-06-30
Sexual selection has initially been thought to occur exclusively at the precopulatory stage in terms of contests among males and female mate choice, but research over the last four decades revealed that it often continues after copulation through sperm competition and cryptic female choice. However, studying these postcopulatory processes remains challenging because they occur internally and therefore are often difficult to observe. In the transparent free-living flatworm Macrostomum lignano, a recently established transgenic line that expresses green fluorescent protein (GFP) in all cell types, including sperm, offers a unique opportunity to non-invasively visualise and quantify the sperm of a GFP-expressing donor inside the reproductive tract of wild-type recipients in vivo. We here test several aspects of the reproductive performance of the transgenic individuals and the accuracy of the techniques involved in assessing the GFP-expressing worms and their sperm. We then show the usefulness of these methods in a study on sperm displacement. GFP-expressing worms do not differ from wild-type worms in terms of morphology, mating rate and reproductive success. In addition, we show that the GFP signal is reliably and unequivocally expressed by all GFP-expressing individuals observed under epifluorescence illumination. However, the intensity of the GFP signal emitted by sperm of GFP expressing donors can vary (which we show to be at least in part due to sperm ageing) and the GFP marker is inherited according to Mendel's laws in most, but not all, of the individuals. Nevertheless, we argue these two issues can be addressed with an appropriate experimental design. Finally, we demonstrate the value of the GFP-techniques by comparing the number of GFP-expressing sperm in a wild-type recipient before and after mating with a competing sperm donor, providing clear experimental evidence for sperm displacement in M. lignano. This result suggests that sperm donors can displace previously stored sperm and replace it with their own. The availability of the GFP-techniques in a transparent organism provide unique opportunities to visualise and quantify internal processes in the female reproductive tract after mating, which opens new avenues in the study of sexual selection.
Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi
2017-03-06
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi
2017-01-01
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029
Different domains are critical for oligomerization compatibility of different connexins
MARTÍNEZ, Agustín D.; MARIPILLÁN, Jaime; ACUÑA, Rodrigo; MINOGUE, Peter J.; BERTHOUD, Viviana M.; BEYER, Eric C.
2011-01-01
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies. PMID:21348854
IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection
Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.
2014-01-01
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254
Jasmonates act positively in adventitious root formation in petunia cuttings.
Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina
2015-09-22
Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.
Hu, Liyan; Pandey, Amit V; Eggimann, Sandra; Rüfenacht, Véronique; Möslinger, Dorothea; Nuoffer, Jean-Marc; Häberle, Johannes
2013-11-29
Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.
Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice
Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A.; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N.; Bartke, Andrzej; Ungvari, Zoltan
2008-01-01
Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress. PMID:18757483
Pou4f2-GFP knock-in mouse line: A model for studying retinal ganglion cell development.
Zheng, Dongwang; Yang, Xiaoyan; Sheng, Donglai; Yu, Dongliang; Liang, Guoqing; Guo, Luming; Xu, Mei; Hu, Xu; He, Daqiang; Yang, Yang; Wang, Yuying
2016-10-01
Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs. © 2016 Wiley Periodicals, Inc.
Brown, Darby G.; Swanson, Jill K.; Allen, Caitilyn
2007-01-01
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>107 CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds. PMID:17337552
Brown, Darby G; Swanson, Jill K; Allen, Caitilyn
2007-05-01
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>10(7) CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds.
Establishment of a cell model of X-linked sideroblastic anemia using genome editing.
Kaneko, Kiriko; Kubota, Yoshiko; Nomura, Kazumi; Hayashimoto, Haruka; Chida, Taisei; Yoshino, Naoto; Wayama, Marina; Ogasawara, Katsutoshi; Nakamura, Yukio; Tooyama, Ikuo; Furuyama, Kazumichi
2018-06-13
ALAS2 gene mutations cause X-linked sideroblastic anemia. The presence of ring sideroblasts in a patient's bone marrow is the hallmark of sideroblastic anemia, but the precise mechanisms underlying sideroblast formation are largely unknown. Using a genome editing system, a mutation was introduced in the erythroid-specific enhancer of the ALAS2 gene in HUDEP2 cells, which were derived from human umbilical stem cells and can produce erythrocytes. The established cell line, termed HA2low, expressed less ALAS2 mRNA than did wild-type cells, even after erythroid differentiation. Although the mRNA expression of α-globin, β-globin, and the mitochondrial iron importer mitoferrin-1 was induced similarly in wild-type and HA2low cells, hemoglobinization of differentiated cells was limited in HA2low cells compared to wild-type cells. Importantly, Prussian blue staining revealed that approximately one-third of differentiated HA2low cells exhibited intracellular iron deposition, and these cells looked like ring sideroblasts. Electron microscopy confirmed that the mitochondria in HA2low cells contained high-density deposits that might contain iron. Ring sideroblastic cells appeared among HA2low cells only after differentiation, while the induced expression of mitochondrial ferritin was observed in both cell types during differentiation. These results suggest that the induction of mitochondrial ferritin expression might be essential for, but not the primary cause of, ring sideroblast formation. Our results also suggest that the insufficient supply of protoporphyrin IX due to ALAS2 deficiency, in combination with increased iron import into mitochondria during erythroid differentiation, results in the formation of ring sideroblasts. Furthermore, HA2low cells are a useful tool for characterizing ring sideroblasts in vitro. Copyright © 2018. Published by Elsevier Inc.
Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect
Krishnan, Devishree; Pan, Wanling; Beggs, Megan R.; Trepiccione, Francesco; Chambrey, Régine; Eladari, Dominique; Cordat, Emmanuelle; Dimke, Henrik; Alexander, R. Todd
2018-01-01
Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice. PMID:29354070
Gaub, S; Fisher, S E; Ehret, G
2016-02-01
Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
MELK expression correlates with tumor mitotic activity but is not required for cancer growth
Smith, Joan C; Palladino, Ann C
2018-01-01
The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies. PMID:29417930
Continuous evolution of B. thuringiensis toxins overcomes insect resistance
Badran, Ahmed H.; Guzov, Victor M.; Huai, Qing; Kemp, Melissa M.; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M.; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H.; Wang, Ping; Malvar, Thomas; Liu, David R.
2016-01-01
The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. We developed a phage-assisted continuous evolution (PACE) selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively targeted by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (Kd = 11–41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome Bt toxin resistance in insects and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects. PMID:27120167
McInerney, E M; Ince, B A; Shapiro, D J; Katzenellenbogen, B S
1996-12-01
We have characterized a human estrogen receptor (ER) mutant, V364E, which has a single amino acid substitution in its hormone-binding domain. This ER mutant is fully active or even superactive at saturating levels of estradiol (10(-8) M E2) yet has the capacity to act as a strong dominant negative inhibitor of the wild type ER. In transient transfection assays using ER-negative Chinese hamster ovary (CHO) cells and two different estrogen response element (ERE)-containing promoter reporter genes, V364E treated with 10(-8) M E2 exhibited approximately 250% and 100% of the activity of the wild type ER with these two promoter contexts, respectively. Despite the high activity of V364E when present alone in cells, coexpression of both V364E and wild type ER causes a significant decrease in overall ER-mediated transcriptional activity. On the TATA promoter, where V364E was more inhibitory, estrogen-stimulated activity was reduced by approximately 50% at a 1:1 ratio of mutant to wild type ER expression vector, and at a 10:1 ratio, 75% of ER activity was inhibited. V364E was expressed at lower levels than wild type ER and has a approximately 40-fold lower affinity for E2 compared with wild type ER. In promoter interference assays, V364E exhibited a strict dependence upon E2 for binding to an ERE. Surprisingly, even when V364E was unable to bind to ERE DNA (i.e. either at low E2 concentration or by mutation of its DNA-binding domain), this mutant retained full dominant negative activity. This highly active ER mutant is, thus, able to repress ER-mediated transcription when the mutant and wild type ER are present together in cells, even without DNA binding. Since competition for ERE binding and the formation of inactive heterodimers cannot fully account for the dominant negative activity of V364E, it is probable that altered interactions with proteins important in ER-mediated transcription play a key role in the repression of transcription by V364E. The properties and probable mechanism of action of V364E distinguish it from other previously described dominant negative inhibitors, in which competition for cis-acting DNA elements by transcriptionally inactive receptors played a large role in the resultant dominant negative phenotype.
Wuest, Todd; Austin, Bobbie Ann; Uematsu, Satoshi; Thapa, Manoj; Akira, Shizuo; Carr, Daniel J. J.
2006-01-01
Herpes simplex virus type 1 ocular infection elicits a potent inflammatory response including the production of the chemokines, CXCL9 and CXCL10, in mice. Since HSV-1 nucleic acid is recognized by pattern receptors including toll-like receptor (TLR) 9, we tested the hypothesis that TLR9 is necessary for the early augmentation of CXCL10 following HSV-1 infection. Similar to wild type controls, TLR9 deficient mice constitutively expressed CXCL10 in the cornea. Following infection or stimulation with the deoxycytidylate-phosphate-deoxyguanylate (CpG) motif, CXCL10 levels were significantly elevated in the cornea of wild type but not TLR9 or type I interferon receptor deficient mice. The reduced CXCL10 response in the cornea of TLR deficient mice was correlative with an increase in virus shedding and a reduction in neutrophil infiltration. This is the first report that shows enhanced CXCL10 expression following neurotropic viral replication requires both intact TLR 9 and type I interferon signaling pathways. PMID:16884784
Philips, Mari-Anne; Abramov, Urho; Lilleväli, Kersti; Luuk, Hendrik; Kurrikoff, Kaido; Raud, Sirli; Plaas, Mario; Innos, Jürgen; Puussaar, Triinu; Kõks, Sulev; Vasar, Eero
2010-02-11
Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.
A Secretory Protein of Necrotrophic Fungus Sclerotinia sclerotiorum That Suppresses Host Resistance
Zhu, Wenjun; Wei, Wei; Fu, Yanping; Cheng, Jiasen; Xie, Jiatao; Li, Guoqing; Yi, Xianhong; Kang, Zhensheng; Dickman, Martin B.; Jiang, Daohong
2013-01-01
SSITL (SS1G_14133) of Sclerotinia sclerotiorum encodes a protein with 302 amino acid residues including a signal peptide, its secretion property was confirmed with immunolocalization and immunofluorescence techniques. SSITL was classified in the integrin alpha N-terminal domain superfamily, and its 3D structure is similar to those of human integrin α4-subunit and a fungal integrin-like protein. When S. sclerotiorum was inoculated to its host, high expression of SSITL was detected during the initial stages of infection (1.5–3.0 hpi). Targeted silencing of SSITL resulted in a significant reduction in virulence; on the other hand, inoculation of SSITL silenced transformant A10 initiated strong and rapid defense response in Arabidopsis, the highest expressions of defense genes PDF1.2 and PR-1 appeared at 3 hpi which was 9 hr earlier than that time when plants were inoculated with the wild-type strain of S. sclerotiorum. Systemic resistance induced by A10 was detected by analysis of the expression of PDF1.2 and PR-1, and confirmed following inoculation with Botrytis cinerea. A10 induced much larger lesions on Arabidopsis mutant ein2 and jar1, and slightly larger lesions on mutant pad4 and NahG in comparison with the wild-type plants. Furthermore, both transient and constitutive expression of SSITL in Arabidopsis suppressed the expression of PDF1.2 and led to be more susceptible to A10 and the wild-type strain of S. sclerotiorum and B. cinerea. Our results suggested that SSITL is an effector possibly and plays significant role in the suppression of jasmonic/ethylene (JA/ET) signal pathway mediated resistance at the early stage of infection. PMID:23342034
Ba, Hongping; Li, Baihua; Li, Xiaoyan; Li, Cheng; Feng, Anlin; Zhu, Yazhen; Wang, Jing; Li, Zhuoya; Yin, Bingjiao
2017-03-01
Myeloid-derived suppressor cells (MDSCs) accumulated in tumor sites promote immune evasion. We found that TNFR deficiency-induced rejection of transplanted tumor was accompanied with markedly decreased accumulation of MDSCs. However, the mechanism(s) behind this phenomenon is not completely understood. Here, we demonstrated that TNFR deficiency did not affect the amount of MDSCs in bone marrow (BM), but decreased accumulation of Gr-1 + CD11b + MDSCs in the spleen and tumor tissues. The chemotaxis of Tnfr -/- MDSCs was prominently decreased in response to both tumor cell culture supernatants and tumor tissue homogenates from Tnfr -/- and wild-type mice, indicating an effect of TNFR signaling on chemokine receptor expression in MDSCs. We used real-time PCR to detect gene expression for several chemokine receptors in MDSCs from BM and found that CXCR4 was the most affected molecule at the transcriptional level in Tnfr -/- MDSCs. Neutralizing CXCR4 in wild-type MDSCs by a specific antibody blocked their chemotactic migration. Interestingly, it was tmTNF-α, but not sTNF-α, that induced CXCR4 expression in MDSCs. This effect of tmTNF-α was totally blocked in TNFR2 -/- but not in TNFR1 -/- MDSCs, and partially inhibited by PDTC or SB203580, an inhibitor of NF-κB or p38 MAPK pathway, respectively. Adoptive transfer of wild-type MDSCs restored MDSCs accumulation in tumors of Tnfr -/- mice, but this could be partially blocked by treatment with a CXCR4 inhibitor AMD3100. Our data suggest that tmTNF-α upregulates CXCR4 expression that promotes chemotaxis of MDSCs to tumor, and give a new insight into a novel mechanism by which tmTNF-α facilitates tumor immune evasion. Copyright © 2016. Published by Elsevier B.V.
Schirmer, Stephan H; Degen, Achim; Baumhäkel, Magnus; Custodis, Florian; Schuh, Lisa; Kohlhaas, Michael; Friedrich, Erik; Bahlmann, Ferdinand; Kappl, Reinhard; Maack, Christoph; Böhm, Michael; Laufs, Ulrich
2012-05-01
Collateral arteries protect tissue from ischaemia. Heart rate correlates with vascular events in patients with arterial obstructive disease. Here, we tested the effect of heart-rate reduction (HRR) on collateral artery growth. The I(f)-channel inhibitor ivabradine reduced heart rate by 11% in wild-type and 15% in apolipoprotein E (ApoE)(-/-) mice and restored endothelium-dependent relaxation in aortic rings of ApoE(-/-) mice. Microsphere perfusion and angiographies demonstrated that ivabradine did not change hindlimb perfusion in wild-type mice but improved perfusion in ApoE(-/-) mice from 40.5 ± 15.8-60.2 ± 18.5% ligated/unligated hindlimb. Heart rate reduction (13%) with metoprolol failed to improve endothelial function and perfusion. Protein expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS, and eNOS activity were increased in collateral tissue following ivabradine treatment of ApoE(-/-) mice. Co-treatment with nitric oxide-inhibitor N (G)-nitro-L-arginine methyl ester abolished the effects of ivabradine on arteriogenesis. Following ivabradine, classical inflammatory cytokine expression was lowered in ApoE(-/-) circulating mononuclear cells and in plasma, but unaltered in collateral-containing hindlimb tissue, where numbers of perivascular macrophages also remained unchanged. However, ivabradine reduced expression of anti-arteriogenic cytokines CXCL10and CXCL11 and of smooth muscle cell markers smoothelin and desmin in ApoE(-/-) hindlimb tissue. Endothelial nitric oxide synthase and inflammatory cytokine expression were unchanged in wild-type mice. Ivabradine did not affect cytokine production in HUVECs and THP1 mononuclear cells and had no effect on the membrane potential of HUVECs in patch-clamp experiments. Ivabradine-induced HRR stimulates adaptive collateral artery growth. Important contributing mechanisms include improved endothelial function, eNOS activity, and modulation of inflammatory cytokine gene expression.
Slepkov, Emily R; Chow, Signy; Lemieux, M Joanne; Fliegel, Larry
2004-01-01
NHE1 (Na+/H+ exchanger isoform 1) is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammalian cells. Proline residues within transmembrane segments have unusual properties, acting as helix breakers and increasing flexibility of membrane segments, since they lack an amide hydrogen. We examined the importance of three conserved proline residues in TM IV (transmembrane segment IV) of NHE1. Pro167 and Pro168 were mutated to Gly, Ala or Cys, and Pro178 was mutated to Ala. Pro168 and Pro178 mutant proteins were expressed at levels similar to wild-type NHE1 and were targeted to the plasma membrane. However, the mutants P167G (Pro167-->Gly), P167A and P167C were expressed at lower levels compared with wild-type NHE1, and a significant portion of P167G and P167C were retained intracellularly, possibly indicating induced changes in the structure of TM IV. P167G, P167C, P168A and P168C mutations abolished NHE activity, and P167A and P168G mutations caused markedly decreased activity. In contrast, the activity of the P178A mutant was not significantly different from that of wild-type NHE1. The results indicate that both Pro167 and Pro168 in TM IV of NHE1 are required for normal NHE activity. In addition, mutation of Pro167 affects the expression and membrane targeting of the exchanger. Thus both Pro167 and Pro168 are strictly required for NHE function and may play critical roles in the structure of TM IV of the NHE. PMID:14680478
Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack
1998-01-01
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103
Parolini, Cinzia; Caligari, Silvia; Gilio, Donatella; Manzini, Stefano; Busnelli, Marco; Montagnani, Marco; Locatelli, Marcello; Diani, Erika; Giavarini, Flavio; Caruso, Donatella; Roda, Enrico; Roda, Aldo; Sirtori, Cesare R; Chiesa, Giulia
2012-10-01
Apolipoprotein (apo)A-I(M) (ilano), is a molecular variant of apoA-I(wild-type), associated with dramatically low HDL-cholesterol levels, but no increased risk for cardiovascular disease. In view of the present uncertainties on the role of apoA-I in liver cholesterol removal by way of bile acids and neutral sterols, and of the greater capacity of apoA-I(M) (ilano) to remove arterial cholesterol, biliary sterol metabolism was evaluated in transgenic mice expressing apoA-I(M) (ilano). ApoA-I(M) (ilano) mice were fed a high-cholesterol/high-fat diet, and compared with human apoA-I(wild-type) mice. Plasma lipid levels, hepatic bile flow and composition, hepatic and intestinal cholesterol and bile acid content, and faecal sterol content were measured. Moreover, the expression of hepatic ABCA1, SR-B1 and that of hepatic and intestinal genes involved in bile acid metabolism were evaluated. The dietary treatment led to a strong elevation in HDL-cholesterol levels in A-I(M) (ilano) mice, associated with an increased expression of hepatic ABCA1. ApoA-I(M) (ilano) mice showed lower cholesterol output from the liver compared with apoA-I(wild-type) mice, in the absence of liver sterol accumulation. Faecal excretion of neutral sterols and bile acids was similar in the two mouse lines. In spite of a different response to the dietary challenge, with an increased ABCA1 expression and a lower hepatic cholesterol output in apoA-I(M) (ilano) mice, the net sterol excretion is comparable in the two transgenic lines. © 2012 John Wiley & Sons A/S.
Estes, Patricia S; Daniel, Scott G; McCallum, Abigail P; Boehringer, Ashley V; Sukhina, Alona S; Zwick, Rebecca A; Zarnescu, Daniela C
2013-05-01
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.
Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice.
Qin, Xue; Liu, Jun Hua; Zhao, Wen Sheng; Chen, Xu Jun; Guo, Ze Jian; Peng, You Liang
2013-02-01
Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.
Atkinson, Nicky; Leitão, Nuno; Orr, Douglas J; Meyer, Moritz T; Carmo-Silva, Elizabete; Griffiths, Howard; Smith, Alison M; McCormick, Alistair J
2017-04-01
Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO 2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
González, Luis F; Henríquez-Belmar, Francisca; Delgado-Acevedo, Claudia; Cisternas-Olmedo, Marisol; Arriagada, Gloria; Sotomayor-Zárate, Ramón; Murphy, Dennis L; Moya, Pablo R
2017-09-19
Obsessive-compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1-3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus-brain areas that are relevant to OCD. Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.
Proliferation, differentiation and apoptosis in connexin43-null osteoblasts
NASA Technical Reports Server (NTRS)
Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.
2001-01-01
Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.
Knecht, David A.; Silale, Augustinas; Traynor, David; Williams, Thomas D.; Thomason, Peter A.; Insall, Robert H.; Chubb, Jonathan R.; Kay, Robert R.; Veltman, Douwe M.
2018-01-01
Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a ‘safe haven’ for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media. PMID:29847546
Yang, Chunxing; Danielson, Eric W.; Qiao, Tao; Metterville, Jake; Brown, Robert H.; Landers, John E.; Xu, Zuoshang
2016-01-01
Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments. PMID:27681617
Franceschi, Sara; Lessi, Francesca; Aretini, Paolo; Ortenzi, Valerio; Scatena, Cristian; Menicagli, Michele; La Ferla, Marco; Civita, Prospero; Zavaglia, Katia; Scopelliti, Claudia; Apollo, Alessandro; Carbone, Francesco Giovanni; Vannozzi, Riccardo; Bevilacqua, Generoso; Pasqualetti, Francesco; Naccarato, Antonio Giuseppe; Mazzanti, Chiara Maria
2018-01-01
Glioblastoma is a devastating disease that despite all the information gathered so far, its optimal management remains elusive due to the absence of validated targets from clinical studies. A better clarification of the molecular mechanisms is needed. In this study, having access to IDH1 wild-type glioblastoma of patients with exceptionally long recurrence free survival (RFS), we decided to compare their mutational and gene expression profile to groups of IDH1 wild-type glioblastoma of patients with shorter RFS, by using NGS technology. The exome analysis revealed that Long-RFS tumors have a lower mutational rate compared to the other groups. A total of 158 genes were found differentially expressed among the groups, 112 of which distinguished the two RFS extreme groups. Overall, the exome data suggests that shorter RFS tumors could be, chronologically, in a more advanced state in the muli-step tumor process of sequential accumulation of mutations. New players in this kind of cancer emerge from the analysis, confirmed at the RNA/DNA level, identifying, therefore, possible oncodrivers or tumor suppressor genes. PMID:29844869
Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun
2017-07-01
The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.
Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.
Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P
2014-08-28
Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but also between different wild type strains. In fact our study suggests that besides the cytokeratin and the IFN system wild type viruses seem to differ as much among each other than from vaccine strains. Thus our results are suggestive of complex and diverse virus-host interactions which differ considerably between different wild type strains. Our data indicate that interstrain differences are prominent and have so far been neglected by proteomics studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Lunde, Christina; Drew, Damian P.; Jacobs, Andrew K.; Tester, Mark
2007-01-01
The bryophyte Physcomitrella patens is unlike any other plant identified to date in that it possesses a gene that encodes an ENA-type Na+-ATPase. To complement previous work in yeast (Saccharomyces cerevisiae), we determined the importance of having a Na+-ATPase in planta by conducting physiological analyses of PpENA1 in Physcomitrella. Expression studies showed that PpENA1 is up-regulated by NaCl and, to a lesser degree, by osmotic stress. Maximal induction is obtained after 8 h at 60 mm NaCl or above. No other abiotic stress tested led to significant increases in PpENA1 expression. In the gametophyte, strong expression was confined to the rhizoids, stem, and the basal part of the leaf. In the protonemata, expression was ubiquitous with a few filaments showing stronger expression. At 100 mm NaCl, wild-type plants were able to maintain a higher K+-to-Na+ ratio than the PpENA1 (ena1) knockout gene, but at higher NaCl concentrations no difference was observed. Although no difference in chlorophyll content was observed between ena1 and wild type at 100 mm NaCl, the impaired Na+ exclusion in ena1 plants led to an approximately 40% decrease in growth. PMID:17556514
Liu, Yan; Su, Chang; Hu, Ying-He; Ouyang, Ke-Qing; Cai, Shao-Xi
2005-05-01
Interleukin-2 (IL-2) was initially isolated as a T cell growth factor and had been shown to direct the expansion and differentiation of several hematopoietic cell types. Clinical studies using IL-2 in the treatment of AIDS have been encouraging, due to its critical role as a proliferative signal for activated T-lymphocytes. IL-2 has also undergone trials in the treatment of several types of cancer, based on its stimulation of cytotoxic, antitumor cells. Today, human IL-2 is produced completely by genetically engineered method, and it has been proved that genetically engineered recombinant human IL-2 has almost the same function and clinical effect as wild IL-2. In the former study, recombinant human IL-2 usually comes from E. coli, in this paper the mutant IL-2 was successfully expressed and purified in Pichia pastoris for the first time. As a eukaryote, Pichia pastoris has many of the advantages of higher eukaryotic expression systems such as protein processing, protein folding, and posttranslational modification, while being as easy to manipulate as E. coli or Saccharomyces cerevisiae. It is faster, easier, and less expensive to use than other eukaryotic expression systems such as baculovirus or mammalian tissue culture, and generally gives higher expression level. Expression conditions of human mutant interleukin-2(the codon for cysteine-125 of human IL-2 with alanine; the codon for leucine-18 with methionine; the codon for leucine-19 with serine) in the recombinant Pichia pastoris strain were optimized via test of some factors such as the rate of aeration, the inductive duration, the initial pH and the concentration of methanol. The results from tests showed that the most important parameter for efficient expression of interleukin-2 in recombinant Pichia pastoris strain is adequate aeration during methanol induction, and the optimum inductive condition for interleukin-2 expression was: more than 80% aeration, 2 days for induction, the initial pH of 6.0, the final methanol concentration of 1.0%. With this condition, the expressed IL-2 was secreted into fermentation broth and reached a yield of 30%, approximately 200 mg/L. Expressed interleutin-2 (MvIL-2) was isolated and purified by centrifugation, millipore filtration to concentration, Econo-PacS strongly acidic cation exchanger cartridge and molecular sieve chromatography and the yield of MvIL-2 was 27%. MvIL-2 was purified to electrophoretic purity by SDS-PAGE and only one peak being loaded on HPLC. Purified MvIL-2 protein had stimulating activity similar to the wild type of IL-2 as assayed by IL-2-dependent CTLL-2 cells. However, the stability of MvIL-2 was superior than that of IL-2 at different temperatures. The activity of obtained MvIL-2 was 4 - 5 times of the wild type of IL-2, So MvIL-2 had an advantage over wild type of rhIL-2 in storage stability and activity.
Tiwari, Sameeksha; Awasthi, Manika; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N
2017-10-23
Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.
Role of the ARF Tumor Suppressor in Prostate Cancer
2005-10-01
found that ARF expression is absence from highly proliferative prostate adenocarcinomas and this correlates with the increased expression of the p53...prostate is unknown. The preliminary data for my orginal proposal indicated that prostate adenocarcinomas typically maintain wild type p53 (97%), but...independent mechanisms to regulate prostate cell proliferation. Table 1. Protein Expression in Prostate Adenocarcinomas Human prostate tissue samples
Takala, T M; Saris, P E J; Tynkkynen, S S H
2003-01-01
A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.
Chhikara, Sudesh; Abdullah, Hesham M; Akbari, Parisa; Schnell, Danny; Dhankher, Om Parkash
2018-05-01
Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan
2014-01-01
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417
Progesterone Receptor Membrane Component 1 (PGRMC1) Expression in Murine Retina.
Shanmugam, Arul K; Mysona, Barbara A; Wang, Jing; Zhao, Jing; Tawfik, Amany; Sanders, A; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Bollinger, Kathryn E; Smith, Sylvia B
2016-08-01
Sigma receptors 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1 -/- mice. Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild-type mouse retina. Tissues from σR1 -/- mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1 -/- mice did not differ from wild-type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild-type and σR1 -/- mice. In contrast, liver, brain, and intestine showed increased Pgrmc1 gene expression in σR1 -/- mice. Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1 -/- mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicates a possible tissue-specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function.
Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice.
Li, B; Nolte, L A; Ju, J S; Han, D H; Coleman, T; Holloszy, J O; Semenkovich, C F
2000-10-01
To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.
Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.
Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M
2012-04-10
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society
Floyd, Kyle A.; Mitchell, Courtney A.; Eberly, Allison R.; Colling, Spencer J.; Zhang, Ellisa W.; DePas, William; Chapman, Matthew R.; Conover, Matthew; Rogers, Bridget R.; Hultgren, Scott J.
2016-01-01
ABSTRACT Uropathogenic Escherichia coli (UPEC), which causes the majority of urinary tract infections (UTI), uses pilus-mediated adherence to initiate biofilm formation in the urinary tract. Oxygen gradients within E. coli biofilms regulate expression and localization of adhesive type 1 pili. A transposon mutant screen for strains defective in biofilm formation identified the ubiI (formerly visC) aerobic ubiquinone synthase gene as critical for UPEC biofilm formation. In this study, we characterized a nonpolar ubiI deletion mutant and compared its behavior to that of wild-type bacteria grown under aerobic and anoxic conditions. Consistent with its function as an aerobic ubiquinone-8 synthase, deletion of ubiI in UPEC resulted in reduced membrane potential, diminished motility, and reduced expression of chaperone-usher pathway pili. Loss of aerobic respiration was previously shown to negatively impact expression of type 1 pili. To determine whether this reduction in type 1 pili was due to an energy deficit, wild-type UPEC and the ubiI mutant were compared for energy-dependent phenotypes under anoxic conditions, in which quinone synthesis is undertaken by anaerobic quinone synthases. Under anoxic conditions, the two strains exhibited wild-type levels of motility but produced diminished numbers of type 1 pili, suggesting that the reduction of type 1 pilus expression in the absence of oxygen is not due to a cellular energy deficit. Acute- and chronic-infection studies in a mouse model of UTI revealed a significant virulence deficit in the ubiI mutant, indicating that UPEC encounters enough oxygen in the bladder to induce aerobic ubiquinone synthesis during infection. IMPORTANCE The majority of urinary tract infections are caused by uropathogenic E. coli, a bacterium that can respire in the presence and absence of oxygen. The bladder environment is hypoxic, with oxygen concentrations ranging from 4% to 7%, compared to 21% atmospheric oxygen. This work provides evidence that aerobic ubiquinone synthesis must be engaged during bladder infection, indicating that UPEC bacteria sense and use oxygen as a terminal electron acceptor in the bladder and that this ability drives infection potential despite the fact that UPEC is a facultative anaerobe. PMID:27161114
Floyd, Kyle A; Mitchell, Courtney A; Eberly, Allison R; Colling, Spencer J; Zhang, Ellisa W; DePas, William; Chapman, Matthew R; Conover, Matthew; Rogers, Bridget R; Hultgren, Scott J; Hadjifrangiskou, Maria
2016-10-01
Uropathogenic Escherichia coli (UPEC), which causes the majority of urinary tract infections (UTI), uses pilus-mediated adherence to initiate biofilm formation in the urinary tract. Oxygen gradients within E. coli biofilms regulate expression and localization of adhesive type 1 pili. A transposon mutant screen for strains defective in biofilm formation identified the ubiI (formerly visC) aerobic ubiquinone synthase gene as critical for UPEC biofilm formation. In this study, we characterized a nonpolar ubiI deletion mutant and compared its behavior to that of wild-type bacteria grown under aerobic and anoxic conditions. Consistent with its function as an aerobic ubiquinone-8 synthase, deletion of ubiI in UPEC resulted in reduced membrane potential, diminished motility, and reduced expression of chaperone-usher pathway pili. Loss of aerobic respiration was previously shown to negatively impact expression of type 1 pili. To determine whether this reduction in type 1 pili was due to an energy deficit, wild-type UPEC and the ubiI mutant were compared for energy-dependent phenotypes under anoxic conditions, in which quinone synthesis is undertaken by anaerobic quinone synthases. Under anoxic conditions, the two strains exhibited wild-type levels of motility but produced diminished numbers of type 1 pili, suggesting that the reduction of type 1 pilus expression in the absence of oxygen is not due to a cellular energy deficit. Acute- and chronic-infection studies in a mouse model of UTI revealed a significant virulence deficit in the ubiI mutant, indicating that UPEC encounters enough oxygen in the bladder to induce aerobic ubiquinone synthesis during infection. The majority of urinary tract infections are caused by uropathogenic E. coli, a bacterium that can respire in the presence and absence of oxygen. The bladder environment is hypoxic, with oxygen concentrations ranging from 4% to 7%, compared to 21% atmospheric oxygen. This work provides evidence that aerobic ubiquinone synthesis must be engaged during bladder infection, indicating that UPEC bacteria sense and use oxygen as a terminal electron acceptor in the bladder and that this ability drives infection potential despite the fact that UPEC is a facultative anaerobe. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bidard, Frédérique; Coppin, Evelyne; Silar, Philippe
2012-08-01
Transcription pattern during mycelium growth of Podospora anserina was assayed by microarray analysis in wild type and in mutants affected in the MAP kinase genes PaMpk1 and PaMpk2 and in the NADPH oxidase gene PaNox1. 15% of the genes have their expression modified by a factor two or more as growth proceeds in wild type. The genes whose expression is modified during growth in P. anserina are either not conserved or differently regulated in Neurospora crassa and Aspergillus niger, two fungi for which transcriptome data during growth are available. The P. anserina mutants display a similar alteration of their transcriptome profile, with nearly 1000 genes affected similarly in the three mutants, accounting for their similar growth phenotypes. Yet, each mutant has its specific set of modified transcripts, in line with particular phenotypes exhibited by each mutant. Again, there is limited conservation during evolution of the genes regulated at the transcription level by MAP kinases, as indicated by the comparison the P. anserina data, with those of Aspergillus fumigatus and N. crassa, two fungi for which gene expression data are available for mutants of the MAPK pathways. Among the genes regulated in wild type and affected in the mutants, those involved in carbohydrate and secondary metabolisms appear prominent. The vast majority of the genes differentially expressed are of unknown function. Availability of their transcription profile at various stages of development should help to decipher their role in fungal physiology and development. Copyright © 2012 Elsevier Inc. All rights reserved.
Chen, Hailong; Wang, Zhou; Wang, Zhilai; Dou, Jie; Zhou, Changlin
2016-04-01
S-adenosyl-L-methionine (SAM), biosynthesized from methionine and ATP, exhibited diverse pharmaceutical applications. To enhance SAM accumulation in S. cerevisiae CGMCC 2842 (wild type), improvement of methionine and ATP availability through MET6 and SAM2 co-expression combined with sodium citrate feeding was investigated here. Feeding 6 g/L methionine at 12 h into medium was found to increase SAM accumulation by 38 % in wild type strain. Based on this result, MET6, encoding methionine synthase, was overexpressed, which caused a 59 % increase of SAM. To redirect intracellular methionine into SAM, MET6 and SAM2 (encoding methionine adenosyltransferase) were co-expressed to obtain the recombinant strain YGSPM in which the SAM accumulation was 2.34-fold of wild type strain. The data obtained showed that co-expression of MET6 and SAM2 improved intracellular methionine availability and redirected the methionine to SAM biosynthesis. To elevate intracellular ATP levels, 6 g/L sodium citrate, used as an auxiliary energy substrate, was fed into the batch fermentation medium, and an additional 19 % increase of SAM was observed after sodium citrate addition. Meanwhile, it was found that addition of sodium citrate improved the isocitrate dehydrogenase activity which was associated with the intracellular ATP levels. The results demonstrated that addition of sodium citrate improved intracellular ATP levels which promoted conversion of methionine into SAM. This study presented a feasible approach with considerable potential for developing highly SAM-productive strains based on improving methionine and ATP availability.
Arjumand, Wani; Merry, Cole D; Wang, Chen; Saba, Elias; McIntyre, John B; Fang, Shujuan; Kornaga, Elizabeth; Ghatage, Prafull; Doll, Corinne M; Lees-Miller, Susan P
2016-12-13
The phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signaling pathway is activated in many human cancers. Previously, we reported that patients with early stage cervical cancer whose tumours harbour PIK3CA exon 9 or 20 mutations have worse overall survival in response to treatment with radiation and cisplatin than patients with wild-type PIK3CA. The purpose of this study was to determine whether PIK3CA-E545K mutation renders cervical cancer cells more resistant to cisplatin and/or radiation, and whether PI3K inhibition reverses the phenotype. We found that CaSki cells that are heterozygous for the PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin plus radiation than either HeLa or SiHa cells that express only wild-type PIK3CA. Similarly, HeLa cells engineered to stably express PIK3CA-E545K were more resistant to cisplatin or cisplatin plus radiation than cells expressing only wild-type PIK3CA or with PIK3CA depleted. Cells expressing the PIK3CA-E545K mutation also had constitutive PI3K pathway activation and increased cellular migration and each of these phenotypes was reversed by treatment with the PI3K inhibitor GDC-0941/Pictilisib. Our results suggests that cervical cancer patients whose tumours are positive for the PIK3CA-E545K mutation may benefit from PI3K inhibitor therapy in concert with standard cisplatin and radiation therapy.
Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V
2008-01-01
Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.
1993-01-01
To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208
Viducic, Darija; Murakami, Keiji; Amoh, Takashi; Ono, Tsuneko; Miyake, Yoichiro
2017-06-01
Pseudomonas aeruginosa coordinates its response to environmental conditions through activation of a quorum sensing (QS) system. In this study, we investigated the regulatory interaction between the QS transcriptional regulator VqsR and the Pseudomonas quinolone signal (PQS) through integration of sigma factor RpoS, and we addressed whether one of the pathways controlling carbapenem tolerance can be attributed to VqsR. We demonstrate that vqsR expression at the transcriptional level is regulated by pqsA, pqsR, and pqsE. Assessment of the transcriptional expression of vqsR, lasI, rhlI, and qscR in ΔpqsA and ΔpqsAΔrpoS mutants provided insight into pqsA- and rpoS-dependent regulation of vqsR and vqsR-controlled genes. Exogenously supplemented PQS reversed expression of vqsR and vqsR-controlled genes in the ΔpqsA mutant to wild-type levels, but failed to increase expression levels of lasI and qscR in the ΔpqsAΔrpoS mutant to levels observed in wild-type PAO1. The ΔvqsR mutant showed reduced survival when challenged with carbapenems compared to wild-type PAO1. Introduction of a pqsA mutation into the ΔvqsR mutant completely abolished its carbapenem-sensitive phenotype. We conclude that a regulatory link between PQS and vqsR exists, and that RpoS is important in their interaction. We also demonstrate that VqsR affects carbapenem tolerance. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Pearen, Michael A.; Goode, Joel M.; Fitzsimmons, Rebecca L.; Eriksson, Natalie A.; Thomas, Gethin P.; Cowin, Gary J.; Wang, S.-C. Mary; Tuong, Zewen K.
2013-01-01
The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD+/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance. PMID:24065705
Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques
2017-01-01
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain. © 2016 BSPP and John Wiley & Sons Ltd.
Horn, Nikki; Wegmann, Udo; Dertli, Enes; Mulholland, Francis; Collins, Samuel R. A.; Waldron, Keith W.; Bongaerts, Roy J.; Mayer, Melinda J.; Narbad, Arjan
2013-01-01
As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions. PMID:23544114
Zeng, Xiao-Fang; Li, Lei; Li, Jian-Rong; Zhao, De-Gang
2016-01-01
To produce new rice blast- and herbicide-resistant transgenic rice lines, the McCHIT1 gene encoding the class I chitinase from Momordica charantia and the herbicide resistance gene PAT were introduced into Lailong (Oryza sativa L. ssp. Japonica), a glutinous local rice variety from Guizhou Province, People's Republic of China. Transgenic lines were identified by ß-glucuronidase (GUS) histochemical staining, PCR, and Southern blot analyses. Agronomic traits, resistance to rice blast and herbicide, chitinase activities, and transcript levels of McCHIT1 were assessed in the T2 progeny of three transgenic lines (L1, L8, and L10). The results showed that the introduction of McCHIT1-PAT into Lailong significantly enhanced herbicide and blast resistance. After infection with the blast fungus Magnaporthe oryzae, all of the T2 progeny exhibited less severe lesion symptoms than those of wild type. The disease indices were 100% for wild type, 65.66% for T2 transgenic line L1, 59.69% for T2 transgenic line L8, and 79.80% for T2 transgenic line L10. Transgenic lines expressing McCHIT1-PAT did not show a significant difference from wild type in terms of malondialdehyde (MDA) content, polyphenol oxidase (PPO) activity, and superoxide dismutase (SOD) activity in the leaves. However, after inoculation with M. oryzae, transgenic plants showed significantly higher SOD and PPO activities and lower MDA contents in leaves, compared with those in wild-type leaves. The transgenic and the wild-type plants did not show significant differences in grain yield parameters including plant height, panicles per plant, seeds per panicle, and 1000-grain weight. Therefore, the transgenic plants showed increased herbicide and blast resistance, with no yield penalty. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Slauenwhite, Drew; Gebremeskel, Simon; Doucette, Carolyn D; Hoskin, David W; Johnston, Brent
2014-11-01
The chemokine receptor CXCR6 is highly expressed on lymphocytes isolated from the synovium of patients with rheumatoid arthritis, psoriatic arthritis, or juvenile idiopathic arthritis, suggesting that CXCR6 regulates immune cell activation or infiltration into arthritic joints. This study was undertaken to examine the role of CXCR6 in T cell activation and arthritis development. A collagen-induced arthritis model was used to examine arthritis development in wild-type and CXCR6(-/-) mice. CXCR6 expression, lymphocyte accumulation, and intracellular cytokine production were examined by flow cytometry. Collagen-specific antibodies were measured in the serum. Collagen-specific recall responses were examined in vitro via proliferation and cytokine release assays. T cell homing to inflamed joints was examined using competitive adoptive transfer of dye-labeled lymphocytes from wild-type and CXCR6(-/-) mice. The numbers of CXCR6+ T cells were increased in the paws and draining lymph nodes of arthritic mice. The incidence of arthritis, disease severity, extent of T cell accumulation, and levels of collagen-specific IgG2a antibodies were significantly reduced in CXCR6(-/-) mice compared to wild-type mice. T cells from wild-type mice exhibited Th1 (interferon-γ [IFNγ]) polarization in the inguinal lymph nodes following immunization. At disease peak, this shifted to a Th17 (interleukin-17A [IL-17A]) response in the popliteal lymph nodes. T cells in CXCR6(-/-) mice exhibited impaired cytokine polarization, resulting in a decreased frequency and number of IL-17A- and IFNγ-producing cells. Recruitment of activated CXCR6(-/-) mouse T cells to the inflamed paws was impaired compared to recruitment of wild-type mouse T cells. These experiments demonstrate that CXCR6 plays important roles in the pathogenesis of arthritis through its effects on both T cell cytokine polarization and homing of T cells to inflamed joints. Copyright © 2014 by the American College of Rheumatology.
Jin, Shuangxia; Daniell, Henry
2014-12-01
The γ-tocopherol methyltransferase (γ-TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ-TMT in regulating abiotic stress within chloroplasts. The At γ-tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to eight layers). Such high-level expression of γ-TMT converted most of γ-tocopherol to α-tocopherol in transplastomic seeds (~10-fold higher) in the absence of abiotic stress. When grown in 400 mm NaCl, α-tocopherol content in transplastomic TMT leaves increased up to 8.2-fold and 2.4-fold higher than wild-type leaves. Likewise, under heavy metal stress, α-tocopherol content in the TMT leaves increased up to 7.5-fold, twice higher than in the wild type. Under extreme salt stress, the wild type accumulated higher starch and total soluble sugars, but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild type increased up to 3-fold within 48 h of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild-type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α-tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signalling from chloroplast to the nucleus. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Abidi, Affef; Devaux, Jérôme J; Molinari, Florence; Alcaraz, Gisèle; Michon, François-Xavier; Sutera-Sardo, Julie; Becq, Hélène; Lacoste, Caroline; Altuzarra, Cécilia; Afenjar, Alexandra; Mignot, Cyril; Doummar, Diane; Isidor, Bertrand; Guyen, Sylvie N; Colin, Estelle; De La Vaissière, Sabine; Haye, Damien; Trauffler, Adeline; Badens, Catherine; Prieur, Fabienne; Lesca, Gaetan; Villard, Laurent; Milh, Mathieu; Aniksztejn, Laurent
2015-08-01
Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant. Copyright © 2015 Elsevier Inc. All rights reserved.
Crx broadly modulates the pineal transcriptome
Rovsing, Louise; Clokie, Samuel; Bustos, Diego M.; Rohde, Kristian; Coon, Steven L.; Litman, Thomas; Rath, Martin F.; Møller, Morten; Klein, David C.
2011-01-01
Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. Here, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes (p < 0.05). Of these, one of the most highly upregulated (18-fold) is Hoxc4, a member of the Hox gene family, members of which are known to control gene expression cascades. During a 24-hour period, a set of 51 genes exhibited differential day/night expression in pineal glands of wild-type animals; only eight of these were also day/night expressed in the Crx−/− pineal gland. However, in the Crx−/− pineal gland 41 genes exhibit differential night/day expression that is not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 upregulation. PMID:21797868
Davidson, F F; Loewen, P C; Khorana, H G
1994-01-01
A disulfide bond that is evidently conserved in the guanine nucleotide-binding protein-coupled receptors is present in rhodopsin between Cys-110 and Cys-187. We have replaced these two cysteine residues by alanine residues and now report on the properties of the resulting rhodopsin mutants. The mutant protein C110A/C187A expressed in COS cells resembles wild-type rhodopsin in the ground state. It folds correctly to bind 11-cis-retinal and form the characteristic rhodopsin chromophore. It is inert to hydroxylamine in the dark, and its stability to dark thermal decay is reduced, relative to that of the wild type, by a delta delta G not equal to of only -2.9 kcal/mol. Further, the affinities of the mutant and wild-type rhodopsins to the antirhodopsin antibody rho4D2 are similar, both in the dark and in light. However, the metarhodopsin II (MII) and MIII photointermediates of the mutant are less stable than those formed by the wild-type rhodopsin. Although the initial rates of transducin activation are the same for both mutant and wild-type MII intermediates at 4 degrees C, at 15 degrees C the MII photointermediate in the mutant decays more than 20 times faster than in wild type. We conclude that the disulfide bond between Cys-110 and Cys-187 is a key component in determining the stability of the MII structure and its coupling to transducin activation. PMID:8171030
Hocher, Berthold; Haumann, Hannah; Rahnenführer, Jan; Reichetzeder, Christoph; Kalk, Philipp; Pfab, Thiemo; Tsuprykov, Oleg; Winter, Stefan; Hofmann, Ute; Li, Jian; Püschel, Gerhard P.; Lang, Florian; Schuppan, Detlef; Schwab, Matthias; Schaeffeler, Elke
2016-01-01
ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. PMID:27175980
Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatković, Nikolina; Dimaline, Rod; Varro, Andrea
2013-01-01
The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H+/K+β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1–null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake. PMID:23254194
Kenny, Susan; Gamble, Joanne; Lyons, Suzanne; Vlatkovic, Nikolina; Dimaline, Rod; Varro, Andrea; Dockray, Graham J
2013-02-01
The adipokine plasminogen activator inhibitor (PAI)-1 is increased in plasma of obese individuals and exhibits increased expression in the stomachs of individuals infected with Helicobacter. To investigate the relevance of gastric PAI-1, we used 1.1 kb of the H(+)/K(+)β subunit promoter to overexpress PAI-1 specifically in mouse gastric parietal cells (PAI-1-H/Kβ mice). We studied the physiological, biochemical, and behavioral characteristics of these and mice null for PAI-1 or a putative receptor, urokinase plasminogen activator receptor (uPAR). PAI-1-H/Kβ mice had increased plasma concentrations of PAI-1 and increased body mass, adiposity, and hyperphagia compared with wild-type mice. In the latter, food intake was inhibited by cholecystokinin (CCK)8s, but PAI-1-H/Kβ mice were insensitive to the satiating effects of CCK8s. PAI-1-H/Kβ mice also had significantly reduced expression of c-fos in the nucleus tractus solitarius in response to CCK8s and refeeding compared with wild-type mice. Exogenous PAI-1 reversed the effects of CCK8s on food intake and c-fos levels in the nucleus tractus solitarius of wild-type mice, but not uPAR-null mice. Infection of C57BL/6 mice with Helicobacter felis increased gastric abundance of PAI-1 and reduced the satiating effects of CCK8s, whereas the response to CCK8s was maintained in infected PAI-1-null mice. In cultured vagal afferent neurons, PAI-1 inhibited stimulation of neuropeptide Y type 2 receptor (Y2R) expression by CCK8s. Thus, gastric expression of PAI-1 is associated with hyperphagia, moderate obesity, and resistance to the satiating effects of CCK indicating a new role in suppressing signals from the upper gut that inhibit food intake.
TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.
An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K
2012-11-01
Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.
TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema
An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C.; Ifedigbo, Emeka; Washko, George R.; Ryter, Stefan W.
2012-01-01
Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS. PMID:22983353
Jada, Balaji; Soitamo, Arto J.; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi
2014-01-01
Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489–1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7–8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication complex. PMID:25244327
Altered thermogenesis and impaired bone remodeling in Misty mice.
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-09-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. Copyright © 2013 American Society for Bone and Mineral Research.
New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.
Mejia, Monica; Heghinian, Mari D; Marí, Frank; Godenschwege, Tanja A
2013-01-01
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR's ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without affecting other cellular signaling.
New Tools for Targeted Disruption of Cholinergic Synaptic Transmission in Drosophila melanogaster
Mejia, Monica; Heghinian, Mari D.; Marí, Frank; Godenschwege, Tanja A.
2013-01-01
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson’s disease, Alzheimer’s disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR’s ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without affecting other cellular signaling. PMID:23737994
Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB.
Guadagno, Noemi A; Moriconi, Claudia; Licursi, Valerio; D'Acunto, Emanuela; Nisi, Paola S; Carucci, Nicoletta; De Jaco, Antonella; Cacci, Emanuele; Negri, Rodolfo; Lupo, Giuseppe; Miranda, Elena
2017-07-01
The serpinopathies are human pathologies caused by mutations that promote polymerisation and intracellular deposition of proteins of the serpin superfamily, leading to a poorly understood cell toxicity. The dementia FENIB is caused by polymerisation of the neuronal serpin neuroserpin (NS) within the endoplasmic reticulum (ER) of neurons. With the aim of understanding the toxicity due to intracellular accumulation of neuroserpin polymers, we have generated transgenic neural progenitor cell (NPC) cultures from mouse foetal cerebral cortex, stably expressing the control protein GFP (green fluorescent protein), or human wild type, G392E or delta NS. We have characterised these cell lines in the proliferative state and after differentiation to neurons. Our results show that G392E NS formed polymers that were mostly retained within the ER, while wild type NS was correctly secreted as a monomeric protein into the culture medium. Delta NS was absent at steady state due to its rapid degradation, but it was easily detected upon proteasomal block. Looking at their intracellular distribution, wild type NS was found in partial co-localisation with ER and Golgi markers, while G392E NS was localised within the ER only. Furthermore, polymers of NS were detected by ELISA and immunofluorescence in neurons expressing the mutant but not the wild type protein. We used control GFP and G392E NPCs differentiated to neurons to investigate which cellular pathways were modulated by intracellular polymers by performing RNA sequencing. We identified 747 genes with a significant upregulation (623) or downregulation (124) in G392E NS-expressing cells, and we focused our attention on several genes involved in the defence against oxidative stress that were up-regulated in cells expressing G392E NS (Aldh1b1, Apoe, Gpx1, Gstm1, Prdx6, Scara3, Sod2). Inhibition of intracellular anti-oxidants by specific pharmacological reagents uncovered the damaging effects of NS polymers. Our results support a role for oxidative stress in the cellular toxicity underlying the neurodegenerative dementia FENIB. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A Universal Role for Inositol 1,4,5-Trisphosphate-Mediated Signaling in Plant Gravitropism1[W
Perera, Imara Y.; Hung, Chiu-Yueh; Brady, Shari; Muday, Gloria K.; Boss, Wendy F.
2006-01-01
Inositol 1,4,5-trisphosphate (InsP3) has been implicated in the early signaling events of plants linking gravity sensing to the initiation of the gravitropic response. However, at present, the contribution of the phosphoinositide signaling pathway in plant gravitropism is not well understood. To delineate the role of InsP3 in plant gravitropism, we generated Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme that specifically hydrolyzes InsP3. The transgenic plants show no significant differences in growth and life cycle compared to wild-type plants, although basal InsP3 levels are reduced by greater than 90% compared to wild-type plants. With gravistimulation, InsP3 levels in inflorescence stems of transgenic plants show no detectable change, whereas in wild-type plant inflorescences, InsP3 levels increase approximately 3-fold within the first 5 to 15 min of gravistimulation, preceding visible bending. Furthermore, gravitropic bending of the roots, hypocotyls, and inflorescence stems of the InsP 5-ptase transgenic plants is reduced by approximately 30% compared with the wild type. Additionally, the cold memory response of the transgenic plants is attenuated, indicating that InsP3 contributes to gravisignaling in the cold. The transgenic roots were shown to have altered calcium sensitivity in controlling gravitropic response, a reduction in basipetal indole-3-acetic acid transport, and a delay in the asymmetric auxin-induced β-glucuronidase expression with gravistimulation as compared to the controls. The compromised gravitropic response in all the major axes of growth in the transgenic Arabidopsis plants reveals a universal role for InsP3 in the gravity signal transduction cascade of plants. PMID:16384898
Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells.
Ge, Y; Li, Z H; Marshall, M S; Broxmeyer, H E; Lu, L
1998-06-01
To investigate the role of the ras gene in erythroid differentiation, a human erythroleukemic cell line, TF1, was transduced with a selectable retroviral vector carrying a mammalian wild type H-ras gene or a cytoplasmic dominant negative RAS1 gene. Transduction of TF1 cells with the wild type H-ras gene resulted in changes of cell types and up-regulation of erythroid-specific gene expression similar to that seen in differentiating erythroid cells. The number of red blood cell containing colonies derived from TF1 cells transduced with wild type H-ras cDNA was significantly increased and the cells in the colonies were more hemoglobinized as estimated by a deeper red color compared to those colony cells from mock or dominant negative RAS1 gene transduced TF1 cells, suggesting increased erythroid differentiation of TF1 cells after transduction of wild type H-ras in vitro. The mRNA levels of beta- and gamma-, but not alpha-, globin genes were significantly higher in H-ras transduced TF1 cells than those in TF1 cells transduced with mock or dominant negative RAS1 gene. Moreover, a 4kb pre-mRNA of the Erythropoietin receptor (EpoR) was highly expressed only in H-ras transduced TF1 cells. Additionally, human umbilical cord blood (CB) CD34 cells which are highly enriched for hematopoietic stem/progenitor cells were transduced with the same retroviral vectors to evaluate in normal primary cells the activities of H-ras in erythroid differentiation. Increased numbers of erythroid cell containing colonies (BFU-E and CFU-GEMM) were observed in CD34 cells transduced with the H-ras cDNA, compared to that from mock transduced cells. These data suggest a possible role for ras in erythroid differentiation.
Regulation of bitter taste responses by tumor necrosis factor.
Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong
2015-10-01
Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Regulation of bitter taste responses by tumor necrosis factor
Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong
2015-01-01
Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D; Abe, Toyofumi; Su, Charles A; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L
2016-03-15
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts. Copyright © 2016 by The American Association of Immunologists, Inc.
Edgren, Tomas; Nordlund, Stefan
2004-04-01
In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.
Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I; Huq, Enamul
2014-01-01
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions.
[The effects of TorR protein on initiation of DNA replication in Escherichia coli].
Yuan, Yao; Jiaxin, Qiao; Jing, Li; Hui, Li; Morigen, Morigen
2015-03-01
The two-component systems, which could sense and respond to environmental changes, widely exist in bacteria as a signal transduction pathway. The bacterial CckA/CtrA, ArcA/ArcB and PhoP/PhoQ two-component systems are associated with initiation of DNA replication and cell division, however, the effects of the TorS/TorR system on cell cycle and DNA replication remains unknown. The TorS/TorR system in Escherichia coli can sense changes in trimethylamine oxide (TMAO) concentration around the cells. However, it is unknown if it also affects initiation of DNA replication. We detected DNA replication patterns in ΔtorS and ΔtorR mutant strains by flow cytometry. We found that the average number of replication origins (oriCs) per cell and doubling time in ΔtorS mutants were the same while the average number of oriCs in ΔtorR mutants was increased compared with that in wild-type cells. These results indicated that absence of TorR led to an earlier initiation of DNA replication than that in wild-type cells. Strangely, neither overexpression of TorR nor co-expression of TorR and TorS could restore ΔtorR mutant phenotype to the wild type. However, overexpression of SufD in both wild type and ΔtorR mutants promoted initiation of DNA replication, while mutation of SufD delayed it in ΔtorR mutants. Thus, TorR may affect initiation of DNA replication indirectly through regulating gene expression of sufD.
Manley, Sharon; Ni, Hong-Min; Williams, Jessica A.; Kong, Bo; DiTacchio, Luciano; Guo, Grace; Ding, Wen-Xing
2014-01-01
Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16 h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. PMID:25460735
Susceptibility of Glucokinase-MODY Mutants to Inactivation by Oxidative Stress in Pancreatic β-Cells
Cullen, Kirsty S.; Matschinsky, Franz M.; Agius, Loranne; Arden, Catherine
2011-01-01
OBJECTIVE The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. RESEARCH DESIGN AND METHODS Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non–β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. RESULTS Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non–β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. CONCLUSIONS Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells. PMID:22028181
Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C.; Jones, Claire; Blohmke, Christoph J.; Pollard, Andrew J.; Magder, Laurence S.; Fasano, Alessio; Sztein, Marcelo B.
2018-01-01
ABSTRACT Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S. Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S. Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S. Typhi. PMID:29739901
Cardiac remodeling in response to chronic iron deficiency: role of the erythropoietin receptor.
Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru
2015-06-01
Anemia is a common comorbidity of patients with heart failure, and iron deficiency is known as one of the causes of anemia in heart failure. Recent studies have shown that iron deficiency alone, without overt anemia, is associated with poor outcomes in patients with heart failure. Thus, to minimize the mortality in patients with heart failure, it is important to understand the link between iron deficiency and cardiac function. Chronic untreated iron deficiency results in cardiac remodeling, and we have previously reported that erythropoietin (Epo) and cardiac Epo receptor (EpoR) signaling may be associated with its remodeling. However, the link between EpoR signaling and its remodeling remains to be elucidated. Herein, we investigated the role of EpoR signaling on cardiac remodeling in response to chronic iron deficiency. Wild-type mice and transgene-rescued EpoR-null mutant mice, which express EpoR only in the hematopoietic lineage (EpoR-restricted mice), were fed with either a normal or an iron-restricted diet, and the molecular mechanisms were investigated. Dietary iron restriction gradually induced anemia, Epo secretion, and cardiac hypertrophy in wild-type mice. In contrast, EpoR-restricted mice fed with an iron-restricted diet exhibited anemia, left ventricular dilatation, and cardiac dysfunction compared with wild-type mice. Interestingly, altered cardiac mitochondrial biogenesis was observed in EpoR-restricted mice following iron deficiency. Moreover, cardiac p53 expression was increased in EpoR-restricted mice compared with wild-type mice following iron deficiency. These data indicate that EpoR signaling is associated with cardiac remodeling following chronic iron deficiency.
Cullen, Kirsty S; Matschinsky, Franz M; Agius, Loranne; Arden, Catherine
2011-12-01
The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non-β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non-β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells.
Specificity of prohormone convertase endoproteolysis of progastrin in AtT-20 cells.
Dickinson, C J; Sawada, M; Guo, Y J; Finniss, S; Yamada, T
1995-01-01
Biologically active peptide hormones are synthesized from larger precursor proteins by a variety of posttranslational processing reactions. Endoproteolytic cleavage at the Lys74-Lys75 dibasic processing site of progastrin is the major determinant for the relative distribution of gastrin heptadecapeptide and tetratriacontapeptide in tissues. Thus, we explored the ability of two prohormone convertases, PC1/PC3 and PC2, to cleave this important site within progastrin. We expressed wild-type human gastrin cDNA and mutant cDNAs in which the Lys74Lys75 site was changed to Lys74Arg75, Arg74Arg75, and Arg74Lys75 residues in AtT-20 cells. Because AtT-20 cells express Pc1/PC3 but not PC2, we also coexpressed a cDNA encoding PC2 in both wild-type and mutant gastrin-producing AtT-20 cells. Wild-type Lys74Lys75 and mutant Arg74Arg75 progastrin processing sites were efficiently cleaved in AtT-20 cells only after coexpression of PC2. Mutant Lys74Arg75 progastrin was readily processed in cells in the presence or absence of PC2 coexpression, but, in contrast, mutant Arg74Lys75 progastrin was inefficiently cleaved regardless of PC2 coexpression. Northern analysis revealed the presence of PC2 but not PC1/ PC3 in canine antral gastrin-producing G cells. These data suggest that PC2 but not PC1/PC3 is responsible for the cleavage of the Lys74Lys75 site in wild-type progastrin. Images PMID:7657815
Protein kinase D1 is essential for bone acquisition during pubertal growth.
Ford, Jeffery J; Yeh, Lee-Chuan C; Schmidgal, Eric C; Thompson, Jason F; Adamo, Martin L; Lee, John C
2013-11-01
Bone formation and maintenance represents the summation of the balance of local and endocrine hormonal stimuli within a complex organ. Protein kinase D (PKD) is a member of the Ca(2+)/calmodulin-dependent kinase superfamily of serine/threonine kinases and has been described as the crossroads for the bone morphogenetic protein (BMP)-IGF-I signaling axis, which plays a major role in bone formation. The current study exploits the PKD1-deficient mouse model to examine the role of PKD in vivo in the skeleton. Dual-energy x-ray absorptiometry scan analysis of male and female pubescent mice demonstrated significantly decreased bone mineral density in the whole body and femoral bone compartments of PKD1 (+/-) mice, compared with their wild-type littermates. The body weight, nasal-anal length, and percentage body fat of the mice were not significantly different from their wild-type littermates. Cultured bone marrow stromal cells from PKD1 (+/-) mice demonstrated lower alkaline phosphatase activity in early differentiating osteoblasts and decreased mineralized nodule formation in mature osteoblasts. Quantitative RT-PCR analysis of osteoblast differentiation markers and osteoclast markers exhibited lower levels of expression in PKD1 (+/-) male mice than wild type. In female mice, however, only markers of osteoblast differentiation were reduced. PKD1 (+/-) mice also demonstrated a profound reduction in mRNA expression levels of BMP type II receptor and IGF-I receptor and in BMP-7 responsiveness in vitro. Together these data suggest that in mice, PKD1 action contributes to the regulation of osteoblastogenesis by altering gene expression with gender-specific effects on osteoclastogenesis, subsequently affecting skeletal matrix acquisition during puberty.
Jung, Sunyo; Back, Kyoungwhan
2005-05-01
We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.
Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.
Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F
2016-10-01
Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes
Liu, Ming; Lara-Lemus, Roberto; Shan, Shu-ou; Wright, Jordan; Haataja, Leena; Barbetti, Fabrizio; Guo, Huan; Larkin, Dennis; Arvan, Peter
2012-01-01
Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER–oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY. PMID:22357960
Ford, Dayton J; Ropka, Stacie L; Collins, George H; Jubelt, Burk
2002-09-01
Human paralytic poliomyelitis results from the destruction of spinal cord anterior horn motor neurons by human poliovirus (PV). CNS disease pathology similar to human poliomyelitis has been observed in experimentally infected chimpanzees, monkeys and wild-type mice. In this study we present a detailed examination of the clinical and histopathological features in the wild-type mouse after intracranial (i.c.) and novel intramuscular (i.m.) injection of poliovirus. Either route of poliovirus administration results in a clinical disease characterized predominately by flaccid paralysis. The observed histopathological features are compared with the histopathology reported for human paralytic poliomyelitis, experimentally infected chimpanzees, monkeys and transgenic mice expressing the human poliovirus receptor (hPVR). The observation of flaccid paralysis and anterior horn motor neuron destruction mirrors what is observed in human paralytic poliomyelitis. Our results suggest that the neuropathology observed in the wild-type mouse model is similar to what has been observed in both the human disease and in other experimental animal models, with the possible exception of the transgenic mouse model. The observed neuropathology of the wild-type mouse model more closely reflects what has been observed in human poliomyelitis, as well as in experimentally infected chimpanzees and monkeys, than does the hPVR transgenic mouse model. The previously reported poliovirus-induced white matter demyelinating disease was not observed.
Direct Action of Endothelin-1 on Podocytes Promotes Diabetic Glomerulosclerosis
Lenoir, Olivia; Milon, Marine; Virsolvy, Anne; Hénique, Carole; Schmitt, Alain; Massé, Jean-Marc; Kotelevtsev, Yuri; Yanagisawa, Masashi; Webb, David J.; Richard, Sylvain
2014-01-01
The endothelin system has emerged as a novel target for the treatment of diabetic nephropathy. Endothelin-1 promotes mesangial cell proliferation and sclerosis. However, no direct pathogenic effect of endothelin-1 on podocytes has been shown in vivo and endothelin-1 signaling in podocytes has not been investigated. This study investigated endothelin effects in podocytes during experimental diabetic nephropathy. Stimulation of primary mouse podocytes with endothelin-1 elicited rapid calcium transients mediated by endothelin type A receptors (ETARs) and endothelin type B receptors (ETBRs). We then generated mice with a podocyte-specific double deletion of ETAR and ETBR (NPHS2-Cre×Ednralox/lox×Ednrblox/lox [Pod-ETRKO]). In vitro, treatment with endothelin-1 increased total β-catenin and phospho-NF-κB expression in wild-type glomeruli, but this effect was attenuated in Pod-ETRKO glomeruli. After streptozotocin injection to induce diabetes, wild-type mice developed mild diabetic nephropathy with microalbuminuria, mesangial matrix expansion, glomerular basement membrane thickening, and podocyte loss, whereas Pod-ETRKO mice presented less albuminuria and were completely protected from glomerulosclerosis and podocyte loss, even when uninephrectomized. Moreover, glomeruli from normal and diabetic Pod-ETRKO mice expressed substantially less total β-catenin and phospho-NF-κB compared with glomeruli from counterpart wild-type mice. This evidence suggests that endothelin-1 drives development of glomerulosclerosis and podocyte loss through direct activation of endothelin receptors and NF-κB and β-catenin pathways in podocytes. Notably, both the expression and function of the ETBR subtype were found to be important. Furthermore, these results indicate that activation of the endothelin-1 pathways selectively in podocytes mediates pathophysiologic crosstalk that influences mesangial architecture and sclerosis. PMID:24722437
Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.
Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel
2009-12-01
Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.
Sphingosine kinase 2-deficiency mediated changes in spinal pain processing.
Canlas, Jastrow; Holt, Phillip; Carroll, Alexander; Rix, Shane; Ryan, Paul; Davies, Lorena; Matusica, Dusan; Pitson, Stuart M; Jessup, Claire F; Gibbins, Ian L; Haberberger, Rainer V
2015-01-01
Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined), and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P) and its receptors have recently been shown to modulate nociceptive signaling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2), in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord (SC) with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2(-/-)) showed in contrast to mice deficient in Sphk1 (Sphk1(-/-)) substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2(-/-) mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2(-/-) and wild-type mice. Chronic peripheral inflammation (CPI) caused a bilateral increase in mechanical sensitivity in Sphk2(-/-) mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral SC of wild-type but not Sphk2(-/-) mice. Similarly, Sphk2(-/-) mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker Glial fibrillary acidic protein (GFAP). Our results suggest that the tightly regulated cell signaling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.
Wang, Won-Bo; Yuan, Yu-Han; Hsueh, Po-Ren; Liaw, Shwu-Jen
2012-01-01
In this study, we demonstrated that 10′(Z), 13′(E)-heptadecadienylhydroquinone (HQ17-2), isolated from the lacquer tree, could decrease swarming motility and hemolysin activity but increase polymyxin B (PB) susceptibilityof Proteus mirabilis which is intrinsically highly-resistant to PB. The increased PB susceptibility induced by HQ17-2 was also observed in clinical isolates and biofilm-grown cells. HQ17-2 could inhibit swarming in the wild-type and rppA mutant but not in the rcsB mutant, indicating that HQ17-2 inhibits swarming through the RcsB-dependent pathway, a two-component signaling pathway negatively regulating swarming and virulence factor expression. The inhibition of hemolysin activity by HQ17-2 is also mediated through the RcsB-dependent pathway, because HQ17-2 could not inhibit hemolysin activity in the rcsB mutant. Moreover, the finding that HQ17-2 inhibits the expression of flhDC gene in the wild-type and rcsB-complemented strain but not in the rcsB mutant supports the notion. By contrast, HQ17-2 could increase PB susceptibility in the wild-type and rcsB mutant but not in the rppA mutant, indicating that HQ17-2 increases PB susceptibility through the RppA-dependent pathway, a signaling pathway positively regulating PB resistance. In addition, HQ17-2 could inhibit the promoter activities of rppA and pmrI, a gene positively regulated by RppA and involved in PB resistance, in the wild-type but not in the rppA mutant. The inhibition of rppA and pmrI expression caused lipopolysaccharide purified from HQ17-2-treated cells to have higher affinity for PB. Altogether, this study uncovers new biological effects of HQ17-2 and provides evidence for the potential of HQ17-2 in clinical applications. PMID:23029100
Khokhani, Devanshi; Lowe-Power, Tiffany M.; Tran, Tuan Minh
2017-01-01
ABSTRACT The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. PMID:28951474
Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms.
Tsuchiya, Shunsuke; Buhr, Ethan D; Higashide, Tomomi; Sugiyama, Kazuhisa; Van Gelder, Russell N
2017-01-01
Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice.
Jia, Ning; Lv, Ting-Ting; Li, Mi-Xin; Wei, Shan-Shan; Li, Yan-Yi; Zhao, Chun-Lan; Li, Bing
2016-05-01
AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Multigene signature for predicting prognosis of patients with 1p19q co-deletion diffuse glioma.
Hu, Xin; Martinez-Ledesma, Emmanuel; Zheng, Siyuan; Kim, Hoon; Barthel, Floris; Jiang, Tao; Hess, Kenneth R; Verhaak, Roel G W
2017-06-01
Co-deletion of 1p and 19q marks a diffuse glioma subtype associated with relatively favorable overall survival; however, heterogeneous clinical outcomes are observed within this category. We assembled gene expression profiles and sample annotation of 374 glioma patients carrying the 1p/19q co-deletion. We predicted 1p/19q status using gene expression when annotation was missing. A first cohort was randomly split into training (n = 170) and a validation dataset (n = 163). A second validation set consisted of 41 expression profiles. An elastic-net penalized Cox proportional hazards model was applied to build a classifier model through cross-validation within the training dataset. The selected 35-gene signature was used to identify high-risk and low-risk groups in the validation set, which showed significantly different overall survival (P = .00058, log-rank test). For time-to-death events, the high-risk group predicted by the gene signature yielded a hazard ratio of 1.78 (95% confidence interval, 1.02-3.11). The signature was also significantly associated with clinical outcome in the The Cancer Genome Atlas (CGA) IDH-mutant 1p/19q wild-type and IDH-wild-type glioma cohorts. Pathway analysis suggested that high risk was associated with increased acetylation activity and inflammatory response. Tumor purity was found to be significantly decreased in high-risk IDH-mutant with 1p/19q co-deletion gliomas and IDH-wild-type glioblastomas but not in IDH-wild-type lower grade or IDH-mutant, non-co-deleted gliomas. We identified a 35-gene signature that identifies high-risk and low-risk categories of 1p/19q positive glioma patients. We have demonstrated heterogeneity amongst a relatively new glioma subtype and provided a stepping stone towards risk stratification. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23.
Matsui, Isao; Oka, Tatsufumi; Kusunoki, Yasuo; Mori, Daisuke; Hashimoto, Nobuhiro; Matsumoto, Ayumi; Shimada, Karin; Yamaguchi, Satoshi; Kubota, Keiichi; Yonemoto, Sayoko; Higo, Tomoaki; Sakaguchi, Yusuke; Takabatake, Yoshitsugu; Hamano, Takayuki; Isaka, Yoshitaka
2018-05-08
Several experimental studies have shown that fibroblast growth factor 23 (FGF23) induces left ventricular hypertrophy (LVH). However, the opposite directional relationship, namely a potential effect of LVH on FGF23, remains uncertain. Here we evaluated the effects of LVH on FGF23 using cardiomyocyte-specific calcineurin A transgenic mice. At six weeks, these mice showed severe LVH, with elevated levels of serum intact FGF23. FGF23 levels were elevated in cardiomyocytes, but not osteocytes, of the transgenic animals. Moreover, transverse aortic constriction also upregulated myocardial FGF23 expression in wild type mice. The promoter region of the FGF23 gene contains two putative nuclear factors of activated T cells (NFAT)-binding sites, with NFAT1 activating the promoter in a proximal NFAT-binding site dependent manner. Neither serum, urinary, or fractional excretion values of calcium and phosphate nor serum levels of 1,25(OH) 2 vitamin D were different between wild type and transgenic mice. Moreover, the renal expression of FGF receptors and α-Klotho was comparable. However, plasma levels of antidiuretic hormone were significantly increased in the transgenic mice, and aquaporin-2 immunohistochemical staining was mainly positive in the apical membrane of the collecting duct, compared to a primarily cytoplasmic staining in wild type mice. Real-time PCR analyses of kidney CYP27B1 and CYP24A1 expression in wild type mice showed that exogenous antidiuretic hormone blocked FGF23's actions on these vitamin D activating or inactivating enzymes. Finally, the renal resistance of transgenic mice to FGF23 was partly overcome by tolvaptan. Thus, LVH in transgenic mice is associated with an increase in myocardial and serum intact FGF23, with the kidneys being protected against FGF23 excess by elevated antidiuretic hormone levels. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms
Tsuchiya, Shunsuke; Buhr, Ethan D.; Higashide, Tomomi; Sugiyama, Kazuhisa
2017-01-01
Purpose Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Methods Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. Results The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Conclusions Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice. PMID:28934261
Serratia marcescens arn, a PhoP-regulated locus necessary for polymyxin B resistance.
Lin, Quei Yen; Tsai, Yi-Lin; Liu, Ming-Che; Lin, Wei-Cheng; Hsueh, Po-Ren; Liaw, Shwu-Jen
2014-09-01
Polymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly against Serratia marcescens. To investigate the underlying mechanisms, Tn5 mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5 inserted into the arnB and arnC genes. In other bacteria, arnB and arnC belong to the seven-gene arn operon, which is involved in lipopolysaccharide (LPS) modification. LPSs of arn mutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility in S. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression of phoP and arn in the wild-type strain but not in the phoP mutant. Complementation of the phoP mutant with the full-length phoP gene restored the PB MIC and induction by PB and low Mg2+ levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to the arn promoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+ levels protected S. marcescens from a PB challenge in the wild-type strain but not in the phoP mutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression of ugd, a gene required for LPS modification, in S. marcescens through a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression of arnA upon exposure to PB than did susceptible isolates. This is the first report to describe the role of S. marcescens arn in PB resistance and its modulation by PB and Mg2+ through the PhoP protein. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Serratia marcescens arn, a PhoP-Regulated Locus Necessary for Polymyxin B Resistance
Lin, Quei Yen; Tsai, Yi-Lin; Liu, Ming-Che; Lin, Wei-Cheng; Hsueh, Po-Ren
2014-01-01
Polymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly against Serratia marcescens. To investigate the underlying mechanisms, Tn5 mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5 inserted into the arnB and arnC genes. In other bacteria, arnB and arnC belong to the seven-gene arn operon, which is involved in lipopolysaccharide (LPS) modification. LPSs of arn mutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility in S. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression of phoP and arn in the wild-type strain but not in the phoP mutant. Complementation of the phoP mutant with the full-length phoP gene restored the PB MIC and induction by PB and low Mg2+ levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to the arn promoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+ levels protected S. marcescens from a PB challenge in the wild-type strain but not in the phoP mutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression of ugd, a gene required for LPS modification, in S. marcescens through a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression of arnA upon exposure to PB than did susceptible isolates. This is the first report to describe the role of S. marcescens arn in PB resistance and its modulation by PB and Mg2+ through the PhoP protein. PMID:24957827
Bomer, Nils; Cornelis, Frederique M F; Ramos, Yolande F M; den Hollander, Wouter; Storms, Lies; van der Breggen, Ruud; Lakenberg, Nico; Slagboom, P Eline; Meulenbelt, Ingrid; Lories, Rik J L
2016-03-01
To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency. Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis. Genome-wide gene expression was determined in knee cartilage by microarray analysis (Illumina MouseWG-6 v2). STRING-db analyses were applied to determine enrichment for specific pathways and to visualise protein-protein interactions. In total, 158 probes representing 147 unique genes showed significantly differential expression with a fold-change ≥1.5 upon forced exercise. Among these are genes known for their association with OA (eg, Mef2c, Egfr, Ctgf, Prg4 and Ctnnb1), supporting the use of forced running as an OA model in mice. Dio2-deficient mice showed significantly less cartilage damage and signs of synovitis. Gene expression response upon exercise between wild-type and knockout mice was significantly different for 29 genes. Mice subjected to a running regime have significant increased cartilage damage and synovitis scores. Lack of Dio2 protected against cartilage damage in this model and was reflected in a specific gene expression profile, and either mark a favourable effect in the Dio2 knockout (eg, Gnas) or an unfavourable effect in wild-type cartilage homeostasis (eg, Hmbg2 and Calr). These data further support DIO2 activity as a therapeutic target in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Oliveira, Sofia A.; Park, Se-Ho; Lee, Peter; Bendelac, Albert; Shenk, Thomas E.
2002-01-01
The murine cytomegalovirus m02 gene family encodes putative type I membrane glycoproteins named m02 through m16. A subset of these genes were fused to an epitope tag and cloned into an expression vector. In transfected and murine cytomegalovirus-infected cells, m02, m04, m05, m06, m07, m09, m10, and m12 localized to cytoplasmic structures near the nucleus, whereas m08 and m13 localized to a filamentous structure surrounding the nucleus. Substitution mutants lacking the m02 gene (SMsubm02) or the entire m02 gene family (SMsubm02-16) grew like their wild-type parent in cultured cells. However, whereas SMsubm02 was as pathogenic as the wild-type virus, SMsubm02-16 was markedly less virulent. SMsubm02-16 produced less infectious virus in most organs compared to wild-type virus in BALB/c and C57BL/6J mice, but it replicated to wild-type levels in the organs of immunodeficient γc/Rag2 mice, lacking multiple cell types including natural killer cells, and in C57BL/6J mice depleted of natural killer cells. These results argue that one or more members of the m02 gene family antagonize natural killer cell-mediated immune surveillance. PMID:11752177
2012-01-01
Lactobacillus plantarum is involved in a multitude of food related industrial fermentation processes including the malolactic fermentation (MLF) of wine. This work is the first report on a recombinant L. plantarum strain successfully conducting MLF. The malolactic enzyme (MLE) from Oenococcus oeni was cloned into the lactobacillal expression vector pSIP409 which is based on the sakacin P operon of Lactobacillus sakei and expressed in the host strain L. plantarum WCFS1. Both recombinant and wild-type L. plantarum strains were tested for MLF using a buffered malic acid solution in absence of glucose. Under the conditions with L-malic acid as the only energy source and in presence of Mn2+ and NAD+, the recombinant L. plantarum and the wild-type strain converted 85% (2.5 g/l) and 51% (1.5 g/l), respectively, of L-malic acid in 3.5 days. Furthermore, the recombinant L. plantarum cells converted in a modified wine 15% (0.4 g/l) of initial L-malic acid concentration in 2 days. In conclusion, recombinant L. plantarum cells expressing MLE accelerate the malolactic fermentation. PMID:22452826
Koenigsberger, C; Chiappa, S; Brimijoin, S
1997-10-01
Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.
Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi
2014-01-01
Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.
Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi
2014-01-01
Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203
Han, Xiaohua; Wang, Yihua; Liu, Xi; Jiang, Ling; Ren, Yulong; Liu, Feng; Peng, Cheng; Li, Jingjing; Jin, Ximing; Wu, Fuqing; Wang, Jiulin; Guo, Xiuping; Zhang, Xin; Cheng, Zhijun; Wan, Jianmin
2012-01-01
The rice somaclonal mutant T3612 produces small grains with a floury endosperm, caused by the loose packing of starch granules. The positional cloning of the mutation revealed a deletion in a gene encoding a protein disulphide isomerase-like enzyme (PDIL1-1). In the wild type, PDIL1-1 was expressed throughout the plant, but most intensely in the developing grain. In T3612, its expression was abolished, resulting in a decrease in the activity of plastidial phosphorylase and pullulanase, and an increase in that of soluble starch synthase I and ADP-glucose pyrophosphorylase. The amylopectin in the T3612 endosperm showed an increase in chains with a degree of polymerization 8-13 compared with the wild type. The expression in the mutant's endosperm of certain endoplasmic reticulum stress-responsive genes was noticeably elevated. PDIL1-1 appears to play an important role in starch synthesis. Its absence is associated with endoplasmic reticulum stress in the endosperm, which is likely to underlie the formation of the floury endosperm in the T3612 mutant.
Zhou, Jinxu; Wang, Hongxiang; Chu, Junsheng; Huang, Qilin; Li, Guangxu; Yan, Yong; Xu, Tao; Chen, Juxiang; Wang, Yuhai
2018-04-24
Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy. © 2018 Wiley Periodicals, Inc.
Hook, Vivian Y. H.; Kindy, Mark; Reinheckel, Thomas; Peters, Christoph; Hook, Gregory
2009-01-01
Neurotoxic β-amyloid (Aβ) peptides participate in Alzheimer’s disease (AD); therefore, reduction of Aβ generated from APP may provide a therapeutic approach for AD. Gene knockout studies in transgenic mice producing human Aβ may identify targets for reducing Aβ. This study shows that knockout of the cathepsin B gene in mice expressing human wild-type APP (hAPPwt) results in substantial decrease of Aβ40 and Aβ42 by 67% in brain, and decreases levels of the C-terminal β-secretase fragment (CTFβ) derived from APP. In contrast, knockout of cathepsin B in mice expressing hAPP with the rare Swedish (Swe) and Indiana (Ind) mutations had no effect on Aβ. The difference in reduction of Aβ in hAPPwt mice, but not in hAPPSwe/Ind mice, shows that the transgenic model can affect cathepsin B gene knockout results. Since most AD patients express hAPPwt, these data validate cathepsin B as a target for development of inhibitors to lower Aβ in AD. PMID:19501042
Coleman, J. Robert; Papamichail, Dimitris; Yano, Masahide; García-Suárez, María del Mar
2011-01-01
In this study, we used a previously described method of controlling gene expression with computer-based gene design and de novo DNA synthesis to attenuate the virulence of Streptococcus pneumoniae. We produced 2 S. pneumoniae serotype 3 (SP3) strains in which the pneumolysin gene (ply) was recoded with underrepresented codon pairs while retaining its amino acid sequence and determined their ply expression and pneumolysin production in vitro and their virulence in a mouse pulmonary infection model. Expression of ply and production of pneumolysin of the recoded SP3 strains were decreased, and the recoded SP3 strains were less virulent in mice than the wild-type SP3 strain or a Δply SP3 strain. Further studies showed that the least virulent recoded strain induced a markedly reduced inflammatory response in the lungs compared with the wild-type or Δply strain. These findings suggest that reducing pneumococcal virulence gene expression by altering codon-pair bias could hold promise for rational design of live-attenuated pneumococcal vaccines. PMID:21343143
Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.
2016-01-01
Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875
Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C
2016-03-21
Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Kourghi, Mohamad; De Ieso, Michael L.; Nourmohammadi, Saeed; Pei, Jinxin V.; Yool, Andrea J.
2018-04-01
Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 µM) and AqB011 (IC50 14 µM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P) or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 µM, in contrast to the wild type channel which was blocked effectively. T157P, D158P and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.
The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism
Labrador, Juan Pablo; Azcoitia, Valeria; Tuckermann, Jan; Lin, Calvin; Olaso, Elvira; Mañes, Santos; Brückner, Katja; Goergen, Jean-Louis; Lemke, Greg; Yancopoulos, George; Angel, Peter; Martínez-A, Carlos; Klein, Rüdiger
2001-01-01
The discoidin domain receptor 2 (DDR2) is a member of a subfamily of receptor tyrosine kinases whose ligands are fibrillar collagens, and is widely expressed in postnatal tissues. We have generated DDR2-deficient mice to establish the in vivo functions of this receptor, which have remained obscure. These mice exhibit dwarfism and shortening of long bones. This phenotype appears to be caused by reduced chondrocyte proliferation, rather than aberrant differentiation or function. In a skin wound healing model, DDR2–/– mice exhibit a reduced proliferative response compared with wild-type littermates. In vitro, fibroblasts derived from DDR2–/– mutants proliferate more slowly than wild-type fibroblasts, a defect that is rescued by introduction of wild-type but not kinase-dead DDR2 receptor. Together our results suggest that DDR2 acts as an extracellular matrix sensor to modulate cell proliferation. PMID:11375938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp
2011-02-25
Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less
Akhrameyeva, Natalie V.; Zhang, Pengwei; Sugiyama, Nao; Behar, Samuel M.; Yao, Feng
2011-01-01
Using the T-REx (Invitrogen, California) gene switch technology and a dominant-negative mutant polypeptide of herpes simplex virus 1 (HSV-1)-origin binding protein UL9, we previously constructed a glycoprotein D-expressing replication-defective and dominant-negative HSV-1 recombinant viral vaccine, CJ9-gD, for protection against HSV infection and disease. It was demonstrated that CJ9-gD is avirulent following intracerebral inoculation in mice, cannot establish detectable latent infection following different routes of infection, and offers highly effective protective immunity against primary HSV-1 and HSV-2 infection and disease in mouse and guinea pig models of HSV infections. Given these favorable safety and immunological profiles of CJ9-gD, aiming to maximize levels of HSV-2 glycoprotein D (gD2) expression, we have constructed an ICP0 null mutant-based dominant-negative and replication-defective HSV-2 recombinant, CJ2-gD2, that contains 2 copies of the gD2 gene driven by the tetracycline operator (tetO)-bearing HSV-1 major immediate-early ICP4 promoter. CJ2-gD2 expresses gD2 as efficiently as wild-type HSV-2 infection and can lead to a 150-fold reduction in wild-type HSV-2 viral replication in cells coinfected with CJ2-gD2 and wild-type HSV-2 at the same multiplicity of infection. CJ2-gD2 is avirulent following intracerebral injection and cannot establish a detectable latent infection following subcutaneous (s.c.) immunization. CJ2-gD2 is a more effective vaccine than HSV-1 CJ9-gD and a non-gD2-expressing dominant-negative and replication-defective HSV-2 recombinant in protection against wild-type HSV-2 genital disease. Using recall response, we showed that immunization with CJ2-gD2 elicited strong HSV-2-specific memory CD4+ and CD8+ T-cell responses. Collectively, given the demonstrated preclinical immunogenicity and its unique safety profiles, CJ2-gD2 represents a new class of HSV-2 replication-defective recombinant viral vaccines in protection against HSV-2 genital infection and disease. PMID:21389121
Tuberin Inhibits Production of the Matrix Protein Fibronectin in Diabetes
Yadav, Mukesh; Tizani, Shaza; Bhandari, Basant; Valente, Anthony J.
2012-01-01
Exposure of proximal tubular epithelial cells to high glucose contributes to the accumulation of tubulointerstitial and matrix proteins in diabetic nephropathy, but how this occurs is not well understood. We investigated the effect of the signaling molecule tuberin, which modulates the mammalian target of rapamycin pathway, on renal hypertrophy and fibronectin expression. We found that the kidney mass was significantly greater in partially tuberin-deficient (TSC2+/−) diabetic rats than wild-type diabetic rats. Furthermore, TSC2+/− rats exhibited significant increases in the basal levels of phospho-tuberin and fibronectin expression in the kidney cortex. Increased levels of phosphorylated tuberin associated with an increase in fibronectin expression in both wild-type and TSC2+/− diabetic rats. Treatment with insulin abrogated the diabetes-induced increase in fibronectin expression. In vitro, high glucose enhanced fibronectin expression in TSC2+/− primary proximal tubular epithelial cells; both inhibition of Akt and inhibition of the mammalian target of rapamycin could prevent this effect of glucose. In addition, forced expression of tuberin in tuberin-null cells abolished the expression of fibronectin protein. Taken together, these data suggest that tuberin plays a central role in the development of renal hypertrophy and in modulating the production of the matrix protein fibronectin in diabetes. PMID:22904348
Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis
Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming
2013-01-01
Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184
Tang, Shuang; Bertke, Andrea S.; Patel, Amita; Margolis, Todd P.; Krause, Philip R.
2011-01-01
The herpes simplex virus 2 (HSV-2) viral microRNA (miRNA) designated miR-H6 is located upstream of the latency-associated transcript (LAT) promoter region on the strand opposite the LAT. Deletion of the LAT promoter and part of LAT exon 1 abolished HSV-2 miR-H6 expression in acutely and latently infected guinea pig dorsal root ganglia (DRG), suggesting that this region is needed both for the expression of LAT-encoded miRNAs and for miR-H6 expression in vivo. Relative to cells infected with a viral rescuant, miR-H6 expression was significantly reduced in cells infected with a mutant HSV-2 virus, NotPolyA, with an insertion of a simian virus (SV40) polyadenylation signal sequence between the LAT promoter and miR-H6 sequences. In addition, expression of miR-H6, but not LAT or viral DNA, was significantly reduced in both mouse trigeminal ganglia (TG) and guinea pig DRG latently infected with the NotPolyA mutant. Guinea pigs infected with NotPolyA experienced reduced neurological complications of acute infection relative to those infected with the rescuant, but the recurrence phenotype of the NotPolyA mutant was similar to those of its rescuant and wild-type HSV-2, indicating that reduction of miR-H6 expression is not by itself able to alter the establishment of latency for the wild-type virus or the recurrence phenotype. Furthermore, the mutation in NotPolyA did not affect the propensity of wild-type HSV-2 to establish latency in neurons positive for subtype marker KH10. In contrast to published reports regarding its HSV-1 homolog, HSV-2 miR-H6 did not affect ICP4 expression in transfected or infected cells. We hypothesize that viral miRNAs associated with LAT expression are likely to work collectively, contributing to the phenotype attributed to the LAT. PMID:21325410
Impaired Fas-Fas Ligand Interactions Result in Greater Recurrent Herpetic Stromal Keratitis in Mice
Yin, Xiao-Tang; Keadle, Tammie L.; Hard, Jessicah; Herndon, John; Potter, Chloe A.; Del Rosso, Chelsea R.; Ferguson, Thomas A.; Stuart, Patrick M.
2015-01-01
Herpes simplex virus-1 (HSV-1) infection of the cornea leads to a potentially blinding condition termed herpetic stromal keratitis (HSK). Clinical studies have indicated that disease is primarily associated with recurrent HSK following reactivation of a latent viral infection of the trigeminal ganglia. One of the key factors that limit inflammation of the cornea is the expression of Fas ligand (FasL). We demonstrate that infection of the cornea with HSV-1 results in increased functional expression of FasL and that mice expressing mutations in Fas (lpr) and FasL (gld) display increased recurrent HSK following reactivation compared to wild-type mice. Furthermore, both gld and lpr mice took longer to clear their corneas of infectious virus and the reactivation rate for these strains was significantly greater than that seen with wild-type mice. Collectively, these findings indicate that the interaction of Fas with FasL in the cornea restricts the development of recurrent HSK. PMID:26504854
Impaired Fas-Fas Ligand Interactions Result in Greater Recurrent Herpetic Stromal Keratitis in Mice.
Yin, Xiao-Tang; Keadle, Tammie L; Hard, Jessicah; Herndon, John; Potter, Chloe A; Del Rosso, Chelsea R; Ferguson, Thomas A; Stuart, Patrick M
2015-01-01
Herpes simplex virus-1 (HSV-1) infection of the cornea leads to a potentially blinding condition termed herpetic stromal keratitis (HSK). Clinical studies have indicated that disease is primarily associated with recurrent HSK following reactivation of a latent viral infection of the trigeminal ganglia. One of the key factors that limit inflammation of the cornea is the expression of Fas ligand (FasL). We demonstrate that infection of the cornea with HSV-1 results in increased functional expression of FasL and that mice expressing mutations in Fas (lpr) and FasL (gld) display increased recurrent HSK following reactivation compared to wild-type mice. Furthermore, both gld and lpr mice took longer to clear their corneas of infectious virus and the reactivation rate for these strains was significantly greater than that seen with wild-type mice. Collectively, these findings indicate that the interaction of Fas with FasL in the cornea restricts the development of recurrent HSK.
TRPM8 is a neuronal osmosensor that regulates eye blinking in mice
Quallo, Talisia; Vastani, Nisha; Horridge, Elisabeth; Gentry, Clive; Parra, Andres; Moss, Sian; Viana, Felix; Belmonte, Carlos; Andersson, David A.; Bevan, Stuart
2015-01-01
Specific peripheral sensory neurons respond to increases in extracellular osmolality but the mechanism responsible for excitation is unknown. Here we show that small increases in osmolality excite isolated mouse dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons expressing the cold-sensitive TRPM8 channel (transient receptor potential channel, subfamily M, member 8). Hyperosmotic responses were abolished by TRPM8 antagonists, and were absent in DRG and TG neurons isolated from Trpm8−/− mice. Heterologously expressed TRPM8 was activated by increased osmolality around physiological levels and inhibited by reduced osmolality. Electrophysiological studies in a mouse corneal preparation demonstrated that osmolality regulated the electrical activity of TRPM8-expressing corneal afferent neurons. Finally, the frequency of eye blinks was reduced in Trpm8−/− compared with wild-type mice and topical administration of a TRPM8 antagonist reduced blinking in wild-type mice. Our findings identify TRPM8 as a peripheral osmosensor responsible for the regulation of normal eye-blinking in mice. PMID:25998021
Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara
2012-01-01
Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873
Johnson, Eric T; Dowd, Patrick F
2004-08-11
A transgenic line of Arabidopsis thaliana constitutively expressing a conserved MYB transcription factor of phenylpropanoid biosynthesis resulting in solid-purple leaves had significantly increased resistance to leaf feeding by first instar fall armyworms (Spodoptera frugiperda), but no enhanced resistance to cabbage looper (Trichoplusia ni) larvae, when compared to wild type plants. However, inflorescence and silique (seed pod) production were significantly reduced by 22 and 52%, respectively, in the transgenic line compared to wild type plants. Reduction in feeding by S. frugiperda was significantly positively correlated with reduction in weights of survivors, but both were negatively correlated with the concentration of anthocyanins. These results indicate that a single gene regulator can activate a defensive pathway sufficient to produce increased resistance to insects but that this activation confers a cost in plant productivity.
Cifuentes-Esquivel, Nicolás; Celiz-Balboa, Jonathan; Henriquez-Valencia, Carlos; Mitina, Irina; Arraño-Salinas, Paulina; Moreno, Adrián A; Meneses, Claudio; Blanco-Herrera, Francisca; Orellana, Ariel
2018-04-25
Low temperatures, salinity, and drought cause significant crop losses. These conditions involve osmotic stress, triggering transcriptional remodeling, and consequently, the restitution of cellular homeostasis and growth recovery. Protein transcription factors regulate target genes, thereby mediating plant responses to stress. bZIP17 is a transcription factor involved in cellular responses to salinity and the unfolded protein response. Because salinity can also produce osmotic stress, the role of bZIP17 in response to osmotic stress was assessed. Mannitol treatments induced the transcript accumulation and protein processing of bZIP17. Transcriptomic analyses showed that several genes associated with seed storage and germination showed lower expression in bzip17 mutants than in wild-type plants. Interestingly, bZIP17 transcript was more abundant in seeds, and germination analyses revealed that wild-type plants germinated later than bzip17 mutants in the presence of mannitol, but no effects were observed when the seeds were exposed to ABA. Finally, the transcript levels of bZIP17 target genes that control seed storage and germination were assessed in seeds exposed to mannitol treatments, which showed lower expression levels in bzip17 mutants compared to the wild-type seeds. These results suggest that bZIP17 plays a role in osmotic stress, acting as a negative regulator of germination through the regulation of genes involved in seed storage and germination. © 2018 Wiley Periodicals, Inc.
Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.)
Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen
2017-01-01
Alfalfa (Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1) gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands. PMID:29326737
Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.).
Zheng, Guangshun; Fan, Cunying; Di, Shaokang; Wang, Xuemin; Xiang, Chengbin; Pang, Yongzhen
2017-01-01
Alfalfa ( Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 ( AtEDT1 ) gene into alfalfa via Agrobacterium -mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.
Naoumkina, Marina; Hinchliffe, Doug J; Fang, David D; Florane, Christopher B; Thyssen, Gregory N
2017-08-30
Xyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li 2 ) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth. Li 2 represents an excellent model system to study fiber elongation. To understand the role of xyloglucan in cotton fiber elongation we used the short fiber mutant Li 2 and its near isogenic wild type for analysis of xyloglucan content and expression of xyloglucan-related genes in developing fibers. Accumulation of xyloglucan was significantly higher in Li 2 developing fibers than in wild type. Genes encoding enzymes for nine family members of xyloglucan biosynthesis were identified in the draft Gossypium hirsutum genome. RNAseq analysis revealed that most differentially expressed xyloglucan-related genes were down-regulated in Li 2 fiber cells. RT-qPCR analysis revealed that the peak of expression for the majority of xyloglucan-related genes in wild type developing fibers was 5-16days post anthesis (DPA) compared to 1-3 DPA in Li 2 fibers. Thus, our results suggest that early activation of xyloglucan-related genes and down regulation of xyloglucan degradation genes during the elongation phase lead to elevated accumulation of xyloglucan that restricts elongation of fiber cells in Li 2 . Copyright © 2017. Published by Elsevier B.V.
Flower-deficient mice have reduced susceptibility to skin papilloma formation
Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo
2012-01-01
SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363
Involvement of Fas/FasL pathway in the murine model of atopic dermatitis.
Bień, Karolina; Żmigrodzka, Magdalena; Orłowski, Piotr; Fruba, Aleksandra; Szymański, Łukasz; Stankiewicz, Wanda; Nowak, Zuzanna; Malewski, Tadeusz; Krzyżowska, Małgorzata
2017-08-01
The aim of this study was to elucidate the role of apoptosis mediated through Fas/FasL pathway using the mouse model of atopic dermatitis (AD). AD was induced by epicutaneous application of ovalbumin (OVA) in wild-type C57BL/6, B6. MRL-Faslpr/J (Fas-) and B6Smn.C3-Faslgld/J (FasL-) mouse strains. Skin samples were subjected to staining for Fas/FasL expression, M30 epitope and assessment of inflammatory response via immunohistochemical staining. Cytokine and chemokine production was assessed by real-time PCR. In comparison to wild-type mice, OVA sensitization of Fas- and FasL-deficient mice led to increased epidermal and dermal thickness, collagen deposition and local inflammation consisting of macrophages, neutrophils and CD4+ T cells. Fas- and FasL-deficient mice showed increased total counts of regulatory T cells (Tregs) and IgE levels in blood as well as increased expression of IL-1β, IL-4, IL-5, IL-13 and TGF-1β mRNA in comparison to wild-type mice. On the other hand, expression of CXCL9 and CXCL10, IL-17 mRNAs in the skin samples in Fas- and FasL-deficient mice was decreased. Our results show that lack of the Fas-induced apoptosis leads to exacerbation of AD characteristics such as Th2 inflammation and dermal thickening. Therefore, Fas receptor can play an important role in AD pathogenesis by controlling development of the local inflammation.
CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisman, Scott A.; Buckley, David B.; Tanaka, Yuji
CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced livermore » injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury.« less
Parry, Jesse J.; Chen, Ronald; Andrews, Rebecca; Lears, Kimberly A.
2012-01-01
G protein signaling through human somatostatin receptor subtype 2 (SSTR2) is well known, but the amino acids involved in stimulation of intracellular responses upon ligand binding have not been characterized. We constructed a series of point mutants in SSTR2 at amino acid positions 89, 139, and 140 in attempts to disrupt G protein signaling upon ligand binding. The aspartic acid changes at position 89 to either Ala, Leu, or Arg generated mutant receptors with varying expression profiles and a complete inability to bind somatostatin-14 (SST). Mutations to Asp 139 and Arg 140 also led to varying expression profiles with some mutants maintaining their affinity for SST. Mutation of Arg 140 to Ala resulted in a mutated receptor that had a Bmax and dissociation constant (Kd) similar to wild-type receptor but was still coupled to the G protein as determined in both a cAMP assay and a calcium-release assay. In contrast, mutation of Asp 139 to Asn resulted in a mutated receptor with Bmax and Kd values that were similar to wild type but was uncoupled from G protein-mediated cAMP signaling, but not calcium release. Thus, we identified mutations in SSTR2 that result in either receptor expression levels that are similar to wild type but is completely ablated for ligand binding or a receptor that maintains affinity for SST and is uncoupled from G protein-mediated cAMP signaling. PMID:22495673
Zhou, Xueli; Fukuda, Noboru; Matsuda, Hiroyuki; Endo, Morito; Wang, Xiaofei; Saito, Kosuke; Ueno, Takahiro; Matsumoto, Taro; Matsumoto, Koichi; Soma, Masayoshi; Kobayashi, Naohiko; Nishiyama, Akira
2013-10-01
We have demonstrated that mesenchymal cells from spontaneously hypertensive rats genetically express complement 3 (C3). Mature tubular epithelial cells can undergo epithelial-to-mesenchymal transition (EMT) that is linked to the pathogenesis of renal fibrosis and injury. In this study, we investigated the contribution of C3 in EMT and in the renal renin-angiotensin (RA) systems associated with hypertension. C3a induced EMT in mouse TCMK-1 epithelial cells, which displayed increased expression of renin and Krüppel-like factor 5 (KLF5) and nuclear localization of liver X receptor α (LXRα). C3 and renin were strongly stained in the degenerated nephrotubulus and colocalized with LXRα and prorenin receptor in unilateral ureteral obstruction (UUO) kidneys from wild-type mice. In C3-deficient mice, hydronephrus and EMT were suppressed, with no expression of renin and C3. After UUO, systolic blood pressure was increased in wild-type but not C3-deficient mice. In wild-type mice, intrarenal angiotensin II (ANG II) levels were markedly higher in UUO kidneys than normal kidneys and decreased with aliskiren. There were no increases in intrarenal ANG II levels after UUO in C3-deficient mice. Thus C3 induces EMT and dedifferentiation of epithelial cells, which produce renin through induction of LXRα. These data indicate for the first time that C3 may be a primary factor to activate the renal RA systems to induce hypertension.
Sui, Zhiwei; Wen, Bo; Gao, Zhimin; Chen, Quanjiao
2014-01-01
Three recombinant influenza A viruses with different neuraminidases (NAs) in the background of A/PR/8/34 (PR8), named rPR8-H5N1NA, rPR8-H9N2NA, and rPR8-H1N1NA, derived from H5N1, H9N2, H1N1 (swine) viruses, respectively, were constructed. We performed a quantitative proteomics analysis to investigate differential protein expression in Madin-Darby canine kidney (MDCK) cells infected with recombinant and wild-type influenza viruses to determine whether NA replacement would alter host cell gene expression. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-TOF MS) and two-dimensional gel electrophoresis (2-DE), we identified 12 up-regulated and 49 down-regulated protein spots, including cytoskeletal proteins, molecular biosynthesis proteins, ubiquitin-proteasome pathway proteins, and heat shock proteins. The most significant changes in infected cells were observed for molecular biosynthesis proteins. We found more differentially expressed protein spots in cells infected with rPR8-H5N1NA or rPR8-H9N2NA viruses than cells infected with wild-type virus. Many of those proteins are postulated to be involved in cell-cell fusion, but the full mechanism remains to be explored. Meanwhile, our data demonstrate that the wild-type virus has evolutionary advantages over recombinant viruses. PMID:25153908
Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.
2011-01-01
Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449
Time-course comparison of xenobiotic activators of CAR and PPAR{alpha} in mouse liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Pamela K.; Woods, Courtney G.; ExxonMobil Biomedical Sciences, Annandale, NJ
Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR){alpha} are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPAR{alpha} will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver,more » microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR {alpha}. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPAR{alpha} in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens.« less
Nectoux, J; Fichou, Y; Rosas-Vargas, H; Cagnard, N; Bahi-Buisson, N; Nusbaum, P; Letourneur, F; Chelly, J; Bienvenu, T
2010-07-01
More than 90% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene that encodes the methyl-CpG-binding protein 2, a transcriptional modulator. Because MECP2 is subjected to X chromosome inactivation (XCI), girls with RTT either express the wild-type or mutant allele in each individual cell. To test the consequences of MECP2 mutations resulting from a genome-wide transcriptional dysregulation and to identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we carried out gene expression profiling of clonal populations derived from fibroblast primary cultures expressing exclusively either the wild-type or the mutant MECP2 allele. Clonal cultures were obtained from skin biopsy of three RTT patients carrying either a non-sense or a frameshift MECP2 mutation. For each patient, gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. Firstly, clustering analysis classified the RTT patients according to their genetic background and MECP2 mutation. Secondly, expression profiling by microarray analysis and quantitative RT-PCR indicated four up-regulated genes and five down-regulated genes significantly dysregulated in all our statistical analysis, including excellent potential candidate genes for the understanding of the pathophysiology of this neurodevelopmental disease. Thirdly, chromatin immunoprecipitation analysis confirmed MeCP2 binding to respective CpG islands in three out of four up-regulated candidate genes and sequencing of bisulphite-converted DNA indicated that MeCP2 preferentially binds to methylated-DNA sequences. Most importantly, the finding that at least two of these genes (BMCC1 and RNF182) were shown to be involved in cell survival and/or apoptosis may suggest that impaired MeCP2 function could alter the survival of neurons thus compromising brain function without inducing cell death.
Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia
2012-01-01
The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.
Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan
2011-02-01
In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.
Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A
1989-10-01
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.
Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi
2015-06-01
Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.
Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins
Bernasconi, Michele; Remppis, Andrew; Fredericks, William J.; Rauscher, Frank J.; Schäfer, Beat W.
1996-01-01
The expression of a number of human paired box-containing (PAX) genes has been correlated with various types of tumors. Novel fusion genes encoding chimeric fusion proteins have been found in the pediatric malignant tumor alveolar rhabdomyosarcoma (RMS). They are generated by two chromosomal translocations t(2;13) and t(1;13) juxtaposing PAX3 or PAX7, respectively, with a forkhead domain gene FKHR. Here we describe that specific down-regulation of the t(2;13) translocation product in alveolar RMS cells by antisense oligonucleotides results in reduced cellular viability. Cells of embryonal RMS, the other major histiotype of this tumor, were found to express either wild type PAX3 or PAX7 at elevated levels when compared with primary human myoblasts. Treatment of corresponding embryonal RMS cells with antisense olignucleotides directed against the mRNA translational start site of either one of these two transcription factors similarly triggers cell death, which is most likely due to induction of apoptosis. Retroviral mediated ectopic expression of mouse Pax3 in a PAX7 expressing embryonal RMS cell line could partially rescue antisense induced apoptosis. These data suggest that the PAX3/FKHR fusion gene and wild-type PAX genes play a causative role in the formation of RMS and presumably other tumor types, possibly by suppressing the apoptotic program that would normally eliminate these cells. PMID:8917562
NASA Technical Reports Server (NTRS)
Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)
2002-01-01
To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.
Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.
2002-01-01
To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP3) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP3. The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP3 compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP3 in both wild-type and transgenic cells. However, even with stimulation, InsP3 levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP3 signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP2), the lipid precursor of InsP3, was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP2 metabolism showed that the activity of the PtdInsP2-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of 32P into PtdInsP2 in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP2 synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP2 synthesis as a regulatory step in this system. PMID:12177493
Divinyl ether synthase gene and protein, and uses thereof
Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP
2011-09-13
The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.
Divinyl ether synthase gene, and protein and uses thereof
Howe, Gregg A.; Itoh, Aya
2006-12-26
The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.
Maeda, Yasuhiro; Yamaguchi, Terufumi; Ueda, Satomi; Matsuo, Koki; Morita, Yasuyoshi; Naiki, Yoshito; Miyazato, Hajime; Shimada, Takahiro; Miyatake, Jun-Ichi; Matsuda, Mitsuhiro; Kanamaru, Akihisa
2003-07-01
In this study, we observed the expression of the GSTT-1 gene in patients with myelodysplastic syndrome (MDS) at the messenger RNA level. Reverse transcription-polymerase chain reaction (RT-PCR) for GSTT-1 was performed with a pair of primers complementary to the 5' coding section and the 3' coding section of the GSTT-1 cDNA for amplifying the 623-bp band. Among 20 patients with MDS, 8 patients showed the expected 623-bp band on RT-PCR, and 12 patients showed a 500-bp band on RT-PCR, indicating that a 123-bp sequence was deleted as a mutant of the GSTT-1 gene. Furthermore, a BLAST DNA search showed that the deletion of a 123 bp sequence creates a sequence that is 63% homologous to human FKBP-rapamycin associated protein (FRAP); this protein has been termed a mammalian target of rapamycin (mTOR). We respectively transfected the wild type and the mutant type GSTT-1 gene in an expression vector to two cell lines (K562 and HL-60). The stable transformants for the wild type and the mutant type GSTT-1 genes were made by G418 selection. Interestingly, rapamycin could induce significant growth inhibition of the stable transformants for mutant type GSTT-1, which was indicative of apoptosis, but not that of those for wild type GSTT-1. These results suggest that rapamycin could be included in the therapeutic modality for the patients with MDS who have the mTOR sequences in GSTT-1 gene.
Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse
Uthus, Eric O.; Brown-Borg, Holly M.
2007-01-01
Long-lived Ames dwarf mice lack growth hormone, prolactin, and thyroid stimulating hormone. Additionally the dwarf mice have enzyme activities and levels that combat oxidative stress more efficiently than those of normal mice. We have shown that methionine metabolism in Ames mice is markedly different than in their wild type littermates. In our previous work we hypothesized that the flux of methionine to the transsulfuration pathway is enhanced in the dwarf mice. The current study was designed to determine whether the flux of methionine to the transsulfuration pathway is increased. We did this by injecting either l-[methyl-3H]-methionine or l-[35S]-methionine into dwarf or normal mice and then determined retained label (in form of S-adenosylmethionine) 45 min later. The amount of retained hepatic 3H and 35S label was significantly reduced in the dwarf mice; at 45 min the specific radioactivity of SAM (pCi/nmol SAM) was 56% lower (p < 0.05) for 3H-label and 64% lower (p < 0.005) for 35S-label in dwarf than wild type mice. Retention of 35S was significantly lower in the brain (37%, p < 0.04) and kidney (47%, p < 0.02) of the dwarf compared to wild type mice; there was no statistical difference in retained 3H-label in either brain or kidney. This suggests that both the methyl-moiety and the carbon chain of methionine are lost much faster in the dwarf compared to the wild type mouse, implying that both transmethylation in the liver and transsulfuration in the liver, brain, and kidney are increased in the dwarf mice. As further support, we determined by real-time RT PCR the expression of methionine metabolism genes in livers of mice. Compared to wild type, the Ames dwarf had increased expression of methionine adenosyltransferase 1a (2.3-fold, p = 0.013), glycine N-methyltransferase (3.8-fold, p = 0.023), betaine homocysteine methyltransferase (5.5-fold, p = 0.0006), S-adenosylhomocysteine hydrolase (3.8-fold, p = 0.0005), and cystathionase (2.6-fold; tended to be increased, p = 0.055). Methionine synthase expression was significantly decreased in dwarf compared to wild type (0.48-fold, p = 0.023). These results confirm that the flux of methionine to transsulfuration is enhanced in the Ames dwarf. This, along with data from previous studies support the hypothesis that altered methionine metabolism plays a significant role in the oxidative defense of the dwarf mouse and that the mechanism for the enhanced oxidative defense may be through altered GSH metabolism as a result of the distinctive methionine metabolism. PMID:16519922
Dominguez, Jessica A; Samocha, Alexandr J; Liang, Zhe; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M
2013-10-01
Nuclear factor-κB is a critical regulator of cell-survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase. Prospective, randomized controlled study. Animal laboratories in university medical centers. Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkβ) and wild-type mice were subjected to sham laparotomy or cecal ligation and puncture. Animals were killed at 24 hours or followed 7 days for survival. Septic wild-type mice had decreased villus length compared with sham mice, whereas villus atrophy was further exacerbated in septic Vil-Cre/Ikkβ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared with sham mice, which was further exacerbated in Vil-Cre/Ikkβ mice. Sepsis induced intestinal hyperpermeability in wild-type mice compared with sham mice, which was further exacerbated in septic Vil-Cre/Ikkβ mice. This was associated with increased intestinal expression of claudin-2 in septic wild-type mice, which was further increased in septic Vil-Cre/Ikkβ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following cecal ligation and puncture, and interleukin 10 and monocyte chemoattractant protein-1 levels were higher in septic Vil-Cre/Ikkβ mice than in septic wild-type mice. All septic mice were bacteremic, but no differences in bacterial load were identified between wild-type and Vil-Cre/Ikkβ mice. To determine the functional significance of these results, animals were followed for survival. Septic wild-type mice had lower mortality than septic Vil-Cre/Ikkβ mice (47% vs 80%, p<0.05). Antitumor necrosis factor administration decreased intestinal apoptosis, permeability, and mortality in wild-type septic mice, and a similar improvement in intestinal integrity and survival were seen when antitumor necrosis factor was given to Vil-Cre/Ikkβ mice. Enterocyte-specific NF-kB has a beneficial role in sepsis by partially preventing sepsis-induced increases in apoptosis and permeability, which are associated with worsening mortality.
Monoclonal antibodies for serotyping the P fimbriae of uropathogenic Escherichia coli.
de Ree, J M; Schwillens, P; van den Bosch, J F
1986-01-01
Monoclonal antibodies (MAbs) against seven serologically different P fimbriae (F7(1), F7(2), F8, F9, F11, F12, and F13) of uropathogenic Escherichia coli were tested for their ability to detect the P fimbriae on wild-type strains. In a plate agglutination test the MABs could detect the fimbriae on strains which expressed cloned fimbriae but not on wild-type strains. In a coagglutination test and in a whole-bacterium enzyme-linked immunosorbent assay the MAbs recognized the fimbriae on strains with cloned fimbriae and on wild-type strains. However, the coagglutination test has some disadvantages: only immunoglobulin G MAbs can be used, and the results cannot be read in an objective way. From these results, we concluded that the whole-bacterium enzyme-linked immunosorbent assay is the most convenient method for the determination of P fimbriae on wild-type E. coli strains. With this fast and easy method it is possible to do epidemiological studies on the distribution of P fimbriae among clinical isolates of uropathogenic E. coli and to extend the O:K:H serotype with the F serotype. PMID:2873149
Antonescu, Cristina R; Viale, Agnes; Sarran, Lisa; Tschernyavsky, Sylvia J; Gonen, Mithat; Segal, Neil H; Maki, Robert G; Socci, Nicholas D; DeMatteo, Ronald P; Besmer, Peter
2004-05-15
Gastrointestinal stromal tumors (GISTs) are specific KIT expressing and KIT-signaling driven mesenchymal tumors of the human digestive tract, many of which have KIT-activating mutations. Previous studies have found a relatively homogeneous gene expression profile in GIST, as compared with other histological types of sarcomas. Transcriptional heterogeneity within clinically or molecularly defined subsets of GISTs has not been previously reported. We tested the hypothesis that the gene expression profile in GISTs might be related to KIT genotype and possibly to other clinicopathological factors. An HG-U133A Affymetrix chip (22,000 genes) platform was used to determine the variability of gene expression in 28 KIT-expressing GIST samples from 24 patients. A control group of six intra-abdominal leiomyosarcomas was also included for comparison. Statistical analyses (t tests) were performed to identify discriminatory gene lists among various GIST subgroups. The levels of expression of various GIST subsets were also linked to a modified version of the growth factor/KIT signaling pathway to analyze differences at various steps in signal transduction. Genes involved in KIT signaling were differentially expressed among wild-type and mutant GISTs. High gene expression of potential drug targets, such as VEGF, MCSF, and BCL2 in the wild-type group, and Mesothelin in exon 9 GISTs were found. There was a striking difference in gene expression between stomach and small bowel GISTs. This finding was validated in four separate tumors, two gastric and two intestinal, from a patient with familial GIST with a germ-line KIT W557R substitution. GISTs have heterogeneous gene expression depending on KIT genotype and tumor location, which is seen at both the genomic level and the KIT signaling pathway in particular. These findings may explain their variable clinical behavior and response to therapy.
van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C
2008-12-01
Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.
Thornton, Peter; Sevalle, Jean; Deery, Michael J; Fraser, Graham; Zhou, Ye; Ståhl, Sara; Franssen, Elske H; Dodd, Roger B; Qamar, Seema; Gomez Perez-Nievas, Beatriz; Nicol, Louise Sc; Eketjäll, Susanna; Revell, Jefferson; Jones, Clare; Billinton, Andrew; St George-Hyslop, Peter H; Chessell, Iain; Crowther, Damian C
2017-10-01
We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases. © 2017 MedImmune Ltd. Published under the terms of the CC BY 4.0 license.
Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael
2018-01-03
Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.
Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton
2009-09-01
Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.
Eising, Else; Shyti, Reinald; 't Hoen, Peter A C; Vijfhuizen, Lisanne S; Huisman, Sjoerd M H; Broos, Ludo A M; Mahfouz, Ahmed; Reinders, Marcel J T; Ferrari, Michel D; Tolner, Else A; de Vries, Boukje; van den Maagdenberg, Arn M J M
2017-05-01
Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α 1A subunit of voltage-gated Ca V 2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.
von Götz, Franz; Häussler, Susanne; Jordan, Doris; Saravanamuthu, Senthil Selvan; Wehmhöner, Dirk; Strüßmann, André; Lauber, Joerg; Attree, Ina; Buer, Jan; Tümmler, Burkhard; Steinmetz, Ivo
2004-01-01
The heterogeneous environment of the lung of the cystic fibrosis (CF) patient gives rise to Pseudomonas aeruginosa small colony variants (SCVs) with increased antibiotic resistance, autoaggregative growth behavior, and an enhanced ability to form biofilms. In this study, oligonucleotide DNA microarrays were used to perform a genome-wide expression study of autoaggregative and highly adherent P. aeruginosa SCV 20265 isolated from a CF patient's lung in comparison with its clonal wild type and a revertant generated in vitro from the SCV population. Most strikingly, SCV 20265 showed a pronounced upregulation of the type III protein secretion system (TTSS) and the respective effector proteins. This differential expression was shown to be biologically meaningful, as SCV 20265 and other hyperpiliated and autoaggregative SCVs with increased TTSS expression were significantly more cytotoxic for macrophages in vitro and were more virulent in a mouse model of respiratory tract infection than the wild type. The observed cytotoxicity and virulence of SCV 20265 required exsA, an important transcriptional activator of the TTSS. Thus, the prevailing assumption that P. aeruginosa is subject to selection towards reduced cytotoxicity and attenuated virulence during chronic CF lung infection might not apply to all clonal variants. PMID:15175297
Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.
Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D
2018-02-28
The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT (BAC) -Cre and ChAT (IRES) -Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors. Copyright © 2018 the authors 0270-6474/18/382177-12$15.00/0.