Altered Astrocyte-Neuron Interactions and Epileptogenesis in Tuberous Sclerosis Complex Disorder
2016-08-01
and physiological functions of wild - type and recombinant neurons, as well as the effects of Tsc1-deficient astrocytes on neuronal morphology and...intrinsic mTOR activation of synaptic activities on wild -type and recombinant neurons, as well as the effects of Tsc1- deficient astrocytes on neuronal...more dendritic spines than wild type, non-recombinant neurons. The latter show a similar spine density to that of pyramidal neurons in a TSC1 wild type
Branchini, A; Ferrarese, M; Lombardi, S; Mari, R; Bernardi, F; Pinotti, M
2016-10-01
Essentials Potentially null homozygous Factor(F)7 nonsense mutations are associated to variable bleeding symptoms. Readthrough of p.Ser112X (life-threatening) and p.Cys132X (moderate) stop codons was investigated. Readthrough-mediated insertion of wild-type or tolerated residues produce functional proteins. Functional readthrough over homozygous F7 nonsense mutations contributes to the bleeding phenotype. Background Whereas the rare homozygous nonsense mutations causing factor (F)VII deficiency may predict null conditions that are almost completely incompatible with life, they are associated with appreciable differences in hemorrhagic symptoms. The misrecognition of premature stop codons (readthrough) may account for variable levels of functional full-length proteins. Objectives To experimentally evaluate the basal and drug-induced levels of FVII resulting from the homozygous p.Cys132X and p.Ser112X nonsense mutations that are associated with moderate (132X) or life-threatening (112X) symptoms, and that are predicted to undergo readthrough with (132X) or without (112X) production of wild-type FVII. Methods We transiently expressed recombinant FVII (rFVII) nonsense and missense variants in human embryonic kidney 293 cells, and evaluated secreted FVII protein and functional levels by ELISA, activated FX generation, and coagulation assays. Results The levels of functional FVII produced by p.Cys132X and p.Ser112X mutants (rFVII-132X, 1.1% ± 0.2% of wild-type rFVII; rFVII-112X, 0.5% ± 0.1% of wild-type rFVII) were compatible with the occurrence of spontaneous readthrough, which was magnified by the addition of G418 - up to 12% of the wild-type value for the rFVII-132X nonsense variant. The predicted missense variants arising from readthrough abolished (rFVII-132Trp/Arg) or reduced (rFVII-112Trp/Cys/Arg, 22-45% of wild-type levels) secretion and function. These data suggest that the appreciable rescue of p.Cys132X function was driven by reinsertion of the wild-type residue, whereas the minimal p.Ser112X function was explained by missense changes permitting FVII secretion and function. Conclusions The extent of functional readthrough might explain differences in the bleeding phenotype of patients homozygous for F7 nonsense mutations, and prevent null conditions even for the most readthrough-unfavorable mutations. © 2016 International Society on Thrombosis and Haemostasis.
Grewal, S I; Han, B; Johnstone, K
1995-01-01
Pseudomonas tolaasii, the causal agent of brown blotch disease of Agaricus bisporus, spontaneously gives rise to morphologically distinct stable sectors, referred to as the phenotypic variant form, at the margins of the wild-type colonies. The phenotypic variant form is nonpathogenic and differs from the wild type in a range of biochemical and physiological characteristics. A genomic cosmid clone (pSISG29) from a wild-type P. tolaasii library was shown to be capable of restoring a range of characteristics of the phenotypic variant to those of the wild-type form, when present in trans. Subcloning and saturation mutagenesis analysis with Tn5lacZ localized a 3.0-kb region from pSISG29, designated the pheN locus, required for complementation of the phenotypic variant to the wild-type form. Marker exchange of the Tn5lacZ-mutagenized copy of the pheN locus into the wild-type strain demonstrated that a functional copy of the pheN gene is required to maintain the wild-type pathogenic phenotype and that loss of the pheN gene or its function results in conversion of the wild-type form to the phenotypic variant form. The pheN locus contained a 2,727-bp open reading frame encoding an 83-kDa protein. The predicted amino acid sequence of the PheN protein showed homology to the sensor and regulator domains of the conserved family of two component bacterial sensor regulator proteins. Southern hybridization analysis of pheN genes from the wild type and the phenotypic variant form revealed that DNA rearrangement occurs within the pheN locus during phenotypic variation. Analysis of pheN expression with a pheN::lacZ fusion demonstrated that expression is regulated by environmental factors. These results are related to a model for control for phenotypic variation in P. tolaasii. PMID:7642492
Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; ...
2016-03-03
The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dihong; Ni, Weimin; Stanley, Bruce A.
The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less
GPER Mediates Functional Endothelial Aging in Renal Arteries.
Meyer, Matthias R; Rosemann, Thomas; Barton, Matthias; Prossnitz, Eric R
2017-01-01
Aging is associated with impaired renal artery function, which is partly characterized by arterial stiffening and a reduced vasodilatory capacity due to excessive generation of reactive oxygen species by NADPH oxidases (Nox). The abundance and activity of Nox depends on basal activity of the heptahelical transmembrane receptor GPER; however, whether GPER contributes to age-dependent functional changes in renal arteries is unknown. This study investigated the effect of aging and Nox activity on renal artery tone in wild-type and GPER-deficient (Gper-/-) mice (4 and 24 months old). In wild-type mice, aging markedly impaired endothelium-dependent, nitric oxide (NO)-mediated relaxations to acetylcholine, which were largely preserved in renal arteries of aged Gper-/- mice. The Nox inhibitor gp91ds-tat abolished this difference by greatly enhancing relaxations in wild-type mice, while having no effect in Gper-/- mice. Contractions to angiotensin II and phenylephrine in wild-type mice were partly sensitive to gp91ds-tat but unaffected by aging. Again, deletion of GPER abolished effects of Nox inhibition on contractile responses. In conclusion, basal activity of GPER is required for the age-dependent impairment of endothelium-dependent, NO-mediated relaxation in the renal artery. Restoration of relaxation by a Nox inhibitor in aged wild-type but not Gper-/- mice strongly supports a role for Nox-derived reactive oxygen species as the underlying cause. Pharmacological blockers of GPER signaling may thus be suitable to inhibit functional endothelial aging of renal arteries by reducing Nox-derived oxidative stress and, possibly, the associated age-dependent deterioration of kidney function. © 2017 S. Karger AG, Basel.
Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.
2013-01-01
Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403
Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K
2008-05-01
Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The decreased pituitary-adrenal sensitivity to oxotremorine and restraint stress noted in M(1) knockout mice is consistent with M(1) being primarily a postsynaptic receptor. Conversely, the increased pituitary-adrenal sensitivity to these challenges noted in M(2) knockout mice is consistent with M(2) being primarily a presynaptic autoreceptor.
Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.
Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N
2011-01-14
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.
Enhancing Human Spermine Synthase Activity by Engineered Mutations
Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil
2013-01-01
Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611
Lin, Bowen; Hasegawa, Yu; Takane, Koki; Koibuchi, Nobutaka; Cao, Cheng; Kim-Mitsuyama, Shokei
2016-06-13
The high-fat Western diet is postulated to be associated with the onset and progression of Alzheimer's disease (AD). However, the role of high-fat-diet consumption in AD pathology is unknown. This study was undertaken to examine the role of high-fat-diet intake in AD. 5XFAD mice, a useful mouse model of AD, and control wild-type mice were fed (1) high-fat diet or (2) control diet for 10 weeks. The effects on cerebral AD pathology, cognitive function, and metabolic parameters were compared between each group of mice. High-fat diet significantly enhanced cerebrovascular β-amyloid (Aβ) deposition (P<0.05) and impaired cognitive function (P<0.05) in 5XFAD mice, but not in wild-type mice. High-fat diet enhanced hippocampal oxidative stress (P<0.05) and NADPH oxidase subunits, gp91(phox) (P<0.01) and p22(phox) (P<0.01) in 5XFAD mice, but not in wild-type mice. Furthermore, high-fat diet reduced cerebral occludin (P<0.05) in 5XFAD mice, but not in wild-type mice. Thus, 5XFAD mice exhibited greater susceptibility to high-fat diet than wild-type mice regarding cerebrovascular injury and cognitive impairment. On the other hand, 5XFAD mice fed high-fat diet exhibited much less increase in body weight, white adipose tissue weight, and adipocyte size than their wild-type counterparts. High-fat diet significantly impaired glucose tolerance in wild-type mice but not in 5XFAD mice. Thus, 5XFAD mice had much less susceptibility to high-fat-diet-induced metabolic disorders than wild-type mice. High-fat diet, independently of metabolic disorders, significantly promotes the progression of AD-like pathology through enhancement of cerebral amyloid angiopathy and oxidative stress. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability
Carmean, V.; Yonkers, M. A.; Tellez, M. B.; Willer, J. R.; Willer, G. B.; Gregg, R. G.; Geisler, R.; Neuhauss, S. C.
2015-01-01
The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons. PMID:26133798
Thompson, E L; O'Connor, W; Parker, L; Ross, P; Raftos, D A
2015-03-01
Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters. © 2015 John Wiley & Sons Ltd.
DNA Repair Modulates The Vulnerability of The Developing Brain to Alkylating Agents
Kisby, G.E.; Olivas, A.; Park, T.; Churchwell, M.; Doerge, D.; Samson, L. D.; Gerson, S.L.; Turker, M.S.
2009-01-01
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag-/-) or O6-methylguanine methyltransferase (Mgmt-/-), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt-/- neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag-/- neurons were for the most part significantly less sensitive than wild type or Mgmt-/- neurons to MAM and HN2. Aag-/- neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt-/- mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM treated Aag-/- or MGMT overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant. PMID:19162564
Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts
NASA Technical Reports Server (NTRS)
Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.;
1998-01-01
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
Insights into wild-type and mutant p53 functions provided by genetically engineered mice.
Donehower, Lawrence A
2014-06-01
Recent whole-exome sequencing studies of numerous human cancers have now conclusively shown that the TP53 tumor-suppressor gene is the most frequently mutated gene in human cancers. Despite extensive studies of the TP53 gene and its encoded protein (p53), our understanding of how TP53 mutations contribute to cancer initiation and progression remain incomplete. Genetically engineered mice with germline or inducible Trp53 somatic mutations have provided important insights into the mechanisms by which different types of p53 mutation influence cancer development. Trp53 germline mutations that alter specific p53 structural domains or posttranslation modification sites have benefitted our understanding of wild-type p53 functions in a whole organism context. Moreover, genetic approaches to reestablish functional wild-type p53 to p53-deficient tissues and tumors have increased our understanding of the therapeutic potential of restoring functional p53 signaling to cancers. This review outlines many of the key insights provided by the various categories of Trp53 mutant mice that have been generated by multiple genetic engineering approaches. © 2014 WILEY PERIODICALS, INC.
Therapeutic targeting of the p53 pathway in cancer stem cells
Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.
2013-01-01
Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602
Pak, K. J.; Ostrom, R. S.; Matsui, M.
2010-01-01
We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment. PMID:20349044
Pak, K J; Ostrom, R S; Matsui, M; Ehlert, F J
2010-05-01
We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg(-1)) 2-24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC(50) value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 microM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M(2) function is enhanced following streptozotocin treatment.
Gao, Xiao-Ming; Dilley, Rodney J; Samuel, Chrishan S; Percy, Elodie; Fullerton, Meryl J; Dart, Anthony M; Du, Xiao-Jun
2002-10-01
This paper addresses whether the enhanced left ventricular (LV) contractility and heart rate, seen in transgenic mice overexpressing beta -adrenergic receptor in the heart, might raise the incidence of LV rupture after myocardial infarct. Transgenic and wild-type mice underwent left coronary artery occlusion. Postinfarct deaths that occurred 1-7 days after surgery were analyzed. Hemodynamics, morphologic parameters, and collagen content in the LV were determined. A significantly lower incidence of LV rupture was observed in transgenic than in wild-type mice 3-5 days after myocardial infarct (2.5 versus 19.7%, p < 0.05), despite a similar infarct size between the two groups and better hemodynamic function in transgenic mouse hearts. Morphologic analysis showed a more severe infarct expansion in wild-type versus transgenic mice or in mice dying of rupture versus those that died of acute heart failure. Collagen content was higher in the LV of sham-operated transgenic than wild-type mice (p < 0.01) with both type I and type III collagen elevated. Such difference in collagen content between transgenic and wild-type mice was maintained in noninfarcted and infarcted LV. In conclusion, transgenic mice overexpressing beta -adrenergic receptor had a lower risk of cardiac rupture during the acute phase after infarction despite the markedly enhanced LV contractility and heart rate. As a hyperdynamic function due to beta-adrenergic activation would likely increase the risk of cardiac rupture and infarct expansion, the lack of rupture in this transgenic mouse model suggests that the interstitial collagen level is a more important factor than functional status in the pathogenesis of rupture and infarct expansion.
Tiwari, Sameeksha; Awasthi, Manika; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N
2017-10-23
Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.
Wanka, C; Brucker, D P; Bähr, O; Ronellenfitsch, M; Weller, M; Steinbach, J P; Rieger, J
2012-08-16
P53 has an important role in the processing of starvation signals. P53-dependent molecular mediators of the Warburg effect reduce glucose consumption and promote mitochondrial function. We therefore hypothesized that the retention of wild-type p53 characteristic of primary glioblastomas limits metabolic demands induced by deregulated signal transduction in the presence of hypoxia and nutrient depletion. Here we report that short hairpin RNA-mediated gene suppression of wild-type p53 or ectopic expression of mutant temperature-sensitive dominant-negative p53(V135A) increased glucose consumption and lactate production, decreased oxygen consumption and enhanced hypoxia-induced cell death in p53 wild-type human glioblastoma cells. Similarly, genetic knockout of p53 in HCT116 colon carcinoma cells resulted in reduced respiration and hypersensitivity towards hypoxia-induced cell death. Further, wild-type p53 gene silencing reduced the expression of synthesis of cytochrome c oxidase 2 (SCO2), an effector necessary for respiratory chain function. An SCO2 transgene reverted the metabolic phenotype and restored resistance towards hypoxia in p53-depleted and p53 mutant glioma cells in a rotenone-sensitive manner, demonstrating that this effect was dependent on intact oxidative phosphorylation. Supplementation with methyl-pyruvate, a mitochondrial substrate, rescued p53 wild-type but not p53 mutant cells from hypoxic cell death, demonstrating a p53-mediated selective aptitude to metabolize mitochondrial substrates. Further, SCO2 gene silencing in p53 wild-type glioma cells sensitized these cells towards hypoxia. Finally, lentiviral gene suppression of SCO2 significantly enhanced tumor necrosis in a subcutaneous HCT116 xenograft tumor model, compatible with impaired energy metabolism in these cells. These findings demonstrate that glioma and colon cancer cells with p53 wild-type status can skew the Warburg effect and thereby reduce their vulnerability towards tumor hypoxia in an SCO2-dependent manner. Targeting SCO2 may therefore represent a valuable strategy to enhance sensitivity towards hypoxia and may complement strategies targeting glucose metabolism.
AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.
Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R
2016-03-15
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.
AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload
Riedl, Isabelle; Osler, Megan E.; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A.; Chibalin, Alexander V.
2016-01-01
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5′-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3225Q and AMPKγ3-knockout (Prkag3−/−) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. PMID:26758685
Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.
Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel
2009-12-01
Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.
Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M
2001-05-01
A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.
Zn(II)-curc targets p53 in thyroid cancer cells.
Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella
2015-10-01
TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.
Hfq variant with altered RNA binding functions
Ziolkowska, Katarzyna; Derreumaux, Philippe; Folichon, Marc; Pellegrini, Olivier; Régnier, Philippe; Boni, Irina V.; Hajnsdorf, Eliane
2006-01-01
The interaction between Hfq and RNA is central to multiple regulatory processes. Using site-directed mutagenesis, we have found a missense mutation in Hfq (V43R) which strongly affects2 the RNA binding capacity of the Hfq protein and its ability to stimulate poly(A) tail elongation by poly(A)-polymerase in vitro. In vivo, overexpression of this Hfq variant fails to stimulate rpoS–lacZ expression and does not restore a normal growth rate in hfq null mutant. Cells in which the wild-type gene has been replaced by the hfqV43R allele exhibit a phenotype intermediate between those of the wild-type and of the hfq minus or null strains. This missense mutation derepresses Hfq synthesis. However, not all Hfq functions are affected by this mutation. For example, HfqV43R represses OppA synthesis as strongly as the wild-type protein. The dominant negative effect of the V43R mutation over the wild-type allele suggests that hexamers containing variant and genuine subunits are presumably not functional. Finally, molecular dynamics studies indicate that the V43R substitution mainly changes the position of the K56 and Y55 side chains involved in the Hfq–RNA interaction but has probably no effect on the folding and the oligomerization of the protein. PMID:16449205
Dominguez, Jessica A; Samocha, Alexandr J; Liang, Zhe; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M
2013-10-01
Nuclear factor-κB is a critical regulator of cell-survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase. Prospective, randomized controlled study. Animal laboratories in university medical centers. Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikkβ) and wild-type mice were subjected to sham laparotomy or cecal ligation and puncture. Animals were killed at 24 hours or followed 7 days for survival. Septic wild-type mice had decreased villus length compared with sham mice, whereas villus atrophy was further exacerbated in septic Vil-Cre/Ikkβ mice. Sepsis induced an increase in intestinal epithelial apoptosis compared with sham mice, which was further exacerbated in Vil-Cre/Ikkβ mice. Sepsis induced intestinal hyperpermeability in wild-type mice compared with sham mice, which was further exacerbated in septic Vil-Cre/Ikkβ mice. This was associated with increased intestinal expression of claudin-2 in septic wild-type mice, which was further increased in septic Vil-Cre/Ikkβ mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following cecal ligation and puncture, and interleukin 10 and monocyte chemoattractant protein-1 levels were higher in septic Vil-Cre/Ikkβ mice than in septic wild-type mice. All septic mice were bacteremic, but no differences in bacterial load were identified between wild-type and Vil-Cre/Ikkβ mice. To determine the functional significance of these results, animals were followed for survival. Septic wild-type mice had lower mortality than septic Vil-Cre/Ikkβ mice (47% vs 80%, p<0.05). Antitumor necrosis factor administration decreased intestinal apoptosis, permeability, and mortality in wild-type septic mice, and a similar improvement in intestinal integrity and survival were seen when antitumor necrosis factor was given to Vil-Cre/Ikkβ mice. Enterocyte-specific NF-kB has a beneficial role in sepsis by partially preventing sepsis-induced increases in apoptosis and permeability, which are associated with worsening mortality.
Wikmark, Ylva; Engelmark Cassimjee, Karim; Lihammar, Richard; Bäckvall, Jan-E
2016-01-01
A mobile region is proposed to be a flap that covers the active site of Candida antarctica lipase A. Removal of the mobile region retains the functional properties of the enzyme. Interestingly interfacial activation, required for the wild-type enzyme, was not observed for the truncated variant, although stability, activity, and stereoselectivity were very similar for the wild-type and variant enzymes. The variant followed classical Michaelis-Menten kinetics, unlike the wild type. Both gave the same relative specificity in the transacylation of a primary and a secondary alcohol in organic solvent. Furthermore, both showed the same enantioselectivity in transacylation of alcohols and the hydrolysis of alcohol esters, as well as in the hydrolysis of esters chiral at the acid part. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less
Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang
2013-01-01
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
Synaptopodin Limits TRPC6 Podocyte Surface Expression and Attenuates Proteinuria.
Yu, Hao; Kistler, Andreas; Faridi, Mohd Hafeez; Meyer, James Otto; Tryniszewska, Beata; Mehta, Dolly; Yue, Lixia; Dryer, Stuart; Reiser, Jochen
2016-11-01
Gain-of-function mutations of classic transient receptor potential channel 6 (TRPC6) were identified in familial FSGS, and increased expression of wild-type TRPC6 in glomeruli is observed in several human acquired proteinuric diseases. Synaptopodin, an actin binding protein that is important in maintaining podocyte function, is downregulated in various glomerular diseases. Here, we investigated whether synaptopodin maintains podocyte function by regulating podocyte surface expression and activity of TRPC6. We show indirect interaction and nonrandom association of synaptopodin and TRPC6 in podocytes. Knockdown of synaptopodin in cultured mouse podocytes increased the expression of TRPC6 at the plasma membrane, whereas overexpression of synaptopodin decreased it. Mechanistically, synaptopodin-dependent TRPC6 surface expression required functional actin and microtubule cytoskeletons. Overexpression of wild-type or FSGS-inducing mutant TRPC6 in synaptopodin-depleted podocytes enhanced TRPC6-mediated calcium influx and induced apoptosis. In vivo, knockdown of synaptopodin also caused increased podocyte surface expression of TRPC6. Administration of cyclosporin A, which stabilizes synaptopodin, reduced LPS-induced proteinuria significantly in wild-type mice but to a lesser extent in TRPC6 knockout mice. Furthermore, administration of cyclosporin A reversed the LPS-induced increase in podocyte surface expression of TRPC6 in wild-type mice. Our findings suggest that alteration in synaptopodin levels under disease conditions may modify intracellular TRPC6 channel localization and activity, which further contribute to podocyte dysfunction. Reducing TRPC6 surface levels may be a new approach to restoring podocyte function. Copyright © 2016 by the American Society of Nephrology.
Bujaldon, Sandrine; Kodama, Natsumi; Rappaport, Fabrice; Subramanyam, Rajagopal; de Vitry, Catherine; Takahashi, Yuichiro; Wollman, Francis-André
2017-01-09
The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Miyabara, Elen H; Nascimento, Tabata L; Rodrigues, Débora C; Moriscot, Anselmo S; Davila, Wilmer F; AitMou, Younss; deTombe, Pieter P; Mestril, Ruben
2012-04-01
Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.
Batten, Matthew L; Imanishi, Yoshikazu; Tu, Daniel C; Doan, Thuy; Zhu, Li; Pang, Jijing; Glushakova, Lyudmila; Moise, Alexander R; Baehr, Wolfgang; Van Gelder, Russell N.; Hauswirth, William W; Rieke, Fred; Palczewski, Krzysztof
2005-01-01
Background Leber congenital amaurosis (LCA), a heterogeneous early-onset retinal dystrophy, accounts for ~15% of inherited congenital blindness. One cause of LCA is loss of the enzyme lecithin:retinol acyl transferase (LRAT), which is required for regeneration of the visual photopigment in the retina. Methods and Findings An animal model of LCA, the Lrat −/− mouse, recapitulates clinical features of the human disease. Here, we report that two interventions—intraocular gene therapy and oral pharmacologic treatment with novel retinoid compounds—each restore retinal function to Lrat −/− mice. Gene therapy using intraocular injection of recombinant adeno-associated virus carrying the Lrat gene successfully restored electroretinographic responses to ~50% of wild-type levels (p < 0.05 versus wild-type and knockout controls), and pupillary light responses (PLRs) of Lrat −/− mice increased ~2.5 log units (p < 0.05). Pharmacological intervention with orally administered pro-drugs 9-cis-retinyl acetate and 9-cis-retinyl succinate (which chemically bypass the LRAT-catalyzed step in chromophore regeneration) also caused long-lasting restoration of retinal function in LRAT-deficient mice and increased ERG response from ~5% of wild-type levels in Lrat −/− mice to ~50% of wild-type levels in treated Lrat −/− mice (p < 0.05 versus wild-type and knockout controls). The interventions produced markedly increased levels of visual pigment from undetectable levels to 600 pmoles per eye in retinoid treated mice, and ~1,000-fold improvements in PLR and electroretinogram sensitivity. The techniques were complementary when combined. Conclusion Intraocular gene therapy and pharmacologic bypass provide highly effective and complementary means for restoring retinal function in this animal model of human hereditary blindness. These complementary methods offer hope of developing treatment to restore vision in humans with certain forms of hereditary congenital blindness. PMID:16250670
Balance of Go1α and Go2α expression regulates motor function via the striatal dopaminergic system.
Baron, J; Bilbao, A; Hörtnagl, H; Birnbaumer, L; Leixner, S; Spanagel, R; Ahnert-Hilger, G; Brunk, I
2018-05-10
The heterotrimeric G-protein Go with its splice variants, Go1α and Go2α, seems to be involved in the regulation of motor function but isoform specific effects are still unclear. We found that Go1α-/- knockouts performed worse on the rota-rod than Go2α-/- and wild type (WT) mice. In Go1+2α-/- mice motor function was partially recovered. Furthermore, Go1+2α-/- mice showed an increased spontaneous motor activity. Compared to wild types or Go2α-/- mice, Go1+2α-/- mice developed increased behavioural sensitization following repetitive cocaine treatment, but failed to develop conditioned place preference. Analysis of dopamine concentration and expression of D1 and D2 receptors unravelled splice-variant specific imbalances in the striatal dopaminergic system: In Go1α-/- mice dopamine concentration and vesicular monoamine uptake were increased compared to wild types. The expression of the D2 receptor was higher in Go1α-/- compared to wild type littermates, but unchanged in Go2α-/- mice. Deletion of both Go1α and Go2α re-established both dopamine and D2 receptor levels comparable to those in the wild type. Cocaine treatment had no effect on the ratio of D1 receptor to D2 receptor in Go1+2α-/- mutants, but decreased this ratio in Go2α-/- mice. Finally, we observed that the deletion of Go1α led to a threefold higher striatal expression of Go2α. Taken together our data suggest that a balance in the expression of Go1α and Go2α sustains normal motor function. Deletion of either splice variant results in divergent behavioural and molecular alterations in the striatal dopaminergic system. Deletion of both splice variants partially restores the behavioural and molecular changes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kiss, John Z.; Sack, Fred D.
1990-01-01
Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10° for NS 458 and about 70° for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots. Images Figure 2 Figure 3 Figure 4 PMID:11537476
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Sack, F. D.
1990-01-01
Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10 degrees for NS 458 and about 70 degrees for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots.
NASA Technical Reports Server (NTRS)
Wagner, T. A.; Cove, D. J.; Sack, F. D.
1997-01-01
Wild-type Ceratodon purpureus (Hedw.) Brid. protonemata grow up in the dark by negative gravitropism. When upright wild-type protonemata are reoriented 90 degrees, they temporarily grow down soon after reorientation ("initial reversal") and also prior to cytokinesis ("mitotic reversal"). A positively gravitropic mutant designated wrong- way response (wwr-1) has been isolated by screening ultraviolet light-mutagenized Ceratodon protonemata. Protonemata of wwr-l reoriented from the vertical to the horizontal grow down with kinetics comparable to those of the wild-type. Protonemata of wwr-1 also show initial and mitotic reversals where they temporarily grow up. Thus, the direction of gravitropism, initial reversal, and mitotic reversal are coordinated though each are opposite in wwr-1 compared to the wild-type. Normal plastid zonation is still maintained in dark-grown wwr-1 apical cells, but the plastids are more numerous and plastid sedimentation is more pronounced. In addition, wwr-1 apical cells are wider and the tips greener than in the wild-type. These data suggest that a functional WWR gene product is not necessary for the establishment of some gravitropic polarity, for gravitropism, or for the coordination of the reversals. Thus, the WWR protein may normally transduce information about cell orientation.
Effect of waxy (Low Amylose) on Fungal Infection of Sorghum Grain.
Funnell-Harris, Deanna L; Sattler, Scott E; O'Neill, Patrick M; Eskridge, Kent M; Pedersen, Jeffrey F
2015-06-01
Loss of function mutations in waxy, encoding granule bound starch synthase (GBSS) that synthesizes amylose, results in starch granules containing mostly amylopectin. Low amylose grain with altered starch properties has increased usability for feed, food, and grain-based ethanol. In sorghum, two classes of waxy (wx) alleles had been characterized for absence or presence of GBSS: wx(a) (GBSS(-)) and wx(b) (GBSS(+), with reduced activity). Field-grown grain of wild-type; waxy, GBSS(-); and waxy, GBSS(+) plant introduction accessions were screened for fungal infection. Overall, results showed that waxy grains were not more susceptible than wild-type. GBSS(-) and wild-type grain had similar infection levels. However, height was a factor with waxy, GBSS(+) lines: short accessions (wx(b) allele) were more susceptible than tall accessions (undescribed allele). In greenhouse experiments, grain from accessions and near-isogenic wx(a), wx(b), and wild-type lines were inoculated with Alternaria sp., Fusarium thapsinum, and Curvularia sorghina to analyze germination and seedling fitness. As a group, waxy lines were not more susceptible to these pathogens than wild-type, supporting field evaluations. After C. sorghina and F. thapsinum inoculations most waxy and wild-type lines had reduced emergence, survival, and seedling weights. These results are valuable for developing waxy hybrids with resistance to grain-infecting fungi.
The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism
Labrador, Juan Pablo; Azcoitia, Valeria; Tuckermann, Jan; Lin, Calvin; Olaso, Elvira; Mañes, Santos; Brückner, Katja; Goergen, Jean-Louis; Lemke, Greg; Yancopoulos, George; Angel, Peter; Martínez-A, Carlos; Klein, Rüdiger
2001-01-01
The discoidin domain receptor 2 (DDR2) is a member of a subfamily of receptor tyrosine kinases whose ligands are fibrillar collagens, and is widely expressed in postnatal tissues. We have generated DDR2-deficient mice to establish the in vivo functions of this receptor, which have remained obscure. These mice exhibit dwarfism and shortening of long bones. This phenotype appears to be caused by reduced chondrocyte proliferation, rather than aberrant differentiation or function. In a skin wound healing model, DDR2–/– mice exhibit a reduced proliferative response compared with wild-type littermates. In vitro, fibroblasts derived from DDR2–/– mutants proliferate more slowly than wild-type fibroblasts, a defect that is rescued by introduction of wild-type but not kinase-dead DDR2 receptor. Together our results suggest that DDR2 acts as an extracellular matrix sensor to modulate cell proliferation. PMID:11375938
Friend or Foe: MicroRNAs in the p53 network.
Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo
2018-04-10
The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.
Bajaj, Swati; Alam, Sk Kayum; Roy, Kumar Singha; Datta, Arindam; Nath, Somsubhra; Roychoudhury, Susanta
2016-07-01
Spindle assembly checkpoint governs proper chromosomal segregation during mitosis to ensure genomic stability. At the cellular level, this event is tightly regulated by UBE2C, an E2 ubiquitin-conjugating enzyme that donates ubiquitin to the anaphase-promoting complex/cyclosome. This, in turn, facilitates anaphase-onset by ubiquitin-mediated degradation of mitotic substrates. UBE2C is an important marker of chromosomal instability and has been associated with malignant growth. However, the mechanism of its regulation is largely unexplored. In this study, we report that UBE2C is transcriptionally activated by the gain-of-function (GOF) mutant p53, although it is transcriptionally repressed by wild-type p53. We showed that wild-type p53-mediated inhibition of UBE2C is p21-E2F4-dependent and GOF mutant p53-mediated transactivation of UBE2C is NF-Y-dependent. We further explored that DNA damage-induced wild-type p53 leads to spindle assembly checkpoint arrest by repressing UBE2C, whereas mutant p53 causes premature anaphase exit by increasing UBE2C expression in the presence of 5-fluorouracil. Identification of UBE2C as a target of wild-type and GOF mutant p53 further highlights the contribution of p53 in regulation of spindle assembly checkpoint. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Otero, Joel H; Lizák, Beata; Feige, Matthias J; Hendershot, Linda M
2014-10-03
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant.
Lei, Jiangtao; Qi, Ruxi; Wei, Guanghong; Nussinov, Ruth; Ma, Buyong
2016-03-21
Recent studies suggested that p53 aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, with adverse cancer consequences. The p53 aggregation-nucleating (251)ILTIITL(257) fragment is a key segment in wild-type p53 aggregation; however, an I254R mutation can prevent it. It was suggested that self-assembly of wild-type p53 and its cross-interaction with mutants differ from the classical amyloid nucleation-growth mechanism. Here, using replica exchange molecular dynamics (REMD) simulations, we studied the cross-interactions of this p53 core fragment and its aggregation rescue I254R mutant. We found that the core fragment displays strong aggregation propensity, whereas the gatekeeper I254R mutant tends to be disordered, consistent with experiments. Our cross-interaction results reveal that the wild-type p53 fragment promotes β-sheet formation of the I254R mutant by shifting the disordered mutant peptides into aggregating states. As a result, the system has similar oligomeric structures, inter-peptide interactions and free energy landscape as the wild type fragment does, revealing a prion-like process. We also found that in the cross-interaction system, the wild-type species has higher tendency to interact with the mutant than with itself. This phenomenon illustrates synergistic effects between the p53 (251)ILTIITL(257) fragment and the mutant resembling prion cross-species propagation, cautioning against exploiting it in drug discovery.
Otero, Joel H.; Lizák, Beata; Feige, Matthias J.; Hendershot, Linda M.
2014-01-01
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates. PMID:25143379
Dasmeh, Pouria; Kepp, Kasper P
2012-01-01
This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O(2)-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O(2)-consumption rate resembling workload, O(2) partial pressure resembling hypoxic stress, muscle cell size, and Mb concentration, resembling different organism-specific and compensatory variables. We find that O(2)-storage and -transport are distinct functions that rank mutants and wild type differently depending on O(2) partial pressure. Specifically, the wild type is near-optimal for storage at all conditions, but for transport only at severely hypoxic conditions. At normoxic conditions, low-affinity mutants are in fact better O(2)-transporters because they still have empty sites for O(2), giving rise to a larger [MbO(2)] gradient (more varying saturation curve). The distributions of functionality reveal that many mutants are near-neutral with respect to function, whereas only a few are strongly affected, and the variation in functionality increases dramatically at lower O(2) pressure. These results together show that conserved residues in wild type (WT) Mb were fixated under a selection pressure of low P(O2). Copyright © 2011 Elsevier Inc. All rights reserved.
Perng, Guey-Chuen; Maguen, Barak; Jin, Ling; Mott, Kevin R; Osorio, Nelson; Slanina, Susan M; Yukht, Ada; Ghiasi, Homayon; Nesburn, Anthony B; Inman, Melissa; Henderson, Gail; Jones, Clinton; Wechsler, Steven L
2002-02-01
After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.
Transposon based functional characterization of soybean genes
USDA-ARS?s Scientific Manuscript database
Type II transposable elements that use cut and paste mechanism for jumping from one genomic region to another is ideal in tagging and cloning genes. Precise excision from an insertion site in a mutant gene leads to regaining the wild-type function. Thus, function of a gene can be established based o...
Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1.
Fang, Ling; Du, William W; Lyu, Juanjuan; Dong, Jun; Zhang, Chao; Yang, Weining; He, Alina; Kwok, Yat Sze Sheila; Ma, Jian; Wu, Nan; Li, Feiya; Awan, Faryal Mehwish; He, Chengyan; Yang, Bing L; Peng, Chun; MacKay, Helen J; Yee, Albert J; Yang, Burton B
2018-05-23
TP53 mutations occur in many different types of cancers that produce mutant p53 proteins. The mutant p53 proteins have lost wild-type p53 activity and gained new functions that contribute to malignant tumor progression. Different p53 mutations create distinct profiles in loss of wild-type p53 activity and gain of functions. Targeting the consequences generated by the great number of p53 mutations would be extremely complex. Therefore, in this study we used a workaround and took advantage of the fact that mutant p53 cannot bind H2AX. Using this, we developed a new approach to repress the acquisition of mutant p53 functions. We show here that the delivery of a circular RNA circ-Ccnb1 inhibited the function of three p53 mutations. By microarray analysis and real-time PCR, we detected decreased circ-Ccnb1 expression levels in patients bearing breast carcinoma. Ectopic delivery of circ-Ccnb1 inhibited tumor growth and extended mouse viability. Using proteomics, we found that circ-Ccnb1 precipitated p53 in p53 wild-type cells, but instead precipitated Bclaf1 in p53 mutant cells. Further experiments showed that H2AX serves as a bridge, linking the interaction of circ-Ccnb1 and wild-type p53, thus allowing Bclaf1 to bind Bcl2 resulting in cell survival. In the p53 mutant cells, circ-Ccnb1 formed a complex with H2AX and Bclaf1, resulting in the induction of cell death. We found that this occurred in three p53 mutations. These results shed light on the possible development of new approaches to inhibit the malignancy of p53 mutations.
Chauhan, Jagat Singh; Dhanda, Sandeep Kumar; Singla, Deepak; Agarwal, Subhash M.; Raghava, Gajendra P. S.
2014-01-01
Overexpression of EGFR is responsible for causing a number of cancers, including lung cancer as it activates various downstream signaling pathways. Thus, it is important to control EGFR function in order to treat the cancer patients. It is well established that inhibiting ATP binding within the EGFR kinase domain regulates its function. The existing quinazoline derivative based drugs used for treating lung cancer that inhibits the wild type of EGFR. In this study, we have made a systematic attempt to develop QSAR models for designing quinazoline derivatives that could inhibit wild EGFR and imidazothiazoles/pyrazolopyrimidines derivatives against mutant EGFR. In this study, three types of prediction methods have been developed to design inhibitors against EGFR (wild, mutant and both). First, we developed models for predicting inhibitors against wild type EGFR by training and testing on dataset containing 128 quinazoline based inhibitors. This dataset was divided into two subsets called wild_train and wild_valid containing 103 and 25 inhibitors respectively. The models were trained and tested on wild_train dataset while performance was evaluated on the wild_valid called validation dataset. We achieved a maximum correlation between predicted and experimentally determined inhibition (IC50) of 0.90 on validation dataset. Secondly, we developed models for predicting inhibitors against mutant EGFR (L858R) on mutant_train, and mutant_valid dataset and achieved a maximum correlation between 0.834 to 0.850 on these datasets. Finally, an integrated hybrid model has been developed on a dataset containing wild and mutant inhibitors and got maximum correlation between 0.761 to 0.850 on different datasets. In order to promote open source drug discovery, we developed a webserver for designing inhibitors against wild and mutant EGFR along with providing standalone (http://osddlinux.osdd.net/) and Galaxy (http://osddlinux.osdd.net:8001) version of software. We hope our webserver (http://crdd.osdd.net/oscadd/ntegfr/) will play a vital role in designing new anticancer drugs. PMID:24992720
Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D
2009-02-01
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.
Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C.; Jones, Claire; Blohmke, Christoph J.; Pollard, Andrew J.; Magder, Laurence S.; Fasano, Alessio; Sztein, Marcelo B.
2018-01-01
ABSTRACT Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S. Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S. Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S. Typhi. PMID:29739901
Pleasant, LaTawnya; Ma, Qing; Devarajan, Mahima; Parameswaran, Priyanka; Drake, Keri; Siroky, Brian; Shay-Winkler, Kritton; Robbins, Jeffrey; Devarajan, Prasad
2017-09-01
The early events that signal renal dysfunction in presymptomatic heart failure are unclear. We tested the hypothesis that functional and mechanistic changes occur in the kidney that precede the development of symptomatic heart failure. We employed a transgenic mouse model with cardiomyocyte-specific overexpression of mutant α-B-crystallin that develops slowly progressive cardiomyopathy. Presymptomatic transgenic mice displayed an increase in serum creatinine (1.17 ± 0.34 vs. wild type 0.65 ± 0.16 mg/dl, P < 0.05) and in urinary neutrophil gelatinase-associated lipocalin (NGAL; 278.92 ± 176.24 vs. wild type 49.11 ± 22.79 ng/ml, P < 0.05) but no renal fibrosis. Presymptomatic transgenic mouse kidneys exhibited a twofold upregulation of the Ren1 gene, marked overexpression of renin protein in the tubules, and a worsened response to ischemia-reperfusion injury based on serum creatinine (2.77 ± 0.66 in transgenic mice vs. 2.01 ± 0.58 mg/dl in wild type, P < 0.05), urine NGAL (9,198.79 ± 3,799.52 in transgenic mice vs. 3,252.94 ± 2,420.36 ng/ml in wild type, P < 0.05), tubule dilation score (3.4 ± 0.5 in transgenic mice vs. 2.6 ± 0.5 in wild type, P < 0.05), tubule cast score (3.2 ± 0.4 in transgenic mice vs. 2.5 ± 0.5 in wild type, P < 0.05), and TdT-mediated dUTP nick-end labeling (TUNEL)-positive nuclei (10.1 ± 2.1 in the transgenic group vs. 5.7 ± 1.6 per 100 cells counted in wild type, P < 0.01). Our findings indicate functional renal impairment, urinary biomarker elevations, and induction of renin gene and protein expression in the kidney that occur in early presymptomatic heart failure, which increase the susceptibility to subsequent acute kidney injury. Copyright © 2017 the American Physiological Society.
FES kinase participates in KIT-ligand induced chemotaxis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisset, Edwige, E-mail: Edwige.Voisset@inserm.fr; Institut Paoli-Calmettes, Marseille; Universite de la Mediterranee, Aix-Marseille II
2010-02-26
FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicatedmore » in cell migration.« less
van der Hoeven, Ransome; Forst, Steven
2009-09-01
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.
Trienoic Fatty Acids Are Required to Maintain Chloroplast Function at Low Temperatures1
Routaboul, Jean-Marc; Fischer, Steven F.; Browse, John
2000-01-01
The chloroplast membranes of all higher plants contain very high proportions of trienoic fatty acids. To investigate how these lipid structures are important in photosynthesis, we have generated a triple mutant line of Arabidopsis that contains negligible levels of trienoic fatty acids. For mutant plants grown at 22°C, photosynthetic fluorescence parameters were indistinguishable from wild type at 25°C. Lowering the measurement temperature led to a small decrease in photosynthetic quantum yield, ΦII, in the mutant relative to wild-type controls. These and other results indicate that low temperature has only a small effect on photosynthesis in the short term. However, long-term growth of plants at 4°C resulted in decreases in fluorescence parameters, chlorophyll content, and thylakoid membrane content in triple-mutant plants relative to wild type. Comparisons among different mutant lines indicated that these detrimental effects of growth at 4°C are strongly correlated with trienoic fatty acid content with levels of 16:3 + 18:3, approximately one-third of wild type being sufficient to sustain normal photosynthetic function. In total, our results indicate that trienoic fatty acids are important to ensure the correct biogenesis and maintenance of chloroplasts during growth of plants at low temperatures. PMID:11115886
Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R
2011-11-01
We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (P<0.01) and lung (P<0.001). Activation of endogenous protein C following infusion of thrombin was decreased by 90% in knock-in mice compared with wild-type mice (P<0.05). Carotid artery thrombosis induced by photochemical injury occurred more rapidly in knock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; P<0.05). No differences in serum cytokine levels were detected between knock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.
Zhou, H C; Jin, L; Li, J; Wang, X J
2016-06-03
Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion.
Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice
Suo, Meng; Wang, Ping
2016-01-01
Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985
Li, Mo-lin; Li, Chuan-gang; Shu, Xiao-hong; Jia, Yu-jie; Qin, Zhi-hai
2006-03-01
To establish mouse lymphoma EL4 tumor-bearing mouse models in wild type C57BL/6 mice and nude C57BL/6 mice respectively, and to further investigate the immunological mechanisms of anti-tumor effect of melphalan. Mouse lymphoma EL4 cells were inoculated subcutaneously into wild type C57BL/6 mice (immune-competent mice). Twelve days later, melphalan of different doses were administered intraperitoneally to treat these wild type C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded subsequently to find out the minimal dose of melphalan that could cure the tuomr-bearing mice. Then the same amount of EL4 tumor cells were inoculated subcutaneously into wild type C57BL/6 mice and nude C57BL/6 mice (T cell-deficient mice) simultaneously, which had the same genetic background of C57BL/6. Twelve days later, melphalan of the minimal dose was given intraperitoneally to treat both the wild type and nude C57BL/6 tuomr-bearing mice. Tumor sizes were observed and recorded in these two different types of mice subsequently. A single dose of melphalan (7.5 mg/kg) could cure EL4 tumor-bearing wild type C57BL/6 mice, but could not induce tumor regression in EL4 tumor-bearing nude C57BL/6 mice. A single dose of melphalan has obvious anti-tumor effect on mouse lymphoma EL4 tumor-bearing wild type C57BL/6mice, which requires the involvement of T lymphocytes in the host probably related to their killing functions.
Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.
Sugimoto, H; Ikeda, K; Kawakami, K
2018-06-01
Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Li, Mo-Lin; Li, Chuan-Gang; Shu, Xiao-Hong; Li, Ming-Xia; Jia, Yu-Jie; Qin, Zhi-Hai
2007-11-01
To investigate the immunological mechanism of anti-tumor effect of 5-FU by establishing lymphoma EL4 tumor-bearing mouse models in wild type C57BL/6 mice and nude C57BL/6 mice, respectively. The mouse lymphoma EL4 cells were inoculated subcutaneously into wild type C57BL/6 mice (immune-competent mice). Twelve days later, 5-FU of different doses was administered intraperitoneally to treat these wild type C57BL/6 tumor-bearing mice. The size of tumors in the wild type C57BL/6 mice was observed and recorded to explore the minimal dose of 5-FU that could cure the tumor-bearing mice. Then the same amount of EL4 tumor cells was inoculated subcutaneously into wild type C57BL/6 mice and nude C57BL/6 mice (T cell-deficient mice) simultaneously, which had the same genetic background of C57BL/6. Twelve days later, 5-FU of the minimal dose was given intraperitoneally to treat both the wild type and nude C57BL/6 tumor-bearing mice. The size of tumors in the two different types of mice was observed and recorded. A single dose of 5-FU (75 mg/kg) cured both the EL4 tumor-bearing wild type C57BL/6 mice and the EL4 tumor-bearing nude C57BL/6 mice in the first week. Two weeks after 5-FU treatment, all of the nude mice died of tumor relapse while most of the wild type C57BL/6 mice were fully recovered. A single dose of 5-FU has marked anti-tumor effects on lymphoma EL4 tumor-bearing C57BL/6 mice with or without T lymphocytes. The relapse of tumors after 5-FU treatment might be related to the function of T lymphocytes.
Coelho, J C; Tucker, R; Mattoon, J; Roberts, G; Waiting, D K; Mealey, K L
2009-10-01
P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.
Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta
2011-05-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.
Wild worm embryogenesis harbors ubiquitous polygenic modifier variation.
Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V
2015-08-22
Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture.
Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.
Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi
2004-01-01
Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.
Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of Dcx
Wang, Yu; Yin, Xiuyin; Rosen, Glenn; Gabel, Lisa; Guadiana, Sarah M.; Sarkisian, Matthew R; Galaburda, Albert M.; LoTurco, Joseph J.
2011-01-01
The dyslexia-associated gene DCDC2 is a member of the DCX family of genes known to play roles in neurogenesis, neuronal migration and differentiation. Here we report the first phenotypic analysis of a Dcdc2 knockout mouse. Comparisons between Dcdc2 knockout mice and wild type littermates revealed no significant differences in neuronal migration, neocortical lamination, neuronal cilliogenesis or dendritic differentiation. Considering previous studies showing genetic interactions and potential functional redundancy among members of the DCX family, we tested whether decreasing Dcx expression by RNAi would differentially impair neurodevelopment in Dcdc2 knockouts and wild type mice. Consistent with this hypothesis, we found that deficits in neuronal migration, and dendritic growth caused by RNAi of Dcx were more severe in Dcdc2 knockouts than in wild type mice with the same transfection. These results indicate that Dcdc2 is not required for neurogenesis, neuronal migration or differentiation in mice, but may have partial functional redundancy with Dcx. PMID:21689730
Pearson, J L; Pintel, D J
2000-03-30
Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences. Copyright 2000 Academic Press.
N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor*
Veldhuis, Nicholas A.; Lew, Michael J.; Abogadie, Fe C.; Poole, Daniel P.; Jennings, Ernest A.; Ivanusic, Jason J.; Eilers, Helge; Bunnett, Nigel W.; McIntyre, Peter
2012-01-01
The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca2+]i) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1−/− mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission. PMID:22570472
Poythress, J C; Affolter, James M
2018-04-14
Because of concerns over recent declines in overall biodiversity in suburban areas, homeowners are attempting to improve the ecological functioning of their landscapes by incorporating native plants. Native plants are important for supporting native herbivorous insects, but it is unknown whether the native plants that are commercially available, typically cultivated varieties (cultivars) of a single genotype, are equally effective as food sources as the local, wild-type plants. We compared the hemipteran communities feeding on cultivars and wild-propagated plants for four species of native perennials commonly used as ornamentals. Of 65 hemipteran species collected, 35 exhibited a preference for some plant species over others, indicating a high degree of host-plant specialization. Moreover, the insect community associated with cultivars was distinct from the insect community associated with wild-type plants for each plant species, with three to four insect species accounting for most of the observed difference. Total insect abundance and insect biomass differed between cultivars and wild-propagated plants, but the direction of the difference changed over time and was not consistent among plant species. Species richness and a diversity index (the Q statistic) did not differ between cultivars and wild-type plants. These data suggest that abundance and diversity of hemipteran insects does not depend on the source of the plant material per se, but rather on the particular characteristics of cultivars that distinguish them from the wild type.
Taxonomic and functional trait diversity of wild bees in different urban settings.
Normandin, Étienne; Vereecken, Nicolas J; Buddle, Christopher M; Fournier, Valérie
2017-01-01
Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.
Taxonomic and functional trait diversity of wild bees in different urban settings
Buddle, Christopher M.; Fournier, Valérie
2017-01-01
Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services. PMID:28286711
Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Schnellmann, Rick G; Lemasters, John J; Zhong, Zhi
2015-07-01
Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Renal proximal tubule function is preserved in Cftrtm2camΔF508 cystic fibrosis mice
Kibble, J D; Balloch, K J D; Neal, A M; Hill, C; White, S; Robson, L; Green, R; Taylor, C J
2001-01-01
Changes in proximal tubule function have been reported in cystic fibrosis patients. The aim of this study was to investigate proximal tubule function in the Cftrtm2camΔF508 cystic fibrosis (CF) mouse model. A range of techniques were used including renal clearance studies, in situ microperfusion, RT-PCR and whole-cell patch clamping. Renal Na+ clearance was similar in wild-type (1.4 ± 0.3 μl min−1, number of animals, N= 12) and CF mice (1.6 ± 0.4 μl min−1, N= 7) under control conditions. Acute extracellular volume expansion resulted in significant natriuresis in wild-type (7.0 ± 0.8 μl min−1, N= 8) and CF mice (9.3 ± 1.4 μl min−1, N= 9); no difference between genotypes was observed. In situ microperfusion revealed that fluid absorptive rate (Jv) was similar under control conditions between wild-type (2.2 ± 0.4 nl mm−1 min−1, n= 10) and CF mice (1.9 ± 0.3 nl mm−1 min−1, n= 11). Addition of a forskolin-dibutyryl cAMP (db-cAMP) cocktail to the perfusate caused no significant change in Jv in either wild-type (2.6 ± 0.7 nl mm−1 min−1, n= 10) or Cftrtm2camΔF508 mice (2.0 ± 0.5 nl mm−1 min−1, n= 10). CFTR expression was confirmed in samples of outer cortex using RT-PCR. However, no evidence for functional CFTR was obtained when outer cortical cells were stimulated with protein kinase A or forskolin-db-cAMP using whole-cell patch clamping. In conclusion, no functional deficit in proximal tubule function was found in Cftrtm2camΔF508 mice. This may be a consequence of a lack of whole-cell cAMP-dependent Cl− conductance in mouse proximal tubule cells. PMID:11306663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, E.; Mear, J; Grabowski, G.A.
1994-09-01
Numerous mutations ({approximately}45) of the acid {beta}-glucosidase gene have been identified in patients with Gaucher disease. Many of these have been characterized by partial sequencing of cDNAs derived by RT-PCR or PCR of genomic DNA. In addition, genotype/phenotype correlations have been based on screening for known mutations. Thus, only a part of the gene is characterized in any population of affected patients. Several Gaucher disease alleles contain multiple, authentic point mutations that raises concern about conclusions based on only partial genetic characterization. Several wild-type cDNAs for acid {beta}-glucosidase have been sequenced. One contained a cloning artifact encoding R495H. We expressedmore » this cDNA and showed that the R495H enzyme had normal kinetic and stability properties. A disease-associated allele encoding R496H has been found by several groups. The close association and similarities of these two substitutions led us to question the disease casuality of the R496H allele. To evaluate this, we created and/or expressed cDNAs encoding R495, R496 (wild-type), (R495H, R496), (R495, R496H) and (R495H, R496H). The (wild-type) and (R495H, R496) enzymes had indistinguishable properties whereas the (R495, R496H) enzyme was essentially inactive. The introduction of both mutations (R495H, R496H) produced an enzyme whose activity was 25 to 50% of the wild-type. These results indicate that a pseudoreversion to a functional enzyme can occur by introducing a functionally neutral mutation together with a severe mutation. These results have major implications to structure/function and genotype/phenotype correlations in this disease.« less
Miller, Nathan D; Durham Brooks, Tessa L; Assadi, Amir H; Spalding, Edgar P
2010-10-01
Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca(2+)-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function.
Miller, Nathan D.; Durham Brooks, Tessa L.; Assadi, Amir H.; Spalding, Edgar P.
2010-01-01
Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca2+-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function. PMID:20647506
van der Hoeven, Ransome; Forst, Steven
2009-01-01
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded β-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the ΔopnS strain. Coinjection of the wild-type and ΔopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or ΔopnS strain were colonized by the wild-type strain. In addition, the ΔopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The ΔopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment. PMID:19465651
Sharma, Reetu; Sastry, G Narahari
2015-01-01
Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.
Kimura, Yoshio; Tanaka, Chihiro; Sasaki, Katsuho; Sasaki, Masashi
2017-01-01
Diadenosine polyphosphates (ApnA) are thought to act as signalling molecules regulating stress responses and biofilm formation in prokaryotes. However, ApnA function in Myxococcus xanthus remains unknown. Here, we investigated the role of ApnA in M. xanthus, using the wild-type and ApnA hydrolase (apaH) mutant strains exposed to various stress conditions. In both wild-type and apaH mutant cells cultured on starvation medium (CF agar), the levels of intracellular diadenosine tetraphosphate (Ap4A) and pentaphosphate (Ap5A) increased several fold during the first 16 h of development and decreased gradually thereafter. The levels of Ap4A and Ap5A in the apaH mutant were about 5- and 11-fold higher than those in the wild-type strain at 16 h, respectively. ApnA hydrolase activity of the wild-type strain increased 1.5-fold during the first 8 h of development, and it then gradually decreased. The apaH mutant formed spores 1-2 days after the wild-type strain did, and the yield of viable spores was 5.5 % of that in the wild-type strain 5 days after inoculation onto CF agar. These results suggest the possibility that high intracellular levels of Ap4A and/or Ap5A may inhibit M. xanthus sporulation at the early stage of development and that the bacteria reduce intracellular Ap4A and Ap5A accumulation through ApnA hydrolase activity.
Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.
Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H
1997-05-15
Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.
Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment.
Bialecka, Monika; Wilson, Valerie; Deschamps, Jacqueline
2010-11-01
Cdx transcription factors are required for axial extension. Cdx genes are expressed in the posterior growth zone, a region that supplies new cells for axial elongation. Cdx2(+/-)Cdx4(-/-) (Cdx2/4) mutant embryos show abnormalities in axis elongation from E8.5, culminating in axial truncation at E10.5. These data raised the possibility that the long-term axial progenitors of Cdx mutants are intrinsically impaired in their ability to contribute to posterior growth. We investigated whether we could identify cell-autonomous defects of the axial progenitor cells by grafting mutant cells into a wild type growth zone environment. We compared the contribution of GFP labeled mutant and wild type progenitors grafted to unlabeled wild type recipients subsequently cultured over the period during which Cdx2/4 defects emerge. Descendants of grafted cells were scored for their contribution to differentiated tissues in the elongating axis and to the posterior growth zone. No difference between the contribution of descendants from wild type and mutant grafted progenitors was detected, indicating that rescue of the Cdx mutant progenitors by the wild type recipient growth zone is provided non-cell autonomously. Recently, we showed that premature axial termination of Cdx mutants can be partly rescued by stimulating canonical Wnt signaling in the posterior growth zone. Taken together with the data shown here, this suggests that Cdx genes function to maintain a signaling-dependent niche for the posterior axial progenitors. Copyright © 2010 Elsevier Inc. All rights reserved.
Cellular receptor traffic is essential for productive duck hepatitis B virus infection.
Breiner, K M; Schaller, H
2000-03-01
We have investigated the mechanism of duck hepatitis B virus (DHBV) entry into susceptible primary duck hepatocytes (PDHs), using mutants of carboxypeptidase D (gp180), a transmembrane protein shown to act as the primary cellular receptor for avian hepatitis B virus uptake. The variant proteins were abundantly produced from recombinant adenoviruses and tested for the potential to functionally outcompete the endogenous wild-type receptor. Overexpression of wild-type gp180 significantly enhanced the efficiency of DHBV infection in PDHs but did not affect ongoing DHBV replication, an observation further supporting gp180 receptor function. A gp180 mutant deficient for endocytosis abolished DHBV infection, indicating endocytosis to be the route of hepadnaviral entry. With further gp180 variants, carrying mutations in the cytoplasmic domain and characterized by an accelerated turnover, the ability of gp180 to function as a DHBV receptor was found to depend on a wild-type-like sorting phenotype which largely avoids transport toward the endolysosomal compartment. Based on these data, we propose a model in which a distinct intracellular DHBV traffic to the endosome, but not beyond, is a prerequisite for completion of viral entry, i.e., for fusion and capsid release. Furthermore, the deletion of the two enzymatically active carboxypeptidase domains of gp180 did not lead to a loss of receptor function.
Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
Cesaroni, Valentina; Gregori, Andrej; Repetti, Margherita; Romano, Chiara; Orrù, Germano; Botta, Laura; Girometta, Carolina; Guglielminetti, Maria Lidia; Savino, Elena
2017-01-01
Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions. PMID:28115973
Brandalise, Federico; Cesaroni, Valentina; Gregori, Andrej; Repetti, Margherita; Romano, Chiara; Orrù, Germano; Botta, Laura; Girometta, Carolina; Guglielminetti, Maria Lidia; Savino, Elena; Rossi, Paola
2017-01-01
Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions.
Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.
Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio
2014-01-01
UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.
Yee, Jason R.; Kenkel, William; Caccaviello, John C.; Gamber, Kevin; Simmons, Phil; Nedelman, Mark; Kulkarni, Praveen; Ferris, Craig F.
2015-01-01
In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1). Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type vs. knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain. PMID:25745388
Shinohara, Eric T; Geng, Ling; Tan, Jiahui; Chen, Heidi; Shir, Yu; Edwards, Eric; Halbrook, James; Kesicki, Edward A; Kashishian, Adam; Hallahan, Dennis E
2005-06-15
DNA-dependent protein kinase (DNA-PK)-defective severe combined immunodeficient (SCID) mice have a greater sensitivity to ionizing radiation compared with wild-type mice due to deficient repair of DNA double-strand break. SCID cells were therefore studied to determine whether radiosensitization by the specific inhibitor of DNA-PK, IC87361, is eliminated in the absence of functional DNA-PK. IC87361 enhanced radiation sensitivity in wild-type C57BL6 endothelial cells but not in SCID cells. The tumor vascular window model was used to assess IC87361-induced radiosensitization of SCID and wild-type tumor microvasculature. Vascular density was 5% in irradiated SCID host compared with 50% in C57BL6 mice (P < 0.05). IC87361 induced radiosensitization of tumor microvasculature in wild-type mice that resembled the radiosensitive phenotype of tumor vessels in SCID mice. Radiosensitization by IC87361 was eliminated in SCID tumor vasculature, which lack functional DNA-PK. Irradiated LLC and B16F0 tumors implanted into SCID mice showed greater tumor growth delay compared with tumors implanted into either wild-type C57BL6 or nude mice. Furthermore, LLC tumors treated with radiation and IC87361 showed tumor growth delay that was significantly greater than tumors treated with radiation alone (P < 0.01 for 3 Gy alone versus 3 Gy + IC87361). DNA-PK inhibitors induced no cytotoxicity and no toxicity in mouse normal tissues. Mouse models deficient in enzyme activity are useful to assess the specificity of novel kinase inhibitors. DNA-PK is an important target for the development of novel radiation-sensitizing drugs that have little intrinsic cytotoxicity.
Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba
2017-08-01
Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Pollard, Andrew J; Magder, Laurence S; Fasano, Alessio; Sztein, Marcelo B; Fraser, Claire M
2018-05-08
Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S. Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S. Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S. Typhi. IMPORTANCE S. Typhi is a significant cause of systemic febrile morbidity in settings with poor sanitation and limited access to clean water. It has been demonstrated that the human gut microbiota can influence mucosal immune responses, but there is little information available on the impact of the human gut microbiota on clinical outcomes following exposure to enteric pathogens. Here, we describe differences in the composition and function of the gut microbiota in healthy adult volunteers enrolled in a typhoid vaccine trial and report that these differences are associated with host susceptibility to or protection from typhoid after challenge with wild-type S Typhi. Our observations have important implications in interpreting the efficacy of oral attenuated vaccines against enteric pathogens in diverse populations. Copyright © 2018 Zhang et al.
Wiesmann, Maximilian; Roelofs, Monica; van der Lugt, Robert; Heerschap, Arend; Kiliaan, Amanda J; Claassen, Jurgen Ahr
2017-07-01
Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.
Cataracts and Microphthalmia Caused by a Gja8 Mutation in Extracellular Loop 2
Cheng, Catherine; White, Thomas W.; Gong, Xiaohua
2012-01-01
The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans. PMID:23300808
Donnison, Iain S; Gay, Alan P; Thomas, Howard; Edwards, Keith J; Edwards, David; James, Caron L; Thomas, Ann M; Ougham, Helen J
2007-01-01
A maize (Zea mays) senescence-associated legumain gene, See2beta, was characterized at the physiological and molecular levels to determine its role in senescence and resource allocation. A reverse-genetics screen of a maize Mutator (Mu) population identified a Mu insertion in See2beta. Maize plants homozygous for the insertion were produced. These See2 mutant and sibling wild-type plants were grown under high or low quantities of nitrogen (N). The early development of both genotypes was similar; however, tassel tip and collar emergence occurred earlier in the mutant. Senescence of the mutant leaves followed a similar pattern to that of wild-type leaves, but at later sampling points mutant plants contained more chlorophyll than wild-type plants and showed a small extension in photosynthetic activity. Total plant weight was higher in the wild-type than in the mutant, and there was a genotype x N interaction. Mutant plants under low N maintained cob weight, in contrast to wild-type plants under the same treatment. It is concluded, on the basis of transposon mutagenesis, that See2beta has an important role in N-use and resource allocation under N-limited conditions, and a minor but significant function in the later stages of senescence.
RLIP76 Protein Knockdown Attenuates Obesity Due to a High-fat Diet*
Singhal, Sharad S.; Figarola, James; Singhal, Jyotsana; Reddy, Marpadga A.; Liu, Xueli; Berz, David; Natarajan, Rama; Awasthi, Sanjay
2013-01-01
Feeding a Western high-fat diet (HFD) to C57BL/6 mice induces obesity, associated with a chronic inflammatory state, lipid transport, and metabolic derangements, and organ system effects that particularly prominent in the kidneys. Here, we report that RLIP76 homozygous knock-out (RLIP76−/−) mice are highly resistant to obesity as well as these other features of metabolic syndrome caused by HFD. The normal increase in pro-inflammatory and fibrotic markers associated with HFD induced obesity in wild-type C57B mice was broadly and nearly completely abrogated in RLIP76−/− mice. This is a particularly striking finding because chemical markers of oxidative stress including lipid hydroperoxides and alkenals were significantly higher in RLIP76−/− mice. Whereas HFD caused marked suppression of AMPK in wild-type C57B mice, RLIP76−/− mice had baseline activation of AMP-activated protein kinase, which was not further affected by HFD. The baseline renal function was reduced in RLIP76−/− mice as compared with wild-type, but was unaffected by HFD, in marked contrast to severe renal impairment and glomerulopathy in the wild-type mice given HFD. Our findings confirm a fundamental role of RLIP76 in regulating the function of obesity-promoting pro-inflammatory cytokines, and provide a novel mechanism for targeted therapy of obesity and metabolic syndrome. PMID:23821548
Thermodynamic effects of replacements of Pro residues in helix interiors of maltose-binding protein.
Prajapati, R S; Lingaraju, G M; Bacchawat, Kiran; Surolia, Avadhesha; Varadarajan, Raghavan
2003-12-01
Introduction of Pro residues into helix interiors results in protein destabilization. It is currently unclear if the converse substitution (i.e., replacement of Pro residues that naturally occur in helix interiors would be stabilizing). Maltose-binding protein is a large 370-amino acid protein that contains 21 Pro residues. Of these, three nonconserved residues (P48, P133, and P159) occur at helix interiors. Each of the residues was replaced with Ala and Ser. Stabilities were characterized by differential scanning calorimetry (DSC) as a function of pH and by isothermal urea denaturation studies as a function of temperature. The P48S and P48A mutants were found to be marginally more stable than the wild-type protein. In the pH range of 5-9, there is an average increase in T(m) values of P48A and P48S of 0.4 degrees C and 0.2 degrees C, respectively, relative to the wild-type protein. The other mutants are less stable than the wild type. Analysis of the effects of such Pro substitutions in MBP and in three other proteins studied to date suggests that substitutions are more likely to be stabilizing if the carbonyl group i-3 or i-4 to the mutation site is not hydrogen bonded in the wild-type protein. Copyright 2003 Wiley-Liss, Inc.
Wild worm embryogenesis harbors ubiquitous polygenic modifier variation
Paaby, Annalise B; White, Amelia G; Riccardi, David D; Gunsalus, Kristin C; Piano, Fabio; Rockman, Matthew V
2015-01-01
Embryogenesis is an essential and stereotypic process that nevertheless evolves among species. Its essentiality may favor the accumulation of cryptic genetic variation (CGV) that has no effect in the wild-type but that enhances or suppresses the effects of rare disruptions to gene function. Here, we adapted a classical modifier screen to interrogate the alleles segregating in natural populations of Caenorhabditis elegans: we induced gene knockdowns and used quantitative genetic methodology to examine how segregating variants modify the penetrance of embryonic lethality. Each perturbation revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers that may have little effect individually but which in aggregate can dramatically influence penetrance. Phenotypes were mediated by many modifiers, indicating high polygenicity, but the alleles tend to act very specifically, indicating low pleiotropy. Our findings demonstrate the extent of conditional functionality in complex trait architecture. DOI: http://dx.doi.org/10.7554/eLife.09178.001 PMID:26297805
Ding, Jianqiang; Yannam, Govardhana R.; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I.; Wong, Ronald J.; Avsar, Yesim; Guha, Chandan; Perlmutter, David H.; Fox, Ira J.; Roy-Chowdhury, Jayanta
2011-01-01
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z–expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%–98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z–expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals. PMID:21505264
Socioecological predictors of immune defences in wild spotted hyenas
Flies, Andrew S.; Mansfield, Linda S.; Flies, Emily J.; Grant, Chris K.; Holekamp, Kay E.
2016-01-01
Summary Social rank can profoundly affect many aspects of mammalian reproduction and stress physiology, but little is known about how immune function is affected by rank and other socio-ecological factors in free-living animals.In this study we examine the effects of sex, social rank, and reproductive status on immune function in long-lived carnivores that are routinely exposed to a plethora of pathogens, yet rarely show signs of disease.Here we show that two types of immune defenses, complement-mediated bacterial killing capacity (BKC) and total IgM, are positively correlated with social rank in wild hyenas, but that a third type, total IgG, does not vary with rank.Female spotted hyenas, which are socially dominant to males in this species, have higher BKC, and higher IgG and IgM concentrations, than do males.Immune defenses are lower in lactating than pregnant females, suggesting the immune defenses may be energetically costly.Serum cortisol and testosterone concentrations are not reliable predictors of basic immune defenses in wild female spotted hyenas.These results suggest that immune defenses are costly and multiple socioecological variables are important determinants of basic immune defenses among wild hyenas. Effects of these variables should be accounted for when attempting to understand disease ecology and immune function. PMID:27833242
Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction.
Suen, Der Fen; Huang, Anthony H C
2007-01-05
Cell wall hydrolases are well documented to be present on pollen, but their roles on the stigma during sexual reproduction have not been previously demonstrated. We explored the function of the tapetum-synthesized xylanase, ZmXYN1, on maize (Zea mays L.) pollen. Transgenic lines (xyl-less) containing little or no xylanase in the pollen coat were generated with use of an antisense construct of the xylanase gene-coding region driven by the XYN1 gene promoter. Xyl-less and wild-type plants had similar vegetative growth. Electron microscopy revealed no appreciable morphological difference in anther cells and pollen between xyl-less lines and the wild type, whereas immunofluorescence microscopy and biochemical analyses indicated an absence of xylanase on xyl-less pollen. Xyl-less pollen germinated as efficiently as wild-type pollen in vitro in a liquid medium but less so on gel media of increasing solidity or on silk, which is indicative of partial impaired water uptake. Once germinated in vitro or on silk, the xyl-less and wild-type pollen tubes elongated at comparable rates. Tubes of germinated xyl-less pollen on silk did not penetrate into the silk as efficiently as tubes of wild-type pollen, and this lower efficiency could be overcome by the addition of xylanase to the silk. For wild-type pollen, coat xylanase activity on oat spelled xylan in vitro and tube penetration into silk were inhibited by xylose but not glucose. The overall findings indicate that maize pollen coat xylanase facilitates pollen tube penetration into silk via enzymatic xylan hydrolysis.
Davidson, F F; Loewen, P C; Khorana, H G
1994-01-01
A disulfide bond that is evidently conserved in the guanine nucleotide-binding protein-coupled receptors is present in rhodopsin between Cys-110 and Cys-187. We have replaced these two cysteine residues by alanine residues and now report on the properties of the resulting rhodopsin mutants. The mutant protein C110A/C187A expressed in COS cells resembles wild-type rhodopsin in the ground state. It folds correctly to bind 11-cis-retinal and form the characteristic rhodopsin chromophore. It is inert to hydroxylamine in the dark, and its stability to dark thermal decay is reduced, relative to that of the wild type, by a delta delta G not equal to of only -2.9 kcal/mol. Further, the affinities of the mutant and wild-type rhodopsins to the antirhodopsin antibody rho4D2 are similar, both in the dark and in light. However, the metarhodopsin II (MII) and MIII photointermediates of the mutant are less stable than those formed by the wild-type rhodopsin. Although the initial rates of transducin activation are the same for both mutant and wild-type MII intermediates at 4 degrees C, at 15 degrees C the MII photointermediate in the mutant decays more than 20 times faster than in wild type. We conclude that the disulfide bond between Cys-110 and Cys-187 is a key component in determining the stability of the MII structure and its coupling to transducin activation. PMID:8171030
Musi, Elgilda; Islam, Naziba; Drosopoulos, Joan H F
2007-05-01
Human CD39/NTPDase1 is an endothelial cell membrane-associated nucleotidase. Its large extracellular domain rapidly metabolizes nucleotides, especially ADP released from activated platelets, inhibiting further platelet activation/recruitment. Previous studies using our recombinant soluble CD39 demonstrated the importance of residues S57, D54, and D213 for enzymatic/biological activity. We now report effects of S57A, D54A, and D213A mutations on full-length (FL)CD39 function. Enzymatic activity of alanine modified FLCD39s was less than wild-type, contrasting the enhanced activity of their soluble counterparts. Furthermore, conservative substitutions D54E and D213E led to enzymes with activities greater than the alanine modified FLCD39s, but less than wild-type. Reductions in mutant activities were primarily associated with reduced catalytic rates. Differences in enzymatic activity were not attributable to gross changes in the nucleotide binding pocket or the enzyme's ability to multimerize. Thus, composition of the active site of wild-type CD39 appears optimized for ADPase function in the context of the transmembrane domains.
Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy
Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.
2006-01-01
The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686
Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet
2014-10-01
JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.
Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c.
Pan, Bifeng; Askew, Charles; Galvin, Alice; Heman-Ackah, Selena; Asai, Yukako; Indzhykulian, Artur A; Jodelka, Francine M; Hastings, Michelle L; Lentz, Jennifer J; Vandenberghe, Luk H; Holt, Jeffrey R; Géléoc, Gwenaëlle S
2017-03-01
Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.
Eigen model with general fitness functions and degradation rates
NASA Astrophysics Data System (ADS)
Hu, Chin-Kun; Saakian, David B.
2006-03-01
We present an exact solution of Eigen's quasispecies model with a general degradation rate and fitness functions, including a square root decrease of fitness with increasing Hamming distance from the wild type. The found behavior of the model with a degradation rate is analogous to a viral quasi-species under attack by the immune system of the host. Our exact solutions also revise the known results of neutral networks in quasispecies theory. To explain the existence of mutants with large Hamming distances from the wild type, we propose three different modifications of the Eigen model: mutation landscape, multiple adjacent mutations, and frequency-dependent fitness in which the steady state solution shows a multi-center behavior.
Alvarez, J D; Anderson, S J; Loh, D Y
1995-08-01
Transcriptional activation of rearranging Ag receptor gene segments has been hypothesized to regulate their accessibility to V(D)J recombination. We analyzed the role of a functional promoter in the rearrangement of the murine TCR beta-chain locus using two transgenic minilocus constructs. These miniloci each contain an unrearranged V beta 8.3 gene. One has a wild-type V beta 8.3 gene, but the other has a V beta 8.3 gene with a promoter mutation that was previously shown to abrogate transcription in tissue culture. FACS analysis of thymus and lymph node cells from transgenic mouse lines showed that only the lines with the wild-type V beta 8.3 gene promoter express an 8.3 TCR beta-chain. Consistent with the protein expression data, V beta 8.3 gene transcripts were found only in the transgenic lines with the wild-type promoter. Using a quantitative PCR-based assay, it was shown that both types of transgenic lines recombine the V beta 8.3 gene at similar levels. Rearrangement of the transgenes was normal with respect to thymic development and junctional reading frame. Interestingly, both types of miniloci also underwent allelic exclusion in that recombination was blocked by the expression of a rearranged TCR beta-chain transgene. We conclude that a functional V beta gene promoter is not necessary for proper V(D)J recombination to occur.
Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure
Razvi, Shehla S.; Richards, Jeremy B.; Malik, Farhan; Cromar, Kevin R.; Price, Roger E.; Bell, Cynthia S.; Weng, Tingting; Atkins, Constance L.; Spencer, Chantal Y.; Cockerill, Katherine J.; Alexander, Amy L.; Blackburn, Michael R.; Alcorn, Joseph L.; Haque, Ikram U.
2015-01-01
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines—including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)—promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology. PMID:26386120
Taguchi, Ayumi; Kawana, Kei; Tomio, Kensuke; Yamashita, Aki; Isobe, Yosuke; Nagasaka, Kazunori; Koga, Kaori; Inoue, Tomoko; Nishida, Haruka; Kojima, Satoko; Adachi, Katsuyuki; Matsumoto, Yoko; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki
2014-01-01
Cancer associated fibroblasts (CAFs) are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP)-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA) have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV) oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.
Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia
2010-12-01
Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.
MicroRNAs as Key Effectors in the p53 Network.
Goeman, Frauke; Strano, Sabrina; Blandino, Giovanni
2017-01-01
The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context. © 2017 Elsevier Inc. All rights reserved.
Jappar, Dilara; Wu, Shu-Pei; Hu, Yongjun
2010-01-01
The purpose of this study was to evaluate the role, relevance, and regional dependence of peptide transporter (PEPT) 1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ single-pass perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km = 5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters, such as PHT1 and PHT2, were not involved, as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice but were much larger than that in ileum (approximately 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real-time polymerase chain reaction and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease, or drug interactions) should have a major effect in reducing the intestinal absorption of di-/tripeptides, peptidomimetics, and peptide-like drugs. PMID:20660104
Caicedo-Granados, Emiro; Lin, Rui; Fujisawa, Caitlin; Yueh, Bevan; Sangwan, Veena; Saluja, Ashok
2014-12-01
The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A
2018-06-15
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.
Wilson, Rebecca L.; Bakshi, Arkadipta; Binder, Brad M.
2014-01-01
When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development. PMID:25221561
Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T.; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi
2010-01-01
Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin’s function in the mammalian brain, motopsin knockout mice were generated. Motopsin knockout mice did not have significant deficit in memory formation, as was tested using in the Morris water maze, passive avoidance, and Y-maze tests. A social recognition test showed that the motopsin knockout mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin knockout mice spent a longer time investigating a familiar mouse than wild-type mice did. In a resident-intruder test, motopsin knockout mice showed prolonged social interaction compared to wild-type mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin knockout mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP responsive element binding protein (CREB) in hippocampal neurons of wild-type mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons. PMID:20092579
Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L
2017-08-01
Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.
2014-01-01
Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528
NASA Technical Reports Server (NTRS)
Xu, Q.; Hoppe, D.; Chitnis, V. P.; Odom, W. R.; Guikema, J. A.; Chitnis, P. R.; Spooner, B. S. (Principal Investigator)
1995-01-01
We cloned, characterized, and inactivated the psaI gene encoding a 4-kDa hydrophobic subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. The psaI gene is located 90 base pairs downstream from psaL, and is transcribed on 0.94- and 0.32-kilobase transcripts. To identify the function of PsaI, we generated a cyanobacterial strain in which psaI has been interrupted by a gene for chloramphenicol resistance. The wild-type and the mutant cells showed comparable rates of photoautotrophic growth at 25 degrees C. However, the mutant cells grew slower and contained less chlorophyll than the wild-type cells, when grown at 40 degrees C. The PsaI-less membranes from cells grown at either temperature showed a small decrease in NADP+ photoreduction rate when compared to the wild-type membranes. Inactivation of psaI led to an 80% decrease in the PsaL level in the photosynthetic membranes and to a complete loss of PsaL in the purified photosystem I preparations, but had little effect on the accumulation of other photosystem I subunits. Upon solubilization with nonionic detergents, photosystem I trimers could be obtained from the wild-type, but not from the PsaI-less membranes. The PsaI-less photosystem I monomers did not contain detectable levels of PsaL. Therefore, a structural interaction between PsaL and PsaI may stabilize the association of PsaL with the photosystem I core. PsaL in the wild-type and PsaI-less membranes showed equal resistance to removal by chaotropic agents. However, PsaL in the PsaI-less strain exhibited an increased susceptibility to proteolysis. From these data, we conclude that PsaI has a crucial role in aiding normal structural organization of PsaL within the photosystem I complex and the absence of PsaI alters PsaL organization, leading to a small, but physiologically significant, defect in photosystem I function.
Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.
Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi
2014-01-01
MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair follicle stem cells to epidermal regeneration after wounding in 6-month-old Med1(epi-/-) mice. This study sheds light on the novel function of MED1 in keratinocytes and suggests a possible new therapeutic approach for skin wound healing and aging.
Pathogen Proliferation Governs the Magnitude but Compromises the Function of CD8 T Cells1
Sad, Subash; Dudani, Renu; Gurnani, Komal; Russell, Marsha; van Faassen, Henk; Finlay, Brett; Krishnan, Lakshmi
2014-01-01
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen. PMID:18424704
Bradshaw, Elliot; Yoshida, Minoru; Ling, Feng
2017-01-01
Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR) catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+) and suppressive (rho−) or hypersuppressive (HS rho−) mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast. PMID:28717049
Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.
Soni, Shivani; Bala, Shashi; Hanspal, Manjit
2008-01-01
Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.
Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.
Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui
2006-06-02
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.
Vijayakumar, Saravanan; Das, Pradeep
2018-04-18
Sterol-14α-demethylase (CYP51) is an ergosterol pathway enzyme crucial for the survival of infectious Leishmania parasite. Recent high-throughput metabolomics and whole genome sequencing study revealed amphotericin B resistance in Leishmania is indeed due to mutation in CYP51. The residue of mutation (asparagine 176) is conserved across the kinetoplastidae and not in yeast or humans, portraying its functional significance. In order to understand the possible cause for the resistance, knowledge of structural changes due to mutation is of high importance. To shed light on the structural changes of wild and mutant CYP51, we conducted comparative molecular dynamics simulation study. The active site, substrate biding cavity, substrate channel entrance (SCE), and cavity involving the mutated site were studied based on basic parameters and large concerted molecular motions derived from essential dynamics analyses of 100 ns simulation. Results indicated that mutant CYP51 is stable and less compact than the wild type. Correspondingly, the solvent accessible surface area (SASA) of the mutant was found to be increased, especially in active site and cavities not involving the mutation site. Free-energy landscape analysis disclosed mutant to have a rich conformational diversity than wild type, with various free-energy conformations of mutant having SASA greater than wild type with SCE open. More residues were found to interact with the mutant CYP51 upon docking of substrate to both the wild and mutant CYP51. These results indicate that, relative to wild type, the N176I mutation of CYP51 in Leishmania mexicana could possibly favor increased substrate binding efficiency.
NASA Astrophysics Data System (ADS)
Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong
2015-11-01
Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.
Ryazanova, Lillia V.; Hu, Zhixian; Suzuki, Sayuri; Chubanov, Vladimir; Fleig, Andrea; Ryazanov, Alexey G.
2014-01-01
TRPM7 is an unusual bi-functional protein containing an ion channel covalently linked to a protein kinase domain. TRPM7 is implicated in regulating cellular and systemic magnesium homeostasis. While the biophysical properties of TRPM7 ion channel and its function are relatively well characterized, the function of the TRPM7 enzymatically active kinase domain is not understood yet. To investigate the physiological role of TRPM7 kinase activity, we constructed mice carrying an inactive TRPM7 kinase. We found that these mice were resistant to dietary magnesium deprivation, surviving three times longer than wild type mice; also they displayed decreased chemically induced allergic reaction. Interestingly, mutant mice have lower magnesium bone content compared to wild type mice when fed regular diet; unlike wild type mice, mutant mice placed on magnesium-depleted diet did not alter their bone magnesium content. Furthermore, mouse embryonic fibroblasts isolated from TRPM7 kinase-dead animals exhibited increased resistance to magnesium deprivation and oxidative stress. Finally, electrophysiological data revealed that the activity of the kinase-dead TRPM7 channel was not significantly altered. Together, our results suggest that TRPM7 kinase is a sensor of magnesium status and provides coordination of cellular and systemic responses to magnesium deprivation. PMID:25534891
Marriott, Helen M; Daigneault, Marc; Thompson, Alfred A R; Walmsley, Sarah R; Gill, Sharonjit K; Witcher, Derrick R; Wroblewski, Victor J; Hellewell, Paul G; Whyte, Moira K B; Dockrell, David H
2012-11-01
Therapeutic strategies to modulate the host response to bacterial pneumonia are needed to improve outcomes during community-acquired pneumonia. This study used mice with impaired Fas signalling to examine susceptibility to pneumococcal pneumonia and decoy receptor 3 analogue (DcR3-a) to correct factors associated with increased susceptibility. Wild-type mice and those with varying degrees of impairment of Fas (lpr) or Fas ligand signalling (gld) were challenged with Streptococcus pneumoniae and microbiological and immunological outcomes measured in the presence or absence of DcR3-a. During established pneumonia, neutrophils became the predominant cell in the airway and gld mice were less able to clear bacteria from the lungs, demonstrating localised impairment of pulmonary neutrophil function in comparison to lpr or wild-type mice. T-cells from gld mice had enhanced activation and reduced apoptosis in comparison to wild-type and lpr mice during established pneumonia. Treatment with DcR3-a reduced T-cell activation and corrected the defect in pulmonary bacterial clearance in gld mice. The results suggest that imbalance in tumour necrosis factor superfamily signalling and excessive T-cell activation can impair bacterial clearance in the lung but that DcR3-a treatment can reduce T-cell activation, restore optimal pulmonary neutrophil function and enhance bacterial clearance during S pneumoniae infection.
Fang, Huaming; Zhang, Peng; Huang, Lisa P.; Zhao, Zhengyi; Pi, Fengmei; Montemagno, Carlo; Guo, Peixuan
2014-01-01
Living systems produce ordered structures and nanomachines that inspire the development of biomimetic nanodevices such as chips, MEMS, actuators, sensors, sorters, and apparatuses for single-pore DNA sequencing, disease diagnosis, drug or therapeutic RNA delivery. Determination of the copy numbers of subunits that build these machines is challenging due to small size. Here we report a simple mathematical method to determine the stoichiometry, using phi29 DNA-packaging nanomotor as a model to elucidate the application of a formula ∑M=0Z(ZM)pZ−MqM, where p and q are the percentage of wild-type and inactive mutant in the empirical assay; M is the copy numbers of mutant and Z is the stoichiometry in question. Variable ratios of mutants and wild-type were mixed to inhibit motor function. Empirical data were plotted over the theoretical curves to determine the stoichiometry and the value of K, which is the number of mutant needed in each machine to block the function, all based on the condition that wild-type and mutant are equal in binding affinity. Both Z and K from 1–12 were investigated. The data precisely confirmed that phi29 motor contains six copies (Z) of the motor ATPase gp16, and K = 1. PMID:24650885
Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert
2011-01-01
Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683
Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K
2016-10-01
Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (P<0.001). Both MLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P<0.001). There was no significant difference in mucinous differentiation, tumor-infiltrating lymphocytes, Crohn-like reaction, and medullary differentiation between the 3 tumor groups. Using Kaplan-Meier survival functions, there was no significant difference in disease-specific survival between the 3 patient groups (P>0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas can harbor KRAS mutations and arise from precursor polyps resembling conventional tubular/tubulovillous adenomas.
Impairment of Vision in a Mouse Model of Usher Syndrome Type III.
Tian, Guilian; Lee, Richard; Ropelewski, Philip; Imanishi, Yoshikazu
2016-03-01
The purpose of this study was to obtain an Usher syndrome type III mouse model with retinal phenotype. Speed congenic method was used to obtain Clrn1 exon 1 knockout (Clrn1-/-) and Clrn1N48K knockin (Clrn1N48K/N48K) mice under A/J background. To study the retinal functions of these mice, we measured scotopic and photopic ERG responses. To observe if there are any structural abnormalities, we conducted light and transmission electron microscopy of fixed retinal specimens. In 3-month-old Clrn1-/- mice, scotopic b-wave amplitude was reduced by more than 25% at the light intensities from -2.2 to 0.38 log cd·s/m2, but scotopic a-wave amplitudes were comparable to those of age-matched wild type mice at all the light intensities tested. In 9-month-old Clrn1-/- mice, scotopic b-wave amplitudes were further reduced by more than 35%, and scotopic a-wave amplitude also showed a small decline as compared with wild type mice. Photopic ERG responses were comparable between Clrn1-/- and wild type mice. Those electrophysiological defects were not associated with a loss of rods. In Clrn1N48K/N48K mice, both a- and b-wave amplitudes were not discernable from those of wild type mice aged up to 10 months. Mutations that are Clrn1-/- biallelic cause visual defects when placed under A/J background. The absence of apparent rod degeneration suggests that the observed phenotype is due to functional defects, and not due to loss of rods. Biallelic Clrn1N48K/N48K mutations did not cause discernible visual defects, suggesting that Clrn1- allele is more severely dysfunctional than ClrnN48K allele.
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-01-01
Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder. PMID:18945333
Avila, Carlos A.; Arévalo-Soliz, Lirio M.; Jia, Lingling; Navarre, Duroy A.; Chen, Zhaorigetu; Howe, Gregg A.; Meng, Qing-Wei; Smith, Jonathon E.; Goggin, Fiona L.
2012-01-01
We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families. PMID:22291202
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-10-22
Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.
Zampell, Jamie C.; Avraham, Tomer; Yoder, Nicole; Fort, Nicholas; Yan, Alan; Weitman, Evan S.
2012-01-01
Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function. PMID:21940662
The Structure and Function of Non-Collagenous Bone Proteins
NASA Technical Reports Server (NTRS)
Hook, Magnus; McQuillan, David J.
1997-01-01
The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.
Abe, Hiroshi; Tateishi, Ken; Seo, Shigemi; Kugimiya, Soichi; Hirai, Masami Yokota; Sawada, Yuji; Murata, Yoshiyuki; Yara, Kaori; Shimoda, Takeshi; Kobayashi, Masatomo
2013-11-01
Here, we analyzed the interaction between Arabidopsis (Arabidopsis thaliana) and the American serpentine leafminer (Liriomyza trifolii), an important and intractable herbivore of many cultivated plants. We examined the role of the immunity-related plant hormone jasmonate (JA) in the plant response and resistance to leafminer feeding to determine whether JA affects host suitability for leafminers. The expression of marker genes for the JA-dependent plant defense was induced by leafminer feeding on Arabidopsis wild-type plants. Analyses of JA-insensitive coi1-1 mutants suggested the importance of JA in the plant response to leafminer feeding. The JA content of wild-type plants significantly increased after leafminer feeding. Moreover, coi1-1 mutants showed lower feeding resistance against leafminer attack than did wild-type plants. The number of feeding scars caused by inoculated adult leafminers in JA-insensitive coi1-1 mutants was higher than that in wild-type plants. In addition, adults of the following generation appeared only from coi1-1 mutants and not from wild-type plants, suggesting that the loss of the JA-dependent plant defense converted nonhost plants to accessible host plants. Interestingly, the glucosinolate-myrosinase defense system may play at most a minor role in this conversion, indicating that this major antiherbivore defense of Brassica species plants probably does not have a major function in plant resistance to leafminer. Application of JA to wild-type plants before leafminer feeding enhanced feeding resistance in Chinese cabbage (Brassica rapa), tomato (Solanum lycopersicum), and garland chrysanthemum (Chrysanthemum coronarium). Our results indicate that JA plays an important role in the plant response and resistance to leafminers and, in so doing, affects host plant suitability for leafminers.
Bezzi, Siham; Kessler, Danny; Diezel, Celia; Muck, Alexander; Anssour, Samir; Baldwin, Ian T.
2010-01-01
Native flower visitors removed less nectar from trypsin proteinase inhibitor (TPI)-silenced Nicotiana attenuata plants (ir-pi) than from wild-type plants in four field seasons of releases, even when the nectar repellant, nicotine, was also silenced. Analysis of floral chemistry revealed no differences in the emission of the floral attractants benzylacetone and benzaldehyde or in the concentrations of nectar sugar and nicotine between wild-type and ir-pi flowers, suggesting that these two lines are equally able to attract insect visitors. TPI activity was found in all wild-type flower parts and was highest in anther heads, while TPI activity was not found in any parts of ir-pi flowers. The nectar of ir-pi flowers contained 3.6-fold more total proteins than the nectar of wild-type flowers. Proteomics analysis and hydrogen peroxide (H2O2) measurements revealed that ir-pi nectar contained more nectarins and nectar germin-like proteins and about 1.5-fold more H2O2 compared with wild-type nectar. Field experiments with wild-type flowers supplemented with a solution containing sugar and glucose oxidase demonstrated a causal association between the accumulation of H2O2 and the reduction in nectar removal. These results showed that silencing TPI expression increases the accumulation of nectar proteins and H2O2 levels, which in turn reduces nectar removal by native insect floral visitors. The effect of silencing TPIs on nectar protein accumulation suggests an endogenous regulatory function for TPIs in N. attenuata flowers. The repellency of H2O2 to floral visitors raises new questions about the qualities of nectar that make it attractive for pollinators. PMID:20190094
Chen, Lin; Shi, Wanliang; Li, Hui; Sun, Xiuli; Fan, Xionglin; Lesage, Gene; Li, Hui; Li, Yi; Zhang, Yi; Zhang, Xiumei; Zhang, Ying; Yin, Deling
2010-02-19
Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-alpha, IL-1beta, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3beta in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3beta in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.
Abe, Hiroshi; Tateishi, Ken; Seo, Shigemi; Kugimiya, Soichi; Hirai, Masami Yokota; Sawada, Yuji; Murata, Yoshiyuki; Yara, Kaori; Shimoda, Takeshi; Kobayashi, Masatomo
2013-01-01
Here, we analyzed the interaction between Arabidopsis (Arabidopsis thaliana) and the American serpentine leafminer (Liriomyza trifolii), an important and intractable herbivore of many cultivated plants. We examined the role of the immunity-related plant hormone jasmonate (JA) in the plant response and resistance to leafminer feeding to determine whether JA affects host suitability for leafminers. The expression of marker genes for the JA-dependent plant defense was induced by leafminer feeding on Arabidopsis wild-type plants. Analyses of JA-insensitive coi1-1 mutants suggested the importance of JA in the plant response to leafminer feeding. The JA content of wild-type plants significantly increased after leafminer feeding. Moreover, coi1-1 mutants showed lower feeding resistance against leafminer attack than did wild-type plants. The number of feeding scars caused by inoculated adult leafminers in JA-insensitive coi1-1 mutants was higher than that in wild-type plants. In addition, adults of the following generation appeared only from coi1-1 mutants and not from wild-type plants, suggesting that the loss of the JA-dependent plant defense converted nonhost plants to accessible host plants. Interestingly, the glucosinolate-myrosinase defense system may play at most a minor role in this conversion, indicating that this major antiherbivore defense of Brassica species plants probably does not have a major function in plant resistance to leafminer. Application of JA to wild-type plants before leafminer feeding enhanced feeding resistance in Chinese cabbage (Brassica rapa), tomato (Solanum lycopersicum), and garland chrysanthemum (Chrysanthemum coronarium). Our results indicate that JA plays an important role in the plant response and resistance to leafminers and, in so doing, affects host plant suitability for leafminers. PMID:24022267
Westmuckett, Andrew D.; Siefert, Joseph C.; Tesiram, Yasvir A.; Pinson, David M.; Moore, Kevin L.
2013-01-01
Background Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2). We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI) to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice. Methodology/Principal Findings Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were ≈ 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine–induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s) extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight) and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes) were restored to normal or near normal by thyroid hormone supplementation. Conclusions/Significance Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism. PMID:23951251
Barreno, Ramon X.; Richards, Jeremy B.; Schneider, Daniel J.; Cromar, Kevin R.; Nadas, Arthur J.; Hernandez, Christopher B.; Hallberg, Lance M.; Price, Roger E.; Hashmi, Syed S.; Blackburn, Michael R.; Haque, Ikram U.
2013-01-01
Inhalation of ozone (O3), a common environmental pollutant, causes pulmonary injury, pulmonary inflammation, and airway hyperresponsiveness (AHR) in healthy individuals and exacerbates many of these same sequelae in individuals with preexisting lung disease. However, the mechanisms underlying these phenomena are poorly understood. Consequently, we sought to determine the contribution of osteopontin (OPN), a hormone and a pleiotropic cytokine, to the development of O3-induced pulmonary injury, pulmonary inflammation, and AHR. To that end, we examined indices of these aforementioned sequelae in mice genetically deficient in OPN and in wild-type, C57BL/6 mice 24 h following the cessation of an acute (3 h) exposure to filtered room air (air) or O3 (2 parts/million). In wild-type mice, O3 exposure increased bronchoalveolar lavage fluid (BALF) OPN, whereas immunohistochemical analysis demonstrated that there were no differences in the number of OPN-positive alveolar macrophages between air- and O3-exposed wild-type mice. O3 exposure also increased BALF epithelial cells, protein, and neutrophils in wild-type and OPN-deficient mice compared with genotype-matched, air-exposed controls. However, following O3 exposure, BALF neutrophils were significantly reduced in OPN-deficient compared with wild-type mice. When airway responsiveness to inhaled acetyl-β-methylcholine chloride (methacholine) was assessed using the forced oscillation technique, O3 exposure caused hyperresponsiveness to methacholine in the airways and lung parenchyma of wild-type mice, but not OPN-deficient mice. These results demonstrate that OPN is increased in the air spaces following acute exposure to O3 and functionally contributes to the development of O3-induced pulmonary inflammation and airway and lung parenchymal hyperresponsiveness to methacholine. PMID:23666750
Roohk, Donald J.; Mascharak, Smita; Khambatta, Cyrus; Leung, Ho; Hellerstein, Marc
2013-01-01
The glucocorticoid (GC) receptor (GR) has multiple effector mechanisms, including dimerization-mediated transactivation of target genes via DNA binding and transcriptional repression mediated by protein-protein interactions. Much attention has been focused on developing selective GR modulators that would dissociate adverse effects from therapeutic anti-inflammatory effects. The GRdim/dim mouse has a mutation in the dimerization domain of GR and has been shown to have attenuated transactivation with intact repression. To understand the role of GR dimerization-dependent targets in multiple tissues, we measured metabolic fluxes through several disease-relevant GC target pathways using heavy water labeling and mass spectrometry in wild-type and GRdim/dim mice administered the potent GC dexamethasone (DEX). Absolute triglyceride synthesis was increased in both wild-type and GRdim/dim mice by DEX in the inguinal and epididymal fat depots. GRdim/dim mice showed an exaggerated response to DEX in both depots. De novo lipogenesis was also greatly increased in both depots in response to DEX in GRdim/dim, but not wild-type mice. In contrast, the inhibitory effect of DEX on bone and skin collagen synthesis rates was greater in wild-type compared with GRdim/dim mice. Wild-type mice were more sensitive to DEX-dependent decreases in insulin sensitivity than GRdim/dim mice. Wild-type and GRdim/dim mice were equally sensitive to DEX-dependent decreases in muscle protein synthesis. Chronic elevation of GCs in GRdim/dim mice results in severe runting and lethality. In conclusion, some metabolic effects of GC treatment are exaggerated in adipose tissue of GRdim/dim mice, suggesting that selective GR modulators based on dissociating GR transactivation from repression should be evaluated carefully. PMID:23493372
The E3 SUMO ligase AtSIZ1 functions in seed germination in Arabidopsis.
Kim, Sung-Il; Kwak, Jun Soo; Song, Jong Tae; Seo, Hak Soo
2016-11-01
Seed germination is an important stage in the lifecycle of a plant because it determines subsequent vegetative growth and reproduction. Here, we show that the E3 SUMO ligase AtSIZ1 regulates seed dormancy and germination. The germination rates of the siz1 mutants were less than 50%, even after a short period of ripening. However, their germination rates increased to wild-type levels after cold stratification or long periods of ripening. In addition, exogenous gibberellin (GA) application improved the germination rates of the siz1 mutants to the wild-type level. In transgenic plants, suppression of AtSIZ1 caused rapid post-translational decay of SLEEPY1 (SLY1), a positive regulator of GA signaling, during germination, and inducible AtSIZ1 overexpression led to increased SLY1 levels. In addition, overexpressing wild-type SLY1 in transgenic sly1 mutants increased their germination ratios to wild-type levels, whereas the germination ratio of transgenic sly1 mutants overexpressing mSLY1 was similar to that of sly1. The germination ratios of siz1 mutant seeds in immature developing siliques were much lower than those of the wild-type. Moreover, SLY1 and DELAY OF GERMINATION 1 (DOG1) transcript levels were reduced in the siz1 mutants, whereas the transcript levels of DELLA and ABSCISIC ACID INSENSITIVE 3 (ABI3) were higher than those of the wild-type. Taken together, these results indicate that the reduced germination of the siz1 mutants results from impaired GA signaling due to low SLY1 levels and activity, as well as hyperdormancy due to high levels of expression of dormancy-related genes including DOG1. © 2016 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
Profiling of anthocyanins in transgenic purple-fleshed sweet potatoes by HPLC-MS/MS.
Ge, Jingqiu; Hu, Yijie; Wang, Hongxia; Huang, Yuanshe; Zhang, Peng; Liao, Zhihua; Chen, Min
2017-11-01
Anthocyanins in purple-fleshed sweet potato (PSP) are beneficial to human health. The leaf color (Lc) gene is a transcription factor involved in regulating anthocyanin biosynthesis. The anthocyanin profiles of wild-type PSP of Ayamurasaki and its three Lc-transgenic lines were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In vitro antioxidant activities of wild-type and Lc-transgenic lines, including reducing power activity, DPPH radical scavenging activity, hydroxyl radical scavenging activity, linoleic acid autoxidation inhibition activity, ABTS free radical scavenging activity and oxygen radical absorbance capacity activity, were measured. The results showed that the total anthocyanin contents increased 1.5-1.9 times in three transgenic lines compared with that in wild-type PSP. Seventeen anthocyanins were found in wild-type PSP, while 19 in Lc-transgenic lines including cyanidin-based, peonidin-based and pelargonidin-based anthocyanins. Three pelargonidin-based anthocyanins were detected in three Lc-transgenic lines. Among them, the relative contents of cyanidin-based and pelargonidin-based anthocyanins increased 1.9-2.0 and 3.4-4.5 times respectively, while peonidin-based anthocyanins decreased 1.8-1.9 times in Lc-transgenic lines, compared with wild-type PSP. PSP from wild-type Ayamurasaki and three Lc-transgenic lines exhibited potent antioxidant activities, whereas there was no distinct difference among them. The transgene Lc significantly increased the content of total anthocyanins and remarkably changed the anthocyanin profiles in Ayamurasaki. Such novel and high content of anthocyanins obtained in the Lc-transgenic lines with potent antioxidant activities may provide unique functional products with potential helpful for human health. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Manicone, Anne M.; Huizar, Isham; McGuire, John K.
2009-01-01
The E-cadherin receptor CD103 (αEβ7-integrin) is expressed on specific populations of pulmonary dendritic cells (DC) and T cells. However, CD103 function in the lung is not well understood. Matrilysin (MMP-7) expression is increased in lung injury and cleaves E-cadherin from injured lung epithelium. Thus, to assess matrilysin effects on CD103-E-cadherin interactions in lung injury, wild-type, CD103−/−, and Mmp7−/− mice, in which E-cadherin isn’t cleaved in the lung, were treated with bleomycin or bleomycin with nFMLP to reverse the defect in acute neutrophil influx seen in Mmp7−/− mice. Pulmonary CD103+ DC were significantly increased in injured wild-type compared with Mmp7−/− mice, and CD103+ leukocytes showed significantly enhanced interaction with E-cadherin on injured wild-type epithelium than with Mmp7−/− epithelium in vitro and in vivo. Bleomycin-treated CD103−/− mice had persistent neutrophilic inflammation, increased fibrosis, and increased mortality compared with wild-type mice, a phenotype that was partially recapitulated in bleomycin/nFMLP-treated Mmp7−/− mice. Soluble E-cadherin increased IL-12 and IL-10 and reduced IL-6 mRNA expression in wild-type bone marrow-derived DC but not in CD103−/− bone marrow-derived DC. Similar mRNA patterns were seen in lungs of bleomycin-injured wild-type, but not CD103−/− or Mmp7−/−, mice. In conclusion, matrilysin regulates pulmonary localization of DC that express CD103, and E-cadherin cleavage may activate CD103+ DC to limit inflammation and inhibit fibrosis. PMID:19893044
Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Schiffrin, Ernesto L.
2016-01-01
We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, and enhanced fibronectin and collagen deposition, and vascular inflammation. None of these vascular effects were observed in Agtr1a−/− mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in wild-type mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in wild-type and Agtr1a−/− mice. Agtr1a−/− mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting sodium retention that could contribute to the exaggerated blood pressure rise induced by aldosterone. Agtr1a−/− mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention exacerbate BP responses to aldosterone/salt in Agtr1a−/− mice. We conclude that although aldosterone activation of MR raises BP more in Agtr1a−/− mice, AGTR1a is required for MR stimulation to induce vascular remodeling and inflammation, and endothelial dysfunction. PMID:27045029
NASA Technical Reports Server (NTRS)
Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.
2002-01-01
Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.
Identification of Potential Wild Herbal as parts of Landscape Elements
NASA Astrophysics Data System (ADS)
Sulistyantara, Bambang; Mentari, Nio
2017-10-01
Many landscape plants can grow on their own without cultivated by humans. They are type of plants that can be found anywhere, so they can be categorized as wild plants. The economic value of wild plants are easy to obtain and their maintenance costs are low. Because wild plants not widely known even a just a few of people that aware of their existence, it is necessary to do a study to learn the potential of the wild plants to be used as an element of landscape. This research aims to identify the species that have potential to be used in landscape design, to describe the benefits of the their implementation as a landscape element, and to recommend the wild plants that have functional value and visual. This research used a scoring method based on the functional and visual criteria, and questionnaires were conducted to 50 students of Landscape Architecture IPB who have completed Landscape Plants courses. Based on the research, there are 150 species of wild plants that found in the study site, and 60 of them are recommended as landscape elements. Then all of the species were arranged as a recommendations book so they can be used as alternative landscape plants.
Tabassum, Asra; Rajeshwari, Tadigadapa; Soni, Nidhi; Raju, D S B; Yadav, Mukesh; Nayarisseri, Anuraj; Jahan, Parveen
2014-03-01
Non-synonymous single nucleotide changes (nSNC) are coding variants that introduce amino acid changes in their corresponding proteins. They can affect protein function; they are believed to have the largest impact on human health compared with SNCs in other regions of the genome. Such a sequence alteration directly affects their structural stability through conformational changes. Presence of these conformational changes near catalytic site or active site may alter protein function and as a consequence receptor-ligand complex interactions. The present investigation includes assessment of human podocin mutations (G92C, P118L, R138Q, and D160G) on its structure. Podocin is an important glomerular integral membrane protein thought to play a key role in steroid resistant nephrotic syndrome. Podocin has a hairpin like structure with 383 amino acids, it is an integral protein homologous to stomatin, and acts as a molecular link in a stretch-sensitive system. We modeled 3D structure of podocin by means of Modeller and validated via PROCHECK to get a Ramachandran plot (88.5% in most favored region), main chain, side chain, bad contacts, gauche and pooled standard deviation. Further, a protein engineering tool Triton was used to induce mutagenesis corresponding to four variants G92C, P118L, R138Q and D160G in the wild type. Perusal of energies of wild and mutated type of podocin structures confirmed that mutated structures were thermodynamically more stable than wild type and therefore biological events favored synthesis of mutated forms of podocin than wild type. As a conclusive part, two mutations G92C (-8179.272 kJ/mol) and P118L (-8136.685 kJ/mol) are more stable and probable to take place in podocin structure over wild podocin structure (-8105.622 kJ/mol). Though there is lesser difference in mutated and wild type (approximately, 74 and 35 kJ/mol), it may play a crucial role in deciding why mutations are favored and occur at the genetic level.
Mandaokar, Ajin; Kumar, V Dinesh; Amway, Matt; Browse, John
2003-07-01
Jasmonate (JA) is a signaling compound essential for anther development and pollen fertility in Arabidopsis. Mutations that block the pathway of JA synthesis result into male sterility. To understand the processes of anther and pollen maturation, we used microarray and differential display approaches to compare gene expression pattern in anthers of wild-type Arabidopsis and the male-sterile mutant, opr3. Microarray experiment revealed 25 genes that were up-regulated more than 1.8-fold in wild-type anthers as compared to mutant anthers. Experiments based on differential display identified 13 additional genes up-regulated in wild-type anthers compared to opr3 for a total of 38 differentially expressed genes. Searches of the Arabidopsis and non-redundant databases disclosed known or likely functions for 28 of the 38 genes identified, while 10 genes encode proteins of unknown function. Northern blot analysis of eight representative clones as probes confirmed low expression in opr3 anthers compared with wild-type anthers. JA responsiveness of these same genes was also investigated by northern blot analysis of anther RNA isolated from wild-type and opr3 plants, In these experiments, four genes were induced in opr3 anthers within 0.5-1 h of JA treatment while the remaining genes were up-regulated only 1-8 h after JA application. None of these genes was induced by JA in anthers of the coil mutant that is deficient in JA responsiveness. The four early-induced genes in opr3 encode lipoxygenase, a putative bHLH transcription factor, epithiospecifier protein and an unknown protein. We propose that these and other early components may be involved in JA signaling and in the initiation of developmental processes. The four late genes encode an extensin-like protein, a peptide transporter and two unknown proteins, which may represent components required later in anther and pollen maturation. Transcript profiling has provided a successful approach to identify genes involved in anther and pollen maturation in Arabidopsis.
Melo, Sônia C; Santos, Regineide X; Melgaço, Ana C; Pereira, Alanna C F; Pungartnik, Cristina; Brendel, Martin
2015-06-01
Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet-C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.
Melo, Sônia C.; Santos, Regineide X.; Melgaço, Ana C.; Pereira, Alanna C. F.; Pungartnik, Cristina; Brendel, Martin
2015-01-01
Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae. PMID:26039235
Resch, Marcus; Striegl, Harald; Henssler, Eva Maria; Sevvana, Madhumati; Egerer-Sieber, Claudia; Schiltz, Emile; Hillen, Wolfgang; Muller, Yves A
2008-08-01
Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.
Zhou, Q; Zhao, J; Hüsler, T; Sims, P J
1996-10-01
CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.
Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.
Vitha, S; Zhao, L; Sack, F D
2000-02-01
Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.
Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants
NASA Technical Reports Server (NTRS)
Vitha, S.; Zhao, L.; Sack, F. D.
2000-01-01
Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.
Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum.
Heaton, M B; Mitchell, J J; Paiva, M
2000-11-05
Transgenic mice overexpressing NGF in the central nervous system under the control of the glial fibrillary acidic protein (GFAP) promoter were exposed to ethanol via vapor inhalation on postnatal days 4 and 5 (P4-5), the period of maximal cerebellar Purkinje cell sensitivity to ethanol. Wild-type controls were exposed in a similar manner. There were no differences in body weight or size following these procedures, but the transgenic brain weights at this age were significantly greater than wild-type controls. In the wild-type animals, a significant 33.3% ethanol-mediated loss of Purkinje cells in lobule I was detected via unbiased three-dimensional stereological counting on P5. In the GFAP-NGF transgenic animals, however, the 17.6% difference in Purkinje cell number in control and ethanol-exposed animals was not significant. There was a similar difference in Purkinje cell density in both groups, which did reach statistical significance (-32.7% in wild-type ethanol-treated animals, -17% in transgenic ethanol-exposed animals). These results suggest that endogenous overexpression of neurotrophic factors, which have previously been shown to protect against ethanol neurotoxicity in culture, can serve a similar protective function in the intact animal. Copyright 2000 John Wiley & Sons, Inc.
Grabocka, Elda; Pylayeva-Gupta, Yuliya; Jones, Mathew JK; Lubkov, Veronica; Yemanaberhan, Eyoel; Taylor, Laura; Jeng, Hao Hsuan; Bar-Sagi, Dafna
2014-01-01
SUMMARY Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anti-cancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways, and consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo. PMID:24525237
Pathoadaptive Conditional Regulation of the Type VI Secretion System in Vibrio cholerae O1 Strains
Ishikawa, Takahiko; Sabharwal, Dharmesh; Bröms, Jeanette; Milton, Debra L.; Sjöstedt, Anders; Uhlin, Bernt Eric
2012-01-01
The most recently discovered secretion pathway in Gram-negative bacteria, the type VI secretion system (T6SS), is present in many species and is considered important for the survival of non-O1 non-O139 Vibrio cholerae in aquatic environments. Until now, it was not known whether there is a functionally active T6SS in wild-type V. cholerae O1 strains, the cause of cholera disease in humans. Here, we demonstrate the presence of a functionally active T6SS in wild-type V. cholerae O1 strains, as evidenced by the secretion of the T6SS substrate Hcp, which required several gene products encoded within the putative vas gene cluster. Our analyses showed that the T6SS of wild-type V. cholerae O1 strain A1552 was functionally activated when the bacteria were grown under high-osmolarity conditions. The T6SS was also active when the bacteria were grown under low temperature (23°C), suggesting that the system may be important for the survival of the bacterium in the environment. A test of the interbacterial virulence of V. cholerae strain A1552 against an Escherichia coli K-12 strain showed that it was strongly enhanced under high osmolarity and that it depended on the hcp genes. Interestingly, we found that the newly recognized osmoregulatory protein OscR plays a role in the regulation of T6SS gene expression and secretion of Hcp from V. cholerae O1 strains. PMID:22083711
Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T
1999-06-01
The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.
Lee, Kah Meng; Chand, Kirat K; Hammond, Luke A; Lavidis, Nickolas A; Noakes, Peter G
2017-03-14
Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice ( lama 4 -/- ). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama 4 -/- NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama 4 -/- . Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama 4 -/- . Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui
2014-01-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert; Liu, Xuhui
2014-07-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S; Yannone, Steven M; Povirk, Lawrence F
2011-08-01
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.
Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto
2007-03-01
The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.
Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto
2007-01-01
The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115
Storz, J; Zhang, X M; Rott, R
1992-01-01
Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.
Chae, Yun Jeong; Zhang, Jianan; Au, Paul; Sabbadini, Marta; Xie, Guo-Xi; Yost, C Spencer
2010-12-01
We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.
Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy.
Shchors, Ksenya; Persson, Anders I; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S; Hanahan, Douglas; Weiss, William A; Evan, Gerard I
2013-04-16
Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRas(V12) mouse model crossed into the p53ER(TAM) background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ER(TAM) allele. The p53ER(TAM) protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRas(V12);p53(+/KI) mice abrogate the p53 pathway by mutating p19(ARF)/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ER(TAM) allele. By contrast, gliomas arising in GFAP-HRas(V12);p53(KI/KI) mice develop in the absence of functional p53. Such tumors retain a functional p19(ARF)/MDM2-signaling pathway, and restoration of p53ER(TAM) allele triggers p53-tumor-suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14(ARF)/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRas(V12);p53(KI/KI) animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ER(TAM) activity mitigated the selective pressure to inactivate the p19(ARF)/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance.
Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy
Shchors, Ksenya; Persson, Anders I.; Rostker, Fanya; Tihan, Tarik; Lyubynska, Natalya; Li, Nan; Swigart, Lamorna Brown; Berger, Mitchel S.; Hanahan, Douglas; Weiss, William A.; Evan, Gerard I.
2013-01-01
Based on clinical presentation, glioblastoma (GBM) is stratified into primary and secondary types. The protein 53 (p53) pathway is functionally incapacitated in most GBMs by distinctive type-specific mechanisms. To model human gliomagenesis, we used a GFAP-HRasV12 mouse model crossed into the p53ERTAM background, such that either one or both copies of endogenous p53 is replaced by a conditional p53ERTAM allele. The p53ERTAM protein can be toggled reversibly in vivo between wild-type and inactive conformations by administration or withdrawal of 4-hydroxytamoxifen (4-OHT), respectively. Surprisingly, gliomas that develop in GFAP-HRasV12;p53+/KI mice abrogate the p53 pathway by mutating p19ARF/MDM2 while retaining wild-type p53 allele. Consequently, such tumors are unaffected by restoration of their p53ERTAM allele. By contrast, gliomas arising in GFAP-HRasV12;p53KI/KI mice develop in the absence of functional p53. Such tumors retain a functional p19ARF/MDM2-signaling pathway, and restoration of p53ERTAM allele triggers p53-tumor–suppressor activity. Congruently, growth inhibition upon normalization of mutant p53 by a small molecule, Prima-1, in human GBM cultures also requires p14ARF/MDM2 functionality. Notably, the antitumoral efficacy of p53 restoration in tumor-bearing GFAP-HRasV12;p53KI/KI animals depends on the duration and frequency of p53 restoration. Thus, intermittent exposure to p53ERTAM activity mitigated the selective pressure to inactivate the p19ARF/MDM2/p53 pathway as a means of resistance, extending progression-free survival. Our results suggest that intermittent dosing regimes of drugs that restore wild-type tumor-suppressor function onto mutant, inactive p53 proteins will prove to be more efficacious than traditional chronic dosing by similarly reducing adaptive resistance. PMID:23542378
Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae
Kiparisov, S.; Sergiev, P. V.; Dontsova, O. A.; Petrov, A.; Meskauskas, A.; Dinman, J. D.
2005-01-01
5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semidominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression. PMID:16047201
Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice
Burns, David P.; Ali, Izza; Rieux, Clement; Healy, James; Jasionek, Greg; O’Halloran, Ken D.
2017-01-01
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease. PMID:29210997
Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng
2017-01-01
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502
deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R
2003-02-01
Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the incorporation of laminin-5 into its proper higher-order structure within the extracellular matrix of keratinocytes and (2) that the organizational state of laminin-5 has an influence on laminin-5 matrix function. Copyright 2003 Elsevier Science (USA)
Lack of myostatin results in excessive muscle growth but impaired force generation.
Amthor, Helge; Macharia, Raymond; Navarrete, Roberto; Schuelke, Markus; Brown, Susan C; Otto, Anthony; Voit, Thomas; Muntoni, Francesco; Vrbóva, Gerta; Partridge, Terence; Zammit, Peter; Bunger, Lutz; Patel, Ketan
2007-02-06
The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.
Schwarz, Sandra; West, T. Eoin; Boyer, Frédéric; Chiang, Wen-Chi; Carl, Mike A.; Hood, Rachel D.; Rohmer, Laurence; Tolker-Nielsen, Tim; Skerrett, Shawn J.; Mougous, Joseph D.
2010-01-01
Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections. PMID:20865170
Addinsall, Alex Bernard; Wright, Craig Robert; Shaw, Christopher S; McRae, Natasha L; Forgan, Leonard George; Weng, Chia-Heng; Conlan, Xavier A; Francis, Paul S; Smith, Zoe M; Andrikopoulos, Sofianos; Stupka, Nicole
2018-04-18
Selenoprotein S (Seps1) is an endoplasmic reticulum (ER) resident antioxidant implicated in ER stress and inflammation. In human vastus lateralis and mouse hindlimb muscles, Seps1 localization and expression was fiber type specific. In male Seps1 +/- heterozygous mice, spontaneous physical activity was reduced compared to wild type littermates ( d=1.10, P=0.029). A similar trend also observed in Seps1 -/- knockout mice ( d=1.12, P=0.051). Whole body metabolism, body composition, extensor digitorum longus (EDL) and soleus mass, and myofibre diameter were unaffected by genotype. However, in isolated fast EDL muscles from Seps1 -/- knockout mice, the force frequency curve (1-120 Hz; FFC) was shifted downward versus EDL muscles from wild type littermates ( d=0.55, P=0.002), suggestive of reduced strength. During 4 min of intermittent, submaximal (60 Hz) stimulation, the genetic deletion or reduction of Seps1 decreased EDL force production ( d=0.52, P<0.001). Furthermore, at the start of the intermittent stimulation protocol, when compared to the 60 Hz stimulation of the FFC, EDL muscles from Seps1 -/- knockout or Seps1 +/- heterozygous mice produced 10% less force than those from wild type littermates ( d=0.31, P<0.001 and d=0.39, P=0.015). This functional impairment was associated with reduced mRNA transcript abundance of thioredoxin-1 ( Trx1), thioredoxin interacting protein ( Txnip), and the ER stress markers Chop and Grp94. Whereas, in slow soleus muscles, Seps1 deletion did not compromise contractile function and Trx1 ( d=1.38, P=0.012) and Txnip ( d=1.27, P=0.025) gene expression was increased. Seps1 is a novel regulator of contractile function and cellular stress responses in fast twitch muscles.
Leptin regulates bone formation via the sympathetic nervous system
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard
2002-01-01
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.
The role of pili in Bacillus cereus intraocular infection.
Callegan, Michelle C; Parkunan, Salai Madhumathi; Randall, C Blake; Coburn, Phillip S; Miller, Frederick C; LaGrow, Austin L; Astley, Roger A; Land, Craig; Oh, So-Young; Schneewind, Olaf
2017-06-01
Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p > 0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p ≤ 0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity of the inflammatory response, these results suggest a potential role for pili in protecting B. cereus from clearance during the early stages of endophthalmitis, which is a newly described virulence mechanism for this organism and this infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.
Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf
2006-03-01
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
Takahashi, Eiki; Niimi, Kimie; Itakura, Chitoshi
2010-10-25
Ca(V)2.1 is highly expressed in the nervous system and plays an essential role in the presynaptic modulation of neurotransmitter release machinery. Recently, the antiepileptic drug levetiracetam was reported to inhibit presynaptic Ca(V)2.1 functions, reducing glutamate release in the hippocampus, although the precise physiological role of Ca(V)2.1-regulated synaptic functions in cognitive performance at the system level remains unknown. This study examined whether Ca(V)2.1 mediates hippocampus-dependent spatial short-term memory using the object location and Y-maze tests, and perirhinal cortex-dependent nonspatial short-term memory using the object recognition test, via a combined pharmacological and genetic approach. Heterozygous rolling Nagoya (rol/+) mice carrying the Ca(V)2.1alpha(1) mutation had normal spatial and nonspatial short-term memory. A 100mg/kg dose of levetiracetam, which is ineffective in wild-type controls, blocked spatial short-term memory in rol/+ mice. At 5mg/kg, the N-methyl-D-aspartate (NMDA) receptor blocker (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which is ineffective in wild-type controls, also blocked the spatial short-term memory in rol/+ mice. Furthermore, a combination of subthreshold doses of levetiracetam (25 mg/kg) and CPP (2.5mg/kg) triggered a spatial short-term memory deficit in rol/+ mice, but not in wild-type controls. Similar patterns of nonspatial short-term memory were observed in wild-type and rol/+ mice when injected with levetiracetam (0-300 mg/kg). These results indicate that Ca(V)2.1-mediated NMDA receptor signaling is critical in hippocampus-dependent spatial short-term memory and differs in various regions. The combination subthreshold pharmacological and genetic approach presented here is easily performed and can be used to study functional signaling pathways in neuronal circuits. Copyright © 2010 Elsevier B.V. All rights reserved.
Evidence against functionally significant aquaporin expression in mitochondria.
Yang, Baoxue; Zhao, Dan; Verkman, A S
2006-06-16
Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.
Interaction of Root Gravitropism and Phototropism in Arabidopsis Wild-Type and Starchless Mutants1
Vitha, Stanislav; Zhao, Liming; Sack, Fred David
2000-01-01
Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 μmol m−2 s−1), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis. PMID:10677438
Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M
1999-12-01
The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.
Functional verification of a porcine myostatin propeptide mutant.
Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao
2015-10-01
Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.
AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana
Cvrčková, Fatima
2013-01-01
Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin–microtubule cross-talk. PMID:23202131
AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana.
Rosero, Amparo; Žársky, Viktor; Cvrčková, Fatima
2013-01-01
Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.
Kirby, S; Walton, W; Smithies, O
2000-06-15
In a previous study, it was found that a truncated erythropoietin receptor transgene (tEpoR tg) enables multilineage hematopoietic progenitor amplification after treatment with erythropoietin (epo) in vitro and in vivo. This study used competitive bone marrow (BM) repopulation to show that tEpoR tg facilitates transplantation by hematopoietic stem cells (HSC). Individual multilineage colonies, committed myeloid progenitor colonies, and lymphoid colonies (pre-B colony-forming units) were grown from the marrow of animals 6 months after they received a 50/50 mixture of transgene and wild-type BM cells. In epo-treated recipients, the transgene-bearing cells significantly outcompeted the wild-type cells (84%-100% versus 16%-0%, respectively). In recipients treated with phosphate-buffered saline, the repopulation was minimally different from the donor mixture (49%-64% transgene versus 51%-36% wild-type). The epo-induced repopulation advantage is maintained in secondary transplants. In addition, neither accelerated HSC depletion nor uncontrollable proliferation occurred during epo-stimulated serial transplants of transgene-containing BM. Thus, the tEpoR tg functions in a benign fashion in HSC and allows for a significant and controllable repopulation advantage in vivo without excessive HSC depletion relative to wild-type BM. (Blood. 2000;95:3710-3715)
Loss of T cells influences sex differences in behavior and brain structure.
Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A
2015-05-01
Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Aiming; Krausz, Kristopher W; Fang, Zhong-Ze; Brocker, Chad; Qu, Aijuan; Gonzalez, Frank J
2014-04-01
Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.
GABAA Receptor Regulation of Voluntary Ethanol Drinking Requires PKCε
Besheer, Joyce; Lepoutre, Veronique; Mole, Beth; Hodge, Clyde W.
2010-01-01
Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the ε-isoform of PKC (PKCε) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABAA receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCε in GABAA receptor regulation of voluntary ethanol drinking. To address this question, PKCε null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABAA BZ positive modulator), zolpidem (GABAA α1 agonist), L-655,708 (BZ-sensitive GABAA α5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild-type mice. However, ethanol intake by PKCε null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice. Increased acute sensitivity to ethanol and diazepam, which was previously reported, was confirmed in PKCε null mice. Thus, results of the present study show that PKCε null mice do not respond to doses of GABAA BZ receptor ligands that regulate ethanol drinking by wild-type control mice. This suggests that PKCε may be required for GABAA receptor regulation of chronic ethanol drinking. PMID:16881070
Ma, Katherine; Hu, Yongjun; Smith, David E.
2010-01-01
The purpose of this study was to determine the relative importance of PEPT1 in the uptake of peptides/mimetics from mouse small intestine using glycylsarcosine (GlySar). After isolating jejunal tissue from wild-type and Pept1 null mice, 2-cm intestinal segments were everted and mounted on glass rods for tissue uptake studies. [14C]GlySar (4 μM) was studied as a function of time, temperature, sodium and pH, concentration, and potential inhibitors. Compared to wild-type animals, Pept1 null mice exhibited a 78% reduction of GlySar uptake at pH 6.0, 37°C. GlySar uptake showed pH dependence with peak values between pH 6.0-6.5 in wild-type animals, while no such tendency was observed in Pept1 null mice. GlySar exhibited Michaelis-Menten uptake kinetics and a minor nonsaturable component in wild-type animals. In contrast, GlySar uptake occurred by only a nonsaturable process in Pept1 null mice. GlySar uptake was significantly inhibited by dipeptides, aminocephalosporins, angiotensin-converting enzyme inhibitors, and the antiviral prodrug valacyclovir; these inhibitors had little, if any, effect on the uptake of GlySar in Pept1 null mice. The findings demonstrate that PEPT1 plays a critical role in the uptake of GlySar in jejunum, and suggest that PEPT1 is the major transporter responsible for the intestinal absorption of small peptides. PMID:20862774
Kawahara, Masahiro; Ueda, Hiroshi; Tsumoto, Kouhei; Kumagai, Izumi; Nagamune, Teruyuki
2007-04-01
We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.
Evans, T M; Jaramillo, C A; Sataranatarajan, K; Watts, L; Sabia, M; Qi, W; Van Remmen, H
2015-07-09
Traumatic brain injury (TBI) is associated with a risk of neurodegenerative disease. Some suggest a link between TBI and motor neuron disease (MND), including amyotrophic lateral sclerosis (ALS). To investigate the potential mechanisms linking TBI to MND, we measured motor function and neuropathology following mild-TBI in wild-type and a transgenic model of ALS, G93A mutant mice. Mild-TBI did not alter the lifespan of G93A mice or age of onset; however, rotarod performance was impaired in G93A verses wild-type mice. Grip strength was reduced only in G93A mice after mild-TBI. Increased electromyography (EMG) abnormalities and markers of denervation (AchR, Runx1) indicate that mild-TBI may result in peripheral effects that are exaggerated in G93A mice. Markers of inflammation (cell edema, astrogliosis and microgliosis) were detected at 24 and 72h in the brain and spinal cord in wild-type and G93A mice. Levels of F2-isoprostanes, a marker of oxidative stress, were increased in the spinal cord 24h post mild-TBI in wild-type mice but were not affected by TBI in G93A mice. In summary, our data demonstrate that mild-TBI induces inflammation and oxidative stress and negatively impacts muscle denervation and motor performance, suggesting mild-TBI can potentiate motor neuron pathology and influence the development of MND in mice. Published by Elsevier Ltd.
Altered thermogenesis and impaired bone remodeling in Misty mice.
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-09-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. Copyright © 2013 American Society for Bone and Mineral Research.
Hossain-Ibrahim, Mohammed K; Rezajooi, Kia; Stallcup, William B; Lieberman, Alexander R; Anderson, Patrick N
2007-01-01
Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. Conclusion These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury. PMID:17900358
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat
2015-08-13
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.
Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization
Haq, Imran; Saleh, Aarash D.; Dron, Louis; Regan-Mochrie, Gemma L.; Motamedi-Shad, Neda; Hurst, John R.; Gooptu, Bibek
2016-01-01
Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate—and therefore polymerize—more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the “breach” region and “shutter” region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care. PMID:26091018
Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization.
Haq, Imran; Irving, James A; Saleh, Aarash D; Dron, Louis; Regan-Mochrie, Gemma L; Motamedi-Shad, Neda; Hurst, John R; Gooptu, Bibek; Lomas, David A
2016-01-01
Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.
Warner, Timothy A.; Shen, Wangzhen; Huang, Xuan; Liu, Zhong; Macdonald, Robert L.; Kang, Jing-Qiong
2016-01-01
Genetic epilepsy is a common disorder with phenotypic variation, but the basis for the variation is unknown. Comparing the molecular pathophysiology of mutations in the same epilepsy gene may provide mechanistic insights into the phenotypic heterogeneity. GABRG2 is an established epilepsy gene, and mutations in it produce epilepsy syndromes with varying severities. The disease phenotype in some cases may be caused by simple loss of subunit function (functional haploinsufficiency), while others may be caused by loss-of-function plus dominant negative suppression and other cellular toxicity. Detailed molecular defects and the corresponding seizures and related comorbidities resulting from haploinsufficiency and dominant negative mutations, however, have not been compared. Here we compared two mouse models of GABRG2 loss-of-function mutations associated with epilepsy with different severities, Gabrg2+/Q390X knockin (KI) and Gabrg2+/- knockout (KO) mice. Heterozygous Gabrg2+/Q390XKI mice are associated with a severe epileptic encephalopathy due to a dominant negative effect of the mutation, while heterozygous Gabrg2+/- KO mice are associated with mild absence epilepsy due to simple haploinsufficiency. Unchanged at the transcriptional level, KI mice with severe epilepsy had neuronal accumulation of mutant γ2 subunits, reduced remaining functional wild-type subunits in dendrites and synapses, while KO mice with mild epilepsy had no intracellular accumulation of the mutant subunits and unaffected biogenesis of the remaining wild-type subunits. Consequently, KI mice with dominant negative mutations had much less wild-type receptor expression, more severe seizures and behavioural comorbidities than KO mice. This work provides insights into the pathophysiology of epilepsy syndrome heterogeneity and designing mechanism-based therapies. PMID:27340224
Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete
2012-10-01
Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.
Wild-type and mutated IDH1/2 enzymes and therapy responses.
Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F
2018-04-01
Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.
Riddick, Nadeene E.; Hermann, Emilia A.; Loftin, Lamorris M.; Elliott, Sarah T.; Wey, Winston C.; Cervasi, Barbara; Taaffe, Jessica; Engram, Jessica C.; Li, Bing; Else, James G.; Li, Yingying; Hahn, Beatrice H.; Derdeyn, Cynthia A.; Sodora, Donald L.; Apetrei, Cristian; Paiardini, Mirko; Silvestri, Guido; Collman, Ronald G.
2010-01-01
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species. PMID:20865163
Riddick, Nadeene E; Hermann, Emilia A; Loftin, Lamorris M; Elliott, Sarah T; Wey, Winston C; Cervasi, Barbara; Taaffe, Jessica; Engram, Jessica C; Li, Bing; Else, James G; Li, Yingying; Hahn, Beatrice H; Derdeyn, Cynthia A; Sodora, Donald L; Apetrei, Cristian; Paiardini, Mirko; Silvestri, Guido; Collman, Ronald G
2010-08-26
In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.
Grant, Michael P.; Stepanchick, Ann
2012-01-01
Calcium-sensing receptors (CaSRs) regulate systemic Ca2+ homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca2+ is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca2+, using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca2+ signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca2+ oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca2+ signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca2+ response when extracellular Ca2+ is elevated and argues that Ca2+ signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane. PMID:23077345
Biever, Jessica J.; Brinkman, Doug; Gardner, Gary
2014-01-01
Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052
Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C
2010-01-01
While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.
Contribution of the mu loop to the structure and function of rat glutathione transferase M1-1
Hearne, Jennifer L.; Colman, Roberta F.
2006-01-01
The “mu loop,” an 11-residue loop spanning amino acid residues 33–43, is a characteristic structural feature of the mu class of glutathione transferases. To assess the contribution of the mu loop to the structure and function of rat GST M1-1, amino acid residues 35–44 (35GDAPDYDRSQ44) were excised by deletion mutagenesis, resulting in the “Deletion Enzyme.” Kinetic studies reveal that the Km values of the Deletion Enzyme are markedly increased compared with those of the wild-type enzyme: 32-fold for 1-chloro-2,4-dinitrobenzene, 99-fold for glutathione, and 880-fold for monobromobimane, while the Vmax value for each substrate is increased only modestly. Results from experiments probing the structure of the Deletion Enzyme, in comparison with that of the wild-type enzyme, suggest that the secondary and quaternary structures have not been appreciably perturbed. Thermostability studies indicate that the Deletion Enzyme is as stable as the wild-type enzyme at 4°C and 10°C, but it rapidly loses activity at 25°C, unlike the wild-type enzyme. In the temperature range of 4°C through 25°C, the loss of activity of the Deletion Enzyme is not the result of a change in its structure, as determined by circular dichroism spectroscopy and sedimentation equilibrium centrifugation. Collectively, these results indicate that the mu loop is not essential for GST M1-1 to maintain its structure nor is it required for the enzyme to retain some catalytic activity. However, it is an important determinant of the enzyme's affinity for its substrates. PMID:16672236
Structural and functional analyses of Saccharomyces cerevisiae wild-type and mutant RNA1 genes.
Traglia, H M; Atkinson, N S; Hopper, A K
1989-01-01
The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability. Images PMID:2674676
NADPH Oxidase Inhibition Improves Neurological Outcomes in Surgically-Induced Brain Injury
Lo, Wendy; Bravo, Thomas; Jadhav, Vikram; Zhang, John H.; Tang, Jiping
2007-01-01
Neurosurgical procedures can result in brain injury by various means including direct trauma, hemorrhage, retractor stretch, and electrocautery. This surgically-induced brain injury (SBI) can cause post-operative complications such as brain edema. By creating a mouse model of SBI, we tested whether NADPH oxidase, an important reactive oxygen species producing enzyme, is involved in SBI using transgenic mice lacking gp91phox subunit of NADPH oxidase (gp91phox KO) and apocynin, a specific inhibitor of NADPH oxidase. Neurological function and brain edema were evaluated at 24 hours post-SBI in gp91phox KO and wild-type littermates grouped into SBI and sham-surgery groups. Alternatively, mice were grouped into vehicle- and apocynin-treated (5mg/kg, i.p. 30 minutes before SBI) groups. Oxidative stress indicated by lipid peroxidation (LPO) was measured at 3 and 24 hours post SBI. The gp91phox KO mice, but not the apocynin-treated mice showed significantly improved neurological scores. Brain edema was observed in both gp91phox KO and wild-type groups after SBI; however, there was no significant difference between these two groups. Brain edema was also not affected by apocynin-pretreatment. LPO levels were significantly higher in SBI group in both gp91phox KO and wild-type groups as compared to sham group. A trend, although without statistical significance, was noted towards attenuation of LPO in the gp91phox KO animals as compared to wild-type group. LPO levels were significantly attenuated at 3 hours post-SBI by apocynin pretreatment but not at 24 hours post-SBI. These results suggest that chronic and acute inhibition of NADPH oxidase activity does not reduce brain edema after SBI. Long-term inhibition of NADPH oxidase, however improves neurological functions after SBI. PMID:17317004
Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao
2015-11-01
Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Nelson, Matthew E; Finazzi, Giovanni; Wang, Qing Jun; Middleton-Zarka, Kelly A; Whitmarsh, John; Kallas, Toivo
2005-03-18
Quinone-reductase (Q(i)) domains of cyanobacterial/chloroplast cytochrome bf and bacterial/mitochondrial bc complexes differ markedly, and the cytochrome bf Q(i) site mechanism remains largely enigmatic. To investigate the bf Q(i) domain, we constructed the mutation R214H, which substitutes histidine for a conserved arginine in the cytochrome b(6) polypeptide of the cyanobacterium Synechococcus sp. SPCC 7002. At high light intensity, the R214H mutant grew approximately 2.5-fold more slowly than the wild type. Slower growth arose from correspondingly slower overall turnover of the bf complex. Specifically, as shown in single flash turnover experiments of cytochrome b(6) reduction and oxidation, the R214H mutation partially blocked electron transfer to the Q(i) site, mimicking the effect of the Q(i) site inhibitor 2-N-4-hydroxyquinoline-N-oxide. The kinetics of cytochrome b(6) oxidation were largely unaffected by hydrogen-deuterium exchange in the mutant but were slowed considerably in the wild type. This suggests that although protonation events influenced the kinetics of cytochrome b(6) oxidation at the Q(i) site in the wild type, electron flow limited this reaction in the R214H mutant. Redox titration of membranes revealed midpoint potentials (E(m,7)) of the two b hemes similar to those in the wild type. Our data define cytochrome b(6) Arg(214) as a key residue for Q(i) site catalysis and turnover of the cytochrome bf complex. In the recent cytochrome bf structures, Arg(214) lies near the Q(i) pocket and the newly discovered c(i) or x heme. We propose a model for Q(i) site function and a role for Arg(214) in plastoquinone binding.
Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines.
Schweitzer, Brock L; DeKoter, Rodney P
2004-01-01
A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.
Otero, A S; Doyle, M B; Hartsough, M T; Steeg, P S
1999-03-08
NM23 (NDP kinase) modulates the gating of muscarinic K+ channels by agonists through a mechanism distinct from GTP regeneration. To better define the function of NM23 in this pathway and to identify sites in NM23 that are important for its role in muscarinic K+ channel function, we utilized MDA-MB-435 human breast carcinoma cells that express low levels of NM23-H1. M2 muscarinic receptors and GIRK1/GIRK4 channel subunits were co-expressed in cells stably transfected with vector only (control), wild-type NM23-H1, or several NM23-H1 mutants. Lysates from all cell lines tested exhibit comparable nucleoside diphosphate (NDP) kinase activity. Whole cell patch clamp recordings revealed a substantial reduction of the acute desensitization of muscarinic K+ currents in cells overexpressing NM23-H1. The mutants NM23-H1P96S and NM23-H1S44A resembled wild-type NM23-H1 in their ability to reduce desensitization. In contrast, mutants NM23-H1S120G and NM23-H1S120A completely abolished the effect of NM23-H1 on desensitization of muscarinic K+ currents. Furthermore, NM23-H1S120G potentiated acute desensitization, indicating that this mutant retains the ability to interact with the muscarinic pathway, but has properties antithetical to those of the wild-type protein. We conclude that NM23 acts as a suppressor of the processes leading to the desensitization of muscarinic K+ currents, and that Ser-120 is essential for its actions.
Design of an Active Ultrastable Single-chain Insulin Analog
Hua, Qing-xin; Nakagawa, Satoe H.; Jia, Wenhua; Huang, Kun; Phillips, Nelson B.; Hu, Shi-quan; Weiss, Michael A.
2008-01-01
Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length. Here, we describe the design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 ± 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (ΔΔGu = 0.7 ± 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 ± 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts ValA3 at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 α-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world. PMID:18332129
Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T
2012-06-01
Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.
p53 mutations promote proteasomal activity.
Oren, Moshe; Kotler, Eran
2016-07-27
p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.
Vaessen, Stefan F C; Sierts, Jeroen A; Kuivenhoven, Jan Albert; Schaap, Frank G
2009-02-06
Variation in the apolipoprotein A5 (APOA5) gene has consistently been associated with increased plasma triglyceride (TG) levels in epidemiological studies. In vivo functionality of these variations, however, has thus far not been tested. Using adenoviral over-expression, we evaluated plasma expression levels and TG-lowering efficacies of wild-type human apoAV, two human apoAV variants associated with increased TG (S19W, G185C) and one variant (Q341H) that is predicted to have altered protein function. Injection of mice with adenovirus encoding wild-type or mutant apoAV resulted in an identical dose-dependent elevation of human apoAV levels in plasma. The increase in apoAV levels resulted in pronounced lowering of plasma TG levels at two viral dosages. Unexpectedly, the TG-lowering efficacy of all three apoAV variants was similar to wild-type apoAV. In addition, no effect on TG-hydrolysis-related plasma parameters (free fatty acids, glycerol and post-heparin lipoprotein lipase activity) was apparent upon expression of all apoAV variants. In conclusion, our data indicate that despite their association with hypertriglyceridemia and/or predicted protein dysfunction, the 19W, 185C and 341H apoAV variants are equally effective in reducing plasma TG levels in mice.
Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai
2015-01-01
Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC. PMID:26287179
Biochemical Characterization and Cellular Effects of CADASIL Mutants of NOTCH3
Meng, He; Zhang, Xiaojie; Yu, Genggeng; Lee, Soo Jung; Chen, Y. Eugene; Prudovsky, Igor; Wang, Michael M.
2012-01-01
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells. PMID:23028706
Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.
Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao
2013-12-01
DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Mutant number distribution in an exponentially growing population
NASA Astrophysics Data System (ADS)
Keller, Peter; Antal, Tibor
2015-01-01
We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.
Karow, Anne R; Theissen, Bettina; Klostermeier, Dagmar
2007-01-01
RNA helicases mediate structural rearrangements of RNA or RNA-protein complexes at the expense of ATP hydrolysis. Members of the DEAD box helicase family consist of two flexibly connected helicase domains. They share nine conserved sequence motifs that are involved in nucleotide binding and hydrolysis, RNA binding, and helicase activity. Most of these motifs line the cleft between the two helicase domains, and extensive communication between them is required for RNA unwinding. The two helicase domains of the Bacillus subtilis RNA helicase YxiN were produced separately as intein fusions, and a functional RNA helicase was generated by expressed protein ligation. The ligated helicase binds adenine nucleotides with very similar affinities to the wild-type protein. Importantly, its intrinsically low ATPase activity is stimulated by RNA, and the Michaelis-Menten parameters are similar to those of the wild-type. Finally, ligated YxiN unwinds a minimal RNA substrate to an extent comparable to that of the wild-type helicase, confirming authentic interdomain communication.
Melvin, Richard G; Ballard, J William O
2011-07-01
Males and females age at different rates in a variety of species, but the mechanisms underlying the difference is not understood. In this study, we investigated sex-specific costs of a naturally occurring mildly deleterious deletion (DTrp85, DVal86) in cytochrome c oxidase subunit 7A (cox7A) in Drosophila simulans. We observed that females and males homozygous for the mutation had 30% and 26% reduced Cox activity, respectively, compared with wild type. Furthermore, 4-day-old females had 34%-42% greater physical activity than males. Greater physical activity in mutant females was correlated with a 19% lower 50% survival compared with wild-type females. Mutant and wild-type males had equal survival. These data suggest that females paid a higher cost of the mutation than did males. The data demonstrate linking population genetics and structural modeling to experimental manipulations that lead to functional predictions of mitochondrial bioenergetics and organism aging.
Nagarkar-Jaiswal, Sonal; Manivannan, Sathiya N; Zuo, Zhongyuan; Bellen, Hugo J
2017-05-31
Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila . Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase -dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ , encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail.
Glycan Engagement Dictates Hydrocephalus Induction by Serotype 1 Reovirus
Stencel-Baerenwald, Jennifer; Reiss, Kerstin; Blaum, Bärbel S.; Colvin, Daniel; Li, Xiao-Nan; Abel, Ty; Boyd, Kelli; Stehle, Thilo
2015-01-01
ABSTRACT Receptors expressed on the host cell surface adhere viruses to target cells and serve as determinants of viral tropism. Several viruses bind cell surface glycans to facilitate entry, but the contribution of specific glycan moieties to viral disease is incompletely understood. Reovirus provides a tractable experimental model for studies of viral neuropathogenesis. In newborn mice, serotype 1 (T1) reovirus causes hydrocephalus, whereas serotype 3 (T3) reovirus causes encephalitis. T1 and T3 reoviruses engage distinct glycans, suggesting that glycan-binding capacity contributes to these differences in pathogenesis. Using structure-guided mutagenesis, we engineered a mutant T1 reovirus incapable of binding the T1 reovirus-specific glycan receptor, GM2. The mutant virus induced substantially less hydrocephalus than wild-type virus, an effect phenocopied by wild-type virus infection of GM2-deficient mice. In comparison to wild-type virus, yields of mutant virus were diminished in cultured ependymal cells, the cell type that lines the brain ventricles. These findings suggest that GM2 engagement targets reovirus to ependymal cells in mice and illuminate the function of glycan engagement in reovirus serotype-dependent disease. PMID:25736887
Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype.
Camats, Núria; Fernández-Cancio, Mónica; Audí, Laura; Mullis, Primus E; Moreno, Francisca; González Casado, Isabel; López-Siguero, Juan Pedro; Corripio, Raquel; Bermúdez de la Vega, José Antonio; Blanco, José Antonio; Flück, Christa E
2015-01-01
MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life.
Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype
Audí, Laura; Mullis, Primus E.; Moreno, Francisca; González Casado, Isabel; López-Siguero, Juan Pedro; Corripio, Raquel; Bermúdez de la Vega, José Antonio; Blanco, José Antonio; Flück, Christa E.
2015-01-01
MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life. PMID:26580071
Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism.
Butler, Jeffrey A; Ventura, Natascia; Johnson, Thomas E; Rea, Shane L
2010-12-01
The Caenorhabditis elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain (ETC) functionality, yet, surprisingly, they are long lived. We have previously proposed that Mit mutants supplement their energy needs by exploiting alternate energy production pathways normally used by wild-type animals only when exposed to hypoxic conditions. We have also proposed that longevity in the Mit mutants arises as a property of their new metabolic state. If longevity does arise as a function of metabolic state, we would expect to find a common metabolic signature among these animals. To test these predictions, we established a novel approach monitoring the C. elegans exometabolism as a surrogate marker for internal metabolic events. Using HPLC-ultraviolet-based metabolomics and multivariate analyses, we show that long-lived clk-1(qm30) and isp-1(qm150) Mit mutants have a common metabolic profile that is distinct from that of aerobically cultured wild-type animals and, unexpectedly, wild-type animals cultured under severe oxygen deprivation. Moreover, we show that 2 short-lived mitochondrial ETC mutants, mev-1(kn1) and ucr-2.3(pk732), also share a common metabolic signature that is unique. We show that removal of soluble fumarate reductase unexpectedly increases health span in several genetically defined Mit mutants, identifying at least 1 alternate energy production pathway, malate dismutation, that is operative in these animals. Our study suggests long-lived, genetically specified Mit mutants employ a novel metabolism and that life span may well arise as a function of metabolic state.
Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong
2016-01-15
The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of ligand affinity on integrins' lateral diffusion in cultured cells.
Mainali, Dipak; Smith, Emily A
2013-04-01
The role of ligand affinity in altering αPS2CβPS integrins' lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22% and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins' increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75% slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99% for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.
Genetic and Functional Studies of Genes That Regulate DNA-Damage-Induced Cell Death
2005-11-01
SiRNA-resistant (silent) mutants of wild-type BACH1 and BACH1 BRCT-binding mutants (T989A, S990A , or F993A) were created by substituting four...induced G2/M checkpoint assay. First, we constructed Thr989-to-Ala (T989A), Ser990-to-Ala ( S990A ), or Phe993-to-Ala mutants of BACH1. BACH1 siRNA...expressed in HeLa cells. However, only wild-type BACH1 and the T989A mutant, but not the S990A or F993A mutant, were associated with BRCA1 (Fig. 3A
USDA-ARS?s Scientific Manuscript database
Until now, functional analyses of soybean genes have been very arduous because of the lack of a rapid transformation procedure. Recently identified the active endogenous type II transposable element, Tgm9, excises from insertion sites and restores wild-type phenotypes. Thus, this element provides a ...
Carr, Daniel J J; Wuest, Todd; Tomanek, Lisa; Silverman, Robert H; Williams, Bryan R G
2006-01-01
Mice deficient in RNA-dependent protein kinase (PKR–/–) or deficient in PKR and a functional 2′,5′-oligoadenylate synthetase (OAS) pathway (PKR/RL–/–) are more susceptible to genital herpes simplex virus type 2 (HSV-2) infection than wild-type mice or mice that are deficient only in a functional OAS pathway (RL–/–) as measured by survival over 30 days. The increase in susceptibility correlated with an increase in virus titre recovered from vaginal tissue or brainstem of infected mice during acute infection. There was also an increase in CD45+ cells and CD8+ T cells residing in the central nervous system of HSV-2-infected PKR/RL–/– mice in comparison with RL–/– or wild-type control animals. In contrast, there was a reduction in the HSV-specific CD8+ T cells within the draining lymph node of the PKR/RL–/– mice. Collectively, activation of PKR, but not of OAS, contributes significantly to the local control and spread of HSV-2 following genital infection. PMID:16895559
Jeon, Jin; Kim, Jungmook
2013-01-01
The Arabidopsis (Arabidopsis thaliana) two-component signaling system, which is composed of sensor histidine kinases, histidine phosphotransfer proteins, and response regulators, mediates the cytokinin response and various other plant responses. We have previously shown that ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and cold-inducible type A ARABIDOPSIS RESPONSE REGULATORS (ARRs) play roles in cold signaling. However, the roles of type B ARRs and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs) have not been investigated in cold signaling. Here, we show that ARR1 and AHP2, AHP3, and AHP5 play positive roles in the cold-inducible expression of type A ARRs. arr1 mutants showed greatly reduced cold-responsive expression of type A ARRs compared with the wild type, whereas ARR1-overexpressing Arabidopsis exhibited the hypersensitive cold response of type A ARRs as well as enhanced freezing tolerance with cytokinin, suggesting that ARR1 functions as a positive factor of cold signaling. Transgenic Arabidopsis expressing ARR1ΔDDK:GR lacking the amino-terminal receiver domain showed wild-type expression levels of type A ARRs in response to cold, indicating that the signal receiver domain of ARR1 might be important for cold-responsive expression of type A ARRs. ahp2 ahp3 ahp5 triple mutations greatly reduced type A ARR expression in response to cold, whereas the single or double ahp mutants displayed wild-type levels of ARR expression, suggesting that AHP2, AHP3, and AHP5 are redundantly involved in cold signaling. Taken together, these results suggest that ARR1 mediates cold signal via AHP2, AHP3, or AHP5 from AHK2 and AHK3 to express type A ARRs. We further identified a cold transcriptome affected by ahk2 ahk3 mutations by microarray analysis, revealing a new cold-responsive gene network regulated downstream of AHK2 and AHK3. PMID:23124324
Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J
2016-10-01
Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.
Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.; Grønlund, Mette
2015-01-01
Two pathways exist for plant Pi uptake from soil: via root epidermal cells (direct pathway) or via associations with arbuscular mycorrhizal (AM) fungi, and the two pathways interact in a complex manner. This study investigated distal and local effects of AM colonization on direct root Pi uptake and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM fungi, but with no functional mycorrhizal pathway for Pi uptake, was included to better understand effects of AM colonization per se. Colonization by AM fungi decreased expression of direct Pi transporter genes locally, but not distally in the wild type. In mtpt4 mutant plants, direct Pi transporter genes and the Pi starvation-induced gene Mt4 were more highly expressed than in wild-type roots. In wild-type plants, less Pi was taken up via the direct pathway by non-colonized roots when the other root half was colonized by AM fungi, compared with non-mycorrhizal plants. Colonization by AM fungi strongly influenced root growth locally and distally, and direct root Pi uptake activity locally, but had only a weak influence on distal direct pathway activity. The responses to AM colonization in the mtpt4 mutant suggested that in the wild type, the increased P concentration of colonized roots was a major factor driving the effects of AM colonization on direct root Pi uptake. PMID:25944927
Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan
2008-01-01
Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.
Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin
2013-03-01
On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.
Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain
2006-10-01
To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.
Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli▿
Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Hong, In-Hee; Yong, Hwan-Ung; Oktavina, Ershita Fitria; Nguyen, Hai Dang; Kim, Jung-Wan; Lee, Tae Soo; Park, Sung-Hoon; Boos, Winfried; Park, Kwan-Hwa
2011-01-01
Mutants with deletion mutations in the glg and mal gene clusters of Escherichia coli MC4100 were used to gain insight into glycogen and maltodextrin metabolism. Glycogen content, molecular mass, and branch chain distribution were analyzed in the wild type and in ΔmalP (encoding maltodextrin phosphorylase), ΔmalQ (encoding amylomaltase), ΔglgA (encoding glycogen synthase), and ΔglgA ΔmalP derivatives. The wild type showed increasing amounts of glycogen when grown on glucose, maltose, or maltodextrin. When strains were grown on maltose, the glycogen content was 20 times higher in the ΔmalP strain (0.97 mg/mg protein) than in the wild type (0.05 mg/mg protein). When strains were grown on glucose, the ΔmalP strain and the wild type had similar glycogen contents (0.04 mg/mg and 0.03 mg/mg protein, respectively). The ΔmalQ mutant did not grow on maltose but showed wild-type amounts of glycogen when grown on glucose, demonstrating the exclusive function of GlgA for glycogen synthesis in the absence of maltose metabolism. No glycogen was found in the ΔglgA and ΔglgA ΔmalP strains grown on glucose, but substantial amounts (0.18 and 1.0 mg/mg protein, respectively) were found when they were grown on maltodextrin. This demonstrates that the action of MalQ on maltose or maltodextrin can lead to the formation of glycogen and that MalP controls (inhibits) this pathway. In vitro, MalQ in the presence of GlgB (a branching enzyme) was able to form glycogen from maltose or linear maltodextrins. We propose a model of maltodextrin utilization for the formation of glycogen in the absence of glycogen synthase. PMID:21421758
In vivo evidence for unidentified leptin-induced circulating factors that control white fat mass.
Harris, Ruth B S
2015-12-15
Fat transplants increase body fat mass without changing the energy status of an animal and provide a tool for investigating control of total body fat. Early transplant studies found that small pieces of transplanted fat took on the morphology of the transplant recipient. Experiments described here tested whether this response was dependent upon expression of leptin receptors in either transplanted fat or the recipient mouse. Fat from leptin receptor deficient db/db mice or wild-type mice was placed subcutaneously in db/db mice. After 12 wk, cell size distribution in the transplant was the same as in endogenous fat of the recipient. Thus, wild-type fat cells, which express leptin receptors, were enlarged in a hyperleptinemic environment, indicating that leptin does not directly control adipocyte size. By contrast, db/db or wild-type fat transplanted into wild-type mice decreased in size, suggesting that a functional leptin system in the recipient is required for body fat mass to be controlled. In the final experiment, wild-type fat was transplanted into a db/db mouse parabiosed to either another db/db mouse to an ob/ob mouse or in control pairs in which both parabionts were ob/ob mice. Transplants increased in size in db/db-db/db pairs, decreased in db/db-ob/ob pairs and did not change in ob/ob-ob/ob pairs. We propose that leptin from db/db parabionts activated leptin receptors in their ob/ob partners. This, in turn, stimulated release of unidentified circulating factors, which travelled back to the db/db partner and acted on the transplant to reduce fat cell size. Copyright © 2015 the American Physiological Society.
Alternative Pathways for Production of Beta-Amyloid Peptides of Alzheimer’s Disease
Hook, Vivian; Schechter, Israel; Demuth, Hans-Ulrich; Hook, Gregory
2009-01-01
This highlight article describes three Alzheimer’s disease (AD) presentations made at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms that produce neurotoxic beta-amyloid (Aβ) peptides. One group described the poor kinetic properties of the BACE 1 β-secretase for cleaving the wild-type β-secretase site in the APP found in most AD patients. They demonstrated that cathepsin D displays BACE 1-like specificity, is 280-fold more abundant in human brain than BACE 1, and pepstatin A inhibits cleavage of β-secretase site peptides by brain extracts and cathepsin D, but not by BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the wild type β-secretase site, they suggested continuing the search for additional β-secretase candidate(s). The second group reported that cathepsin B is such an alternative β-secretase candidate possessing excellent kinetic efficiency and specificity for cleaving the wild-type β-secretase site. Significantly, they demonstrated that inhibitors of cathepsin B improved memory function with reduced amyloid plaque neuropathology and decreased brain Aβ(40/42) and β-secretase activity in AD animal models expressing APP containing the wild-type β-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Aβ that are present in AD brains, with evidence that cathepsin B, but not BACE 1, efficiently cleaves the wild-type β-secretase site containing isoaspartate. They also found that cyclization of N-terminal Glu by glutaminyl cyclase generates pGluAβ(3-40/42) peptides that are highly amyloidogenic. These presentations suggested that cathepsin B and glutaminyl cyclase are potential new AD therapeutic targets. PMID:18979625
Föller, Michael; Bobbala, Diwakar; Koka, Saisudha; Boini, Krishna M; Mahmud, Hasan; Kasinathan, Ravi S; Shumilina, Ekaterina; Amann, Kerstin; Beranek, Golo; Sausbier, Ulrike; Ruth, Peter; Sausbier, Matthias; Lang, Florian; Huber, Stephan M
2010-11-01
Increased cytosolic Ca(2+) concentrations activate Gardos K(+) channels in human erythrocytes with membrane hyperpolarization, efflux of K(+), Cl⁻, and osmotically obliged H₂O resulting in cell shrinkage, a phenomenon referred to as Gardos effect. We tested whether the Gardos effect delays colloid osmotic hemolysis of injured erythrocytes from mice lacking the Ca(2+)-activated K(+) channel K(Ca)3.1. To this end, we applied patch clamp and flow cytometry and determined in vitro as well as in vivo hemolysis. As a result, erythrocytes from K(Ca)3.1-deficient (K(Ca)3.1(-/-)) mice lacked Gardos channel activity and the Gardos effect. Blood parameters, reticulocyte count, or osmotic erythrocyte resistance, however, did not differ between K(Ca)3.1(-/-) mice and their wild-type littermates, suggesting low or absent Gardos channel activity in unstressed erythrocytes. Oxidative stress-induced Ca(2+) entry and phospholipid scrambling were significantly less pronounced in K(Ca)3.1(-/-) than in wild-type erythrocytes. Moreover, in vitro treatment with α-toxin from Staphylococcus aureus, which forms pores in the cellular membrane, resulted in significantly stronger hemolysis of K(Ca)3.1(-/-) than of wild-type erythrocytes. Intravenous injection of α-toxin induced more profound hemolysis in K(Ca)3.1(-/-) than in wild-type mice. Similarly, intra-peritoneal application of the redox-active substance phenylhydrazine, an agent for the induction of hemolytic anemia, was followed by a significantly stronger decrease of hematocrit in K(Ca)3.1(-/-) than in wild-type mice. Finally, malaria infection triggered the activation of K(Ca)3.1 and transient shrinkage of the infected erythrocytes. In conclusion, K(Ca)3.1 channel activity and Gardos effect counteract hemolysis of injured erythrocytes, thus decreasing hemoglobin release into circulating blood.
Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert
2003-01-01
Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.
Shehu, Dayyabu; Alias, Zazali
2018-05-19
Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fabao; Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071; You, Xiaona
Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migrationmore » in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.« less
Bonthius, Daniel J.; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J.
2014-01-01
The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS−/− mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS−/− mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS−/− mice and their wild type controls received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days 4–9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS−/− and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS−/− mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS−/− mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS−/− mice, but not in wild type. Thus, homozygous mutation of the nNOS gene increases vulnerability to alcohol-induced cerebellar dysfunction and neuronal loss. nNOS is the first gene identified whose mutation worsens alcohol-induced cerebellar behavioral deficits. PMID:25511929
Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.
Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina
2010-05-01
Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.
Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping
2014-01-01
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity. PMID:24711564
Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping; Liu, Yongjie
2014-06-01
Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.
2007-01-01
To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827
Cabral, Rita M.; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M.
2015-01-01
Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. PMID:22289416
Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M
2012-04-01
Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A. Copyright © 2012 Elsevier Inc. All rights reserved.
Aksentijević, Dunja; Zervou, Sevasti; Faller, Kiterie M. E.; McAndrew, Debra J.; Schneider, Jurgen E.; Neubauer, Stefan; Lygate, Craig A.
2014-01-01
Background Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1H–MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min), or the anti-neoplastic drug doxorubicin 15 µM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity. PMID:25272153
Ruffle, Stuart V.; Wang, Jun; Johnston, Heather G.; Gustafson, Terry L.; Hutchison, Ronald S.; Minagawa, Jun; Crofts, Anthony; Sayre, Richard T.
2001-01-01
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins, CP43 and CP47. To gain insight into the function(s) of each of the peripheral Chls, we generated site-specific mutations of the amino acid residues that coordinate these Chls and characterized their energy and electron transfer properties. Our results demonstrate that D1-H118 and D2-H117 mutants differ with respect to: (a) their relative numbers of functional PSII complexes, (b) their relative ability to stabilize charge-separated states, (c) light-harvesting efficiency, and (d) their sensitivity to photo-inhibition. The D2-H117N and D2-H117Q mutants had reduced levels of functional PSII complexes and oxygen evolution capacity as well as reduced light-harvesting efficiencies relative to wild-type cells. In contrast, the D1-H118Q mutant was capable of near wild-type rates of oxygen evolution at saturating light intensities. The D1-H118Q mutant also was substantially more resistant to photo-inhibition than wild type. This reduced sensitivity to photo-inhibition is presumably associated with a reduced light-harvesting efficiency in this mutant. Finally, it is noted that the PSII peripheral accessory Chls have similarities to a to a pair of Chls also present in the PSI reaction center complex. PMID:11598237
Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E
2017-06-27
Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.
Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd
2015-01-01
Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720
Probing the Role of Nascent Helicity in p27 Function as a Cell Cycle Regulator
Otieno, Steve; Kriwacki, Richard
2012-01-01
p27 regulates the activity of Cdk complexes which are the principal governors of phase transitions during cell division. Members of the p27 family of proteins, which also includes p21 and p57, are called the Cip/Kip cyclin-dependent kinase regulators (CKRs). Interestingly, the Cip/Kip CKRs play critical roles in cell cycle regulation by being intrinsically unstructured, a characteristic contrary to the classical structure-function paradigm. They exhibit nascent helicity which has been localized to a segment referred to as sub-domain LH. The nascent helicity of this sub-domain is conserved and we hypothesize that it is an important determinant of their functional properties. To test this hypothesis, we successfully designed and prepared p27 variants in which domain LH was either more or less helical with respect to the wild-type protein. Thermal denaturation experiments showed that the ternary complexes of the p27 variants bound to Cdk2/Cyclin A were less stable compared to the wild-type complex. Isothermal titration calorimetry experiments showed a decrease in the enthalpy of binding for all the mutants with respect to p27. The free energies of binding varied within a much narrower range. In vitro Cdk2 inhibition assays showed that the p27 variants exhibited disparate inhibitory potencies. Furthermore, when over-expressed in NIH 3T3 mouse fibroblast cells, the less helical p27 variants were less effective in causing cell cycle arrest relative to the wild-type p27. Our results indicate that the nascent helicity of sub-domain LH plays a key role mediating the biological function of p27. PMID:23071750
Wang, Hao; Sun, Xuming; Chou, Jeff; Lin, Marina; Ferrario, Carlos M; Zapata-Sudo, Gisele; Groban, Leanne
2017-08-01
Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER. Copyright © 2016 Elsevier B.V. All rights reserved.
Ladomersky, Erik; Khan, Aslam; Shanbhag, Vinit; Cavet, Jennifer S; Chan, Jefferson; Weisman, Gary A; Petris, Michael J
2017-09-01
Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7a LysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7a LysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7a LysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7a LysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection. Copyright © 2017 American Society for Microbiology.
Banerjee, Arundhati; Ray, Sujay
2016-10-30
Human tyrosinase, is an important protein for biosynthetic pathway of melanin. It was studied to be phosphorylated and activated by protein kinase-C, β-subunit (PKC-β) through earlier experimentations with in vivo evidences. Documentation documents that mutation in two essentially vital serine residues in C-terminal end of tyrosinase leads to albinism. Due to the deficiency of protective shield like enzyme; melanin, albinos are at an increased peril for melanoma and other skin cancers. So, computational and residue-level insight including a mutational exploration with evolutionary importance into this mechanism lies obligatory for future pathological and therapeutic developments. Therefore, functional tertiary models of the relevant proteins were analyzed after satisfying their stereo-chemical features. Evolutionarily paramount residues for the activation of tyrosinase were perceived via multiple sequence alignment phenomena. Mutant-type tyrosinase protein (S98A and S102A) was thereby modeled, maintaining the wild-type proteins' functionality. Furthermore, this present comparative study discloses the variation in the stable residual participation (for mutant-type and wild-type tyrosinase-PKCβ complex). Mainly, an increased number of polar negatively charged residues from the wild-type tyrosinase participated with PKC-β, predominantly. Fascinatingly supported by evaluation of statistical significances, mutation even led to a destabilizing impact in tyrosinase accompanied by conformational switches with a helix-to-coil transition in the mutated protein. Even the allosteric sites in the protein got poorly hampered upon mutation leading to weaker tendency for binding partners to interact. Copyright © 2016 Elsevier B.V. All rights reserved.
Hayes, Katherine L; Messina, Louis M; Schwartz, Lawrence M; Yan, Jinglian; Burnside, Amy S; Witkowski, Sarah
2018-05-01
Peripheral artery disease is an atherosclerotic occlusive disease that causes limb ischemia and has few effective noninterventional treatments. Stem cell therapy is promising, but concomitant diabetes may limit its effectiveness. We evaluated the therapeutic potential of skeletal muscle pericytes to augment postischemic neovascularization in wild-type and type 2 diabetic (T2DM) mice. Wild-type C57BL/6J and leptin receptor spontaneous mutation db/db T2DM mice underwent unilateral femoral artery excision to induce limb ischemia. Twenty-four hours after ischemia induction, CD45 - CD34 - CD146 + skeletal muscle pericytes or vehicle controls were transplanted into ischemic hindlimb muscles. At postoperative day 28, pericyte transplantation augmented blood flow recovery in wild-type mice (79.3 ± 5% vs. 61.9 ± 5%; P = 0.04), but not in T2DM mice (48.6% vs. 46.3 ± 5%; P = 0.51). Pericyte transplantation augmented collateral artery enlargement in wild-type (26.7 ± 2 μm vs. 22.3 ± 1 μm, P = 0.03), but not T2DM mice (20.4 ± 1.4 μm vs. 18.5 ± 1.2 μm, P = 0.14). Pericyte incorporation into collateral arteries was higher in wild-type than in T2DM mice ( P = 0.002). Unexpectedly, pericytes differentiated into Schwann cells in vivo. In vitro, Insulin increased Nox2 expression and decreased tubular formation capacity in human pericytes. These insulin-induced effects were reversed by N-acetylcysteine antioxidant treatment. In conclusion, T2DM impairs the ability of pericytes to augment neovascularization via decreased collateral artery enlargement and impaired engraftment into collateral arteries, potentially via hyperinsulinemia-induced oxidant stress. While pericytes show promise as a unique form of stem cell therapy to increase postischemic neovascularization, characterizing the molecular mechanisms by which T2DM impairs their function is essential to achieve their therapeutic potential.
Smith, Steven E.; Schumaker, Karen S.
2016-01-01
The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development. PMID:26979332
Li, Xiao; Zhang, Shuang-shuang; Ma, Jun-xia; Guo, Guang-yan; Zhang, Xue-yong; Liu, Xu; Bi, Cai-li
2015-05-01
TaUBA functions as a negative regulator of salt and drought stress response in transgenic Arabidopsis, either the UBA domain or the zinc finger domain is crucial for TaUBA's function. TaUBA (DQ211935), which is a UBA domain-containing protein in wheat, was cloned and functionally characterized. Southern blot suggested that TaUBA is a low copy gene in common wheat. qRT-PCR assay showed that the expression of TaUBA was strongly induced by salt and drought stress. When suffering from drought and salt stresses, lower proline content and much higher MDA content in the TaUBA overexpressors were observed than those of the wild-type control, suggesting TaUBA may function as a negative regulator of salt and drought stress response in plants. To study whether the UBA domain or the zinc finger domain affects the function of TaUBA, TaUBAΔUBA (deletion of UBA domain) and TaUBA-M (Cys464Gly and Cys467Gly) overexpression vectors were constructed and transformed into Arabidopsis. Upon drought and salt stresses, the TaUBAΔUBA-and TaUBA-M-overexpressed plants accumulated much more proline and lower MDA than the wild-type control, the TaUBA-overexpressors lost water more quickly than TaUBAΔUBA-and TaUBA-M-overexpressed plants as well as the wild-type control, suggesting that overexpression of TaUBAΔUBA or TaUBA-M improved the drought and salt tolerance of transgenic Arabidopsis plants and the possibility of ubiquitination role in the regulation of osmolyte synthesis and oxidative stress responses in mediating stress tolerance. qRT-PCR assay of stress-related genes in transgenic plants upon drought and salt stresses suggested that TaUBA may function through down-regulating some stress related-transcription factors and by regulating P5CSs to cope with osmotic stress.
Walther, Diego J.; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W.; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie
2010-01-01
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1gt/gt mice, the overall survival rates of the Mcph1gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function. PMID:20169082
Trimborn, Marc; Ghani, Mahdi; Walther, Diego J; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie
2010-02-16
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.
Exonuclease of human DNA polymerase gamma disengages its strand displacement function.
He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney
2013-11-01
Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.
Holmes, Tarquin
2017-06-01
Wild types in genetics are specialised strains of laboratory experimental organism which principally serve as standards against which variation is measured. As selectively inbred lineages highly isolated from ancestral wild populations, there appears to be little wild or typical about them. I will nonetheless argue that they have historically been successfully used as stand-ins for nature, allowing knowledge produced in the laboratory to be extrapolated to the natural world. In this paper, I will explore the 19th century origins of the wild type concept, the theoretical and experimental innovations which allowed concepts and organisms to move from wild nature to laboratory domestication c. 1900 (resulting in the production of standardised lab strains), and the conflict among early geneticists between interactionist and atomist accounts of wild type, which would eventually lead to the conceptual disintegration of wild types and the triumph of genocentrism and population genetics. I conclude by discussing how the strategy of using wild type strains to represent nature in the lab has nonetheless survived the downfall of the wild type concept and continues to provide, significant limitations acknowledged, an epistemically productive means of investigating heredity and evolutionary variation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert
2016-02-01
The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.
Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L
2015-10-01
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.
Different domains are critical for oligomerization compatibility of different connexins
MARTÍNEZ, Agustín D.; MARIPILLÁN, Jaime; ACUÑA, Rodrigo; MINOGUE, Peter J.; BERTHOUD, Viviana M.; BEYER, Eric C.
2011-01-01
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies. PMID:21348854
Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients.
Ciarimboli, Giuliano; Lancaster, Cynthia S; Schlatter, Eberhard; Franke, Ryan M; Sprowl, Jason A; Pavenstädt, Hermann; Massmann, Vivian; Guckel, Denise; Mathijssen, Ron H J; Yang, Wenjian; Pui, Ching-Hon; Relling, Mary V; Herrmann, Edwin; Sparreboom, Alex
2012-02-15
Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Creatinine transport was studied in transfected HEK293 cells in vitro and in wild-type mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(-/-)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Compared with wild-type mice, creatinine clearance was significantly impaired in Oct1/2(-/-) mice. Furthermore, creatinine inhibited organic cation transport in freshly isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(-/-) mice. In a genetic association analysis (n = 590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P = 0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n = 68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P = 0.0083), consistent with inhibition of an elimination pathway. Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. ©2012 AACR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J.; Warby, C; Whitby, F
2009-01-01
Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connectedmore » by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.« less
IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection
Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.
2014-01-01
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254
NASA Technical Reports Server (NTRS)
Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.
2003-01-01
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.
Maize ROP2 GTPase provides a competitive advantage to the male gametophyte.
Arthur, K M; Vejlupkova, Z; Meeley, R B; Fowler, J E
2003-12-01
Rop GTPases have been implicated in the regulation of plant signal transduction and cell morphogenesis. To explore ROP2 function in maize, we isolated five Mutator transposon insertions (rop2::Mu alleles). Transmission frequency through the male gametophyte, but not the female, was lower than expected in three of the rop2::Mu mutants. These three alleles formed an allelic series on the basis of the relative transmission rate of each when crossed as trans-heterozygotes. A dramatic reduction in the level of ROP2-mRNA in pollen was associated with the three alleles causing a transmission defect, whereas a rop2::Mu allele that did not result in a defect had wild-type transcript levels, thus confirming that mutation of rop2 causes the mutant phenotype. These data strongly support a role for rop2 in male gametophyte function, perhaps surprisingly, given the expression in pollen of the nearly identical duplicate gene rop9. However, the transmission defect was apparent only when a rop2::Mu heterozygote was used as the pollen donor or when a mixture of wild-type and homozygous mutant pollen was used. Thus, mutant pollen is at a competitive disadvantage compared to wild-type pollen, although mutant pollen grains lacked an obvious cellular defect. Our data demonstrate the importance in vivo of a specific Rop, rop2, in the male gametophyte.
Functional characteristics of a novel SMAD4 mutation from thoracic aortic aneurysms (TAA).
Wu, Lifei
2017-09-10
SMAD4 is as an essential mediator of the transforming growth factor β (TGF-β) signaling pathway, and dysregulated TGF-β signaling is linked with thoracic aortic aneurysms (TAAs). In this study, we functionally characterized the Smad4 S271N mutation (the mutation c. 812G>A in Smad4 results in the amino acid substitution Ser271Asn) that was isolated from TAA individuals. We first constructed wild-type human Smad4 and Smad4 S271N plasmids. These constructs were then transiently transfected into HEK293T cells, and subsequent real-time PCR and western blotting demonstrated that wild-type Smad4 and Smad4 S271N were successfully expressed in 293T cells. We found that HEK293T cells overexpressing Smad4 S271N showed a strong increase in both cytoplasmic and nuclear Smad4 protein levels in response to TGF-β1. Although TGF-β signaling was the same in wild-type Smad4- and Smad4 S271N-transfected cells following TGF-β1 exposure, interestingly, we observed that transient Smad4 S271N expression in HEK293T cells caused a significant basal activation of TGF-β signaling. These results indicated that Smad4 may not directly induce TAA; rather it may contribute to TAA in combination with other risk factors. Copyright © 2017 Elsevier B.V. All rights reserved.
Sheng, Ji-Ping; Shen, Lin; Ru, Bing-Gen
2009-03-01
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich and metal-binding functional proteins. Transgenic MT mushroom can be used as functional food additives, but its zinc-enriching ability has not been studied systemically until now. The zinc contents in mycelia of transgenic MT mushroom (Pleurotus ostreatus) and wild type mushroom mycelia cultivated in different zinc concentration media were analyzed by ICP-OES. The growth status, zinc-enriching ability and degree of zinc in organic form (DZOF) were also analyzed. Results showed that MT mushroom mycelia grew rapidly, but the growth was inhibited when the zinc content in solid media was higher than 1.6 mmol x L(-1). MT mushroom mycelia could enrich more zinc than that of wild type, and the zinc content in MT mushroom mycelia could be 2.56-27.49 mg x kg(-1) when it was cultivated in a liquid media with 0.6-1.2 mmol x L(-1) zinc. DZOF of MT mushroom mycelia in a liquid media with 0.6 mmol x L(-1) zinc at 7 d was significantly higher (88.7%) than that in the wild type (82.1%, alpha = 0.05), but there was no significant difference in DZOF when the MT mushroom mycelia was cultivated in a liquid media with different zinc content at 7 d.
MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens.
Kamisugi, Yasuko; Schaefer, Didier G; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J; Cuming, Andrew C; Nogué, Fabien
2012-04-01
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.
MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens
Kamisugi, Yasuko; Schaefer, Didier G.; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J.; Cuming, Andrew C.; Nogué, Fabien
2012-01-01
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development. PMID:22210882
Park, Hye-Jee; Jung, Ho Won; Han, Sang-Wook
2014-09-26
The bacterial envelope possesses diverse functions, including protection against environmental stress and virulence factors for host infection. Here, we report the function of wxcB in Xanthomonas campestris pv. vesicatoria (Xcv), a causal agent of bacterial leaf spot disease in tomato and pepper. To characterize roles of wxcB, we generated a knockout mutant (XcvΔwxcB) and found that the virulence of the mutant was weaker than that of the wild type in tomato plants. To predict the mechanism affected by wxcB, we compared protein expressions between the wild type and the mutant. Expression of 152 proteins showed a greater than 2-fold difference. Proteins involved in motility and cell wall/membrane were the most abundant. Through phenotypic assays, we further demonstrated that the mutant displayed reduced motility and tolerance to treatment, but it showed increased biofilm formation. Interestingly, the LPS profile was unchanged. These results lead to new insights into the functions of wxcB that is associated with cell wall/membrane functions, which contributes to pathogen virulence. Copyright © 2014 Elsevier Inc. All rights reserved.
Immunological Development and Cardiovascular Function Are Normal in Annexin VI Null Mutant Mice
Hawkins, Tim E.; Roes, Jürgen; Rees, Daryl; Monkhouse, Jayne; Moss, Stephen E.
1999-01-01
Annexins are calcium-binding proteins of unknown function but which are implicated in important cellular processes, including anticoagulation, ion flux regulation, calcium homeostasis, and endocytosis. To gain insight into the function of annexin VI, we performed targeted disruption of its gene in mice. Matings between heterozygous mice produced offspring with a normal Mendelian pattern of inheritance, indicating that the loss of annexin VI did not interfere with viability in utero. Mice lacking annexin VI reached sexual maturity at the same age as their normal littermates, and both males and females were fertile. Because of interest in the role of annexin VI in cardiovascular function, we examined heart rate and blood pressure in knockout and wild-type mice and found these to be identical in the two groups. Similarly, the cardiovascular responses of both sets of mice to septic shock were indistinguishable. We also examined components of the immune system and found no differences in thymic, splenic, or bone marrow lymphocyte levels between knockout and wild-type mice. This is the first study of annexin knockout mice, and the lack of a clear phenotype has broad implications for current views of annexin function. PMID:10567528
Shi, Mei; Bennett, Teresa A; Cimino, Daniel F; Maestas, Diane C; Foutz, Terry D; Gurevich, Vsevolod V; Sklar, Larry A; Prossnitz, Eric R
2003-06-24
G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.
SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae
Gupta, Ritu; Vijayraghavan, Usha
2015-01-01
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation. PMID:26147804
Gupta, Ritu; Sadhale, Parag P; Vijayraghavan, Usha
2015-01-01
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V
2008-01-01
Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.
1993-01-01
To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208
Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.
2000-01-01
MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of these proteins (median time, 26 months; P = 0.02). PMID:10934161
New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.
Mejia, Monica; Heghinian, Mari D; Marí, Frank; Godenschwege, Tanja A
2013-01-01
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR's ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without affecting other cellular signaling.
New Tools for Targeted Disruption of Cholinergic Synaptic Transmission in Drosophila melanogaster
Mejia, Monica; Heghinian, Mari D.; Marí, Frank; Godenschwege, Tanja A.
2013-01-01
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson’s disease, Alzheimer’s disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7) has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR’s ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the circuits without affecting other cellular signaling. PMID:23737994
Veblen, Kari E; Porensky, Lauren M; Riginos, Corinna; Young, Truman P
2016-09-01
The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega-herbivores, meso-herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species. Plant communities in the six different herbivore treatments shifted directionally over time and diverged from each other substantially by 2013. Plant community composition was strongly related (R 2 = 0.92) to residual plant biomass, a measure of herbivore utilization. Addition of any single herbivore type (cattle, wildlife, or mega-herbivores) caused a shift in plant community composition that was proportional to its removal of plant biomass. These results suggest that overall herbivory pressure, rather than herbivore type or complex interactions among different herbivore types, was the main driver of changes in plant community composition. Individual plant species, however, did respond most strongly to either wild ungulates or cattle. Although these results suggest considerable functional similarity between a suite of native wild herbivores (which included grazers, browsers, and mixed feeders) and cattle (mostly grazers) with respect to understory plant community composition, responses of individual plant species demonstrate that at the plant-population-level impacts of a single livestock species are not functionally identical to those of a diverse group of native herbivores. © 2016 by the Ecological Society of America.
Hfe Deficiency Impairs Pulmonary Neutrophil Recruitment in Response to Inflammation
Benesova, Karolina; Vujić Spasić, Maja; Schaefer, Sebastian M.; Stolte, Jens; Baehr-Ivacevic, Tomi; Waldow, Katharina; Zhou, Zhe; Klingmueller, Ursula; Benes, Vladimir; Mall, Marcus A.; Muckenthaler, Martina U.
2012-01-01
Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe−/− mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe−/− and wild-type mice by intratracheal instillation of 20 µg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe−/− mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe−/− and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis. PMID:22745741
Kobayashi, Ryuji; Patenia, Rebecca; Ashizawa, Satoshi; Vykoukal, Jody
2009-07-21
Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.
DSCAM Localization and Function at the Mouse Cone Synapse
de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.
2014-01-01
The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985
Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.
Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L
1999-12-01
The goal of this study was to determine whether adenoviral vector-mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53. The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase-polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation. The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p<0.01). The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy, not only in human gliomas that express mutant p53, but also in those that express wild-type p53.
Lebbink, J H; Knapp, S; van der Oost, J; Rice, D; Ladenstein, R; de Vos, W M
1998-07-10
Comparison of the recently determined three-dimensional structures of several glutamate dehydrogenases allowed for the identification of a five-residue ion-pair network in the hinge region of Pyrococcus furiosus glutamate dehydrogenase (melting temperature 113 degrees C), that is not present in the homologous glutamate dehydrogenase from Thermotoga maritima (melting temperature 93 degrees C). In order to study the role of this ion-pair network, we introduced it into the T. maritima enzyme using a site-directed mutagenesis approach. The resulting T. maritima glutamate dehydrogenases N97D, G376 K and N97D/G376 K as well as the wild-type enzyme were overproduced in Escherichia coli and subsequently purified. Elucidation of the three-dimensional structure of the double mutant N97D/G376 K at 3.0 A, showed that the designed ion-pair interactions were indeed formed. Moreover, because of interactions with an additional charged residue, a six-residue network is present in this double mutant. Melting temperatures of the mutant enzymes N97D, G376 K and N97D/G376 K, as determined by differential scanning calorimetry, did not differ significantly from that of the wild-type enzyme. Identical transition midpoints in guanidinium chloride-induced denaturation experiments were found for the wild-type and all mutant enzymes. Thermal inactivation at 85 degrees C occured more than twofold faster for all mutant enzymes than for the wild-type glutamate dehydrogenase. At temperatures of 65 degrees C and higher, the wild-type and the three mutant enzymes showed identical specific activities. However, at 58 degrees C the specific activity of N97D/G376 K and G376 K was found to be significantly higher than that of the wild-type and N97D enzymes. These results suggest that the engineered ion-pair interactions in the hinge region do not affect the stability towards temperature or guanidinium chloride-induced denaturation but rather affect the specific activity of the enzyme and the temperature at which it functions optimally. Copyright 1998 Academic Press
Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baireddy, Praveena; Liu, Jing; Hinsdale, Myron
2011-11-15
Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemicalmore » changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and cannabinoid CB1 receptor knockout littermates responded similarly to the toxic effects of chlorpyrifos. Black-Right-Pointing-Pointer OP-induced changes in acetylcholine release appeared sensitive to modulation by CB1-mediated endocannabinoid signaling.« less
AMP deaminase 3 deficiency enhanced 5'-AMP induction of hypometabolism.
Daniels, Isadora Susan; O Brien, William G; Nath, Vinay; Zhao, Zhaoyang; Lee, Cheng Chi
2013-01-01
A hypometabolic state can be induced in mice by 5'-AMP administration. Previously we proposed that an underlying mechanism for this hypometabolism is linked to reduced erythrocyte oxygen transport function due to 5'-AMP uptake altering the cellular adenylate equilibrium. To test this hypothesis, we generated mice deficient in adenosine monophosphate deaminase 3 (AMPD3), the key catabolic enzyme for 5'-AMP in erythrocytes. Mice deficient in AMPD3 maintained AMPD activities in all tissues except erythrocytes. Developmentally and morphologically, the Ampd3(-/-) mice were indistinguishable from their wild type siblings. The levels of ATP, ADP but not 5'-AMP in erythrocytes of Ampd3(-/-) mice were significantly elevated. Fasting blood glucose levels of the Ampd3(-/-) mice were comparable to wild type siblings. In comparison to wild type mice, the Ampd3(-/-) mice displayed a deeper hypometabolism with a significantly delayed average arousal time in response to 5'-AMP administration. Together, these findings demonstrate a central role of AMPD3 in the regulation of 5'-AMP mediated hypometabolism and further implicate erythrocytes in this behavioral response.
Nambeesan, Savithri; AbuQamar, Synan; Laluk, Kristin; Mattoo, Autar K.; Mickelbart, Michael V.; Ferruzzi, Mario G.; Mengiste, Tesfaye; Handa, Avtar K.
2012-01-01
Transgenic tomato (Solanum lycopersicum) lines overexpressing yeast spermidine synthase (ySpdSyn), an enzyme involved in polyamine (PA) biosynthesis, were developed. These transgenic lines accumulate higher levels of spermidine (Spd) than the wild-type plants and were examined for responses to the fungal necrotrophs Botrytis cinerea and Alternaria solani, bacterial pathogen Pseudomonas syringae pv tomato DC3000, and larvae of the chewing insect tobacco hornworm (Manduca sexta). The Spd-accumulating transgenic tomato lines were more susceptible to B. cinerea than the wild-type plants; however, responses to A. solani, P. syringae, or M. sexta were similar to the wild-type plants. Exogenous application of ethylene precursors, S-adenosyl-Met and 1-aminocyclopropane-1-carboxylic acid, or PA biosynthesis inhibitors reversed the response of the transgenic plants to B. cinerea. The increased susceptibility of the ySpdSyn transgenic tomato to B. cinerea was associated with down-regulation of gene transcripts involved in ethylene biosynthesis and signaling. These data suggest that PA-mediated susceptibility to B. cinerea is linked to interference with the functions of ethylene in plant defense. PMID:22128140
Hilgers, Rob H. P.; Kundumani-Sridharan, Venkatesh; Subramani, Jaganathan; Chen, Leon C.; Cuello, Luis G.; Rusch, Nancy J.; Das, Kumuda C.
2017-01-01
The incidence of high blood pressure with advancing age is notably high, and it is an independent prognostic factor for the onset or progression of a variety of cardiovascular disorders. Although age-related hypertension is an established phenomenon, current treatments are only palliative but not curative. Thus, there is a critical need for a curative therapy against age-related hypertension, which could greatly decrease the incidence of cardiovascular disorders. We show that overexpression of human thioredoxin (TRX), a redox protein, in mice prevents age-related hypertension. Further, injection of recombinant human TRX (rhTRX) for three consecutive days reversed hypertension in aged wild-type mice, and this effect lasted for at least 20 days. Arteries of wild-type mice injected with rhTRX or mice with TRX overexpression exhibited decreased arterial stiffness, greater endothelium-dependent relaxation, increased nitric oxide production, and decreased superoxide anion (O2•−) generation compared to either saline-injected aged wild-type mice or mice with TRX deficiency. Our study demonstrates a potential translational role of rhTRX in reversing age-related hypertension with long-lasting efficacy. PMID:28179506
Schmerk, Crystal L.; Duplantis, Barry N.; Howard, Perry L.; Nano, Francis E.
2009-01-01
Several genes contained in the Francisella pathogenicity island (FPI) encode proteins needed for intracellular growth and virulence of Francisella tularensis. The pdpA gene is the first cistron in the larger of the two operons found in the FPI. In this work we studied the intracellular growth phenotype of a Francisella novicida mutant in the pdpA gene. The ΔpdpA strain was capable of a small amount of intracellular replication but, unlike wild-type F. novicida, remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Strains with in cis complementation of the ΔpdpA lesion showed a restoration of intracellular growth to wild-type levels. Infection of macrophages with the ΔpdpA mutant generated a host-cell mRNA profile distinct from that generated by infection with wild-type F. novicida. The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands. PMID:19372155
Mehta, Milap; Tserentsoodol, Nomingerel; Postlethwait, John H.; Rebrik, Tatiana I.
2013-01-01
The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca2+-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15–20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1. PMID:24198367
Korenbrot, Juan I; Mehta, Milap; Tserentsoodol, Nomingerel; Postlethwait, John H; Rebrik, Tatiana I
2013-11-06
The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca(2+)-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15-20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1.
Kumada, Yoichi; Otsuki, Ryoko; Sakoda, Yumiko; Akai, Ryota; Matoba, Kazutaka; Katayama, Junko; Kishimoto, Michimasa; Horiuchi, Jun-Ichi
2016-10-20
In this study we focused on identifying and characterizing polydimethylsiloxane-binding peptides (PDMS-tags) that show a strong binding affinity towards a PDMS surface. Three kinds of E. coli host proteins (ELN, OMC and TPA) that were preferentially adsorbed onto a PDMS surface were identified from the E. coli cell lysate via 2-D electrophoresis and MALDI TOF MS. Digestion of these PDMS-binding proteins by 3 types of proteases (trypsin, chymotrypsin and V8 protease) resulted in the production of a wide variety of peptide fragments with different amino acid biases. Nine types of peptide fragments showing binding affinities to a PDMS surface were identified, and they were genetically fused at the C-terminal region of glutathione S-transferase (GST). The adsorption kinetics of peptide-fused GSTs to a PDMS surface were evaluated using a quartz crystal microbalance (QCM) sensor equipped with a sensor chip coated with a PDMS thin film. Consequently, all GSTs fused with the peptides adsorbed at a level higher than that of wild-type GST. In particular, the adsorption levels of GSTs fused with ELN-V81, TPA-V81, and OMC-V81 peptides were 8- to 10-fold higher than that of the wild-type GST. These results indicated that the selected peptides possessed a strong binding affinity towards a PDMS surface even in cases where they were introduced to the C-terminal region of a model protein. The remaining activities of GSTs with PDMS-binding peptides were also greater than that of the wild-type GST. Almost a third (30%) of enzymatic activity was maintained by genetic fusion of the peptide ELN-V81, compared with only 1.5% of wild-type GST in the adsorption state. Thus, the PDMS-binding peptides (PDMS-tags) identified in this study will be considerably useful for the site-specific immobilization of functional proteins to a PDMS surface, which will be a powerful tool in the fabrication of protein-based micro-reactors and biosearation chips. Copyright © 2016 Elsevier B.V. All rights reserved.
Geredeli, Caglayan; Yasar, Nurgul
2018-03-27
The aim of this study was to investigate the efficacy and safety of first-line panitumumab plus folinic acid, 5-fluorouracil and irinotecan (FOLFIRI) in patients with wild-type KRAS and wild-type NRAS metastatic colorectal cancer (mCRC). Patients with wild-type KRAS and wild-type NRAS mCRC presenting to the medical oncology department of the Okmeydani Training and Research Hospital in Istanbul, Turkey, between April 2014 and January 2018 were enrolled in this study. A total of 64 patients (35 males and 29 females) with a median age of 59 (35-81) years old were enrolled. The median follow-up was 18.9 months, and the median progression-free survival was 13 months. The median overall survival (OS) was 26 months in the patients with wild-type KRAS and wild-type NRAS mCRC. It was 90.4% for the 6-month OS, 79.5% for the 1-year OS, 53.7% for the 2-year OS and 31.1% for the 3-year OS. The median OS of the patients who underwent metastasectomies was 40 [95% confidence interval (CI) = 19.9-60.1] months, and the median OS of the patients without metastasectomies was 22 (95% CI = 17.7-26.4) months. There was a statistically significant difference between these (P = 0.007). The first-line FOLFIRI plus panitumumab was associated with favourable efficacy in the patients with wild-type KRAS and wild-type NRAS mCRC, and it was well tolerated. The removal of the metastases that became resectable after chemotherapy further prolonged the patients' survival. Retrospectively registered: 33886.
Georghiou, Sophia B.; Catanzaro, Donald; Rodrigues, Camilla; Crudu, Valeriu; Victor, Thomas C.; Garfein, Richard S.; Catanzaro, Antonino; Rodwell, Timothy C.
2016-01-01
Accurate identification of drug-resistant Mycobacterium tuberculosis is imperative for effective treatment and subsequent reduction in disease transmission. Line probe assays rapidly detect mutations associated with resistance and wild-type sequences associated with susceptibility. Examination of molecular-level performance is necessary for improved assay result interpretation and for continued diagnostic development. Using data collected from a large, multisite diagnostic study, probe hybridization results from line probe assays, MTBDRplus and MTBDRsl, were compared to those of sequencing, and the diagnostic performance of each individual mutation and wild-type probe was assessed. Line probe assay results classified as resistant due to the absence of wild-type probe hybridization were compared to those of sequencing to determine if novel mutations were inhibiting wild-type probe hybridization. The contribution of absent wild-type probe hybridization to the detection of drug resistance was assessed via comparison to a phenotypic reference standard. In our study, mutation probes demonstrated significantly higher specificities than wild-type probes and wild-type probes demonstrated marginally higher sensitivities than mutation probes, an ideal combination for detecting the presence of resistance conferring mutations while yielding the fewest number of false-positive results. The absence of wild-type probe hybridization without mutation probe hybridization was determined to be primarily the result of failure of mutation probe hybridization and not the result of novel or rare mutations. Compared to phenotypic culture-based drug susceptibility testing, the absence of wild-type probe hybridization without mutation probe hybridization significantly contributed to the detection of phenotypic rifampin and fluoroquinolone resistance with negligible increases in false-positive results. PMID:26763971
Ren, J; Youssoufian, H
2001-01-01
Fanconi anemia (FA) is an autosomal recessive disorder manifested by chromosomal breakage, birth defects, and susceptibility to bone marrow failure and cancer. At least seven complementation groups have been identified, and the genes defective in four groups have been cloned. The most common subtype is complementation group A. Although the normal functions of the gene products defective in FA cells are not completely understood, a clue to the function of the FA group A gene product (FANCA) was provided by the detection of limited homology in the amino terminal region to a class of heme peroxidases. We evaluated this hypothesis by mutagenesis and functional complementation studies. We substituted alanine residues for the most conserved FANCA residues in the putative peroxidase domain and tested their effects on known biochemical and cellular functions of FANCA. While the substitution mutants were comparable to wild-type FANCA with regard to their stability, subcellular localization, and interaction with FANCG, only the Trp(183)-to-Ala substitution (W183A) abolished the ability of FANCA to complement the sensitivity of FA group A cells to mitomycin C. By contrast, TUNEL assays for apoptosis after exposure to H2O2 showed no differences between parental FA group A cells, cells complemented with wild-type FANCA, and cells complemented with the W183A of FANCA. Moreover, semiquantitative RT-PCR analysis for the expression of the peroxide-sensitive heme oxygenase gene showed appropriate induction after H2O2 exposure. Thus, W183A appears to be essential for the in vivo activity of FANCA in a manner independent of its interaction with FANCG. Moreover, neither wild-type FANCA nor the W183A mutation appears to alter the peroxide-induced apoptosisor peroxide-sensing ability of FA group A cells. Copyright 2001 Academic Press.
Roos, Carolyn M.; Hagler, Michael; Zhang, Bin; Oehler, Elise A.; Arghami, Arman
2013-01-01
The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD+/+) and manganese SOD heterozygous haploinsufficient (MnSOD+/−) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16ink4a, a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD+/+ and MnSOD+/− mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD+/+ and MnSOD+/− mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD+/+ mice but significantly impaired endothelial function in MnSOD+/− mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian
2018-02-01
Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.
Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu
2014-08-01
Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.
Yadav, Mukesh K; Vidal, Jorge E; Go, Yoon Y; Kim, Shin H; Chae, Sung-Won; Song, Jae-Jun
2018-01-01
Objective: Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM). During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation. Methods: Streptococcus pneumoniae D39 wild-type and an isogenic D39Δ luxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation. Results: The biofilm biomass and density of D39Δ luxS were significantly ( p < 0.05) lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39Δ luxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39Δ luxS resulted in ~60% less ( p < 0.05) bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39Δ luxS -inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39Δ luxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division, the cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were downregulated in the absence of LuxS/AI-2. Conclusion: The S. pneumoniae LuxS/AI-2 quorum-sensing system is necessary for biofilm formation and the colonization of the ear epithelium, and caused middle ear infection in the rat model. LuxS/AI-2 regulates the expression of the genes involved in virulence and bacterial fitness during pneumococcal biofilm formation.
Pizza, Francis X; Peterson, Jennifer M; Baas, Joel H; Koh, Timothy J
2005-01-01
We tested the hypotheses that: (1) neutrophil accumulation after contraction-induced muscle injury is dependent on the β2 integrin CD18, (2) neutrophils contribute to muscle injury and oxidative damage after contraction-induced muscle injury, and (3) neutrophils aid the resolution of contraction-induced muscle injury. These hypotheses were tested by exposing extensor digitorum longus (EDL) muscles of mice deficient in CD18 (CD18−/−; Itgb2tm1Bay) and of wild type mice (C57BL/6) to in situ lengthening contractions and by quantifying markers of muscle inflammation, injury, oxidative damage and regeneration/repair. Neutrophil concentrations were significantly elevated in wild type mice at 6 h and 3 days post-lengthening contractions; however, neutrophils remained at control levels at these time points in CD18−/− mice. These data indicate that CD18 is required for neutrophil accumulation after contraction-induced muscle injury. Histological and functional (isometric force deficit) signs of muscle injury and total carbonyl content, a marker of oxidative damage, were significantly higher in wild type relative to CD18−/− mice 3 days after lengthening contractions. These data show that neutrophils exacerbate contraction-induced muscle injury. After statistically controlling for differences in the force deficit at 3 days, wild type mice also demonstrated a higher force deficit at 7 days, a lower percentage of myofibres expressing embryonic myosin heavy chain at 3 and 7 days, and a smaller cross sectional area of central nucleated myofibres at 14 days relative to CD18−/− mice. These observations suggest that neutrophils impair the restoration of muscle structure and function after injury. In conclusion, neutrophil accumulation after contraction-induced muscle injury is dependent on CD18. Furthermore, neutrophils appear to contribute to muscle injury and impair some of the events associated with the resolution of contraction-induced muscle injury. PMID:15550464
Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R
2007-12-01
The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.
Yang, Q; Borkovich, K A
1999-01-01
Heterotrimeric G proteins, consisting of alpha, beta, and gamma subunits, transduce environmental signals through coupling to plasma membrane-localized receptors. We previously reported that the filamentous fungus Neurospora crassa possesses a Galpha protein, GNA-1, that is a member of the Galphai superfamily. Deletion of gna-1 leads to defects in apical extension, differentiation of asexual spores, sensitivity to hyperosmotic media, and female fertility. In addition, Deltagna-1 strains have lower intracellular cAMP levels under conditions that promote morphological abnormalities. To further define the function of GNA-1 in signal transduction in N. crassa, we examined properties of strains with mutationally activated gna-1 alleles (R178C or Q204L) as the only source of GNA-1 protein. These mutations are predicted to inhibit the GTPase activity of GNA-1 and lead to constitutive signaling. In the sexual cycle, gna-1(R178C) and gna-1(Q204L) strains are female-fertile, but produce fewer and larger perithecia than wild type. During asexual development, gna-1(R178C) and gna-1(Q204L) strains elaborate abundant, long aerial hyphae, produce less conidia, and possess lower levels of carotenoid pigments in comparison to wild-type controls. Furthermore, gna-1(R178C) and gna-1(Q204L) strains are more sensitive to heat shock and exposure to hydrogen peroxide than wild-type strains, while Deltagna-1 mutants are more resistant. In contrast to Deltagna-1 mutants, gna-1(R178C) and gna-1(Q204L) strains have higher steady-state levels of cAMP than wild type. The results suggest that GNA-1 possesses several Gbetagamma-independent functions in N. crassa. We propose that GNA-1 mediates signal transduction pathway(s) that regulate aerial hyphae development and sensitivity to heat and oxidative stresses, possibly through modulation of cAMP levels. PMID:9872952
Pillidge, Katharine; Porter, Ashley J; Young, Jared W; Stanford, S Clare
2016-01-01
The underlying cause(s) of abnormalities expressed by patients with attention deficit hyperactivity disorder (ADHD) have yet to be delineated. One factor that has been associated with increased vulnerability to ADHD is polymorphism(s) of TACR1, which is the human equivalent of the rodent NK1 (substance P-preferring) receptor gene (Nk1r). We have reported previously that genetically altered mice, lacking functional NK1R (NK1R–/–), express locomotor hyperactivity, which was blunted by the first-line treatment for ADHD, methylphenidate. Here, we compared the effects of this psychostimulant (3, 10 and 30 mg/kg, intraperitoneally) on the behaviour of NK1R-/- mice and their wild types in the 5-Choice Continuous Performance Test, which emulates procedures used to study attention and response control in ADHD patients. Methylphenidate increased total trials (a measure of ‘productivity’) completed by wild types, but not by NK1R-/- mice. Conversely, this drug reduced perseveration by NK1R-/- mice, but not by wild types. Other drug-induced changes in key behaviours were not genotype dependent, especially at the highest dose: for example, % omissions (an index of inattentiveness) was increased, whereas % false alarms and % premature responses (measures of impulsivity) declined in both genotypes, indicating reduced overall response. These findings are discussed in the context of the efficacy of methylphenidate in the treatment of ADHD. Moreover, they lead to several testable proposals. First, methylphenidate does not improve attention in a subgroup of ADHD patients with a functional deficit of TACR1. Second, these patients do not express excessive false alarms when compared with other groups of subjects, but they do express excessive perseveration, which would be ameliorated by methylphenidate. PMID:27097734
Reenan, R A; Kolodner, R D
1992-12-01
The MSH1 and MSH2 genes of Saccharomyces cerevisiae are predicted to encode proteins that are homologous to the Escherichia coli MutS and Streptococcus pneumoniae HexA proteins and their homologs. Disruption of the MSH1 gene caused a petite phenotype which was established rapidly. A functional MSH1 gene present on a single-copy centromere plasmid was incapable of rescuing the established msh1 petite phenotype. Analysis of msh1 strains demonstrated that mutagenesis and large-scale rearrangement of mitochondrial DNA had occurred. 4',6-Diamidino-2-phenylindole (DAPI) staining of msh1 yeast revealed an aberrant distribution of mtDNA. Haploid msh2 mutants displayed an increase of 85-fold in the rate of spontaneous mutation to canavanine resistance. Sporulation of homozygous msh2/msh2 diploids gave rise to a high level of lethality which was compounded during increased vegetative growth prior to sporulation. msh2 mutations also affected gene conversion of two HIS4 alleles. The his4x mutation, lying near the 5' end of the gene, was converted with equal frequency in both wild-type and msh2 strains. However, many of the events in the msh2 background were post-meiotic segregation (PMS) events (46.4%) while none (< 0.25%) of the aberrant segregations in wild type were PMS events. The his4b allele, lying 1.6 kb downstream of his4x, was converted at a 10-fold higher frequency in the msh2 background than in the corresponding wild-type strain. Like the his4x allele, his4b showed a high level of PMS (30%) in the msh2 background compared to the corresponding wild-type strain where no (< 0.26%) PMS events were observed. These results indicate that MSH1 plays a role in repair or stability of mtDNA and MSH2 plays a role in repair of 4-bp insertion/deletion mispairs in the nucleus.
Natashin, Pavel V; Ding, Wei; Eremeeva, Elena V; Markova, Svetlana V; Lee, John; Vysotski, Eugene S; Liu, Zhi-Jie
2014-03-01
Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Machado, Maiaro Cabral Rosa; Octacilio-Silva, Shirlei; Costa, Mara Silvia A.; Ramos, Ricardo Guelerman P.
2011-01-01
Background Drosophila retinal architecture is laid down between 24–48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level. PMID:21857931
MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.
Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia
2017-12-02
Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhu, Xiao Fang; Lei, Gui Jie; Wang, Zhi Wei; Shi, Yuan Zhi; Braam, Janet; Li, Gui Xin; Zheng, Shao Jian
2013-01-01
Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution within plant cells, and plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively. PMID:23776189
Xu, Songtao; Zhang, Yan; Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J; Rota, Paul A; Xu, Wenbo
2013-01-01
China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3) substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.
Fonseca, W; Lucey, K; Jang, S; Fujimura, K E; Rasky, A; Ting, H-A; Petersen, J; Johnson, C C; Boushey, H A; Zoratti, E; Ownby, D R; Levine, A M; Bobbit, K R; Lynch, S V; Lukacs, N W
2017-11-01
Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii supplementation reduced airway T helper type 2 cytokines and dendritic cell (DC) function, increased regulatory T cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone marrow-derived DCs (BMDCs) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T-cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice or with wild-type derived BMDCs pretreated with plasma from L. johnsonii-supplemented mice reduced airway pathological responses to infection in recipient animals. Thus L. johnsonii supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function.
Voros, Orsolya; Szilagyi, Orsolya; Balajthy, András; Somodi, Sándor; Panyi, Gyorgy; Hajdu, Péter
2018-04-12
Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.
Suh, Ji Yeon; Kim, Woo Taek
2015-08-07
Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.
Jin, Ling; Carpenter, Dale; Moerdyk-Schauwecker, Megan; Vanarsdall, Adam L; Osorio, Nelson; Hsiang, Chinhui; Jones, Clinton; Wechsler, Steven L
2010-01-01
Latency-associated transcript (LAT) deletion mutants of herpes simplex virus type 1 (HSV-1) have reduced reactivation phenotypes. Thus, LAT plays an essential role in the latency-reactivation cycle of HSV-1. We have shown that LAT has antiapoptosis activity and demonstrated that the chimeric virus, dLAT-cpIAP, resulting from replacing LAT with the baculovirus antiapoptosis gene cpIAP, has a wild-type HSV-1 reactivation phenotype in mice and rabbits. Thus, LAT can be replaced by an alternative antiapoptosis gene, confirming that LAT’s antiapoptosis activity plays an important role in the mechanism by which LAT enhances the virus’ reactivation phenotype. However, because cpIAP interferes with both of the major apoptosis pathways, these studies did not address whether LAT’s proreactivation phenotype function was due to blocking the extrinsic (Fas-ligand–, caspase-8–, or caspase-10–dependent pathway) or the intrinsic (mitochondria-, caspase-9–dependent pathway) pathway, or whether both pathways must be blocked. Here we constructed an HSV-1 LAT(−) mutant that expresses cellular FLIP (cellular FLICE-like inhibitory protein) under control of the LAT promoter and in place of LAT nucleotides 76 to 1667. Mice were ocularly infected with this mutant, designated dLAT-FLIP, and the reactivation phenotype was determined using the trigeminal ganglia explant model. dLAT-FLIP had a reactivation phenotype similar to wild-type virus and significantly higher than the LAT(−) mutant dLAT2903. Thus, the LAT function responsible for enhancing the reactivation phenotype could be replaced with an antiapoptosis gene that primarily blocks the extrinsic signaling apoptosis pathway. PMID:18989818
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D.; Abe, Toyofumi; Su, Charles A.; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.
2016-01-01
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared to complete MHC-mismatched wild type cardiac allografts, IL-1R−/− allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R−/− allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R−/− cardiac allografts took 3 weeks longer than wild type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R−/−/wild type chimeric donors indicated that IL-1R signaling on graft non-hematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli provoking development and elicitation of optimal alloimmune responses to the grafts. PMID:26856697
Li, Wei; Mukherjee, Abir; Wu, Jinhua; Zhang, Ling; Teves, Maria E.; Li, Hongfei; Nambiar, Shanti; Henderson, Scott C.; Horwitz, Alan R.; Strauss III, Jerome F.; Fang, Xianjun; Zhang, Zhibing
2015-01-01
Mammalian Spag6 is the orthologue of Chlamydomonas PF16, which encodes a protein localized in the axoneme central apparatus, and regulates flagella/cilia motility. Most Spag6-deficient mice are smaller in size than their littermates. Because SPAG6 decorates microtubules, we hypothesized that SPAG6 has other roles related to microtubule function besides regulating flagellar/cilia motility. Mouse embryonic fibroblasts (MEFs) were isolated from Spag6-deficient and wild-type embryos for these studies. Both primary and immortalized Spag6-deficient MEFs proliferated at a much slower rate than the wild-type MEFs, and they had a larger surface area. Re-expression of SPAG6 in the Spag6-deficient MEFs rescued the abnormal cell morphology. Spag6-deficient MEFs were less motile than wild-type MEFs, as shown by both chemotactic analysis and wound-healing assays. Spag6-deficient MEFs also showed reduced adhesion associated with a non-polarized F-actin distribution. Multiple centrosomes were observed in the Spag6-deficient MEF cultures. The percentage of cells with primary cilia was significantly reduced compared to the wild-type MEFs, and some Spag6-deficient MEFs developed multiple cilia. Furthermore, SPAG6 selectively increased expression of acetylated tubulin, a microtubule stability marker. The Spag6-deficient MEFs were more sensitive to paclitaxel, a microtubule stabilizer. Our studies reveal new roles for SPAG6 in modulation of cell morphology, proliferation, migration, and ciliogenesis. PMID:26585507
Son, Minky; Bang, Woo Young; Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.
Hoppe, George; Lee, Tamara J; Yoon, Suzy; Yu, Minzhong; Peachey, Neal S; Rayborn, Mary; Zutel, M Julieta; Trichonas, George; Au, John; Sears, Jonathan E
2014-06-01
Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Randolph, Matthew E; Luo, Qingwei; Ho, Justin; Vest, Katherine E; Sokoloff, Alan J; Pavlath, Grace K
2014-01-01
The inability to swallow, or dysphagia, is a debilitating and life-threatening condition that arises with ageing or disease. Dysphagia results from neurological or muscular impairment of one or more pharyngeal muscles, which function together to ensure proper swallowing and prevent the aspiration of food or liquid into the lungs. Little is known about the effects of age or disease on pharyngeal muscles as a group. Here we show ageing affected pharyngeal muscle growth and atrophy in wild-type mice depending on the particular muscle analysed. Furthermore, wild-type mice also developed dysphagia with ageing. Additionally, we studied pharyngeal muscles in a mouse model for oculopharyngeal muscular dystrophy, a dysphagic disease caused by a polyalanine expansion in the RNA binding protein, PABPN1. We examined pharyngeal muscles of mice overexpressing either wild-type A10 or mutant A17 PABPN1. Overexpression of mutant A17 PABPN1 differentially affected growth of the palatopharyngeus muscle dependent on its location within the pharynx. Interestingly, overexpression of wild-type A10 PABPN1 was protective against age-related muscle atrophy in the laryngopharynx and prevented the development of age-related dysphagia. These results demonstrate that pharyngeal muscles are differentially affected by both ageing and muscular dystrophy in a region-dependent manner. These studies lay important groundwork for understanding the molecular and cellular mechanisms that regulate pharyngeal muscle growth and atrophy, which may lead to novel therapies for individuals with dysphagia. PMID:25326455
Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism
Biswas, Ranjita; Wilson, Charlotte M.; Giannone, Richard J.; ...
2017-01-03
Background: Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG, were deleted from the chromosome of C. thermocellum. While ethanol yield increased, the growth rate decreased substantially compared to wild type. Results: Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ΔhydG,more » whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG, 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically up-regulated in C. thermocellum ΔhydG in presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG. In conclusion, sulfur metabolism is perturbed in C. thermocellum ΔhydG, possibly to increase flux through sulfate reduction to act as an electron sink to balance redox reactions.« less
Takane, Koki; Hasegawa, Yu; Lin, Bowen; Koibuchi, Nobutaka; Cao, Cheng; Yokoo, Takashi; Kim-Mitsuyama, Shokei
2017-04-20
The significance of brain angiotensin II in Alzheimer disease (AD) is unclear. To examine the role of brain angiotensin II in AD, intracerebroventricular angiotensin II infusion was performed on 5XFAD mice, a mouse model of AD, and wild-type mice, and the detrimental effects of brain angiotensin II was compared between the 2 strains of mice. Intracerebroventricular angiotensin II infusion significantly impaired cognitive function in 5XFAD mice but not in wild-type mice. This vulnerability of 5XFAD mice to brain angiotensin II was associated with enhancement of hippocampal inflammation and oxidative stress and with increased cerebrovascular amyloid β deposition. We also compared the effect of brain angiotensin II on the heart and skeletal muscle between the 2 strains because AD is associated with heart failure and sarcopenia. We found that cardiac compensatory response of 5XFAD mice to brain angiotensin II-induced hypertension was less than that of wild-type mice. Brain angiotensin II caused skeletal muscle atrophy and injury in 5XFAD mice more than in wild-type mice. Brain angiotensin II seems to be involved in cognitive impairment and brain injury in AD, which is associated with oxidative stress, inflammation, and cerebral amyloid angiopathy. Further, brain angiotensin II may participate in cardiac disease and sarcopenia observed in AD. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily. PMID:24646606
Cox, David G.; Simard, Jacques; Sinnett, Daniel; Hamdi, Yosr; Soucy, Penny; Ouimet, Manon; Barjhoux, Laure; Verny-Pierre, Carole; McGuffog, Lesley; Healey, Sue; Szabo, Csilla; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Thomassen, Mads; Gerdes, Anne-Marie; Caligo, Maria A.; Friedman, Eitan; Laitman, Yael; Kaufman, Bella; Paluch, Shani S.; Borg, Åke; Karlsson, Per; Stenmark Askmalm, Marie; Barbany Bustinza, Gisela; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy R.; Benítez, Javier; Hamann, Ute; Rookus, Matti A.; van den Ouweland, Ans M.W.; Ausems, Margreet G.E.M.; Aalfs, Cora M.; van Asperen, Christi J.; Devilee, Peter; Gille, Hans J.J.P.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Eeles, Ros; Izatt, Louise; Adlard, Julian; Paterson, Joan; Eason, Jacqueline; Godwin, Andrew K.; Remon, Marie-Alice; Moncoutier, Virginie; Gauthier-Villars, Marion; Lasset, Christine; Giraud, Sophie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Eisinger, François; Bressac de Paillerets, Brigitte; Caron, Olivier; Delnatte, Capucine; Goldgar, David; Miron, Alex; Ozcelik, Hilmi; Buys, Saundra; Southey, Melissa C.; Terry, Mary Beth; Singer, Christian F.; Dressler, Anne-Catharina; Tea, Muy-Kheng; Hansen, Thomas V.O.; Johannsson, Oskar; Piedmonte, Marion; Rodriguez, Gustavo C.; Basil, Jack B.; Blank, Stephanie; Toland, Amanda E.; Montagna, Marco; Isaacs, Claudine; Blanco, Ignacio; Gayther, Simon A.; Moysich, Kirsten B.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Gadzicki, Dorothea; Fiebig, Britta; Caldes, Trinidad; Laframboise, Rachel; Nevanlinna, Heli; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan C.; Couch, Fergus J.; Wang, Xianshu; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Radice, Paolo; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Sinilnikova, Olga M.
2011-01-01
Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77–0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription. PMID:21890493
Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Ranjita; Wilson, Charlotte M.; Giannone, Richard J.
Background: Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H 2 production, including the hydrogenase maturase hydG, were deleted from the chromosome of C. thermocellum. While ethanol yield increased, the growth rate decreased substantially compared to wild type. Results: Addition of 5 mM acetate to the growth medium improved the growth rate in C. thermocellum ΔhydG,more » whereas wild type remained unaffected. Transcriptomic analysis of the wild type showed essentially no response to the addition of acetate. However, in C. thermocellum ΔhydG, 204 and 56 genes were significantly differentially regulated relative to wild type in the absence and presence of acetate, respectively. Genes Clo1313_0108-0125, which are predicted to encode a sulfate transport system and sulfate assimilatory pathway, were drastically up-regulated in C. thermocellum ΔhydG in presence of added acetate. A similar pattern was seen with proteomics. Further physiological characterization demonstrated an increase in sulfide synthesis and elimination of cysteine consumption in C. thermocellum ΔhydG. In conclusion, sulfur metabolism is perturbed in C. thermocellum ΔhydG, possibly to increase flux through sulfate reduction to act as an electron sink to balance redox reactions.« less
Fang, Xian Zhi; Tian, Wen Hao; Liu, Xing Xing; Lin, Xian Yong; Jin, Chong Wei; Zheng, Shao Jian
2016-07-01
Protons in acid soil are highly rhizotoxic to plants, but the mechanism of tolerance of plants to protons is largely unknown. Nitrate uptake by root cells is accompanied by the uptake of protons. Therefore, nitrate uptake transporters (NRTs) may be involved in plant tolerance to proton toxicity. We investigated the root nitrate uptake response to proton stress in Arabidopsis and its association with proton tolerance using NRT-related mutants and pharmacological methods. Lack of NRT1.1 in knockout nrt1.1 mutants led to impaired proton tolerance in nitrate-sufficient growth medium, whereas no difference was seen between wild-type plants and NRT1.2-, NRT2.1-, NRT2.2-, and NRT2.4-null mutants. Another nrt1.1 point mutant, which is defective in nitrate uptake but has a normal nitrate-sensing function, also had impaired proton tolerance compared with the wild-type plant. Furthermore, proton stress induced NRT1.1-mediated nitrate uptake. These results indicate that NRT1.1-conferred proton tolerance depends on nitrate uptake activity. In addition, the rooting medium was alkalified by wild-type plants, but not by knockout nrt1.1 mutants, and in pH-buffered medium, there were no differences in proton tolerance between wild-type plants and knockout nrt1.1 mutants. We conclude that NRT1.1-mediated nitrate uptake plays a crucial role in plant proton tolerance by alkalifying the rhizosphere. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Krebs, Shelly J; Taylor, Ronald K
2011-10-01
Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.
NASA Technical Reports Server (NTRS)
Vitart, V.; Baxter, I.; Doerner, P.; Harper, J. F.; Evans, M. L. (Principal Investigator)
2001-01-01
The plasma membrane of plant cells is energized by an electrochemical gradient produced by P-type H+-ATPases (proton pumps). These pumps are encoded by at least 12 genes in Arabidopsis. Here we provide evidence that isoform AHA4 contributes to solute transport through the root endodermis. AHA4 is expressed most strongly in the root endodermis and flowers, as suggested by promoter-GUS reporter assays. A disruption of this pump (aha4-1) was identified as a T-DNA insertion in the middle of the gene (after VFP(574)). Truncated aha4-1 transcripts accumulate to approximately 50% of the level observed for AHA4 mRNA in wild-type plants. Plants homozygous for aha4-1 (-/-) show a subtle reduction in root and shoot growth compared with wild-type plants when grown under normal conditions. However, a mutant phenotype is very clear in plants grown under salt stress (e.g., 75 or 110 mM NaCl). In leaves of mutant plants subjected to Na stress, the ratio of Na to K increased 4-5-fold. Interestingly, the aha4-1 mutation appears to be semidominant and was only partially complemented by the introduction of additional wild-type copies of AHA4. These results are consistent with the hypothesis that aha4-1 may produce a dominant negative protein or RNA that partially disrupts the activity of other pumps or functions in the root endodermal tissue, thereby compromising the function of this cell layer in controlling ion homeostasis and nutrient transport.
Vaid, Mudit; Singh, Tripti; Prasad, Ram; Elmets, Craig A.; Xu, Hui; Katiyar, Santosh K.
2013-01-01
Ultraviolet (UV) radiation-induced immunosuppression has been implicated in skin carcinogenesis. Grape seed proanthocyanidins (GSPs) have anti-skin carcinogenic effects in mice and GSPs-fed mice exhibit a reduction in UV-induced suppression of allergic contact hypersensitivity (CHS), a prototypic T cell-mediated response. Here, we report that dietary GSPs did not inhibit UVB-induced suppression of CHS in xeroderma pigmentosum complementation group A (XPA)-deficient mice, which lack nucleotide excision repair mechanisms. GSPs enhanced repair of UVB-induced DNA damage (cyclobutane pyrimidine dimers) in wild-type, but not XPA-deficient, dendritic cells (DCs). Co-culture of CD4+ T cells with DCs from UVB-irradiated wild-type mice resulted in suppression of T-cell proliferation and secretion of Th-1 type cytokines that was ameliorated when the DCs were obtained from GSPs-fed mice; whereas, DCs obtained from GSPs-fed XPA-KO mice failed to restore T-cell proliferation. In adoptive transfer experiments, donor DCs were positively selected from the draining lymph nodes of UVB-exposed donor mice that were sensitized to 2,4, dinitrofluorobenzene were transferred into naïve recipient mice and the CHS response assessed. Naïve recipients that received DCs from UVB-exposed wild-type donors that had been fed GSPs exhibited a full CHS response, whereas no significant CHS was observed in mice that received DCs from XPA-KO mice fed GSPs. These results suggest that GSPs prevent UVB-induced immunosuppression through DNA repair-dependent functional activation of dendritic cells in mice. PMID:23321928
Pogány, Miklós; von Rad, Uta; Grün, Sebastian; Dongó, Anita; Pintye, Alexandra; Simoneau, Philippe; Bahnweg, Günther; Kiss, Levente; Barna, Balázs; Durner, Jörg
2009-01-01
Arabidopsis (Arabidopsis thaliana) NADPH oxidases have been reported to suppress the spread of pathogen- and salicylic acid-induced cell death. Here, we present dual roles of RBOHD (for respiratory burst oxidase homolog D) in an Arabidopsis-Alternaria pathosystem, suggesting either initiation or prevention of cell death dependent on the distance from pathogen attack. Our data demonstrate that a rbohD knockout mutant exhibits increased spread of cell death at the macroscopic level upon inoculation with the fungus Alternaria brassicicola. However, the cellular patterns of reactive oxygen species accumulation and cell death are fundamentally different in the AtrbohD mutant compared with the wild type. Functional RBOHD causes marked extracellular hydrogen peroxide accumulation as well as cell death in distinct, single cells of A. brassicicola-infected wild-type plants. This single cell response is missing in the AtrbohD mutant, where infection triggers spreading-type necrosis preceded by less distinct chloroplastic hydrogen peroxide accumulation in large clusters of cells. While the salicylic acid analog benzothiadiazole induces the action of RBOHD and the development of cell death in infected tissues, the ethylene inhibitor aminoethoxyvinylglycine inhibits cell death, indicating that both salicylic acid and ethylene positively regulate RBOHD and cell death. Moreover, A. brassicicola-infected AtrbohD plants hyperaccumulate ethylene and free salicylic acid compared with the wild type, suggesting negative feedback regulation of salicylic acid and ethylene by RBOHD. We propose that functional RBOHD triggers death in cells that are damaged by fungal infection but simultaneously inhibits death in neighboring cells through the suppression of free salicylic acid and ethylene levels. PMID:19726575
Msanne, Joseph; Chen, Ming; Luttgeharm, Kyle D.; Bradley, Amanda M.; Mays, Elizabeth S.; Paper, Janet M.; Boyle, Daniel L.; Cahoon, Rebecca E.; Schrick, Kathrin; Cahoon, Edgar B.
2015-01-01
Summary Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryote cells. Yet, the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines lacking or deficient in GlcCer by insertional disruption or by RNAi suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated “gcs-1”) were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce GlcCer amounts in excess of that required for normal development. PMID:26313010
Posse, Viktor; Hoberg, Emily; Dierckx, Anke; Shahzad, Saba; Koolmeister, Camilla; Larsson, Nils-Göran; Wilhelmsson, L. Marcus; Hällberg, B. Martin; Gustafsson, Claes M.
2014-01-01
Mammalian mitochondrial transcription is executed by a single subunit mitochondrial RNA polymerase (Polrmt) and its two accessory factors, mitochondrial transcription factors A and B2 (Tfam and Tfb2m). Polrmt is structurally related to single-subunit phage RNA polymerases, but it also contains a unique N-terminal extension (NTE) of unknown function. We here demonstrate that the NTE functions together with Tfam to ensure promoter-specific transcription. When the NTE is deleted, Polrmt can initiate transcription in the absence of Tfam, both from promoters and non-specific DNA sequences. Additionally, when in presence of Tfam and a mitochondrial promoter, the NTE-deleted mutant has an even higher transcription activity than wild-type polymerase, indicating that the NTE functions as an inhibitory domain. Our studies lead to a model according to which Tfam specifically recruits wild-type Polrmt to promoter sequences, relieving the inhibitory effect of the NTE, as a first step in transcription initiation. In the second step, Tfb2m is recruited into the complex and transcription is initiated. PMID:24445803
Zhou, Jinxu; Wang, Hongxiang; Chu, Junsheng; Huang, Qilin; Li, Guangxu; Yan, Yong; Xu, Tao; Chen, Juxiang; Wang, Yuhai
2018-04-24
Recent studies have found circular RNAs (circRNAs) involved in the biological process of cancers. However, little is known about their functional roles in glioblastoma. Human circRNA microarray analysis was performed to screen the expression profile of circRNAs in IDH1 wild-type glioblastoma tissue. The expression of hsa_circ_0008344 in glioblastoma and normal brain samples was quantified by qRT-PCR. Functional experiments were performed to investigate the biological functions of hsa_circ_0008344, including MTT assay, colony formation assay, transwell assay, and cell apoptosis assay. CircRNA microarray revealed a total of 417 abnormally expressed circRNAs (>1.5-fold, P < .05) in glioblastoma tissue compared with the adjacent normal brain. Hsa_circ_0008344, among the top differentially expressed circRNAs, was significantly upregulated in IDH1 wild-type glioblastoma. Further in vitro studies showed that knockdown of hsa_circ_0008344 suppressed glioblastoma cell proliferation, colony formation, migration, and invasion, but increased cell apoptotic rate. Hsa_circ_0008344 is upregulated in glioblastoma and may contribute to the progression of this malignancy. © 2018 Wiley Periodicals, Inc.
Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C
2012-01-01
Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949
Zheng, H; Peret, T C; Randolph, V B; Crowley, J C; Anderson, L J
1996-01-01
Candidate live-virus vaccines for respiratory syncytial virus are being developed and are beginning to be evaluated in clinical trials. To distinguish candidate vaccine strains from wild-type strains isolated during these trials, we developed PCR assays specific to two sets of candidate vaccine strains. The two sets were a group A strain (3A), its three attenuated, temperature-sensitive variant strains, a group B strain (2B), and its four attenuated, temperature-sensitive variant strains. The PCR assays were evaluated by testing 18 group A wild-type strains, the 3A strains, 9 group B wild-type strains, and the 2B strains. PCR specific to group A wild-type strains amplified only group A wild-type strains, and 3A-specific PCR amplified only 3A strains. PCR specific to group B wild-type strains amplified all group A and group B strains but gave a 688-bp product for group B wild-type strains, a 279-bp product for 2B strains, a 547-bp product for all group A strains, and an additional 688-bp product for some group A strains, including 3A strains. These types of PCR assays can, in conjunction with other methods, be used to efficiently distinguish candidate vaccine strains from other respiratory syncytial virus strains. PMID:8789010
Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance
Lasko, Valerie M.; Koch, Sheryl E.; Singh, Vivek P.; Carreira, Vinicius; Robbins, Nathan; Patel, Amit R.; Jiang, Min; Bidwell, Philip; Kranias, Evangelia G.; Jones, W. Keith; Lorenz, John N.
2013-01-01
Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid. PMID:24322617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, John C.
Heterocysts are specialized cells that establish a physiologically low oxygen concentration; they function as the sites of oxygen-sensitive nitrogen fixation and hydrogen metabolism in certain filamentous cyanobacteria. They are present at a frequency of less than 10% of the cells and singly in a nonrandom spacing pattern in the filaments. The extent of differential gene expression during heterocyst differentiation was defined by DNA microarray analysis in wild type and mutant cultures of Nostoc punctiforme. The results in wild-type cultures identified two groups of genes; approximately 440 that are unique to heterocyst formation and function, and 500 that respond positively andmore » negatively to the transient stress of nitrogen starvation. Nitrogen fixation is initiated within 24 h after induction, but the cultures require another 24 h before growth is reinitiated. Microarray analyses were conducted on strains with altered expression of three genes that regulate the presence and spacing of heterocysts in the filaments; loss of function or over expression of these genes increases the heterocyst frequency 2 to 3 fold compared to the wild-type. Mutations in the genes hetR and hetF result in the inability to differentiate heterocysts, whereas over expression of each gene individually yields multiple contiguous heterocysts at sites in the filaments; they are positive regulatory elements. Mutation of the gene patN results in an increase in heterocysts frequency, but, in this case, the heterocysts are singly spaced in the filaments with a decrease in the number of vegetative cells in the interval between heterocysts; this is a negative regulatory element. However, over expression of patN resulted in the wild-type heterocyst frequency and spacing pattern. Microarray results indicated HetR and HetF influence the transcription of a common set of about 395 genes, as well as about 350 genes unique to each protein. HetR is known to be a transcriptional regulator and HetF is predicted to be a protease, perhaps operating thorough stability of HetR; thus, the influence of HetF on transcription of a unique set of genes was unanticipated. These two proteins are also found in non-heterocyst-forming filamentous cyanobacteria and the results have implications on their other physiological role(s). The PatN protein is unique to heterocyst-forming cyanobacteria. Cytological analysis indicated PatN is present in only one of the two daughter cells following division, but is present in both cell less than 8 h after division. Microarray analysis indicated only five genes were differentially transcribed in the patN mutant compared to the wild type; three up-regulated genes that are known to influence heterocyst differentiation and two down-regulated genes that have an unassigned function. Mutational analyses indicted the two down-regulated genes do not have a distinct role in heterocyst differentiation. Thus, PatN only indirectly impacts transcription. These databases provide lists of differentially transcribed genes involved in nitrogen starvation and cellular differentiation that can be mined for detailed genetic analysis of the regulation of heterocyst formation and function for subsequent photo-biohydrogen production.« less
Individual Distinctiveness in Call Types of Wild Western Female Gorillas
Salmi, Roberta; Hammerschmidt, Kurt; Doran-Sheehy, Diane M.
2014-01-01
Individually distinct vocalizations play an important role in animal communication, allowing call recipients to respond differentially based on caller identity. However, which of the many calls in a species' repertoire should have more acoustic variability and be more recognizable is less apparent. One proposed hypothesis is that calls used over long distances should be more distinct because visual cues are not available to identify the caller. An alternative hypothesis proposes that close calls should be more recognizable because of their importance in social interactions. To examine which hypothesis garners more support, the acoustic variation and individual distinctiveness of eight call types of six wild western gorilla (Gorilla gorilla) females were investigated. Acoustic recordings of gorilla calls were collected at the Mondika Research Center (Republic of Congo). Acoustic variability was high in all gorilla calls. Similar high inter-individual variation and potential for identity coding (PIC) was found for all call types. Discriminant function analyses confirmed that all call types were individually distinct (although for call types with lowest sample size - hum, grumble and scream - this result cannot be generalized), suggesting that neither the distance at which communication occurs nor the call social function alone can explain the evolution of identity signaling in western gorilla communication. PMID:25029238
Markvartová, V; Vozeh, F
2008-01-01
Nitric oxide (NO) is an intercellular messenger that, among other things, plays an important role in the nervous system as a gaseous neurotransmitter, modulating long-term potentiation (LTP) induction of synaptic transmission. LTP has been suggested to be the basis of memory formation. On the other hand NO also participates in excitotoxic processes which play an important role in many neuropathological states. The aim of this work was to observe the effect of two NO synthase (NOS) inhibitors (N omega-Nitro-L-arginine, NA; 7-nitroindazole, NI) on spontaneous behaviour, spatial learning and motor functions in Lurcher (+/Lc) and wild type (+/+) mice, derived from the B6CBA strain. Heterozygous Lurcher mutant mice represent a natural model of the olivocerebellar degeneration. They suffer from postnatal, practically total, extinction of cerebellar Purkinje cells (due to the excitotoxic apoptosis) and a partial decrease of granule cells and inferior olive neurons (ION) because of the lost target of their axons. +/+ animals are healthy littermates of +/Lc. NA is a nonselective NOS inhibitor which influences, except neuronal (n), also endothelial (e) NOS with an impact on blood pressure, NI is a selective nNOS inhibitor without any circulatory effect. The adult animals of both types (+/Lc; +/+) were influenced by acute administration of both inhibitors (25 mg/kg i.p. 30 min. before experiments) and newborns only by both acute and long-term administration of NI (1 month, starting from postnatal day 2, P2). Control solutions - saline or solvents of both NA and NI inhibitors--diluted 1M HCl and dimethyl sulfoxide (DMSO) respectively, were given at a relevant volume in the same way. The effect of both inhibitors and control solutions on motor functions was tested using four standard procedures (horizontal wire, slanting ladder, rotating cylinder, foot-bridge); in newborns at the age of 14 days. Spatial learning ability was examined in five-day long procedure in the Morris water maze (MWM) (in newborns started on P21). Spontaneous behaviour was studied only in adult animals (after acutely influencing them) employing the open field method. The results showed, that neither the Lurcher mutant, nor wild type mice derived from the B6CBA strain were significantly affected by NOS inhibitors NA and NI in spatial learning after both the acute and long-term application. Only significant decrease of swimming speed was found in both types of mice after the acute administration of NI and in the wild type animals after the acute administration of NA. Motor functions were significantly negatively affected only in the Lurcher mutants after both the acute and chronic application of NI.
Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development
Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.
2009-01-01
Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074
Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok
2015-10-26
Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.
APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease
Manocha, Gunjan D.; Floden, Angela M.; Rausch, Keiko; Kulas, Joshua A.; McGregor, Brett A.; Rojanathammanee, Lalida; Puig, Kelley R.; Puig, Kendra L.; Karki, Sanjib; Nichols, Michael R.; Darland, Diane C.; Porter, James E.
2016-01-01
Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains. PMID:27511018
Takahashi, Yuichiro; Murakami, Hirokazu; Akiyama, Yusuke; Katoh, Yasutake; Oma, Yukako; Nishijima, Hitoshi; Shibahara, Kei-Ichi; Igarashi, Kazuhiko; Harata, Masahiko
2017-01-01
Nuclear actin family proteins, comprising of actin and actin-related proteins (Arps), are essential functional components of the multiple chromatin remodeling complexes. The INO80 chromatin remodeling complex, which is evolutionarily conserved and has roles in transcription, DNA replication and repair, consists of actin and actin-related proteins Arp4, Arp5, and Arp8. We generated Arp5 knockout (KO) and Arp8 KO cells from the human Nalm-6 pre-B cell line and used these KO cells to examine the roles of Arp5 and Arp8 in the transcriptional regulation mediated by the INO80 complex. In both of Arp5 KO and Arp8 KO cells, the oxidative stress-induced expression of HMOX1 gene, encoding for heme oxygenase-1 (HO-1), was significantly impaired. Consistent with these observations, chromatin immunoprecipitation (ChIP) assay revealed that oxidative stress caused an increase in the binding of the INO80 complex to the regulatory sites of HMOX1 in wild-type cells. The binding of INO80 complex to chromatin was reduced in Arp8 KO cells compared to that in the wild-type cells. On the other hand, the binding of INO80 complex to chromatin in Arp5 KO cells was similar to that in the wild-type cells even under the oxidative stress condition. However, both remodeling of chromatin at the HMOX1 regulatory sites and binding of a transcriptional activator to these sites were impaired in Arp5 KO cells, indicating that Arp5 is required for the activation of the INO80 complex. Collectively, these results suggested that these nuclear Arps play indispensable roles in the function of the INO80 chromatin remodeling complex.
Yago, Jonar Ingan; Lin, Ching-Hsuan; Chung, Kuang-Ren
2011-09-01
Fungi respond and adapt to different environmental stimuli via signal transduction systems. We determined the function of a yeast SLT2 mitogen-activated protein (MAP) kinase homologue (AaSLT2) in Alternaria alternata, the fungal pathogen of citrus. Analysis of the loss-of-function mutant indicated that AaSLT2 is required for the production of a host-selective toxin, and is crucial for fungal pathogenicity. Moreover, the A. alternata slt2 mutants displayed hypersensitivity to cell wall-degrading enzymes and chemicals such as Calcofluor white and Congo red. This implicates an important role of AaSLT2 in the maintenance of cell wall integrity in A. alternata. The A. alternata slt2 mutants were also hypersensitive to a heteroaromatic compound, 2-chloro-5-hydroxypyridine, and a plant growth regulator, 2,3,5-triiodobenzoic acid. Developmentally, the AaSLT2 gene product was shown to be critical for conidial formation and hyphal elongation. Compared with the wild-type, the mutants produced fewer but slightly larger conidia with less transverse septae. The mutants also accumulated lower levels of melanin and chitin. Unlike the wild-type progenitor, the A. alternata slt2 mutants produced globose, swollen hyphae that did not elongate in a straight radial direction. All defective phenotypes in the mutant were restored by transformation and expression of a wild-type copy of AaSLT2 under the control of its endogenous promoter. This study highlights an important role of the AaSLT2 MAP kinase-mediated signalling pathway, regulating diverse physiological, developmental and pathological functions, in the tangerine pathotype of A. alternata. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.
Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H
1992-01-01
Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137
Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H
1992-07-15
Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.
Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina
2013-06-18
Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus
2006-03-01
During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.
Impaired Sperm Maturation in Rnase9 Knockout Mice1
Westmuckett, Andrew D.; Nguyen, Edward B.; Herlea-Pana, Oana M.; Alvau, Antonio; Salicioni, Ana M.; Moore, Kevin L.
2014-01-01
ABSTRACT Ribonuclease, RNase A family, 9 (RNASE9) is a ribonuclease A superfamily member that is expressed only in the epididymis. It is a small, secreted polypeptide, it lacks ribonuclease activity, and its function(s) is unknown. However, epididymis-specific expression suggests a role in sperm maturation. We generated Rnase9−/− mice to study RNASE9 function in vivo. We confirm that RNASE9 expression is restricted to the epididymis. Within the epididymis, RNASE9 is first detected in midcaput, persists through the distal caput and corpus, and wanes in the cauda. Rnase9−/− mice are born at the expected Mendelian ratio, have normal postnatal growth and development, and have no outwardly apparent phenotype. Spermatogenesis is normal, and Rnase9-null sperm are morphologically normal. Rnase9−/− males have normal fertility in unrestricted mating trials, and fertilization rates in in vitro fertilization assays are indistinguishable from wild-type mice. Visual observations coupled with analyses of sperm velocities shortly after swim out from the corpus shows that motility of Rnase9-null sperm is significantly impaired. However, no differences between wild-type and Rnase9-null sperm are detected by computer-assisted sperm analysis 10–90 min after sperm isolation from the corpus or cauda. Assessment of capacitation-dependent signaling pathways in Rnase9-null sperm showed that, while levels of tyrosine phosphorylation of sperm proteins were normal, there was decreased phosphorylation of protein kinase A substrates upon capacitation compared to wild-type mice. In conclusion, RNASE9 is dispensable for fertility, but the absence of RNASE9 during epididymal transit results in impaired sperm maturation. PMID:24719258
Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P.
2009-01-01
Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal β/γ-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, ΔGRT1 ΔGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in ΔGRT1 ΔGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from ΔGRT1 ΔGRT2 cells appear less adhesive than those from the wild type. PMID:19684282
Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P
2009-10-01
Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, DeltaGRT1 DeltaGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in DeltaGRT1 DeltaGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from DeltaGRT1 DeltaGRT2 cells appear less adhesive than those from the wild type.
Praveen, Kavita; Wen, Ying; Gray, Kelsey M.; Noto, John J.; Patlolla, Akash R.; Van Duyne, Gregory D.; Matera, A. Gregory
2014-01-01
Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN. PMID:25144193
Praveen, Kavita; Wen, Ying; Gray, Kelsey M; Noto, John J; Patlolla, Akash R; Van Duyne, Gregory D; Matera, A Gregory
2014-08-01
Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.
Defining wild-type life span in Caenorhabditis elegans.
Gems, D; Riddle, D L
2000-05-01
The nematode Caenorhabditis elegans reproduces predominantly as a self-fertilizing hermaphrodite, and this drives laboratory populations to be homozygous at all genetic loci. Passaging of stocks can lead to fixation of spontaneous mutations, especially when the latter do not result in a selective disadvantage under laboratory conditions. Life span may be such a trait, since a comparison of six wild-type N2 lines derived from a common ancestor (but maintained separately in several laboratories) revealed four variants with median adult life spans ranging from 12.0 +/- 0.8 to 17.0 +/- 0.6 days at 20 degrees C. Fertility was also reduced in the two shortest-lived strains. We determined which life span most closely corresponds to that of the authentic wild type by two means. Firstly, N2 hermaphrodites were compared with seven C. elegans wild isolates. The latter were found to resemble only the longest-lived N2 strain. Comparison of male life spans of six lines also revealed additional strain variation. Secondly, life spans of F1 progeny issuing from crosses between N2 variants showed that short life spans were recessive, indicating that they result from loss-of-function mutations. We infer that the longest-lived N2 variant best resembles the original N2 isolate. This is the N2 male stock currently distributed by the Caenorhabditis Genetics Center.
Julovi, Sohel M.; Xue, Meilang; Dervish, Suat; Sambrook, Philip N.; March, Lyn; Jackson, Christopher John
2011-01-01
Activated protein C (APC) is a natural anticoagulant that exerts anti-inflammatory and cytoprotective properties mediated through the protease activated receptor (PAR)-1. APC can also proteolytically cleave PAR-2, although subsequent function is unknown. On the basis of recent evidence that APC promotes wound healing, the aim of this study was to determine whether APC acts through PARs to heal murine excisional wounds or to regulate human cultured keratinocyte function and to determine the signaling mechanisms. Topical administration of APC accelerated wound healing in wild-type mice and, unexpectedly, in PAR-1 knockout mice. PAR-2 knockout mice healed significantly slower than wild-type mice, and healing was not altered by adding APC, indicating that APC acts through PAR-2 to heal wounds. In cultured human primary keratinocytes, APC enhanced PAR-2, stimulated proliferation, activated phosphatidylinositol 3-kinase/Src/Akt, and inhibited phosphorylated (P)-p38. Inhibiting PAR-1 or PAR-2, by small-interfering RNA or blocking antibody, reversed APC-induced keratinocyte proliferation and Akt activation. Blocking PAR-2, but not PAR-1, reversed the inhibition of P-p38 by APC. Furthermore, inhibition of P-p38 accelerated wound healing in wild-type mice. In summary, although APC acts through both PAR-1 and PAR-2 to activate Akt and to increase keratinocyte proliferation, APC-induced murine wound healing depends on PAR-2 activity and inhibition of P-p38. PMID:21907694
Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini
2015-08-19
Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing; Wen, Jin; Ballinger, Megan N.; Rusu, Luiza; Chung, Sangwoon; Deng, Jing; Qian, Feng; Reader, Brenda F.; Nirujogi, Teja Srinivas; Park, Gye Young; Pei, Dehua; Christman, John W.
2018-01-01
Specific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier. More importantly, NFATc3 deficient mice showed decreased neutrophilic lung inflammation, improved alveolar capillary barrier function, arterial oxygen saturation and survival benefit in lethal CLP sepsis mouse models. In addition, survival of wild type mice subjected to the lethal CLP sepsis was not improved with broad-spectrum antibiotics, whereas the survival of NFATc3 deficient mice was improved to 40–60% when treated with imipenem. Passive adoptive transfer of NFATc3 deficient macrophages conferred protection against LPS induced ALI in wild type mice. Furthermore, CP9-ZIZIT, a highly potent, cell-permeable peptide inhibitor of Calcineurin inhibited NFATc3 activation. CP9-ZIZIT effectively reduced sepsis induced inflammatory cytokines and pulmonary edema in mice. Thus, this study demonstrates that inhibition of NFATc3 activation by CP9-ZIZIT provides a potential therapeutic option for attenuating sepsis induced ALI/pulmonary edema. PMID:29535830
Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.
Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D
2004-08-01
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.
Flower-deficient mice have reduced susceptibility to skin papilloma formation
Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo
2012-01-01
SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363
Cui, Xuezhi; Weng, Ying-Qi; Frappé, Isabelle; Burgess, Alison; Girão da Cruz, M Teresa; Schachner, Melitta; Aubert, Isabelle
2011-01-01
Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons. PMID:22399087
Wang, Weina; Wang, Aimei; Luo, Guochang; Ma, Fengqiao; Wei, Xiaoming; Bi, Yongyi
2018-06-13
Ischemia/reperfusion (I/R) is a major cause of acute kidney injury (AKI), along with delayed graft function, which can trigger chronic kidney injury by stimulating epithelial to mesenchymal transition (EMT) in the kidney canaliculus. Sphingosine 1-phosphate receptor 1 (S1P1) is a G protein-coupled receptor that is indispensable for vessel homeostasis. This study aimed to investigate the influence of S1P1 on the mechanisms underlying I/R-induced EMT in the kidney using in vivo and in vitro models. Wild-type (WT) and S1P1-overexpressing kidney canaliculus cells were subject to hypoxic conditions followed by reoxygenation in the presence or absence of FTY720-P, a potent S1P1 agonist. In vivo, bilateral arteria renalis in wild-type mice and mice with silenced S1P1 were clamped for 30 min to obtain I/R models. We found that hypoxia/reoxygenation (H/R) significantly enhanced the expressions of EMT biomarkers and down-regulated S1P1 expression in wild-type canaliculus cells. In contrast, FTY720-P treatment or overexpression of S1P1 significantly suppressed EMT in wild-type canaliculus cells. Furthermore, after 48-72 h, a significant upregulation of EMT biomarker expression was triggered by I/R in mice with silenced S1P1, while the expressions of these markers did not change in wild-type mice. A kt activity was increased with H/R-induced EMT, suggesting that the protective influence of FTY720-P was due to its inhibition of PI3K/Akt. Therefore, the results of this study provide evidence that down-regulation of S1P1 expression is essential for the generation and progression of EMT triggered by I/R. S1P1 exhibits a prominent inhibitory effect on kidney I/R-induced EMT in the kidney by affecting the PI3K/Akt pathway.
Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J
2010-01-01
Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299
Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J
2010-11-01
Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.
Morrison, Brett M; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H; Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc; Rothstein, Jeffrey D
2015-01-01
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulet, L.; Karpati, G.; Shoubridge, E.A.
1992-12-01
The authors investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA[sup Lys] gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to thatmore » in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA[sup Lys] is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype. 40 refs., 7 figs., 2 tabs.« less
Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant
Han, Yan; Wang, Congzhou; Park, Jae Seon; Niu, Li
2012-01-01
GluK1 is a kainate receptor subunit in the ionotropic glutamate receptor family and can form functional channels when expressed, for instance, in HEK-293 cells. However, the channel-opening mechanism of GluK1 is poorly understood. One major challenge to studying the GluK1 channel is its apparent low surface expression, which results in a low whole-cell current response even to a saturating concentration of agonist. The low surface expression is thought to be contributed by an endoplasmic reticulum (ER) retention signal sequence. When this sequence motif is present as in the wild-type GluK1-2b C-terminus, the receptor is significantly retained in the ER. Conversely, when this sequence is lacking, as in wild-type GluK1-2a (i.e., a different alternatively spliced isoform at the C-terminus) and in a GluK1-2b mutant (i.e., R896A, R897A, R900A and K901A) that disrupts the ER retention signal, there is higher surface expression and greater whole-cell current response. Here we characterize the channel-opening kinetic mechanism for these three GluK1 receptors expressed in HEK-293 cells by using a laser-pulse photolysis technique. Our results show that the wild-type GluK1-2a, wild-type GluK1-2b and the mutant GluK1-2b have identical channel-opening and channel-closing rate constants. These results indicate that the C-terminal ER retention signal sequence, which affects receptor trafficking/expression, does not affect channel-gating properties. Furthermore, as compared with the GluK2 kainate receptor, the GluK1 channel is faster to open, close, and desensitize by at least two-fold, yet the EC50 value of GluK1 is similar to that of GluK2. PMID:22191429
den Hartog, Carolina R; Beckley, Jacob T; Smothers, Thetford C; Lench, Daniel H; Holseberg, Zack L; Fedarovich, Hleb; Gilstrap, Meghin J; Homanics, Gregg E; Woodward, John J
2013-01-01
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.
den Hartog, Carolina R.; Beckley, Jacob T.; Smothers, Thetford C.; Lench, Daniel H.; Holseberg, Zack L.; Fedarovich, Hleb; Gilstrap, Meghin J.; Homanics, Gregg E.; Woodward, John J.
2013-01-01
Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75–2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. PMID:24244696
Rasool, Brwa; Karpinska, Barbara; Konert, Grzegorz; Durian, Guido; Denessiouk, Konstantin; Kangasjärvi, Saijaliisa; Foyer, Christine H.
2014-01-01
The interactions between biotic and abiotic stress signaling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP)2A regulatory subunit B'γ (gamma; pp2a-b'γ) or B'ζ (zeta; pp2a-b'ζ1-1 and pp2a-b'ζ 1-2) and in gamma zeta double mutants (pp2a-b'γζ) lacking both subunits. All the mutants except for pp2a-b'ζ 1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b'γ mutant relative to the wild type but not in the pp2a-b'γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b'γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of B-subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonization, depending on the prevailing abiotic stress environment. PMID:25191331
Choi, Shinkyu; Kim, Ji Aee; Li, Hai-Yan; Shin, Kyong-Oh; Oh, Goo Taeg; Lee, Yong-Moon; Oh, Seikwan; Pewzner-Jung, Yael; Futerman, Anthony H; Suh, Suk Hyo
2016-10-01
Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium-dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa 3.1, which contributes to EDR, is upregulated by H2 O2 . We investigated whether KCa 3.1 upregulation compensates for diminished EDR to NO during aging-related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1-phosphate were increased in aged wild-type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild-type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age-matched wild-type mice. Increased H2 O2 levels induced Fyn and extracellular signal-regulated kinases (ERKs) phosphorylation and KCa 3.1 upregulation. Catalase/GPX1 double knockout (catalase(-/-) /GPX1(-/-) ) upregulated KCa 3.1 in MAECs. NO production was decreased in aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) MAECs. However, KCa 3.1 activation-induced, N(G) -nitro-l-arginine-, and indomethacin-resistant EDR was increased without a change in acetylcholine-induced EDR in aortic rings from aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1-phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa 3.1. Our findings suggest that, during aging-related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2 O2 and thereby upregulate KCa 3.1 expression and function via a H2 O2 /Fyn-mediated pathway. Altogether, enhanced KCa 3.1 activity may compensate for decreased NO signaling during vascular aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Hansen, Laura M; Gupta, Divya; Joseph, Giji; Weiss, Daiana; Taylor, W Robert
2017-01-01
Diabetics often have poor perfusion in their limbs as a result of peripheral artery disease and an impaired ability to generate collateral vessels. The receptor for advanced glycation end products (RAGE) is one protein that is thought to play a detrimental role in collateral development in diabetics due to increased levels of advanced glycation end products (AGE), one of its ligands, in diabetes. Thus, the aim of this study was to investigate the role of RAGE in both diabetic and non-diabetic settings in a model of collateral formation in mice. Streptozotocin was used to induce diabetes in both wild type and RAGE knockout mice. Increased levels of the AGE, N ɛ -(carboxymethyl) lysine (CML), were confirmed via an ELISA. A hindlimb ischemia model, in which the femoral artery is ligated, was used to drive collateral growth and reperfusion was assessed using laser Doppler perfusion imaging and histological analysis of vessels in the muscle. Both of these measurements showed impaired collateral growth in diabetic compared with wild-type mice as well as improved collateral growth in both diabetic and non-diabetic RAGE knockout mice when compared their wild-type counterparts. Distance on a freely accessed running wheel, used as a measure of perfusion recovery, showed that wild-type diabetic mice had functionally impaired recovery compared with their wild-type counterparts. Immunohistochemistry and immunoblotting showed that HMGB-1 (high-mobility group box 1), another RAGE ligand, was increased in the ischemic leg compared with the non-ischemic leg in all mice. This increase in HMGB-1 may explain improvement in animals lacking RAGE and its subsequent signaling. In conclusion, this study shows that RAGE impairs collateral growth in a diabetic setting and also in a non-diabetic setting. This demonstrates the importance of RAGE and alternate RAGE ligands in the setting of collateral vessel growth.
Tamoi, Masahiro; Kurotaki, Hideki; Fukamizo, Tamo
2007-07-01
In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a beta-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 beta-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley beta-glucan and lichenan (beta-1,3-1,4-glucan), but not cellulose (beta-1,4-glucan), curdlan (beta-1,3-glucan), or laminarin (beta-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the beta-1,4-glycosidic linkage of barley beta-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the beta-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 micromol of photons/m2 per s), a 12 h light (40 micromol of photons/m2 per s)/12 h dark cycle, cold stress (4 degrees C), and high light stress (200 micromol of photons/m2 per s). However, under salt stress (300-450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100-400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803.
2014-01-01
wild-type spores but ~15-fold higher deltaTrelease values; v ) germination kinetics of wild-type spores given a ? 30 sec 140 MPa HP pulse followed by...15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and ( v ) the germination of wild-type...committed spores, as it does for nutrient-committed spores (14)? ( v ) Can these HP-com- mitted spores be isolated under conditions that do not allow
Johnson, A W
1997-01-01
XRN1 encodes an abundant cytoplasmic exoribonuclease, Xrn1p, responsible for mRNA turnover in yeast. A screen for bypass suppressors of the inviability of xrn1 ski2 double mutants identified dominant alleles of RAT1, encoding an exoribonuclease homologous with Xrn1p. These RAT1 alleles restored XRN1-like functions, including cytoplasmic RNA turnover, wild-type sensitivity to the microtubule-destabilizing drug benomyl, and sporulation. The mutations were localized to a region of the RAT1 gene encoding a putative bipartite nuclear localization sequence (NLS). Fusions to green fluorescent protein were used to demonstrate that wild-type Rat1p is localized to the nucleus and that the mutant alleles result in mislocalization of Rat1p to the cytoplasm. Conversely, targeting Xrn1p to the nucleus by the addition of the simian virus 40 large-T-antigen NLS resulted in complementation of the temperature sensitivity of a rat1-1 strain. These results indicate that Xrn1p and Rat1p are functionally interchangeable exoribonucleases that function in and are restricted to the cytoplasm and nucleus, respectively. It is likely that the higher eukaryotic homologs of these proteins will function similarly in the cytoplasm and nucleus. PMID:9315672
GATA3 Abundance Is a Critical Determinant of T Cell Receptor β Allelic Exclusion
Ku, Chia-Jui; Sekiguchi, JoAnn M.; Panwar, Bharat; Guan, Yuanfang; Takahashi, Satoru; Yoh, Keigyou; Maillard, Ivan; Hosoya, Tomonori
2017-01-01
ABSTRACT Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor β (TCRβ) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRβ protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRβ gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated. PMID:28320875
Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization
Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.
1998-01-01
Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112
Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A.; Killian, J. Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S.; van de Rijn, Matt; Debiec-Rychter, Maria; O’Sullivan, Maureen
2013-01-01
In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly. PMID:23717541
Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A; Killian, J Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S; van de Rijn, Matt; Debiec-Rychter, Maria; O'Sullivan, Maureen
2013-01-01
In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly.
The hobo transposable element excises and has related elements in tephritid species
USDA-ARS?s Scientific Manuscript database
Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays by scientists at the USDA Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, Gainesville, Florida. Wild-type and mutant strains of Ana...
DEREGULATION OF DUX4 AND ERG IN ACUTE LYMPHOBLASTIC LEUKEMIA
Zhang, Jinghui; McCastlain, Kelly; Yoshihara, Hiroki; Xu, Beisi; Chang, Yunchao; Churchman, Michelle L.; Wu, Gang; Li, Yongjin; Wei, Lei; Iacobucci, Ilaria; Liu, Yu; Qu, Chunxu; Wen, Ji; Edmonson, Michael; Payne-Turner, Debbie; Kaufmann, Kerstin B.; Takayanagi, Shin-ichiro; Wienholds, Erno; Waanders, Esmé; Ntziachristos, Panagiotis; Bakogianni, Sofia; Wang, Jingjing; Aifantis, Iannis; Roberts, Kathryn G.; Ma, Jing; Song, Guangchun; Easton, John; Mulder, Heather L.; Chen, Xiang; Newman, Scott; Ma, Xiaotu; Rusch, Michael; Gupta, Pankaj; Boggs, Kristy; Vadodaria, Bhavin; Dalton, James; Liu, Yanling; Valentine, Marcus L; Ding, Li; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda; Tabib, Yashodhan; Ochoa, Kerri; Devidas, Meenakshi; Pei, Deqing; Cheng, Cheng; Yang, Jun; Evans, William E.; Relling, Mary V.; Pui, Ching-Hon; Jeha, Sima; Harvey, Richard C.; Chen, I-Ming L; Willman, Cheryl L.; Marcucci, Guido; Bloomfield, Clara D.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Paietta, Elisabeth; Tallman, Martin S.; Stock, Wendy; Foster, Matthew C.; Racevskis, Janis; Rowe, Jacob M.; Luger, Selina; Kornblau, Steven M.; Shurtleff, Sheila A; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Dick, John E.; Hunger, Stephen P; Loh, Mignon L.; Downing, James R.; Mullighan, Charles G.
2016-01-01
Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL).1,2 Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases, and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt utilizes a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivating domains of ERG, but inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia, in which DUX4 deregulation results in loss-of-function of ERG, either by deletion or induction of expression of an isoform that is a dominant negative inhibitor of wild type ERG function. PMID:27776115
Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats
Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.
2013-01-01
Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060
A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase.
Liebherr, Raphaela B; Renner, Max; Gorris, Hans H
2014-04-23
The mechanisms that drive the evolution of new enzyme activity have been investigated by comparing the kinetics of wild-type and in vitro evolved β-glucuronidase (GUS) at the single molecule level. Several hundred single GUS molecules were separated in large arrays of 62,500 ultrasmall reaction chambers etched into the surface of a fused silica slide to observe their individual substrate turnover rates in parallel by fluorescence microscopy. Individual GUS molecules feature long-lived but divergent activity states, and their mean activity is consistent with classic Michaelis-Menten kinetics. The large number of single molecule substrate turnover rates is representative of the activity distribution within an entire enzyme population. Partially evolved GUS displays a much broader activity distribution among individual enzyme molecules than wild-type GUS. The broader activity distribution indicates a functional division of work between individual molecules in a population of partially evolved enzymes that-as so-called generalists-are characterized by their promiscuous activity with many different substrates.
Mishra, Arunima; Wu, Chenggang; Yang, Jinghua; Cisar, John O.; Das, Asis; Ton-That, Hung
2010-01-01
Interbacterial interactions between oral streptococci and actinomyces and their adherence to tooth surface and the associated host cells are key early events that promote development of the complex oral biofilm referred to as dental plaque. These interactions depend largely on a lectin-like activity associated with the Actinomyces oris type 2 fimbria, a surface structure assembled by sortase (SrtC2)-dependent polymerization of the shaft and tip fimbrillins, FimA and FimB, respectively. To dissect the function of specific fimbrillins in various adherence processes, we have developed a convenient new technology for generating unmarked deletion mutants of A. oris. Here, we show that the fimB mutant, which produced type 2 fimbriae composed only of FimA, like the wild type coaggregated strongly with receptor-bearing streptococci, agglutinated with sialidase-treated RBC, and formed monospecies biofilm. In contrast, the fimA and srtC2 mutants lacked type 2 fimbriae and were non-adherent in each of these assays. Plasmidbased expression of the deleted gene in respective mutants restored adherence to wild-type levels. These findings uncover the importance of the lectin-like activity of the polymeric FimA shaft rather than the tip. The multivalent adhesive function of FimA makes it an ideal molecule for exploring novel intervention strategies to control plaque biofilm formation. PMID:20545853
Routh, Brandy N.; Johnston, Daniel
2013-01-01
Despite the critical importance of voltage-gated ion channels in neurons, very little is known about their functional properties in Fragile X syndrome: the most common form of inherited cognitive impairment. Using three complementary approaches, we investigated the physiological role of A-type K+ currents (IKA) in hippocampal CA1 pyramidal neurons from fmr1-/y mice. Direct measurement of IKA using cell-attached patch-clamp recordings revealed that there was significantly less IKA in the dendrites of CA1 neurons from fmr1-/y mice. Interestingly, the midpoint of activation for A-type K+ channels was hyperpolarized for fmr1-/y neurons compared with wild-type, which might partially compensate for the lower current density. Because of the rapid time course for recovery from steady-state inactivation, the dendritic A-type K+ current in CA1 neurons from both wild-type and fmr1-/y mice is likely mediated by KV4 containing channels. The net effect of the differences in IKA was that back-propagating action potentials had larger amplitudes producing greater calcium influx in the distal dendrites of fmr1-/y neurons. Furthermore, CA1 pyramidal neurons from fmr1-/y mice had a lower threshold for LTP induction. These data suggest that loss of IKA in hippocampal neurons may contribute to dendritic pathophysiology in Fragile X syndrome. PMID:24336711
Elwen, Simon Harvey; Nastasi, Aurora
2014-01-01
A signature whistle type is a learned, individually distinctive whistle type in a dolphin's acoustic repertoire that broadcasts the identity of the whistle owner. The acquisition and use of signature whistles indicates complex cognitive functioning that requires wider investigation in wild dolphin populations. Here we identify signature whistle types from a population of approximately 100 wild common bottlenose dolphins (Tursiops truncatus) inhabiting Walvis Bay, and describe signature whistle occurrence, acoustic parameters and temporal production. A catalogue of 43 repeatedly emitted whistle types (REWTs) was generated by analysing 79 hrs of acoustic recordings. From this, 28 signature whistle types were identified using a method based on the temporal patterns in whistle sequences. A visual classification task conducted by 5 naïve judges showed high levels of agreement in classification of whistles (Fleiss-Kappa statistic, κ = 0.848, Z = 55.3, P<0.001) and supported our categorisation. Signature whistle structure remained stable over time and location, with most types (82%) recorded in 2 or more years, and 4 identified at Walvis Bay and a second field site approximately 450 km away. Whistle acoustic parameters were consistent with those of signature whistles documented in Sarasota Bay (Florida, USA). We provide evidence of possible two-voice signature whistle production by a common bottlenose dolphin. Although signature whistle types have potential use as a marker for studying individual habitat use, we only identified approximately 28% of those from the Walvis Bay population, despite considerable recording effort. We found that signature whistle type diversity was higher in larger dolphin groups and groups with calves present. This is the first study describing signature whistles in a wild free-ranging T. truncatus population inhabiting African waters and it provides a baseline on which more in depth behavioural studies can be based. PMID:25203814
Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying.
Holbrook, N Michele; Shashidhar, V R; James, Richard A; Munns, Rana
2002-06-01
The hypothesis that ABA produced by roots in drying soil is responsible for stomatal closure was tested with grafted plants constructed from the ABA-deficient tomato mutants, sitiens and flacca and their near-isogenic wild-type parent. Three types of experiments were conducted. In the first type, reciprocal grafts were made between the wild type and sitiens or flacca. Stomatal conductance accorded with the genotype of the shoot, not the root. Stomates closed in all of the grafted plants in response to soil drying, regardless of the root genotype, i.e. regardless of the ability of the roots to produce ABA. In the second type of experiment, wild-type shoots were grafted onto a split-root system consisting of one wild-type root grafted to one mutant (flacca or sitiens) root. Water was withheld from one root system, while the other was watered well so that the shoots did not experience any decline in water potential or loss of turgor. Stomates closed to a similar extent when water was withheld from the mutant roots or the wild-type roots. In the third type of experiment, grafted plants with wild-type shoots and either wild-type or sitiens roots were established in pots that could be placed inside a pressure chamber, and the pressure increased as the soil dried so that the shoots remained fully turgid throughout. Stomates closed as the soil dried, regardless of whether the roots were wild type or sitiens. These experiments demonstrate that stomatal closure in response to soil drying can occur in the absence of leaf water deficit, and does not require ABA production by roots. A chemical signal from roots leading to a change in apoplastic ABA levels in leaves may be responsible for the stomatal closure.
Cummings, David F.; Ericksen, Spencer S.; Goetz, Angela
2010-01-01
Conserved serines of transmembrane segment (TM) five (TM5) are critical for the interactions of endogenous catecholamines with α1- and α2-adrenergic, β2-adrenergic, and D1, D2, and D3 dopamine receptors. The unique high-affinity interaction of the D4 dopamine receptor subtype with both norepinephrine and dopamine, and the fact that TM5 serine interactions have never been studied for this receptor subtype, led us to investigate the interactions of ligands with D4 receptor TM5 serines. Serine-to-alanine mutations at positions 5.42 and 5.46 drastically decreased affinities of dopamine and norepinephrine for the D4 receptor. The D4-S5.43A receptor mutant had substantially reduced affinity for norepinephrine, but a modest loss of affinity for dopamine. In functional assays of cAMP accumulation, norephinephrine was unable to activate any of the mutant receptors, even though the agonist quinpirole displayed wild-type functional properties for all of them. Dopamine was unable to activate the S5.46A mutant and had reduced potency for the S5.43A mutant and reduced potency and efficacy for the S5.42A mutant. In contrast, Ro10-4548 [RAC-2′-2-hydroxy-3-4-(4-hydroxy-2-methoxyphenyl)-1-piperazinyl-propoxy-acetanilide], a catechol-like antagonist of the wild-type receptor unexpectedly functions as an agonist of the S5.43A mutant. Other noncatechol ligands had similar properties for mutant and wild-type receptors. This is the first example of a dopamine receptor point mutation selectively changing the receptor's interaction with a specific antagonist to that of an agonist, and together with other data, provides evidence, supported by molecular modeling, that catecholamine-type agonism is induced by different ligand-specific configurations of intermolecular H-bonds with the TM5 conserved serines. PMID:20215412
Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*
Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah
2015-01-01
L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430
Kattanek, Maria; Richardson, Kenneth C.; Hafez, Hafez Mohamed; Plendl, Johanna; Hünigen, Hana
2017-01-01
In this study the macroscopic and microscopic structure of the heart of a fast growing, meat-type turkey line (British United turkeys BUT Big 6) and a wild-type turkey line (Canadian Wild turkey) were compared. At 8 and 16 weeks of age, 10 birds of each genotype and sex were sampled. The body mass and heart mass of the meat-type turkey both increased at a faster rate than those of the wild-type turkey. However in both turkey lines, the relative heart mass decreased slightly with age, the decrease was statistically significant only in the male turkeys. Furthermore meat-type turkeys had a significantly (p < 0.01) lower relative heart mass and relative thickness of the left ventricle compared to the wild-type turkeys of the same age. The wild-type turkeys showed no significant change in the size of cardiomyocytes (cross sectional area and diameter) from 8 weeks to 16 weeks. In contrast, the size of cardiomyocytes increased significantly (p < 0.001) with age in the meat-type turkeys. The number of capillaries in the left ventricular wall increased significantly (p < 0.001) in wild-type turkeys from 2351 per mm2 at the age of 8 weeks to 2843 per mm2 at 16 weeks. However, in the meat-type turkeys there were no significant changes, capillary numbers being 2989 per mm2 at age 8 weeks and 2915 per mm2 at age 16 weeks. Correspondingly the area occupied by capillaries in the myocardium increased in wild-type turkeys from 8.59% at the age of 8 weeks to 9.15% at 16 weeks, whereas in meat-type turkeys this area decreased from 10.4% at 8 weeks to 9.95% at 16 weeks. Our results indicate a mismatch in development between body mass and heart mass and a compromised cardiac capillary density and architecture in the meat-type turkeys in comparison to the wild-type turkeys. PMID:28118415
Structure and function of neonatal social communication in a genetic mouse model of autism.
Takahashi, T; Okabe, S; Broin, P Ó; Nishi, A; Ye, K; Beckert, M V; Izumi, T; Machida, A; Kang, G; Abe, S; Pena, J L; Golden, A; Kikusui, T; Hiroi, N
2016-09-01
A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor.
Structure and function of neonatal social communication in a genetic mouse model of autism
Takahashi, Tomohisa; Okabe, Shota; Ó Broin, Pilib; Nishi, Akira; Ye, Kenny; Beckert, Michael V.; Izumi, Takeshi; Machida, Akihiro; Kang, Gina; Abe, Seiji; Pena, Jose L.; Golden, Aaron; Kikusui, Takefumi; Hiroi, Noboru
2015-01-01
A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically-triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor. PMID:26666205
Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains.
Lomakin, Joseph; Arakane, Yasuyuki; Kramer, Karl J; Beeman, Richard W; Kanost, Michael R; Gehrke, Stevin H
2010-12-01
Cuticle tanning in insects involves simultaneous cuticular pigmentation and hardening or sclerotization. The dynamic mechanical properties of the highly modified and cuticle-rich forewings (elytra) from Tribolium castaneum (red flour beetle) wild-type and body color mutant strains were investigated to relate body coloration and elytral mechanical properties. There was no statistically significant variation in the storage modulus E' among the elytra from jet, cola, sooty and black mutants or between the mutants and the wild-type GA-1 strain: E' averaged 5.1 ± 0.6 GPa regardless of body color. E' is a power law function of oscillation frequency for all types. The power law exponent, n, averaged 0.032 ± 0.001 for elytra from all genotypes except black; this small value indicated that the elytra are cross-linked. Black elytra, however, displayed a significantly larger n of 0.047 ± 0.004 and an increased loss tangent (tan δ), suggesting that metabolic differences in the black mutant strain result in elytra that are less cross-linked and more pigmented than the other types. These results are consistent with the hypothesis that black elytra have a β-alanine-deficient and dopamine-abundant metabolism, leading to greater melanin (black pigment) production, probably at the expense of cross-linking of cuticular proteins mediated by N-β-alanyldopamine quinone. Copyright © 2010 Elsevier Ltd. All rights reserved.
AMP Deaminase 3 Deficiency Enhanced 5′-AMP Induction of Hypometabolism
Daniels, Isadora Susan; O′Brien, William G.; Nath, Vinay; Zhao, Zhaoyang; Lee, Cheng Chi
2013-01-01
A hypometabolic state can be induced in mice by 5′-AMP administration. Previously we proposed that an underlying mechanism for this hypometabolism is linked to reduced erythrocyte oxygen transport function due to 5′-AMP uptake altering the cellular adenylate equilibrium. To test this hypothesis, we generated mice deficient in adenosine monophosphate deaminase 3 (AMPD3), the key catabolic enzyme for 5′-AMP in erythrocytes. Mice deficient in AMPD3 maintained AMPD activities in all tissues except erythrocytes. Developmentally and morphologically, the Ampd3−/− mice were indistinguishable from their wild type siblings. The levels of ATP, ADP but not 5′-AMP in erythrocytes of Ampd3−/− mice were significantly elevated. Fasting blood glucose levels of the Ampd3−/− mice were comparable to wild type siblings. In comparison to wild type mice, the Ampd3−/− mice displayed a deeper hypometabolism with a significantly delayed average arousal time in response to 5′-AMP administration. Together, these findings demonstrate a central role of AMPD3 in the regulation of 5′-AMP mediated hypometabolism and further implicate erythrocytes in this behavioral response. PMID:24066180
Assessment of Dental Fluorosis in Mmp20+/− Mice
Sharma, R.; Tye, C.E.; Arun, A.; MacDonald, D.; Chatterjee, A.; Abrazinski, T.; Everett, E.T.; Whitford, G.M.; Bartlett, J.D.
2011-01-01
The molecular mechanisms that underlie dental fluorosis are poorly understood. The retention of enamel proteins hallmarking fluorotic enamel may result from impaired hydrolysis and/or removal of enamel proteins. Previous studies have suggested that partial inhibition of Mmp20 expression is involved in the etiology of dental fluorosis. Here we ask if mice expressing only one functional Mmp20 allele are more susceptible to fluorosis. We demonstrate that Mmp20+/− mice express approximately half the amount of MMP20 as do wild-type mice. The Mmp20 heterozygous mice have normal-appearing enamel, with Vickers microhardness values similar to those of wild-type control enamel. Therefore, reduced MMP20 expression is not solely responsible for dental fluorosis. With 50-ppm-fluoride (F−) treatment ad libitum, the Mmp20+/− mice had F− tissue levels similar to those of Mmp20+/+ mice. No significant difference in enamel hardness was observed between the F−-treated heterozygous and wild-type mice. Interestingly, we did find a small but significant difference in quantitative fluorescence between these two groups, which may be attributable to slightly higher protein content in the Mmp20+/− mouse enamel. We conclude that MMP20 plays a nominal role in dental enamel fluorosis. PMID:21386097
Rahman, Md. Aejazur; Sobia, Parveen; Dwivedi, Ved Prakash; Bhawsar, Aakansha; Singh, Dhiraj Kumar; Sharma, Pawan; Moodley, Prashini; Van Kaer, Luc; Bishai, William R; Das, Gobardhan
2015-01-01
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence. PMID:25847237
Bago, Alberto; Cano, Custodia; Toussaint, Jean-Patrick; Smith, Sally; Dickson, Sandy
2006-09-01
Monoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar "RioGrande 76R" was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior. Colonization by G. intraradices in monoxenic culture of the wild-type line was low (<10%) but supported extensive development of extraradical mycelium, branched absorbing structures, and spores. The reduced colonization of rmc under monoxenic conditions (0.6%) was similar to that observed previously in soil. Extraradical development of runner hyphae was low and proportional to internal colonization. Few spores were produced. These results might suggest that carbon transfer may be modified in the rmc mutant. Our results support the usefulness of monoxenically obtained mycorrhizas for investigation of AM colonization and intraradical symbiotic functioning.
Proliferation, differentiation and apoptosis in connexin43-null osteoblasts
NASA Technical Reports Server (NTRS)
Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.
2001-01-01
Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.
Zaragoza, Oscar; Blazquez, Miguel A.; Gancedo, Carlos
1998-01-01
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30°C was indistinguishable from that of the wild type. However, at 42°C it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37°C, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42°C, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 106 CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476
Zaragoza, O; Blazquez, M A; Gancedo, C
1998-08-01
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation.
Quantitative polarized Raman spectroscopy in highly turbid bone tissue
NASA Astrophysics Data System (ADS)
Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.
2010-05-01
Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.
Yang, Chunxing; Danielson, Eric W.; Qiao, Tao; Metterville, Jake; Brown, Robert H.; Landers, John E.; Xu, Zuoshang
2016-01-01
Mutations in the profilin 1 (PFN1) gene cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease caused by the loss of motor neurons leading to paralysis and eventually death. PFN1 is a small actin-binding protein that promotes formin-based actin polymerization and regulates numerous cellular functions, but how the mutations in PFN1 cause ALS is unclear. To investigate this problem, we have generated transgenic mice expressing either the ALS-associated mutant (C71G) or wild-type protein. Here, we report that mice expressing the mutant, but not the wild-type, protein had relentless progression of motor neuron loss with concomitant progressive muscle weakness ending in paralysis and death. Furthermore, mutant, but not wild-type, PFN1 forms insoluble aggregates, disrupts cytoskeletal structure, and elevates ubiquitin and p62/SQSTM levels in motor neurons. Unexpectedly, the acceleration of motor neuron degeneration precedes the accumulation of mutant PFN1 aggregates. These results suggest that although mutant PFN1 aggregation may contribute to neurodegeneration, it does not trigger its onset. Importantly, these experiments establish a progressive disease model that can contribute toward identifying the mechanisms of ALS pathogenesis and the development of therapeutic treatments. PMID:27681617
Quantitative polarized Raman spectroscopy in highly turbid bone tissue.
Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D
2010-01-01
Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.
Forghani, Parvin; Petersen, Christopher T; Waller, Edmund K
2017-10-10
Vasoactive intestinal peptide (VIP) is recognized as a potent anti-inflammatory factor which affects both the innate and adaptive arms of the immune system. These effects include, but are not limited to, inhibition of T cell proliferation and disruption of immune homeostasis. Myeloid-derived suppressor cells (MDSC) are an immune regulatory cell type that has been described in settings of cancer and infectious disease._Here we demonstrate a reduced circulating monocytic MDSCs in the VIP -/- vs. wild type MCMV. VIP-/- MDSCs secretes less NO upon stimulation with LPS and interferon that relatively lose the ability to suppress T cells activation in vitro compared to wild type MDSCs._Considering the importance of VIP in immunomodulation, the possible effect of VIP in the suppressive function of MDSC populations following CMV infection remains unknown. We describe the possible role of VIP in the regulation of anti-CMV activity of T cells through the activation of MDSCs.
Zhang, J; Talbot, W S; Schier, A F
1998-01-23
The zebrafish one-eyed pinhead (oep) mutation disrupts embryonic development, resulting in cyclopia and defects in endoderm, prechordal plate, and ventral neuroectoderm formation. We report the molecular isolation of oep using a positional cloning approach. The oep gene encodes a novel EGF-related protein with similarity to the EGF-CFC proteins cripto, cryptic, and FRL-1. Wild-type oep protein contains a functional signal sequence and is membrane-associated. Following ubiquitous maternal and zygotic expression, highest levels of oep mRNA are found in the gastrula margin and in axial structures and forebrain. Widespread misexpression of both membrane-attached and secreted forms of oep rescues prechordal plate and forebrain development in mutant embryos but does not lead to the ectopic induction of these cell types in wild-type fish. These results establish an essential but permissive role for an EGF-related ligand during vertebrate gastrulation.
Gbedomon, Rodrigue Castro; Salako, Valère Kolawolé; Fandohan, Adandé Belarmain; Idohou, Alix Frank Rodrigue; Glèlè Kakaї, Romain; Assogbadjo, Achille Ephrem
2017-11-25
Understanding the functional diversity of home gardens and their socio-ecological determinants is essential for mainstreaming these agroforestry practices into agrobiodiversity conservation strategies. This paper analyzed functional diversity of home gardens, identified the socio-ecological drivers of functions assigned to them, and assessed the agrobiodiversity benefits of home gardens functions. Using data on occurring species in home garden (HG) and functions assigned to each species by the gardeners, the study combined clustering and discriminant canonical analyses to explore the functional diversity of 360 home gardens in Benin, West Africa. Next, multinomial logistic models and chi-square tests were used to analyze the effect of socio-demographic characteristics of gardeners (age, gender, and education level), agro-ecological zones (humid, sub-humid, and semi-arid), and management regime (single and multiple managers) on the possession of a functional type of home gardens. Generalized linear models were used to assess the effect of the functions of home gardens and the determinant factor on their potential in conserving agrobiodiversity. Seven functional groups of home gardens, four with specific functions (food, medicinal, or both food and medicinal) and three with multiple functions (more than two main functions), were found. Women owned most of home gardens with primarily food plant production purpose while men owned most of home gardens with primarily medicinal plant production purposes. Finding also showed that multifunctional home gardens had higher plant species diversity. Specifically, crops and crop wild relatives occurred mainly in home gardens with food function while wild plant species were mostly found in home gardens with mainly medicinal function. Home gardening is driven by functions beyond food production. These functions are mostly related to direct and extractive values of home gardens. Functions of home gardens were gendered, with women mostly involved in home food gardens, and contribute to maintenance of crops and crop wild relatives while men were mostly home medicinal gardeners and contribute to the maintenance of wild plant species in home gardens. Although multiple functional home gardens were related to higher plant diversity, there was no guarantee for long-term maintenance of plant species in home gardens.
Maggi, Maristella; Chiarelli, Laurent R; Valentini, Giovanna; Scotti, Claudia
2015-01-01
Bacterial L-asparaginases have been used as anti-cancer drugs for over 4 decades though presenting, along with their therapeutic efficacy, several side effects due to their bacterial origin and, seemingly, to their secondary glutaminase activity. Helicobacter pylori type II L-asparaginase possesses interesting features, among which a reduced catalytic efficiency for L-GLN, compared to the drugs presently used in therapy. In the present study, we describe some enzyme variants with catalytic and in vitro cytotoxic activities different from the wild type enzyme. Particularly, replacements on catalytic threonines (T16D and T95E) deplete the enzyme of both its catalytic activities, once more underlining the essential role of such residues. One serendipitous mutant, M121C/T169M, had a preserved efficiency vs L-asparagine but was completely unable to carry out L-glutamine hydrolysis. Interestingly, this variant did not exert any cytotoxic effect on HL-60 cells. The M121C and T169M single mutants had reduced catalytic activities (nearly 2.5- to 4-fold vs wild type enzyme, respectively). Mutant Q63E, endowed with a similar catalytic efficiency versus asparagine and halved glutaminase efficiency with respect to the wild type enzyme, was able to exert a cytotoxic effect comparable to, or higher than, the one of the wild type enzyme when similar asparaginase units were used. These findings may be relevant to determine the role of glutaminase activity of L-asparaginase in the anti-proliferative effect of the drug and to shed light on how to engineer the best asparaginase/glutaminase combination for an ever improved, patients-tailored therapy.
Maggi, Maristella; Chiarelli, Laurent R.; Valentini, Giovanna; Scotti, Claudia
2015-01-01
Bacterial L-asparaginases have been used as anti-cancer drugs for over 4 decades though presenting, along with their therapeutic efficacy, several side effects due to their bacterial origin and, seemingly, to their secondary glutaminase activity. Helicobacter pylori type II L-asparaginase possesses interesting features, among which a reduced catalytic efficiency for L-GLN, compared to the drugs presently used in therapy. In the present study, we describe some enzyme variants with catalytic and in vitro cytotoxic activities different from the wild type enzyme. Particularly, replacements on catalytic threonines (T16D and T95E) deplete the enzyme of both its catalytic activities, once more underlining the essential role of such residues. One serendipitous mutant, M121C/T169M, had a preserved efficiency vs L-asparagine but was completely unable to carry out L-glutamine hydrolysis. Interestingly, this variant did not exert any cytotoxic effect on HL-60 cells. The M121C and T169M single mutants had reduced catalytic activities (nearly 2.5- to 4-fold vs wild type enzyme, respectively). Mutant Q63E, endowed with a similar catalytic efficiency versus asparagine and halved glutaminase efficiency with respect to the wild type enzyme, was able to exert a cytotoxic effect comparable to, or higher than, the one of the wild type enzyme when similar asparaginase units were used. These findings may be relevant to determine the role of glutaminase activity of L-asparaginase in the anti-proliferative effect of the drug and to shed light on how to engineer the best asparaginase/glutaminase combination for an ever improved, patients-tailored therapy. PMID:25664771
Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice.
Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H Henry
2016-07-08
Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice*
Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H. Henry
2016-01-01
Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540
Cusick, Matthew F; Libbey, Jane E; Cox Gill, Joan; Fujinami, Robert S; Eckels, David D
2013-01-01
Aim To determine whether modulation of T-cell responses by naturally occurring viral variants caused an increase in numbers of Tregs in HCV-infected patients. Patients, materials & methods Human peripheral blood mononuclear cells, having proliferative responses to a wild-type HCV-specific CD4+ T-cell epitope, were used to quantify, via proliferative assays, flow cytometry and class II tetramers, the effects of naturally occurring viral variants arising in the immunodominant epitope. Results In combination, the wild-type and variant peptides led to enhanced suppression of an anti-HCV T-cell response. The variant had a lower avidity for the wild-type-specific CD4+ T cell. Variant-stimulated CD4+ T cells had increased Foxp3, compared with wild-type-stimulated cells. Conclusion A stable viral variant from a chronic HCV subject was able to induce Tregs in multiple individuals that responded to the wild-type HCV-specific CD4+ T-cell epitope. PMID:24421862
A 90-Day Feeding Study in Rats to Assess the Safety of Genetically Engineered Pork.
Xiao, Gao-Jun; Jiang, Sheng-Wang; Qian, Li-Li; Cai, Chun-Bo; Wang, Qing-Qing; Ma, De-Zun; Li, Biao; Xie, Shan-Shan; Cui, Wen-Tao; Li, Kui
2016-01-01
Our laboratory recently produced genetically engineered (GE) Meishan pigs containing a ZFN-edited myostatin loss-of-function mutant. These GE pigs develop and grow as normal as wild type pigs but produce pork with greater lean yield and lower fat mass. To assess any potential subchronic toxicity risks of this GE pork, a 90-day feeding study was conducted in Sprague-Dawley rats. Rats were randomly divided into five groups, and fed for 90 days with basic diet and basic diets formulated with low dose and high dose pork prepared from wild type pigs and GE pigs, respectively. Animal behaviors and clinical signs were monitored twice daily, and body weight and food consumption were measured and recorded weekly. At days 45 and 90, blood tests (lipid panel, electrolytes, parameters related to liver and kidney functions, and complete blood counts) were performed. Additionally, gross pathology and histopathological analyses were performed for major organs in each group. Data analysis shows that there were no significant differences in growth rate, food consumption, and blood test parameters between rat groups fed with GE pork and wild type pork. Although differences in some liver function parameters (such as aspartate aminotransferase, total proteins, albumin, and alkaline phosphatase) and white blood cell counts (such as lymphocyte percentage and monocyte percentage) were observed between rats fed with high dose GE pork and basic diet, all test results in rats fed with GE pork are in the normal range. Additionally, there are no apparent lesions noted in all organs isolated from rats in all five feeding groups on days 45 and 90. Overall, our results clearly indicate that food consumption of GE pork produced by ZFN-edited myostatin loss-of-function mutant pigs did not have any long-term adverse effects on the health status in rats.
A 90-Day Feeding Study in Rats to Assess the Safety of Genetically Engineered Pork
Xiao, Gao-jun; Jiang, Sheng-Wang; Qian, Li-Li; Cai, Chun-Bo; Wang, Qing-qing; Ma, De-Zun; Li, Biao; Xie, Shan-shan; Cui, Wen-Tao; Li, Kui
2016-01-01
Our laboratory recently produced genetically engineered (GE) Meishan pigs containing a ZFN-edited myostatin loss-of-function mutant. These GE pigs develop and grow as normal as wild type pigs but produce pork with greater lean yield and lower fat mass. To assess any potential subchronic toxicity risks of this GE pork, a 90-day feeding study was conducted in Sprague-Dawley rats. Rats were randomly divided into five groups, and fed for 90 days with basic diet and basic diets formulated with low dose and high dose pork prepared from wild type pigs and GE pigs, respectively. Animal behaviors and clinical signs were monitored twice daily, and body weight and food consumption were measured and recorded weekly. At days 45 and 90, blood tests (lipid panel, electrolytes, parameters related to liver and kidney functions, and complete blood counts) were performed. Additionally, gross pathology and histopathological analyses were performed for major organs in each group. Data analysis shows that there were no significant differences in growth rate, food consumption, and blood test parameters between rat groups fed with GE pork and wild type pork. Although differences in some liver function parameters (such as aspartate aminotransferase, total proteins, albumin, and alkaline phosphatase) and white blood cell counts (such as lymphocyte percentage and monocyte percentage) were observed between rats fed with high dose GE pork and basic diet, all test results in rats fed with GE pork are in the normal range. Additionally, there are no apparent lesions noted in all organs isolated from rats in all five feeding groups on days 45 and 90. Overall, our results clearly indicate that food consumption of GE pork produced by ZFN-edited myostatin loss-of-function mutant pigs did not have any long-term adverse effects on the health status in rats. PMID:27812153
Ramoni, Jonas; Marchetti-Deschmann, Martina; Seidl-Seiboth, Verena; Seiboth, Bernhard
2017-05-01
Trichoderma reesei is a paradigm for the regulation and industrial production of plant cell wall-degrading enzymes. Among these, five xylanases, including the glycoside hydrolase (GH) family 11 XYN1 and XYN2, the GH10 XYN3, and the GH30 XYN4 and XYN6, were described. By genome mining and transcriptome analysis, a further putative xylanase, encoded by xyn5, was identified. Analysis of xyn5 from the genome-sequenced reference strain T. reesei QM6a shows that it encodes a non-functional, truncated form of XYN5. However, non-truncated orthologues are present in other genome sequenced Trichoderma spp., and sequencing of xyn5 in other T. reesei wild-type isolates shows that they harbor a putative functional xyn5 allele. In silico analysis and 3D modeling revealed that the encoded XYN5 has significant structural similarities to xylanases of the GH11 family, including a GH-typical substrate binding groove and a carboxylate pair in the active site. The xyn5 of wild-type strain TUCIM1282 was recombinantly expressed in a T. reesei strain with a (hemi)cellulase-free background and the corresponding protein purified to apparent homogeneity. The pH and temperature optima and the kinetic parameters of the purified XYN5 were pH 4, 50 °C, and V max = 2646 nkat/mg with a K m of 9.68 mg/ml. This functional xyn5 allele was used to replace the mutated version which led to an overall increase of the xylanolytic activity. These findings are of particular importance as GH11 xylanases are of high biotechnological relevance, and T. reesei is one of the main industrial producers of such lignocellulose-degrading enzymes.
Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.
Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L
2015-02-01
Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.
2011-01-01
Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass-stimulated wild type BMDCs were sufficient to induce AHR and allergic airway inflammation, while GC frass-stimulated PAR-2-deficient BMDC had attenuated responses. Conclusions Together these data suggest an important role for allergen activation of PAR-2 on mDCs in mediating Th2/Th17 cytokine production and allergic airway responses. PMID:21936897
Nguyen, Alexander T; Marquez, Paul; Hamid, Abdul; Kieffer, Brigitte; Friedman, Theodore C; Lutfy, Kabirullah
2012-07-05
We have previously shown that β-endorphin plays a functional role in the rewarding effect of acute cocaine. Considering that β-endorphin has high affinity for the μ opioid receptor, we determined the role of this receptor in the rewarding action of acute cocaine. For comparison, we assessed the role of the μ opioid receptor in the rewarding effect of acute morphine. We also examined the effect of intracerebroventricular (i.c.v.) administration of β-funaltrexamine (β-FNA), an irreversible μ opioid receptor antagonist, on the rewarding action of acute cocaine as well as that of morphine. Using the conditioned place preference (CPP) paradigm as an animal model of reward, we first assessed the rewarding action of cocaine in mice lacking β-endorphin or the μ opioid receptor and their respective wild-type littermates/controls. Mice were tested for preconditioning place preference on day 1, conditioned once daily with saline/cocaine (30mg/kg, i.p.) or cocaine/saline on days 2 and 3, and then tested for postconditioning place preference on day 4. We next studied the rewarding action of acute morphine in μ knockout mice and their wild-type controls. The CPP was induced by single alternate-day saline/morphine (10mg/kg, s.c.) or morphine/saline conditioning. We finally determined the effect of β-FNA on CPP induced by cocaine or morphine in wild-type mice, in which mice were treated with saline or β-FNA (9ug/3μl; i.c.v.) a day prior to the preconditioning test day. Our results revealed that morphine induced a robust CPP in wild-type mice but not in mice lacking the μ opioid receptor or in wild-type mice treated with β-FNA. In contrast, cocaine induced CPP in μ knockout mice as well as in wild-type mice treated with β-FNA. On the other hand, cocaine failed to induce CPP in mice lacking β-endorphin. These results illustrate that β-endorphin is essential for the rewarding action of acute cocaine, but the μ opioid receptor may not mediate the regulatory action of endogenous β-endorphin. Copyright © 2012 Elsevier B.V. All rights reserved.
Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo
2012-01-01
Background Neuroglobin is considered to be a novel important pharmacological target in combating stroke and neurodegenerative disorders, although the mechanism by which this protection is accomplished remains an enigma. We hypothesized that if neuroglobin is directly involved in neuroprotection, then permanent cerebral ischemia would lead to larger infarct volumes in neuroglobin-null mice than in wild-type mice. Methods Using neuroglobin-null mice, we estimated the infarct volume 24 hours after permanent middle cerebral artery occlusion using Cavalieri’s Principle, and compared the infarct volume in neuroglobin-null and wild-type mice. Neuroglobin antibody staining was used to examine neuroglobin expression in the infarct area of wild-type mice. Results Infarct volumes 24 hours after permanent middle cerebral artery occlusion were significantly smaller in neuroglobin-null mice than in wild-types (p < 0.01). Neuroglobin immunostaining of the penumbra area revealed no visible up-regulation of neuroglobin protein in ischemic wild-type mice when compared to uninjured wild-type mice. In uninjured wild-type mice, neuroglobin protein was seen throughout cortical layer II and sparsely in layer V. In contrast, no neuroglobin-immunoreactive neurons were observed in the aforementioned layers of the ischemia injured cortical area, or in the surrounding penumbra of ischemic wild-type mice. This suggests no selective sparing of neuroglobin expressing neurons in ischemia. Conclusions Neuroglobin-deficiency resulted in reduced tissue infarction, suggesting that, at least at endogenous expression levels, neuroglobin in itself is non-protective against ischemic injury. PMID:22901501
Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina
2014-01-28
Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.
Xia, Jia-Qi; Song, Jie; Zhang, Yi; An, Ni-Na; Ding, Lei; Zhang, Zheng
2015-01-01
Background: Nitroglycerin (NTG) is one of the few immediate treatments for acute angina. Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in the human body that facilitates the biological metabolism of NTG. The biological mechanism of NTG serves an important function in NTG efficacy. Some reports still contradict the results that the correlation between ALDH2 gene polymorphisms and NTG and its clinical efficacy is different. However, data on NTG measurement by pain relief are subjective. This study aimed to investigate the influence of ALDH2 gene polymorphism on intervention with sublingual NTG using noninvasive hemodynamic parameters of cardiac output (CO) and systemic vascular resistance (SVR) in Northern Chinese Han population. Methods: This study selected 559 patients from the Affiliated Hospital of Qingdao University. A total of 203 patients presented with coronary heart disease (CHD) and 356 had non-CHD (NCHD) cases. All patient ALDH2 genotypes (G504A) were detected and divided into two types: Wild (GG) and mutant (GA/AA). Among the CHD group, 103 were wild-type cases, and 100 were mutant-type cases. Moreover, 196 cases were wild-type, and 160 cases were mutant type among the NCHD volunteers. A noninvasive hemodynamic detector was used to monitor the CO and the SVR at the 0, 5, and 15 minute time points after medication with 0.5 mg sublingual NTG. Two CO and SVR indicators were used for a comparative analysis of all case genotypes. Results: Both CO and SVR indicators significantly differed between the wild and mutant genotypes at various time points after intervention with sublingual NTG at 5 and 15 minutes in the NCHD (F = 16.460, 15.003, P = 0.000, 0.000) and CHD groups (F = 194.482, 60.582, P = 0.000, 0.000). All CO values in the wild-type case of both NCHD and CHD groups increased, whereas those in the mutant type decreased. The CO and ΔCO differences were statistically significant (P < 0.05; P < 0.05). The SVR and ΔSVR changed between the wild- and mutant-type cases at all-time points in both NCHD and CHD groups had statistically significant differences (P < 0.05; P < 0.05). Conclusion: ALDH2 (G504A) gene polymorphism is associated with changes in noninvasive hemodynamic parameters (i.e. CO and SVR) after intervention with sublingual NTG. This gene polymorphism may influence the effect of NTG intervention on Northern Chinese Han population. PMID:25591559
Genetic studies of cell fusion induced by herpes simplex virus type 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, G.S.; Person, S.; Keller, P.M.
1980-07-01
Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less
Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D; Abe, Toyofumi; Su, Charles A; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L
2016-03-15
Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts. Copyright © 2016 by The American Association of Immunologists, Inc.
Gloss, L M; Spencer, D E; Kirsch, J F
1996-02-01
It was previously suggested that the conserved Cys-191 of aspartate aminotransferases (AATases) is conserved, not because it is essential, but because it is frozen in the sequence, with no neutral corridor to traverse to the similar phenotype of Ala-191 (Gloss et al., Biochemistry 31:32-39, 1992). This hypothesis has now been tested by additional mutations. All possible one-base mutations from Cys were made at position 191. All of these variants display kinetic parameters (kcat and kcat/KM values) that differ from the wild-type enzyme by 30% or more. The non-conserved cysteines that are predominantly Ala in other AATase sequences (Cys-82, Cys-192, and Cys-401) were mutated to Ser to test the corollary that a neutral Cys->Ala corridor does exist for these positions. These Cys->Ser mutations yielded enzymes with wild-type-like kinetic parameters. The pKa values of the internal aldimines of the mutants, Cys-191->Ser, Phe, Tyr, and Trp are higher than that of wild type by 0.6-0.8 pH units. The stabilities to urea denaturation of the Cys-191 mutants are similar to that of wild type, while those of the non-conserved cysteines show greater variation. Examination of the three-dimensional environment of the five cysteines showed that the van der Waals contacts of Cys-191 are more conserved than are those of the non-conserved cysteines. These data provide further support for the above hypothesis.
Zhang, Z R; McDonough, S I; McCarty, N A
2000-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel with distinctive kinetics. At the whole-cell level, CFTR currents in response to voltage steps are time independent for wild type and for the many mutants reported so far. Single channels open for periods lasting up to tens of seconds; the openings are interrupted by brief closures at hyperpolarized, but not depolarized, potentials. Here we report a serine-to-phenylalanine mutation (S1118F) in the 11th transmembrane domain that confers voltage-dependent, single-exponential current relaxations and moderate inward rectification of the macroscopic currents upon expression in Xenopus oocytes. At steady state, the S1118F-CFTR single-channel conductance rectifies, corresponding to the whole-cell rectification. In addition, the open-channel burst duration is decreased 10-fold compared with wild-type channels. S1118F-CFTR currents are blocked in a voltage-dependent manner by diphenylamine-2-carboxylate (DPC); the affinity of S1118F-CFTR for DPC is similar to that of the wild-type channel, but blockade exhibits moderately reduced voltage dependence. Selectivity of the channel to a range of anions is also affected by this mutation. Furthermore, the permeation properties change during the relaxations, which suggests that there is an interaction between gating and permeation in this mutant. The existence of a mutation that confers voltage dependence upon CFTR currents and that changes kinetics and permeation properties of the channel suggests a functional role for the 11th transmembrane domain in the pore in the wild-type channel. PMID:10866956
Sebban, P; Maróti, P; Schiffer, M; Hanson, D K
1995-07-04
Two point mutants from the purple bacterium Rhodobacter capsulatus, both modified in the M protein of the photosynthetic reaction center, have been studied by flash-induced absorbance spectroscopy. These strains carry either the M231Arg --> Leu or M43ASN --> Asp mutations, which are located 9 and 15 A, respectively, from the terminal electron acceptor QB. In the wild-type Rb. sphaeroides structure, M231Arg is involved in a conserved salt bridge with H125Glu and H232Glu and M43Asn is located among several polar residues that form or surround the QB binding site. These substitutions were originally uncovered in phenotypic revertants isolated from the photosynthetically incompetent L212Glu-L213Asp --> Ala-Ala site-specific double mutant. As second-site suppressor mutations, they have been shown to restore the proton transfer function that is interrupted in the L212Ala-L213Ala double mutant. The electrostatic effects that are induced in reaction centers by the M231Arg --> Leu and M43Asn --> Asp substitutions are roughly the same in either the double-mutant or wild-type backgrounds. In a reaction center that is otherwise wild type in sequence, they decrease the free energy gap between the QA- and QB- states by 24 +/- 5 and 45 +/- 5 meV, respectively. The pH dependences of K2, the QA-QB <--> QAQB- equilibrium constant, are altered in reaction centers that carry either of these substitutions, revealing differences in the pKas of titratable groups compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)
Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
Bu, Qingyun; Lv, Tianxiao; Shen, Hui; Luong, Phi; Wang, Jimmy; Wang, Zhenyu; Huang, Zhigang; Xiao, Langtao; Engineer, Cawas; Kim, Tae Houn; Schroeder, Julian I; Huq, Enamul
2014-01-01
MAX2 (for MORE AXILLARY GROWTH2) has been shown to regulate diverse biological processes, including plant architecture, photomorphogenesis, senescence, and karrikin signaling. Although karrikin is a smoke-derived abiotic signal, a role for MAX2 in abiotic stress response pathways is least investigated. Here, we show that the max2 mutant is strongly hypersensitive to drought stress compared with wild-type Arabidopsis (Arabidopsis thaliana). Stomatal closure of max2 was less sensitive to abscisic acid (ABA) than that of the wild type. Cuticle thickness of max2 was significantly thinner than that of the wild type. Both of these phenotypes of max2 mutant plants correlate with the increased water loss and drought-sensitive phenotype. Quantitative real-time reverse transcription-polymerase chain reaction analyses showed that the expression of stress-responsive genes and ABA biosynthesis, catabolism, transport, and signaling genes was impaired in max2 compared with wild-type seedlings in response to drought stress. Double mutant analysis of max2 with the ABA-insensitive mutants abi3 and abi5 indicated that MAX2 may function upstream of these genes. The expression of ABA-regulated genes was enhanced in imbibed max2 seeds. In addition, max2 mutant seedlings were hypersensitive to ABA and osmotic stress, including NaCl, mannitol, and glucose. Interestingly, ABA, osmotic stress, and drought-sensitive phenotypes were restricted to max2, and the strigolactone biosynthetic pathway mutants max1, max3, and max4 did not display any defects in these responses. Taken together, these results uncover an important role for MAX2 in plant responses to abiotic stress conditions.
PECTIN METHYLESTERASE48 Is Involved in Arabidopsis Pollen Grain Germination1[OPEN
Leroux, Christelle; Bouton, Sophie; Kiefer-Meyer, Marie-Christine; Fabrice, Tohnyui Ndinyanka; Mareck, Alain; Guénin, Stéphanie; Fournet, Françoise; Ringli, Christoph; Pelloux, Jérôme; Driouich, Azeddine; Lerouge, Patrice; Lehner, Arnaud; Mollet, Jean-Claude
2015-01-01
Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48−/− pollen grains. In contrast, the PME activity was lower in pme48−/−, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48−/− with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca2+ necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination. PMID:25524442
Biosynthesis and Functions of Melanin in Sporothrix schenckii
Romero-Martinez, Rafael; Wheeler, Michael; Guerrero-Plata, Antonieta; Rico, Guadalupe; Torres-Guerrero, Haydée
2000-01-01
Sporothrix schenckii is a human pathogen that causes sporotrichosis, an important cutaneous mycosis with a worldwide distribution. It produces dark-brown conidia, which infect the host. We found that S. schenckii synthesizes melanin via the 1,8-dihydroxynaphthalene pentaketide pathway. Melanin biosynthesis in the wild type was inhibited by tricyclazole, and colonies of the fungus were reddish brown instead of black on tricyclazole-amended medium. Two melanin-deficient mutant strains were analyzed in this study: an albino that produced normal-appearing melanin on scytalone-amended medium and a reddish brown mutant that accumulated and extruded melanin metabolites into its medium. Scytalone and flaviolin obtained from cultures of the reddish brown mutant were identified by thin-layer chromatography, high-performance liquid chromatography, and UV spectra. Transmission electron microscopy showed an electron-dense granular material believed to be melanin in wild-type conidial cell walls, and this was absent in conidial walls of the albino mutant unless the albino was grown on a scytalone-amended medium. Melanized cells of wild-type S. schenckii and the albino grown on scytalone-amended medium were less susceptible to killing by chemically generated oxygen- and nitrogen-derived radicals and by UV light than were conidia of the mutant strains. Melanized conidia of the wild type and the scytalone-treated albino were also more resistant to phagocytosis and killing by human monocytes and murine macrophages than were unmelanized conidia of the two mutants. These results demonstrate that melanin protects S. schenckii against certain oxidative antimicrobial compounds and against attack by macrophages. PMID:10816530
Lai, Alex L; Tamm, Lukas K
2010-11-26
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.
Lai, Alex L.; Tamm, Lukas K.
2010-01-01
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788
Cardiac remodeling in response to chronic iron deficiency: role of the erythropoietin receptor.
Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Hirotani, Shinichi; Mano, Toshiaki; Tsujino, Takeshi; Masuyama, Tohru
2015-06-01
Anemia is a common comorbidity of patients with heart failure, and iron deficiency is known as one of the causes of anemia in heart failure. Recent studies have shown that iron deficiency alone, without overt anemia, is associated with poor outcomes in patients with heart failure. Thus, to minimize the mortality in patients with heart failure, it is important to understand the link between iron deficiency and cardiac function. Chronic untreated iron deficiency results in cardiac remodeling, and we have previously reported that erythropoietin (Epo) and cardiac Epo receptor (EpoR) signaling may be associated with its remodeling. However, the link between EpoR signaling and its remodeling remains to be elucidated. Herein, we investigated the role of EpoR signaling on cardiac remodeling in response to chronic iron deficiency. Wild-type mice and transgene-rescued EpoR-null mutant mice, which express EpoR only in the hematopoietic lineage (EpoR-restricted mice), were fed with either a normal or an iron-restricted diet, and the molecular mechanisms were investigated. Dietary iron restriction gradually induced anemia, Epo secretion, and cardiac hypertrophy in wild-type mice. In contrast, EpoR-restricted mice fed with an iron-restricted diet exhibited anemia, left ventricular dilatation, and cardiac dysfunction compared with wild-type mice. Interestingly, altered cardiac mitochondrial biogenesis was observed in EpoR-restricted mice following iron deficiency. Moreover, cardiac p53 expression was increased in EpoR-restricted mice compared with wild-type mice following iron deficiency. These data indicate that EpoR signaling is associated with cardiac remodeling following chronic iron deficiency.
Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R
1992-04-01
Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common feature which defines the capacity of these elements to confer T3 induction.
Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function.
Schmucker, Christine; Seeliger, Mathias; Humphries, Pete; Biel, Martin; Schaeffel, Frank
2005-01-01
The mouse eye has become an important model in vision research. However, it is not known how visual acuity changes with luminance. Therefore, grating acuity of mice was measured at different luminances in an automated optomotor paradigm. Furthermore, mutant mice lacking either rods (RHO-/- and CNGB1-/-) or cones (CNGA3-/-), or both, were studied to determine the rod and cone contribution to visual acuity. Freely ranging individual mice were automatically tracked at a 25-Hz sampling rate with a self-programmed video system in a large rotating optomotor drum. The drum had a square-wave grating inside with adjustable spatial frequency. The angular speed of the mice with respect to the center of the drum and the angular orientation of the snout-tail body axis were analyzed. In addition, the motor activity of the wild-type mice was recorded at different luminances. The optomotor drum provided reliable data on visual input to the mouse's behavior and was convenient to use, since the experimenter's had only to place the mice individually in a Perspex cylinder. Optomotor grating acuity of the wild-type mice was limited to 0.3 to 0.4 cyc/deg. Maximum optomotor responses were obtained at 0.1 to 0.2 cyc/deg. The importance of visual input declined monotonically with decreasing luminance (30 cd/m2, 100%; 0.1 cd/m2, 76.4%; 0.005 cd/m2, 45.9%; and darkness, -9%). Mice lacking functional rods were able to resolve gratings up to 0.1 cyc/deg at 30 cd/m2. Surprisingly, mice lacking functional cones had an optomotor acuity that was similar to the wild-type. Double-knockout mice without rods and cones had no detectable grating acuity. Because the visual system of the mouse is more responsive at bright luminances, experiments in which visual input is important should be performed in photopic conditions (30 cd/m2 or even more). Apparently, spatial vision is governed by the rod system, which is not saturated in the mesopic or low photopic range. Mice lacking both rods and cones have no detectable grating acuity, indicating that the retinal melanopsin system does not contribute to spatial vision.
NASA Technical Reports Server (NTRS)
Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.
2000-01-01
Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.
Du, Jiancan; Hu, Simin; Yu, Qin; Wang, Chongde; Yang, Yunqiang; Sun, Hang; Yang, Yongping; Sun, Xudong
2017-01-01
The teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips ( Brassica rapa ssp. rapa ). In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.
Vaid, Mudit; Singh, Tripti; Prasad, Ram; Elmets, Craig A; Xu, Hui; Katiyar, Santosh K
2013-03-01
Ultraviolet (UV) radiation-induced immunosuppression has been implicated in skin carcinogenesis. Grape seed proanthocyanidins (GSPs) have anti-skin carcinogenic effects in mice and GSPs-fed mice exhibit a reduction in UV-induced suppression of allergic contact hypersensitivity (CHS), a prototypic T-cell-mediated response. Here, we report that dietary GSPs did not inhibit UVB-induced suppression of CHS in xeroderma pigmentosum complementation group A (XPA)-deficient mice, which lack nucleotide excision repair mechanisms. GSPs enhanced repair of UVB-induced DNA damage (cyclobutane pyrimidine dimers) in wild-type, but not XPA-deficient, dendritic cells (DC). Co-culture of CD4(+) T cells with DCs from UVB-irradiated wild-type mice resulted in suppression of T-cell proliferation and secretion of T-helper (TH) 1-type cytokines that was ameliorated when the DCs were obtained from GSP-fed mice, whereas DCs obtained from GSP-fed XPA-KO mice failed to restore T-cell proliferation. In adoptive transfer experiments, donor DCs were positively selected from the draining lymph nodes of UVB-exposed donor mice that were sensitized to 2,4,-dinitrofluorobenzene were transferred into naïve recipient mice and the CHS response assessed. Naïve recipients that received DCs from UVB-exposed wild-type donors that had been fed GSPs exhibited a full CHS response, whereas no significant CHS was observed in mice that received DCs from XPA-KO mice fed GSPs. These results suggest that GSPs prevent UVB-induced immunosuppression through DNA repair-dependent functional activation of dendritic cells in mice. Cancer Prev Res; 6(3); 242-52. ©2013 AACR. ©2013 AACR.
Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert
2013-01-01
The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924
Hüser, Daniela; Gogol-Döring, Andreas; Chen, Wei
2014-01-01
ABSTRACT Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. PMID:25031342
Wang, Ming-yi; Chen, Cheng; Shao, Chen; Wang, Shao-bo; Wang, Ai-chu; Yang, Ya-chao; Yuan, Xiao-yan; Shao, Shi-he
2015-04-01
The function of intact long-type DupA protein in Helicobacter pylori was analyzed using immunoblotting and molecular biology techniques in the study. After cloning, expression and purification, ATPase activity of DupA protein was detected. Antibody was produced for localization and interaction proteins analysis. The dupA-deleted mutant was generated for adhesion and CagA protein translocation assay, susceptibility to different pH, IL-8 secretion assay, cytotoxicity to MKN-45 cells and proteins-involved apoptosis analysis. DupA protein exhibited an ATPase activity (129.5±17.8 U/mgprot) and located in bacterial membrane, while it did not involve the adhesion and CagA protein delivery of H. pylori. DupA protein involved the urease secretion as the interaction proteins. The wild type strain had a stronger growth in low pH than the dupA-deleted mutant (p < 0.001). IL-8 productions from GES-1 cells infected with the wild type strain were significantly higher than from those with the mutant (p < 0.001). The amounts of vital MKN-45 cells were decreased and the numbers of apoptotic cells were increased with the wild type strain, compared to those with the mutant after 12 h (p < 0.05). The increase of cleaved Caspase-3 and Bax was significantly higher and the decrease of Bcl-2 was more obvious in MKN-45 cells exposed to the wild type strain than that exposed to the mutant after 6 h. We demonstrate that intact long-type DupA protein located in membrane as ATPase is a true virulence factor associated with duodenal ulcer development involving the IL-8 induction and urease secretion, while it inhibits gastric cancer cell growth in vitro by activating the mitochondria-mediated apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
p53 functions as a cell cycle control protein in osteosarcomas.
Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B
1990-11-01
Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.
Cardelli, J A; Bush, J M; Ebert, D; Freeze, H H
1990-05-25
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.
Omar, Bilal; Ahlkvist, Linda; Yamada, Yuchiro; Seino, Yutaka; Ahrén, Bo
2016-05-01
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development. Copyright © 2016. Published by Elsevier Inc.
Wu, Chenggang; Al Mamun, Abu Amar Mohamed; Luong, Truc Thanh; Hu, Bo; Gu, Jianhua; Lee, Ju Huck; D'Amore, Melissa; Das, Asis; Ton-That, Hung
2018-04-24
Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the Δ ftsX and Δ envC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of Δ ftsX and Δ envC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated. IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum , due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the Δ ftsX and Δ envC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen. Copyright © 2018 Wu et al.
Isolation, characterization, and expression analyses of tryptophan
USDA-ARS?s Scientific Manuscript database
The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...
Protection from Premature Habituation Requires Functional Mushroom Bodies in "Drosophila"
ERIC Educational Resources Information Center
Acevedo, Summer F.; Froudarakis, Emmanuil I.; Kanellopoulos, Alexandros; Skoulakis, Efthimios M. C.
2007-01-01
Diminished responses to stimuli defined as habituation can serve as a gating mechanism for repetitive environmental cues with little predictive value and importance. We demonstrate that wild-type animals diminish their responses to electric shock stimuli with properties characteristic of short- and long-term habituation. We used spatially…
Frye, C A; Sumida, K; Lydon, J P; O'Malley, B W; Pfaff, D W
2006-05-01
Progesterone (P) and its 5alpha-reduced metabolite, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP), facilitate sexual behavior of rodents via agonist-like actions at intracellular progestin receptors (PRs) and membrane GABA(A)/benzodiazepine receptor complexes (GBRs), respectively. Given that ovarian secretion of progestins declines with aging, whether or not senescent mice are responsive to progestins was of interest. Homozygous PR knockout (PRKO) or wild-type mice that were between 10-12 (mid-aged) or 20-24 (aged) months of age were administered P or 3alpha,5alpha-THP, and the effect on lordosis were examined. Effects of a progestin-priming regimen that enhances PR-mediated (experiment 1) or more rapid, PR-independent effects of progestins (experiments 2 and 3) on sexual behavior were examined. Levels of P, 3alpha,5alpha-THP, and muscimol binding were examined in tissues from aged mice (experiment 4). Wild-type, but not PRKO, mice were responsive when primed with 17beta-estradiol (E(2); 0.5 microg) and administered P (500 microg, subcutaneously). Mid-aged wild-type mice demonstrated greater increases in lordosis 6 h later compared to their pre-P, baseline test than did aged wild-type mice (experiment 1). Lordosis of younger and older wild-type, but not PRKO, mice was significantly increased within 5 min of intravenous (IV) administration of P (100 ng), compared with E(2)-priming alone (experiment 2). However, wild-type and PRKO mice demonstrated significant increases in lordosis 5 min after IV administration of 3alpha,5alpha-THP, an effect which was more pronounced in mid-aged than in aged animals (100 ng-experiment 3). In tissues from aged wild-type and PRKO mice, levels of P, 3alpha,5alpha-THP, and muscimol binding were increased by P administration (experiment 4). PR binding was lower in the cortex of PRKO than that of wild-type mice. Mid-aged and aged PRKO and wild-type mice demonstrated rapid P or 3alpha,5alpha-THP-facilitated lordosis that may be, in part, independent of activity at PRs.
Toyofuku, Kazutomo; Valencia, Julio C; Kushimoto, Tsuneto; Costin, Gertrude-E; Virador, Victoria M; Vieira, Wilfred D; Ferrans, Victor J; Hearing, Vincent J
2002-06-01
Oculocutaneous albinism (OCA) is caused by reduced or deficient melanin pigmentation in the skin, hair, and eyes. OCA has different phenotypes resulting from mutations in distinct pigmentation genes involved in melanogenesis. OCA type 2 (OCA2), the most common form of OCA, is an autosomal recessive disorder caused by mutations in the P gene, the function(s) of which is controversial. In order to elucidate the mechanism(s) involved in OCA2, our group used several antibodies specific for various melanosomal proteins (tyrosinase, Tyrp1, Dct, Pmel17 and HMB45), including a specific set of polyclonal antibodies against the p protein. We used confocal immunohistochemistry to compare the processing and distribution of those melanosomal proteins in wild type (melan-a) and in p mutant (melan-p1) melanocytes. Our results indicate that the melanin content of melan-p1 melanocytes was less than 50% that of wild type melan-a melanocytes. In contrast, the tyrosinase activities were similar in extracts of wild type and p mutant melanocytes. Confocal microscopy studies and pulse-chase analyses showed altered processing and sorting of tyrosinase, which is released from melan-p1 cells to the medium. Processing and sorting of Tyrp1 was also altered to some extent. However, Dct and Pmel17 expression and subcellular localization were similar in melan-a and in melan-p1 melanocytes. In melan-a cells, the p protein showed mainly a perinuclear pattern with some staining in the cytoplasm where some co-localization with HMB45 antibody was observed. These findings suggest that the p protein plays a major role in modulating the intracellular transport of tyrosinase and a minor role for Tyrp1, but is not critically involved in the transport of Dct and Pmel17. This study provides a basis to understand the relationship of the p protein with tyrosinase function and melanin synthesis, and also provides a rational approach to unveil the consequences of P gene mutations in the pathogenesis of OCA2.
Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang
2014-01-01
Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19–0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure. PMID:25265539
The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity.
Abbott, Jamie A; Guth, Ethan; Kim, Cindy; Regan, Cathy; Siu, Victoria M; Rupar, C Anthony; Demeler, Borries; Francklyn, Christopher S; Robey-Bond, Susan M
2017-07-18
Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNA His binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.
Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.
Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L
2004-03-01
Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.
Ziv-Gal, A; Gao, L; Karman, B N; Flaws, J A
2015-03-01
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Ahr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Connexins in Prostate Cancer Initiation and Progression
2013-11-01
the Golgi Apparatus for Cargo Transport Prior to Complete Assembly. Mol.Biol.Cell, 17, 4105-4117. 79. Hunziker,W. and Geuze,H. (2011...tumor growth by inducing the assembly of other junctional and signaling complexes? Wild type connexins which form functional gap junctions and mutant...and influences the function of two other important proteins that have been shown to prevent the spread of cancer cells from prostate to distant organs
Li, Meng; Zhang, Xu; Zhu, Lingwei; Wang, Haifeng; Zhao, Na; Luo, Jing; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; Zhou, Wei; Zhang, Bikai; Guo, Huancheng; He, Hongxuan
2017-07-01
Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that can induces gas gangrene or enteritis in poultry and humans and many other mammalian species. Here, we report an outbreak of C. perfringens type A and type C coinfection in wild boars ( Sus scrofa ). In February 2016, 10 dead wild boars, including two fresh carcasses, were found in Zhaosu County, Xinjiang Province, People's Republic of China. The two fresh carcasses were included in this study. Two strains of C. perfringens were isolated, identified, genotyped, and phylogenetically analyzed. Based on postmortem examination, bacterium isolation and identification, enterotoxin detection, and auxiliary tests, we made a diagnosis that the wild boar were killed by C. perfringens . Our findings provide the evidence that wild boar can be killed by C. perfringens intoxication. Wild boars are important reservoirs for many zoonotic agents. Therefore, more actions should be taken on the surveillance, prevention, and control of wild pig-borne diseases.
Briant, Kit; Streit, Anne-Kathrin; Thomson, Steven; Koay, Yee Hui
2016-01-01
ABSTRACT Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca2+-gated Cl− channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl− ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl− conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. PMID:27519691
Uggenti, Carolina; Briant, Kit; Streit, Anne-Kathrin; Thomson, Steven; Koay, Yee Hui; Baines, Richard A; Swanton, Eileithyia; Manson, Forbes D
2016-11-01
Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca 2+ -gated Cl - channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl - ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl - conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. © 2016. Published by The Company of Biologists Ltd.
Parathyroid-specific interaction of the calcium-sensing receptor and Gaq
Pi, Min; Chen, Ling; Huang, MinZhao; Luo, Qiang; Quarles, L. Darryl
2009-01-01
The calcium-sensing receptor regulates various parathyroid gland functions, including hormone secretion, gene transcription, and chief cell hyperplasia through Gαq- and Gαi-dependent signaling pathways. To determine the specific function of Gαq in these processes, we generated transgenic mice using the human parathyroid hormone promoter to drive overexpression of a dominant negative Gαqloop minigene to selectively disrupt Gαq function in the parathyroid gland. The Gαqloop mRNA was highly expressed in the parathyroid gland but not in other tissues of these transgenic mice. Gross appearance, body weight, bone mineral density, and survival of the transgenic mice were indistinguishable from those of their wild-type littermates. Adult transgenic mice, however, exhibited an increase in parathyroid hormone mRNA and in its basal serum level as well as in gland size. The response of the parathyroid gland to hypocalcemia was found to be reduced in sensitivity in the transgenic mice when compared to their wild-type controls. Abnormalities of the parathyroid gland function in these transgenic mice were similar to those of heterozygous Gαq+/− and calcium sensing receptor+/− mice. These studies demonstrate the feasibility of selectively targeting the parathyroid gland to investigate signaling mechanisms downstream of the calcium receptor. PMID:18813283
Namba, Takushi; Chu, Kiki; Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W
2015-08-21
Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53.
Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W.
2015-01-01
Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53. PMID:26254280
A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.
Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng
2011-09-20
We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein. Copyright © 2010 Elsevier GmbH. All rights reserved.
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics
NASA Astrophysics Data System (ADS)
Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.
2017-02-01
Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.
Zhang, Shuxing; Kaplan, Andrew H.; Tropsha, Alexander
2009-01-01
The Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method was used to predict the effect of mutagenesis on the enzymatic activity of the HIV-1 protease (HIVP). SNAPP relies on a four-body statistical scoring function derived from the analysis of spatially nearest neighbor residue compositional preferences in a diverse and representative subset of protein structures from the Protein Data Bank. The method was applied to the analysis of HIVP mutants with residue substitutions in the hydrophobic core as well as at the interface between the two protease monomers. Both wild type and tethered structures were employed in the calculations. We obtained a strong correlation, with R2 as high as 0.96, between ΔSNAPP score (i.e., the difference in SNAPP scores between wild type and mutant proteins) and the protease catalytic activity for tethered structures. A weaker but significant correlation was also obtained for non-tethered structures as well. Our analysis identified residues both in the hydrophobic core and at the dimeric interface (DI) that are very important for the protease function. This study demonstrates a potential utility of the SNAPP method for rational design of mutagenesis studies and protein engineering. PMID:18498108
Schlinkmann, Karola M; Hillenbrand, Matthias; Rittner, Alexander; Künz, Madeleine; Strohner, Ralf; Plückthun, Andreas
2012-09-21
To identify structural features in a G-protein-coupled receptor (GPCR) crucial for biosynthesis, stability in the membrane and stability in detergent micelles, we developed an evolutionary approach using expression in the inner membrane of Escherichia coli. From the analysis of 800,000 sequences of the rat neurotensin receptor 1, in which every amino acid had been varied to all 64 codons, we uncovered several "shift" positions, where the selected population focuses on a residue different from wild type. Here, we employed in vitro DNA recombination and a comprehensive synthetic binary library made by the Slonomics® technology, allowing us to uncover additive and synergistic effects in the structure that maximize both detergent stability and functional expression. We identified variants with >25,000 functional molecules per E. coli cell, a 50-fold increase over wild type, and observed strong coevolution of detergent stability. We arrived at receptor variants highly stable in short-chain detergents, much more so than those found by alanine scanning on the same receptor. These evolved GPCRs continue to be able to signal through the G-protein. We discuss the structural reasons for these improvements achieved through directed evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yang, Yung-Hun; Song, Eunjung; Lee, Bo-Rahm; Kim, Eun-jung; Park, Sung-Hee; Kim, Yun-Gon; Lee, Chang-Soo; Kim, Byung-Gee
2010-06-01
To elucidate the function of an unknown regulator in Streptomyces, differences in phenotype and antibiotic production between a deletion mutant and a wild-type strain (WT) were compared. These differences are easily hidden by complex media. To determine the specific nutrient conditions that reveal such differences, we used a multiwell method containing different nutrients along with bromothymol blue. We found several nutrients that provide key information on characterization conditions. By comparing the growth of wild-type and mutant strains on screened nutrients, we were able to measure growth, organic acid production, and antibiotic production for the elucidation of regulator function. As a result of this method, a member of the MarR-like regulator family, SCO5405 (AbsC), was newly characterized to control pyruvate dehydrogenase in Streptomyces coelicolor. Deletion of SCO5405 increased the pH of the culture broth due to decreased production of organic acids such as pyruvate and alpha-ketoglutarate and increased extracellular actinorhodin (ACT) production in minimal medium containing glucose and alanine (MMGA). This method could therefore be a high-throughput method for the characterization of unknown regulators.
Escherichia coli K-12 and B contain functional bacteriophage P2 ogr genes.
Slettan, A; Gebhardt, K; Kristiansen, E; Birkeland, N K; Lindqvist, B H
1992-01-01
The bacteriophage P2 ogr gene encodes an essential 72-amino-acid protein which acts as a positive regulator of P2 late transcription. A P2 ogr deletion phage, which depends on the supply of Ogr protein in trans for lytic growth on Escherichia coli C, has previously been constructed. E. coli B and K-12 were found to support the growth of the ogr-defective P2 phage because of the presence of functional ogr genes located in cryptic P2-like prophages in these strains. The cryptic ogr genes were cloned and sequenced. Compared with the P2 wild-type ogr gene, the ogr genes in the B and K-12 strains are conserved, containing mostly silent base substitutions. One of the base substitutions in the K-12 ogr gene results in replacement of an alanine with valine at position 57 in the Ogr protein but does not seem to affect the function of Ogr as a transcriptional activator. The cryptic ogr genes are constitutively transcribed, apparently at a higher level than the wild-type ogr gene in a P2 lysogen. Images PMID:1597424
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.
Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S
2017-02-01
Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.
Pérez, Viviana I; Lew, Christie M; Cortez, Lisa A; Webb, Celeste R; Rodriguez, Marisela; Liu, Yuhong; Qi, Wenbo; Li, Yan; Chaudhuri, Asish; Van Remmen, Holly; Richardson, Arlan; Ikeno, Yuji
2008-03-01
The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.
Takenaka, Shotaro; Kawahara, Taihachi
2012-09-01
The sequence data from 5' UTR, intronic, coding and 3' UTR regions of Ppd-A1 and Ppd-B1 were investigated for a total of 158 accessions of emmer wheat landraces comprising 19 of wild emmer wheat (Triticum dicoccoides), 45 of hulled emmer wheat (T. dicoccum) and 94 of free-threshing (FT) emmer wheat (T. durum etc.). We detected some novel types of deletions in the coding regions from 22 hulled emmer accessions and 20 FT emmer accessions. Emmer wheat accessions with these deletions could produce predicted proteins likely to lack function. We also observed some novel mutations in Ppd-B1. Sixty-seven and forty-one haplotypes were found in Ppd-A1 and Ppd-B1, respectively. Some mutations found in this study have not been known, so they have potential for useful genetic resources for wheat breeding. On the basis of sequence data from the 5' UTR region, both Ppd-A1 and Ppd-B1 haplotypes were divided into two groups (Type AI/AII and Type BI/BII). Types AI and AII of Ppd-A1 suggested gene flow between wild and hulled emmer. On the other hand, Types BI and BII of Ppd-B1 suggested gene flow between wild and FT emmer. More than half of hulled emmer accessions were Type AII/BI but few FT emmer accessions were of this type. Therefore, over half of the hulled emmer did not contribute to evolution of FT emmer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraibar, Martin A.; Muhoberac, Barry B.; Garringer, Holly J.
Mutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length. The structure was determined and refined to 2.85 {angstrom} resolution and was very similar to the wild type betweenmore » residues Ile-5 and Arg-154. However, instead of the E-helices normally present in wild type ferritin, the C-terminal sequences of all 24 mutant subunits showed substantial amounts of disorder, leading to multiple C-terminal polypeptide conformations and a large disruption of the normally tiny 4-fold axis pores. Functional studies underscored the importance of the mutant C-terminal sequence in iron-induced precipitation and revealed iron mishandling by soluble mutant FTL homopolymers in that only wild type incorporated iron when in direct competition in solution with mutant ferritin. Even without competition, the amount of iron incorporation over the first few minutes differed severalfold. Our data suggest that disruption at the 4-fold pores may lead to direct iron mishandling through attenuated iron incorporation by the soluble form of mutant ferritin and that the disordered C-terminal polypeptides may play a major role in iron-induced precipitation and formation of ferritin inclusion bodies in hereditary ferritinopathy.« less
Zhu, Congyi; Wang, Weili; Wang, Mingshuang; Ruan, Ruoxin; Sun, Xuepeng; He, Meixian; Mao, Cungui; Li, Hongye
2015-04-01
GDP-mannose:inositol-phosphorylceramide (MIPC) and its derivatives are important for Ca(2+) sensitization of Saccharomyces cerevisiae and for the virulence of Candida albicans, but its role in the virulence of plant fungal pathogens remains unclear. In this study, we report the identification and functional characterization of PdMit1, the gene encoding MIPC synthase in Penicillium digitatum, one of the most important pathogens of postharvest citrus fruits. To understand the function of PdMit1, a PdMit1 deletion mutant was generated. Compared to its wild-type control, the PdMit1 deletion mutant exhibited slow radial growth, decreased conidia production and delayed conidial germination, suggesting that PdMit1 is important for the growth of mycelium, sporulation and conidial germination. The PdMit1 deletion mutant also showed hypersensitivity to Ca(2+). Treatment with 250 mmol/l Ca(2+) induced vacuole fusion in the wild-type strain, but not in the PdMit1 deletion mutant. Treatment with 250mmol/lCaCl2 upregulated three Ca(2+)-ATPase genes in the wild-type strain, and this was significantly inhibited in the PdMit1 deletion mutant. These results suggest that PdMit1 may have a role in regulating vacuole fusion and expression of Ca(2+)-ATPase genes by controlling biosynthesis of MIPC, and thereby imparts P. digitatum Ca(2+) tolerance. However, we found that PdMit1 is dispensable for virulence of P. digitatum. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Eto, Tsugio; Miyake, Keisuke; Nosho, Katsuhiko; Ohmuraya, Masaki; Imamura, Yu; Arima, Kota; Kanno, Shinichi; Fu, Lingfeng; Kiyozumi, Yuki; Izumi, Daisuke; Sugihara, Hidetaka; Hiyoshi, Yukiharu; Miyamoto, Yuji; Sawayama, Hiroshi; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Furukawa, Toru; Araki, Kimi; Baba, Hideo; Ishimoto, Takatsugu
2018-05-13
RNF43 mutations are frequently detected in colorectal cancer cells and lead to a loss of function of the ubiquitin E3 ligase. Here, we investigated the clinical significance of RNF43 mutations in a large Japanese cohort and the role of RNF43 at various stages of colorectal cancer development and progression. Mutation analysis of the RNF43 gene locus using pyrosequencing technology detected RNF43 hotspot mutations in 1 (0.88%) of 113 colorectal polyp cases and 30 (6.45%) of 465 colorectal cancer cases. Moreover, patients with colorectal cancer harboring mutated RNF43 experienced a higher recurrence rate than those harboring non-mutated RNF43. In addition, the growth of RNF43 wild-type colorectal cancer cell lines was significantly increased by RNF43 silencing. We generated Rnf43 knock-out mice in a C57BL/6N background using the CRISPR-Cas9 system. Although intestinal organoids from the Rnf43 knock-out mice did not show continuous growth compared with those from the wild-type mice in the absence of R-spondin, an azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model demonstrated that the tumors were markedly larger in the Rnf43 knock-out mice than in the wild-type mice. These findings provide evidence that Wnt signaling activation by RNF43 mutations during the tumorigenic stage enhances tumor growth and promotes a high recurrence rate in colorectal cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Matthies, Dawn Signor; Fleming, Paul A; Wilkes, Don M; Blakely, Randy D
2006-06-07
Cholinergic neurotransmission supports motor, autonomic, and cognitive function and is compromised in myasthenias, cardiovascular diseases, and neurodegenerative disorders. Presynaptic uptake of choline via the sodium-dependent, hemicholinium-3-sensitive choline transporter (CHT) is believed to sustain acetylcholine (ACh) synthesis and release. Analysis of this hypothesis in vivo is limited in mammals because of the toxicity of CHT antagonists and the early postnatal lethality of CHT-/- mice (Ferguson et al., 2004). In Caenorhabditis elegans, in which cholinergic signaling supports motor activity and mutant alleles impacting ACh secretion and response can be propagated, we investigated the contribution of CHT (CHO-1) to facets of cholinergic neurobiology. Using the cho-1 promoter to drive expression of a translational, green fluorescent protein-CHO-1 fusion (CHO-1:GFP) in wild-type and kinesin (unc-104) mutant backgrounds, we establish in the living nematode that the transporter localizes to cholinergic synapses, and likely traffics on synaptic vesicles. Using embryonic primary cultures, we demonstrate that CHO-1 mediates hemicholinium-3-sensitive, high-affinity choline uptake that can be enhanced with depolarization in a Ca(2+)-dependent manner supporting ACh synthesis. Although homozygous cho-1 null mutants are viable, they possess 40% less ACh than wild-type animals and display stress-dependent defects in motor activity. In a choline-free liquid environment, cho-1 mutants demonstrate premature paralysis relative to wild-type animals. Our findings establish a requirement for presynaptic choline transport activity in vivo in a model amenable to a genetic dissection of CHO-1 regulation.
Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al
2011-12-01
Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.
Ishizaki, Kimitsune; Larson, Tony R.; Schauer, Nicolas; Fernie, Alisdair R.; Graham, Ian A.; Leaver, Christopher J.
2005-01-01
In mammals, electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in β-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation. PMID:16055629
Zickler, D; de Lares, L; Moreau, P J; Leblon, G
1985-01-01
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.
Fukudome, Mitsutaka; Calvo-Begueria, Laura; Kado, Tomohiro; Osuki, Ken-Ichi; Rubio, Maria Carmen; Murakami, Ei-Ichi; Nagata, Maki; Kucho, Ken-Ichi; Sandal, Niels; Stougaard, Jens; Becana, Manuel; Uchiumi, Toshiki
2016-09-01
Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia-legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5'-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A
2002-08-22
A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.
Pasteuning-Vuhman, S; Putker, K; Tanganyika-de Winter, C L; Boertje-van der Meulen, J W; van Vliet, L; Overzier, M; Plomp, J J; Aartsma-Rus, A; van Putten, M
2018-01-01
Merosin deficient congenital muscular dystrophy 1A (MDC1A) is a very rare autosomal recessive disorder caused by mutations in the LAMA2 gene leading to severe and progressive muscle weakness and atrophy. Although over 350 causative mutations have been identified for MDC1A, no treatment is yet available. There are many therapeutic approaches in development, but the lack of natural history data of the mouse model and standardized outcome measures makes it difficult to transit these pre-clinical findings to clinical trials. Therefore, in the present study, we collected natural history data and assessed pre-clinical outcome measures for the dy2J/dy2J mouse model using standardized operating procedures available from the TREAT-NMD Alliance. Wild type and dy2J/dy2J mice were subjected to five different functional tests from the age of four to 32 weeks. Non-tested control groups were taken along to assess whether the functional test regime interfered with muscle pathology. Respiratory function, body weights and creatine kinase levels were recorded. Lastly, skeletal muscles were collected for further histopathological and gene expression analyses. Muscle function of dy2J/dy2J mice was severely impaired at four weeks of age and all mice lost the ability to use their hind limbs. Moreover, respiratory function was altered in dy2J/dy2J mice. Interestingly, the respiration rate was decreased and declined with age, whereas the respiration amplitude was increased in dy2J/dy2J mice when compared to wild type mice. Creatine kinase levels were comparable to wild type mice. Muscle histopathology and gene expression analysis revealed that there was a specific regional distribution pattern of muscle damage in dy2J/dy2J mice. Gastrocnemius appeared to be the most severely affected muscle with a high proportion of atrophic fibers, increased fibrosis and inflammation. By contrast, triceps was affected moderately and diaphragm only mildly. Our study presents a complete natural history dataset which can be used in setting up standardized studies in dy2J/dy2J mice.
2012-01-01
Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after transfecting Tax proteins into bovine cells and human HeLa cells. Conclusion A comparative analysis of wild-type and mutant Tax proteins indicates that Tax protein exerts a significant impact on cellular functions as diverse as transcription, signal transduction, cell growth, stress response and immune response. Importantly, our study is the first report that shows the extent to which BLV Tax regulates the innate immune response. PMID:22455445
Orthotopic transplantation of LH receptor knockout and wild-type ovaries.
Chudgar, Daksha; Lei, Zhenmin; Rao, Ch V
2005-10-07
Luteinizing hormone (LH) receptor knockout animals have an ovarian failure due to an arrest in folliculogenesis at the antral stage. As a result, the animals have an infertility phenotype. The present study was undertaken to determine whether this phenotype could be reversed by orthotopic transplantation of wild-type ovaries. The results revealed that transplanting wild-type ovaries into null animals did not result in resumption of estrus cycles. Although the number of different types of follicles increased, none progressed to ovulation. The serum hormone profiles improved, reflecting the ovarian changes. The wild-type animals with null ovaries also failed to cycle and their ovaries and serum hormone levels were more like null animals with their own ovaries. Although the lack of rescue of null ovaries placed into wild-type animals was predicted, the failure of wild-type ovaries placed in null animals was not, which could be due to chronic exposure of transplanted tissue to high circulating LH levels and also possibly due to altered internal milieu in null animals. These findings may have implications for potential future considerations of grafting normal donor ovaries into women who have an ovarian failure resulting from inactivating LH receptor mutations.
Maturation Stage Enamel Malformations in Amtn and Klk4 Null Mice
Nunez, Stephanie M.; Chun, Yong-Hee P.; Ganss, Bernhard; Hu, Yuanyuan; Richardson, Amelia S; Schmitz, James E.; Fajardo, Roberto; Yang, Jie; Hu, Jan C-C.; Simmer, James P.
2015-01-01
Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn−/−, Klk4−/−, Amtn+/−Klk4+/− and Amtn−/−Klk4−/− mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (µCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn−/−, Klk4−/− and Amtn−/−Klk4−/− mice, demonstrating a delay in enamel maturation in Amtn−/− incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4 gHA/cm3) in the Klk4−/− and Amtn−/−Klk4−/− mice respectively, compared with wild-type enamel (3.1 gHA/cm3). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4−/− and Amtn−/−Klk4−/− mice. Knoop hardness of Amtn−/− outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4−/− enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn−/− and Klk4−/− mice were distinctly different, while the Amtn−/−Klk4−/− outer enamel was not as hard as in the Amtn−/− and Klk4−/− mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation. PMID:26620968
General Base-General Acid Catalysis in Human Histone Deacetylase 8
Lucy Gantt, Sister M.; Decroos, Christophe; Lee, Matthew S.; Gullett, Laura E.; Bowman, Christine M.; Christianson, David W.; Fierke, Carol A.
2016-01-01
Histone deacetylases (HDACs) regulate cellular processes such as differentiation and apoptosis, and are targeted by anti-cancer therapeutics in development and in the clinic. HDAC8 is a metal-dependent class I HDAC and is proposed to use a general acid-base catalytic pair in the mechanism of amide bond hydrolysis. Here, we report site-directed mutagenesis and enzymological measurements to elucidate the catalytic mechanism of HDAC8. Specifically, we focus on the catalytic function of Y306 and the histidine-aspartate dyads H142-D176 and H143-D183. Additionally, we report X-ray crystal structures of four representative HDAC8 mutants: D176N, D176N-Y306F, D176A-Y306F, and H142A-Y306F. These structures provide a useful framework for understanding enzymological measurements. The pH dependence of kcat/KM for wild-type Co(II)-HDAC8 is bell-shaped with two pKa values of 7.4 and 10.0. The upper pKa reflects the ionization of the metal-bound water molecule and shifts to 9.1 in Zn(II)-HDAC8. The H142A mutant has 230-fold lower activity than wild-type HDAC8, but the pKa1 value is not altered. Y306F HDAC8 is 150-fold less active than the wild-type enzyme; crystal structures show that Y306 hydrogen bonds with the zinc-bound substrate carbonyl, poised for transition state stabilization. The H143A and H142A/H143A mutants exhibit activity that is over 80,000-fold lower than wild-type HDAC8; the buried D176N and D176A mutants have significant catalytic effects, with more subtle effects from D183N and D183A. These enzymological and structural studies strongly suggest that H143 functions as a single general base-general acid catalyst, while H142 remains positively charged and serves as an electrostatic catalyst for transition state stabilization. PMID:26806311
Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.
2015-01-01
Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species. PMID:25710176
Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo
2013-01-01
Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Conclusions Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China. PMID:24073194
Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporty, J; Lin, S; Kato, M
2009-02-18
Nicotinamide adenine dinucleotide (NAD{sup +}) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or by the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD{sup +} decomposition products. NAD{sup +} biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD{sup +} biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD{sup +} and NADH (the reduced form of NAD{sup +}) analyses onmore » BY4742 wild type, NAD+ salvage pathway knockout (npt1{Delta}), and NAD+ de novo pathway knockout (qpt1{Delta}) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized {sup 14}C labeled nicotinic acid in the culture media combined with HPLC speciation and both UV and {sup 14}C detection to quantitate the total amounts of NAD{sup +} and NADH and the amounts derived from the salvage pathway. We observe that wild type and qpt1{Delta} yeast exclusively utilize extracellular nicotinic acid for NAD{sup +} and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observe that NAD{sup +} concentrations decrease in all three strains under CR. However, unlike the wild type strain, NADH concentrations do not decrease and NAD{sup +}:NADH ratios do not increase under CR for either knockout strain. Lifespan analyses reveal that CR results in a lifespan increase of approximately 25% for the wild type and qpt1{Delta} strains, while no increase in lifespan is observed for the npt1{Delta} strain. In combination these data suggest that having a functional salvage pathway is more important than the absolute levels of NAD{sup +} or NADH for lifespan extension under CR.« less
General Base-General Acid Catalysis in Human Histone Deacetylase 8.
Gantt, Sister M Lucy; Decroos, Christophe; Lee, Matthew S; Gullett, Laura E; Bowman, Christine M; Christianson, David W; Fierke, Carol A
2016-02-09
Histone deacetylases (HDACs) regulate cellular processes such as differentiation and apoptosis and are targeted by anticancer therapeutics in development and in the clinic. HDAC8 is a metal-dependent class I HDAC and is proposed to use a general acid-base catalytic pair in the mechanism of amide bond hydrolysis. Here, we report site-directed mutagenesis and enzymological measurements to elucidate the catalytic mechanism of HDAC8. Specifically, we focus on the catalytic function of Y306 and the histidine-aspartate dyads H142-D176 and H143-D183. Additionally, we report X-ray crystal structures of four representative HDAC8 mutants: D176N, D176N/Y306F, D176A/Y306F, and H142A/Y306F. These structures provide a useful framework for understanding enzymological measurements. The pH dependence of kcat/KM for wild-type Co(II)-HDAC8 is bell-shaped with two pKa values of 7.4 and 10.0. The upper pKa reflects the ionization of the metal-bound water molecule and shifts to 9.1 in Zn(II)-HDAC8. The H142A mutant has activity 230-fold lower than that of wild-type HDAC8, but the pKa1 value is not altered. Y306F HDAC8 is 150-fold less active than the wild-type enzyme; crystal structures show that Y306 hydrogen bonds with the zinc-bound substrate carbonyl, poised for transition state stabilization. The H143A and H142A/H143A mutants exhibit activity that is >80000-fold lower than that of wild-type HDAC8; the buried D176N and D176A mutants have significant catalytic effects, with more subtle effects caused by D183N and D183A. These enzymological and structural studies strongly suggest that H143 functions as a single general base-general acid catalyst, while H142 remains positively charged and serves as an electrostatic catalyst for transition state stabilization.
Bennett, Richard A. O.
1999-01-01
The recently sequenced Saccharomyces cerevisiae genome was searched for a gene with homology to the gene encoding the major human AP endonuclease, a component of the highly conserved DNA base excision repair pathway. An open reading frame was found to encode a putative protein (34% identical to the Schizosaccharomyces pombe eth1+ [open reading frame SPBC3D6.10] gene product) with a 347-residue segment homologous to the exonuclease III family of AP endonucleases. Synthesis of mRNA from ETH1 in wild-type cells was induced sixfold relative to that in untreated cells after exposure to the alkylating agent methyl methanesulfonate (MMS). To investigate the function of ETH1, deletions of the open reading frame were made in a wild-type strain and a strain deficient in the known yeast AP endonuclease encoded by APN1. eth1 strains were not more sensitive to killing by MMS, hydrogen peroxide, or phleomycin D1, whereas apn1 strains were ∼3-fold more sensitive to MMS and ∼10-fold more sensitive to hydrogen peroxide than was the wild type. Double-mutant strains (apn1 eth1) were ∼15-fold more sensitive to MMS and ∼2- to 3-fold more sensitive to hydrogen peroxide and phleomycin D1 than were apn1 strains. Elimination of ETH1 in apn1 strains also increased spontaneous mutation rates 9- or 31-fold compared to the wild type as determined by reversion to adenine or lysine prototrophy, respectively. Transformation of apn1 eth1 cells with an expression vector containing ETH1 reversed the hypersensitivity to MMS and limited the rate of spontaneous mutagenesis. Expression of ETH1 in a dut-1 xthA3 Escherichia coli strain demonstrated that the gene product functionally complements the missing AP endonuclease activity. Thus, in apn1 cells where the major AP endonuclease activity is missing, ETH1 offers an alternate capacity for repair of spontaneous or induced damage to DNA that is normally repaired by Apn1 protein. PMID:10022867