Sample records for wildfire challenge problem

  1. Getting ahead of the wildfire problem: Quantifying and mapping management challenges and opportunities

    Treesearch

    Christopher D. O' Connor; Matthew P. Thompson; Francisco Rodriguez y Silva

    2016-01-01

    Wildfire is a global phenomenon that plays a vital role in regulating and maintaining many natural and human-influenced ecosystems but that also poses considerable risks to human populations and infrastructure. Fire managers are charged with balancing the short-term protection of human assets sensitive to fire exposure against the potential long-term benefits...

  2. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges.

    PubMed

    Roos, Christopher I; Scott, Andrew C; Belcher, Claire M; Chaloner, William G; Aylen, Jonathan; Bird, Rebecca Bliege; Coughlan, Michael R; Johnson, Bart R; Johnston, Fay H; McMorrow, Julia; Steelman, Toddi

    2016-06-05

    Living with fire is a challenge for human communities because they are influenced by socio-economic, political, ecological and climatic processes at various spatial and temporal scales. Over the course of 2 days, the authors discussed how communities could live with fire challenges at local, national and transnational scales. Exploiting our diverse, international and interdisciplinary expertise, we outline generalizable properties of fire-adaptive communities in varied settings where cultural knowledge of fire is rich and diverse. At the national scale, we discussed policy and management challenges for countries that have diminishing fire knowledge, but for whom global climate change will bring new fire problems. Finally, we assessed major fire challenges that transcend national political boundaries, including the health burden of smoke plumes and the climate consequences of wildfires. It is clear that to best address the broad range of fire problems, a holistic wildfire scholarship must develop common agreement in working terms and build across disciplines. We must also communicate our understanding of fire and its importance to the media, politicians and the general public.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  3. Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges

    PubMed Central

    Chaloner, William G.; Aylen, Jonathan; Bird, Rebecca Bliege; Coughlan, Michael R.; Johnson, Bart R.; Johnston, Fay H.; Steelman, Toddi

    2016-01-01

    Living with fire is a challenge for human communities because they are influenced by socio-economic, political, ecological and climatic processes at various spatial and temporal scales. Over the course of 2 days, the authors discussed how communities could live with fire challenges at local, national and transnational scales. Exploiting our diverse, international and interdisciplinary expertise, we outline generalizable properties of fire-adaptive communities in varied settings where cultural knowledge of fire is rich and diverse. At the national scale, we discussed policy and management challenges for countries that have diminishing fire knowledge, but for whom global climate change will bring new fire problems. Finally, we assessed major fire challenges that transcend national political boundaries, including the health burden of smoke plumes and the climate consequences of wildfires. It is clear that to best address the broad range of fire problems, a holistic wildfire scholarship must develop common agreement in working terms and build across disciplines. We must also communicate our understanding of fire and its importance to the media, politicians and the general public. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216517

  4. Social science findings in the United States

    Treesearch

    Sarah McCaffrey; Eric Toman; Melanie Stidham; Bruce Shindler

    2015-01-01

    The rising number of acres burned annually and growing number of people living in or adjacent to fire-prone areas in the United States make wildfire management an increasingly complex and challenging problem. Given the prominence of social issues in shaping the current challenges and determining paths forward, it will be important to have an accurate understanding of...

  5. The Challenges to Coupling Dynamic Geospatial Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanizationmore » and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.« less

  6. Using community archetypes to better understand differential community adaptation to wildfire risk

    PubMed Central

    Carroll, Matthew; Paveglio, Travis

    2016-01-01

    One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community ‘adaptiveness’ to deal with the risk and reality of fire in a variety of landscapes. The challenge in creating ‘fire-adapted communities’ (FACs) is the great diversity in character and make-up of populations at risk from wildfire. This paper outlines a recently developed categorization scheme for Wildland–Urban Interface (WUI) communities based on a larger conceptual approach for understanding how social diversity is likely to influence the creation of FACs. The WUI categorization scheme situates four community archetypes on a continuum that recognizes dynamic change in human community functioning. We use results from the WUI classification scheme to outline key characteristics associated with each archetype and results from recent case studies to demonstrate the diversity across WUI communities. Differences among key characteristics of local social context will likely result in the need for different adaptation strategies to wildfire. While the WUI archetypes described here may not be broadly applicable to other parts of the world, we argue that the conceptual approach and strategies for systematically documenting local influences on wildfire adaptation have potential for broad application. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216514

  7. Using community archetypes to better understand differential community adaptation to wildfire risk.

    PubMed

    Carroll, Matthew; Paveglio, Travis

    2016-06-05

    One of the immediate challenges of wildfire management concerns threats to human safety and property in residential areas adjacent to non-cultivated vegetation. One approach for relieving this problem is to increase human community 'adaptiveness' to deal with the risk and reality of fire in a variety of landscapes. The challenge in creating 'fire-adapted communities' (FACs) is the great diversity in character and make-up of populations at risk from wildfire. This paper outlines a recently developed categorization scheme for Wildland-Urban Interface (WUI) communities based on a larger conceptual approach for understanding how social diversity is likely to influence the creation of FACs. The WUI categorization scheme situates four community archetypes on a continuum that recognizes dynamic change in human community functioning. We use results from the WUI classification scheme to outline key characteristics associated with each archetype and results from recent case studies to demonstrate the diversity across WUI communities. Differences among key characteristics of local social context will likely result in the need for different adaptation strategies to wildfire. While the WUI archetypes described here may not be broadly applicable to other parts of the world, we argue that the conceptual approach and strategies for systematically documenting local influences on wildfire adaptation have potential for broad application.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  8. Classifying Wildfire Causes in the USDA Forest Service: Problems and Alternatives

    Treesearch

    Linda R. Donoghue

    1982-01-01

    Discusses problems associated with fire-cause data on USDA Forest Service wildfire reports, traces the historical development of wildfire-cause categories, and presents the pros and cons of retaining current wildfire-cause reporting systems or adopting new systems.

  9. The Science of Firescapes: Achieving Fire-Resilient Communities.

    PubMed

    Smith, Alistair M S; Kolden, Crystal A; Paveglio, Travis B; Cochrane, Mark A; Bowman, David Mjs; Moritz, Max A; Kliskey, Andrew D; Alessa, Lilian; Hudak, Andrew T; Hoffman, Chad M; Lutz, James A; Queen, Lloyd P; Goetz, Scott J; Higuera, Philip E; Boschetti, Luigi; Flannigan, Mike; Yedinak, Kara M; Watts, Adam C; Strand, Eva K; van Wagtendonk, Jan W; Anderson, John W; Stocks, Brian J; Abatzoglou, John T

    2016-02-01

    Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the "wicked" wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.

  10. Wildfire in the United Kingdom: status and key issues

    Treesearch

    Julia McMorrow

    2011-01-01

    This paper reviews the status of wildfire risk in the United Kingdom and examines some of the key issues in U.K. wildfire management. Wildfires challenge the resources of U.K. Fire and Rescue Services (FRSs), especially in dry years, yet FRSs are poorly equipped and trained to deal with wildfire. A brief geography of U.K. wildfires is presented using fire statistics...

  11. The Science of Firescapes: Achieving Fire-Resilient Communities

    PubMed Central

    Smith, Alistair M.S.; Kolden, Crystal A.; Paveglio, Travis B.; Cochrane, Mark A.; Bowman, David MJS; Moritz, Max A.; Kliskey, Andrew D.; Alessa, Lilian; Hudak, Andrew T.; Hoffman, Chad M.; Lutz, James A.; Queen, Lloyd P.; Goetz, Scott J.; Higuera, Philip E.; Boschetti, Luigi; Flannigan, Mike; Yedinak, Kara M.; Watts, Adam C.; Strand, Eva K.; van Wagtendonk, Jan W.; Anderson, John W.; Stocks, Brian J.; Abatzoglou, John T.

    2016-01-01

    Abstract Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated “silos,” including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the “wicked” wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities. PMID:29593361

  12. Challenges of socio-economically evaluating wildfire management on non-industrial private and public forestland in the western United States

    Treesearch

    Tyron J. Venn; David E. Calkin

    2009-01-01

    Non-industrial private forests (NIPFs) and public forests in the United States generate many non-market benefits for landholders and society generally. These values can be both enhanced and diminished by wildfire management. This paper considers the challenges of supporting economically efficient allocation of wildfire suppression resources in a social cost-benefit...

  13. Public perspectives on the "wildfire problem."

    Treesearch

    Antony S. Cheng; Dennis R. Becker

    2005-01-01

    Just as wildland fire managers must have a working knowledge of fire behavior, they must also understand the social dimensions of wildland fire in order to effectively engage the public.Social scientists are therefore gathering information about public attitudes toward wildland fire and wildfire mitigation. How do people see the "wildfire problem"? What...

  14. The Evolution of Wildland Fire Management Policy in the USA: Successes and Failures

    NASA Astrophysics Data System (ADS)

    Gonzalez-Caban, A.

    2015-12-01

    Wildfires have been suppressed over the last 100 years in forest and brush landscapes. For the last three decades, fires occurrence and severity have significantly increased when compared to historical levels causing economic damage and suppression costs never experienced before in the US or globally. As the wildland fire problem evolved so did the public response through a wildland fire management policy guided by the Forest Service and Bureau of Land Management understanding of the problem. Globally it is estimated that more 350 million hectares of wildland burn annually. They oxidize approximately 3-8% of the total terrestrial net primary productivity. The economic and physical relevance of wildland fire management and protection programs is ever growing, particularly considering mounting wildfire costs and losses globally. In the US alone, from 2000 to 2013 more than 37 million hectares of wildland has been affected at a cost of over $21 billion. The increase in siege-like fires can be explained in part by increasing population, particularly in the wildland-urban interface and the accumulation of biomass fuel due to over a century of fire exclusion. Recent developments demonstrate a strong relationship between fire and weather and climate variations. How the wildland fire management policy has evolved through time? The development can be divided in three stages: the formative years between 1905 and 1911; the consolidation years from 1911 through 1968; and the modern era from 1995 to present. Each stage is characterized by a series of significant events that caused changes on how the problem was approached. For example, the establishment of the Forest Service in 1905 and the rash of large wildfires in the western USA set the base for the wildfire suppression of all wildfires in 1911. During the second stage we see the 1935 policy of suppressing all wildfires by 10-am next-day. By 1968 the policy has evolved to include the use of prescribed burning and the elimination of the 10-am next-day policy. In the modern era, by 1995 the wildland fire management policy changed to require the use of economic efficiency analysis in fire suppression actions. The recently passed FLAME Act and establishment of the FS Cohesive Strategy have been in response to increases in the wildland-urban interface problem and climate change challenges.

  15. Landowner response to wildfire risk: Adaptation, mitigation or doing nothing

    Treesearch

    Jianbang Gan; Adam Jarrett; Cassandra Johnson Gaither

    2015-01-01

    Wildfire has brought about ecological, economic, and social consequences that engender human responses in many parts of the world. How to respond to wildfire risk is a common challenge across the globe particularly in areas where lands are controlled by many small private owners because effective wildfire prevention and protection require coordinated efforts of...

  16. Assessing the expected effects of wildfire on vegetation condition on the Bridger-Teton National Forest, Wyoming, USA

    Treesearch

    J. H. Scott; D. J. Helmbrecht; M. P. Thompson

    2014-01-01

    Characterizing wildfire risk to a fire-adapted ecosystem presents particular challenges due to its broad spatial extent, inherent complexity, and the difficulty in defining wildfire-induced losses and benefits. Our approach couples stochastic wildfire simulation with a vegetation condition assessment framework to estimate the conditional and expected response of...

  17. Uncertainty and risk in wildland fire management: a review.

    PubMed

    Thompson, Matthew P; Calkin, Dave E

    2011-08-01

    Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making. Published by Elsevier Ltd.

  18. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin

    Treesearch

    Avi Bar Massada; Volker C. Radeloff; Susan I. Stewart; Todd J. Hawbaker

    2009-01-01

    The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather...

  19. Integrated wildfire risk assessment: Framework development and application on the Lewis and Clark National Forest in Montana, USA

    Treesearch

    Matthew P. Thompson; Joe Scott; Don Helmbrecht; Dave E. Calkin

    2013-01-01

    The financial, socioeconomic, and ecological impacts of wildfire continue to challenge federal land management agencies in the United States. In recent years, policymakers and managers have increasingly turned to the field of risk analysis to better manage wildfires and to mitigate losses to highly valued resources and assets (HVRAs). Assessing wildfire risk entails...

  20. Fire in the Wildland–Urban Interface

    Treesearch

    Evan Mercer; Wayne Zipperer

    2012-01-01

    In this chapter we provide an overview of the socio-economic and ecological effects and trends of wildfire in the WUI, methods for assessing wildfire risk in the WUI, approaches to managing the wildfire problem including fuels management, home construction and design, and community action programs. This overview is combined with two case studies analyzing wildfire risk...

  1. Multiple UAV Cooperation for Wildfire Monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Zhongjie

    Wildfires have been a major factor in the development and management of the world's forest. An accurate assessment of wildfire status is imperative for fire management. This thesis is dedicated to the topic of utilizing multiple unmanned aerial vehicles (UAVs) to cooperatively monitor a large-scale wildfire. This is achieved through wildfire spreading situation estimation based on on-line measurements and wise cooperation strategy to ensure efficiency. First, based on the understanding of the physical characteristics of the wildfire propagation behavior, a wildfire model and a Kalman filter-based method are proposed to estimate the wildfire rate of spread and the fire front contour profile. With the enormous on-line measurements from on-board sensors of UAVs, the proposed method allows a wildfire monitoring mission to benefit from on-line information updating, increased flexibility, and accurate estimation. An independent wildfire simulator is utilized to verify the effectiveness of the proposed method. Second, based on the filter analysis, wildfire spreading situation and vehicle dynamics, the influence of different cooperation strategies of UAVs to the overall mission performance is studied. The multi-UAV cooperation problem is formulated in a distributed network. A consensus-based method is proposed to help address the problem. The optimal cooperation strategy of UAVs is obtained through mathematical analysis. The derived optimal cooperation strategy is then verified in an independent fire simulation environment to verify its effectiveness.

  2. The 2016 Ft. McMurray Wildfire: Déjà vu or re-thinking the scope wildland and urban-wildland interface fires on water supplies?

    NASA Astrophysics Data System (ADS)

    Silins, U.; Emelko, M.; Cooke, C. A.; Charrois, J. W. A.; Stone, M.

    2016-12-01

    A growing number of large severe wildfires have impacted drinking water supplies of both small and larger municipalities in western North America over the past 20 years. While some of these fires include components of wildland-urban interface fire impacts to water or water treatment infrastructure, the vast majority have been wildland fires in critical source water supply regions serving these municipalities. A large body of research has provided key insights on magnitude, variability, and longevity of post-wildfire impacts on erosion, sediment production, and water quality, however assessing the impact of wildfires on water supplies often requires measuring or predicting the downstream propagation of upstream wildfire impacts to water supplies and this remains a comparatively less well explored area of wildfire-water research. The 2016 Horse River wildfire during May-June burned 590,000 ha. forcing the evacuation of the entire City of McMurray ( 90,000 residents) and represents the most expensive natural disaster in Canadian history ($3.6 billion in insurable losses alone). While the wildfire impacted extensive source water supply regions in the area surrounding Ft. McMurray, this fire serves to illustrate a broader range of challenging wildfire-water science and engineering research issues that are needed to assess the impacts of this and potentially other large wildfires on water supplies. Unlike wildfires in headwaters regions, these include unique challenges in assessing impacts of burned tributaries adjacent sources from a large wildfire situated immediately surrounding a very large river system (Athabasca River), post-fire contaminant dilution, mixing, and transport, and contaminant runoff from severely burned residential and commercial/industrial regions of the city on downstream water supplies among others.

  3. Understanding change: Wildfire in Boulder County, Colorado

    Treesearch

    Hannah Brenkert-Smith; Patricia A. Champ; Amy L. Telligman

    2013-01-01

    Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...

  4. Understanding change: Wildfire in Larimer County, Colorado

    Treesearch

    Hannah Brenkert-Smith; Patricia A. Champ

    2013-01-01

    Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...

  5. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    Treesearch

    Richard A. Shakesby; John A. Moody; Deborah A. Martin; Pete Robichaud

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including...

  6. Large airtanker use and outcomes in suppressing wildland fires in the United States

    Treesearch

    David E. Calkin; Crystal S. Stonesifer; Matthew P. Thompson; Charles W. McHugh

    2014-01-01

    Wildfire activity in the United States incurs substantial costs and losses, and presents challenges to federal, state, tribal and local agencies that have responsibility for wildfire management. Beyond the potential socioeconomic and ecological losses, and the monetary costs to taxpayers due to suppression, wildfire management is a dangerous occupation. Aviation...

  7. Wildfire Research in an Environmental Hazards Course: An Active Learning Approach

    ERIC Educational Resources Information Center

    Wall, Tamara U.; Halvorson, Sarah J.

    2011-01-01

    Creating opportunities for students to actively apply hazards theory to real-life situations is often a challenge in hazards geography courses. This article presents a project, the Jocko Lakes Fire Project, that implemented learning strategies to encourage students to be active in wildfire hazards research. Wildfire hazards stand out as an…

  8. Cooperative Efforts in Fuels Management

    Treesearch

    Gerald L. Adams

    1995-01-01

    Our forests have been neglected or protected to death, creating an extreme wildfire risk in wildland urban intermix communities. We as agencies and organizations are just now beginning to understand that the fuel problems we have across the western states are not a single agency problem, but "our problem." Wildfires do not respect boundaries, be they...

  9. Human Response to Emergency Warning

    NASA Astrophysics Data System (ADS)

    Sorensen, J.

    2009-12-01

    Almost every day people evacuate from their homes, businesses or other sites, even ships, in response to actual or predicted threats or hazards. Evacuation is the primary protective action utilized in large-scale emergencies such as hurricanes, floods, tornados, tsunamis, volcanic eruptions, or wildfires. Although often precautionary, protecting human lives by temporally relocating populations before or during times of threat remains a major emergency management strategy. One of the most formidable challenges facing emergency officials is evacuating residents for a fast-moving and largely unpredictable event such as a wildfire or a local tsunami. How to issue effective warnings to those at risk in time for residents to take appropriate action is an on-going problem. To do so, some communities have instituted advanced communications systems that include reverse telephone call-down systems or other alerting systems to notify at-risk residents of imminent threats. This presentation examines the effectiveness of using reverse telephone call-down systems for warning San Diego residents of wildfires in the October of 2007. This is the first systematic study conducted on this topic and is based on interviews with 1200 households in the evacuation areas.

  10. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue.

    PubMed

    Black, Carolyn; Tesfaigzi, Yohannes; Bassein, Jed A; Miller, Lisa A

    2017-10-01

    Understanding the effect of wildfire smoke exposure on human health represents a unique interdisciplinary challenge to the scientific community. Population health studies indicate that wildfire smoke is a risk to human health and increases the healthcare burden of smoke-impacted areas. However, wildfire smoke composition is complex and dynamic, making characterization and modeling difficult. Furthermore, current efforts to study the effect of wildfire smoke are limited by availability of air quality measures and inconsistent air quality reporting among researchers. To help address these issues, we conducted a substantive review of wildfire smoke effects on population health, wildfire smoke exposure in occupational health, and experimental wood smoke exposure. Our goal was to evaluate the current literature on wildfire smoke and highlight important gaps in research. In particular we emphasize long-term health effects of wildfire smoke, recovery following wildfire smoke exposure, and health consequences of exposure in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Integrated national-scale assessment of wildfire risk to human and ecological values

    Treesearch

    Matthew P. Thompson; David E. Calkin; Mark A. Finney; Alan A. Ager; Julie W. Gilbertson-Day

    2011-01-01

    The spatial, temporal, and social dimensions of wildfire risk are challenging U.S. federal land management agencies to meet societal needs while maintaining the health of the lands they manage. In this paper we present a quantitative, geospatial wildfire risk assessment tool, developed in response to demands for improved risk-based decision frameworks. The methodology...

  12. Efficient initial attacks: analysis of capacity and funding provides insights to wildfire protection planning

    Treesearch

    Jeremy Fried; Paul Meznarich

    2014-01-01

    Large wildfires in the United States pose significant challenges to fire management agencies charged with protecting lives, property, and natural resources. A vigorous initial response to a wildfire, a process referred to as "initial attack," can greatly reduce the likelihood of the fire becoming larger and causing substantial damage. Successful...

  13. Adapting to wildfire: Moving beyond homeowner risk perceptions to taking action

    Treesearch

    Patricia Champ

    2017-01-01

    Champ’s presentation focused on how to get homeowners to take action to protect their properties from fire. She framed this challenge as a last-mile problem, which is a concept from the literature on supply chain. The last mile is the end of the supply chain where a product is transferred to the customer. The last mile is often the most difficult part of the entire...

  14. Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes

    2010-01-01

    Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...

  15. Rapid growth of the US wildland-urban interface raises wildfire risk.

    PubMed

    Radeloff, Volker C; Helmers, David P; Kramer, H Anu; Mockrin, Miranda H; Alexandre, Patricia M; Bar-Massada, Avi; Butsic, Van; Hawbaker, Todd J; Martinuzzi, Sebastián; Syphard, Alexandra D; Stewart, Susan I

    2018-03-27

    The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km 2 ; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.

  16. Wildfire risk as a socioecological pathology

    USGS Publications Warehouse

    Fischer, A. Paige; Spies, Thomas A; Steelman, Toddi A; Moseley, Cassandra; Johnson, Bart R.; Bailey, John D.; Ager, Alan A; Bourgeron, Patrick S.; Charnley, Susan; Collins, Brandon M.; Kline, Jeffrey D; Leahy, Jessica E; Littell, Jeremy; Millington, James D. A.; Nielsen-Pincus, Max; Olsen, Christine S; Paveglio, Travis B; Roos, Christopher I.; Steen-Adams, Michelle M; Stevens, Forrest R; Vukomanovic, Jelena; White, Eric M; Bowman, David M J S

    2016-01-01

    Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological “pathology”: that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales. Assessments of wildfire risk could benefit from recognizing and accounting for these interactions in terms of socioecological systems, also known as coupled natural and human systems (CNHS). We characterize the primary social and ecological dimensions of the wildfire risk pathology, paying particular attention to the governance system around wildfire risk, and suggest strategies to mitigate the pathology through innovative planning approaches, analytical tools, and policies. We caution that even with a clear understanding of the problem and possible solutions, the system by which human actors govern fire-prone forests may evolve incrementally in imperfect ways and can be expected to resist change even as we learn better ways to manage CNHS.

  17. How risk management can prevent future wildfire disasters in the wildland-urban interface

    PubMed Central

    Calkin, David E.; Cohen, Jack D.; Finney, Mark A.; Thompson, Matthew P.

    2014-01-01

    Recent fire seasons in the western United States are some of the most damaging and costly on record. Wildfires in the wildland-urban interface on the Colorado Front Range, resulting in thousands of homes burned and civilian fatalities, although devastating, are not without historical reference. These fires are consistent with the characteristics of large, damaging, interface fires that threaten communities across much of the western United States. Wildfires are inevitable, but the destruction of homes, ecosystems, and lives is not. We propose the principles of risk analysis to provide land management agencies, first responders, and affected communities who face the inevitability of wildfires the ability to reduce the potential for loss. Overcoming perceptions of wildland-urban interface fire disasters as a wildfire control problem rather than a home ignition problem, determined by home ignition conditions, will reduce home loss. PMID:24344292

  18. DefenseLink Feature: Military Helps Fight California Wildfires

    Science.gov Websites

    planes dropping fire retardant on wildfires in southern California face hazards and challenges unique to ' * Sailors Help Victims in Need * Bush Pledges Military Will Continue to Provide Fire Aid | Video

  19. Rethinking Environmental Protection: Meeting the Challenges of a Changing World.

    PubMed

    Burke, Thomas A; Cascio, Wayne E; Costa, Daniel L; Deener, Kacee; Fontaine, Thomas D; Fulk, Florence A; Jackson, Laura E; Munns, Wayne R; Orme-Zavaleta, Jennifer; Slimak, Michael W; Zartarian, Valerie G

    2017-03-01

    From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a ) formulate the problem holistically, b ) gather and synthesize diverse information, c ) develop and assess options, and d ) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health.

  20. Rethinking Environmental Protection: Meeting the Challenges of a Changing World

    PubMed Central

    Burke, Thomas A.; Cascio, Wayne E.; Costa, Daniel L.; Deener, Kacee; Fontaine, Thomas D.; Fulk, Florence A.; Jackson, Laura E.; Munns, Wayne R.; Orme-Zavaleta, Jennifer; Slimak, Michael W.; Zartarian, Valerie G.

    2017-01-01

    Summary: From climate change to hydraulic fracturing, and from drinking water safety to wildfires, environmental challenges are changing. The United States has made substantial environmental protection progress based on media-specific and single pollutant risk-based frameworks. However, today’s environmental problems are increasingly complex and new scientific approaches and tools are needed to achieve sustainable solutions to protect the environment and public health. In this article, we present examples of today’s environmental challenges and offer an integrated systems approach to address them. We provide a strategic framework and recommendations for advancing the application of science for protecting the environment and public health. We posit that addressing 21st century challenges requires transdisciplinary and systems approaches, new data sources, and stakeholder partnerships. To address these challenges, we outline a process driven by problem formulation with the following steps: a) formulate the problem holistically, b) gather and synthesize diverse information, c) develop and assess options, and d) implement sustainable solutions. This process will require new skills and education in systems science, with an emphasis on science translation. A systems-based approach can transcend media- and receptor-specific bounds, integrate diverse information, and recognize the inextricable link between ecology and human health. PMID:28248180

  1. Wildfire policy and management in England: an evolving response from Fire and Rescue Services, forestry and cross-sector groups

    PubMed Central

    McMorrow, Julia; Aylen, Jonathan

    2016-01-01

    Severe wildfires are an intermittent problem in England. The paper presents the first analysis of wildfire policy, showing its halting evolution over two decades. First efforts to coordinate wildfire management came from local fire operation groups, where stakeholders such as fire services, land owners and amenity groups shared knowledge and equipment to tackle the problem. A variety of structures and informal management solutions emerged in response to local needs. Knowledge of wildfire accumulated within regional and national wildfire forums and academic networks. Only later did the need for central emergency planning and the response to climate change produce a national policy response. Fire statistics have allowed wildfires to be spatially evidenced on a national scale only since 2009. National awareness of wildfire was spurred by the 2011 fire season, and the high-impact Swinley Forest fire, which threatened critical infrastructure and communities within 50 miles of London. Severe wildfire was included in the National Risk Register for the first time in 2013. Cross-sector approaches to wildfire proved difficult as government responsibility is fragmented along the hazard chain. Stakeholders such as the Forestry Commission pioneered good practice in adaptive land management to build fire resilience into UK forests. The grass-roots evolution of participatory solutions has also been a key enabling process. A coordinated policy is now needed to identify best practice and to promote understanding of the role of fire in the ecosystem. This article is part of a themed issue ‘The interaction of fire and mankind’. PMID:27216511

  2. Wildfire policy and management in England: an evolving response from Fire and Rescue Services, forestry and cross-sector groups.

    PubMed

    Gazzard, Rob; McMorrow, Julia; Aylen, Jonathan

    2016-06-05

    Severe wildfires are an intermittent problem in England. The paper presents the first analysis of wildfire policy, showing its halting evolution over two decades. First efforts to coordinate wildfire management came from local fire operation groups, where stakeholders such as fire services, land owners and amenity groups shared knowledge and equipment to tackle the problem. A variety of structures and informal management solutions emerged in response to local needs. Knowledge of wildfire accumulated within regional and national wildfire forums and academic networks. Only later did the need for central emergency planning and the response to climate change produce a national policy response. Fire statistics have allowed wildfires to be spatially evidenced on a national scale only since 2009. National awareness of wildfire was spurred by the 2011 fire season, and the high-impact Swinley Forest fire, which threatened critical infrastructure and communities within 50 miles of London. Severe wildfire was included in the National Risk Register for the first time in 2013. Cross-sector approaches to wildfire proved difficult as government responsibility is fragmented along the hazard chain. Stakeholders such as the Forestry Commission pioneered good practice in adaptive land management to build fire resilience into UK forests. The grass-roots evolution of participatory solutions has also been a key enabling process. A coordinated policy is now needed to identify best practice and to promote understanding of the role of fire in the ecosystem.This article is part of a themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  3. Categorizing the social context of the wildland urban interface: Adaptive capacity for wildfire and community "archetypes"

    Treesearch

    Tavis B. Paveglio; Cassandra Moseley; Matthew S. Carroll; Daniel R. Williams; Emily Jane Davis; A. Paige Fischer

    2015-01-01

    Understanding the local context that shapes collective response to wildfire risk continues to be a challenge for scientists and policymakers. This study utilizes and expands on a conceptual approach for understanding adaptive capacity to wildfire in a comparison of 18 past case studies. The intent is to determine whether comparison of local social context and community...

  4. Accommodating non-market values in evaluation of wildfire management in the United States: Challenges and opportunities

    Treesearch

    Tyron J. Venn; David E. Calkin

    2011-01-01

    Forests in the United States generate many non-market benefits for society that can be enhanced and diminished by wildfire and wildfire management. The Federal Wildland Fire Management Policy (1995, updated 2001), and subsequent Guidance to the Implementation of that policy provided in 2009, require fire management priorities be set on the basis of values to be...

  5. Learning to coexist with wildfire

    Treesearch

    M.A. Moritz; E. Batlloria; R.A. Bradstock; Jeff Stringer; Robbie Sitzlar; P.F. Hessburg; J. Leonard; S. McCaffrey; D.C. Odion; T. Schoennagel; A.D. Syphard

    2014-01-01

    The impacts of escalating wildfire in many regions — the lives and homes lost, the expense of suppression and the damage to ecosystem services — necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks...

  6. The wildland-urban interface fire problem

    Treesearch

    Jack Cohen

    2010-01-01

    The fire destruction of hundreds of homes associated with wildfires has occurred in the United States for more than a century. From 1870 to 1920, massive wildfires occurred principally in the Lake States but also elsewhere. Wildfires such as Peshtigo (Wisconsin, 1871), Michigan (1881), Hinckley (Minnesota, 1894), Adirondack (New York, 1903), the Big Blowup (Idaho-...

  7. Wildfire Smoke and Health Risk Communication Workshop and Report

    EPA Pesticide Factsheets

    This workshop piloted an interdisciplinary and multi-stakeholder research problem formulation approach to improve understanding of knowledge gaps in health risk communication concerning wildfire smoke.

  8. Inter-comparison of Wildfire and High-resolution Interferometer Sounder (HIS) data from STORM-FEST: An investigation of wildfire spectral channel discrepancies

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Carlson, G. S.

    1994-01-01

    This simultaneous collection of HIS spectral measurements aboard the ER-2 during STORM-FEST provided a means to explore calibration problems in the infrared bands of the Wildfire instrument. Large discrepancies in brightness temperatures were noted in Wildfire bands designed to sample the 'wings' of the strong ozone absorption band centered at 9.6 microns, where the atmospheric transmittance changes rapidly with wavelength. Examination of interchannel relationships in Wildfire data and subsequent comparison to Wildfire data synthesized from the HIS measurements suggests that a wavelength shift in the channel spectral response from those determined in the laboratory may have occurred. Based on comparisons from several flights, this spectral shift has been empirically determined to be about 0.15 micron. It is speculated that this problem resulted from a slight misalignment of the spectrometer grating or other optical elements, or was a result of extreme range in temperatures experienced by the instrument throughout the course of an ER-2 flight. A consequence of this temperature fluctuation may be a change in a position of the grating in the optical path and could result in the variations in channel spectral response during flight. These findings for Wildfire may have significant bearing on future use of the MAS because of the similarities to the original Wildfire configuration.

  9. Wildfire risk as a socioecological pathology

    Treesearch

    A Paige Fischer; Thomas A Spies; Toddi A Steelman; Cassandra Moseley; Bart R Johnson; John D Bailey; Alan A Ager; Patrick Bourgeron; Susan Charnley; Brandon M Collins; Jeff Kline; Jessica E Leahy; Jeremy S Littell; James DA Millington; Max Nielsen-Pincus; Christine S Olsen; Travis B Paveglio; Christopher I Roos; Michelle M Steen-Adams; Forrest R Stevens; Jelena Vukomanovic; Eric White; David MJS Bowman

    2016-01-01

    Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological “pathology”: that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales. Assessments of wildfire risk could benefit from recognizing and accounting for these interactions in...

  10. Using and improving social capital to increase community preparedness for wildfire

    Treesearch

    Shruti Agrawal; Martha C. Monroe

    2006-01-01

    Communities with more social capital are better able to work together to cope with problems such as a wildfire threat. This study found a positive relationship between perceiving greater social capital and participating in wildfire preparedness educational programs. Results suggest that managers can take advantage of existing social capital in communities to improve...

  11. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  12. Wildfire Decision Making Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Thompson, M.

    2013-12-01

    Decisions relating to wildfire management are subject to multiple sources of uncertainty, and are made by a broad range of individuals, across a multitude of environmental and socioeconomic contexts. In this presentation I will review progress towards identification and characterization of uncertainties and how this information can support wildfire decision-making. First, I will review a typology of uncertainties common to wildfire management, highlighting some of the more salient sources of uncertainty and how they present challenges to assessing wildfire risk. This discussion will cover the expanding role of burn probability modeling, approaches for characterizing fire effects, and the role of multi-criteria decision analysis, and will provide illustrative examples of integrated wildfire risk assessment across a variety of planning scales. Second, I will describe a related uncertainty typology that focuses on the human dimensions of wildfire management, specifically addressing how social, psychological, and institutional factors may impair cost-effective risk mitigation. This discussion will encompass decision processes before, during, and after fire events, with a specific focus on active management of complex wildfire incidents. An improved ability to characterize uncertainties faced in wildfire management could lead to improved delivery of decision support, targeted communication strategies, and ultimately to improved wildfire management outcomes.

  13. Understanding Changes in Modeled Land Surface Characteristics Prior to Lightning-Initiated Holdover Fire Breakout

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Case, Jonathan L.; Hain, Christopher R.; White, Kristopher; Wachter, J. Brent; Nauslar, Nicholas; MacNamara, Brittany

    2018-01-01

    Lightning initiated wildfires are only 16% of the total number of wildfires within the United States, but account for 56% of the acreage burned. One of the challenges with lightning-initiated wildfires is their ability to "holdover" which means smolder for up to 2+ weeks before breaking out into a full fledged fire. This work helps characterize the percentage of holdover events due to lightning, and helps quantify changes in the land surface characteristics to help understand trends in soil moisture and vegetation stress that potentially contribute to the fire breaking out into a full wildfire.

  14. The wildland-urban interface fire problem: A consequence of the fire exclusion paradigm

    Treesearch

    Jack Cohen

    2008-01-01

    The fire destruction of hundreds of homes associated with wildfires has occurred in the United States for more than a century. From 1870 to 1920, massive wildfires occurred principally in the Lake States but also elsewhere. Wildfires such as Peshtigo (Wisconsin, 1871), Michigan (1881), Hinckley (Minnesota, 1894), Adirondack (New York, 1903), the Big Blowup (Idaho-...

  15. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    USGS Publications Warehouse

    Shakesby, Richard A.; Moody, John A.; Martin, Deborah A.; Robichaud, Peter R.

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including modelling, to focus on priority research issues. The aim was to improve our understanding of controls and responses and the predictive capabilities of models. This conference led to the eight selected papers in this special issue. They address aspects of the distinctiveness in the controls and responses among wildfire regions, spatiotemporal rainfall variability, infiltration, runoff connectivity, debris flow formation and modelling applications. Here we summarise key findings from these papers and evaluate their contribution to improving understanding and prediction of post-wildfire runoff and erosion under changes in climate, human intervention and population pressure on wildfire-prone areas.

  16. Using prescribed fire to reduce the risk of large wildfires: A break-even analysis

    Treesearch

    James M. Saveland

    1987-01-01

    Nearly all wildfires are extinguished when they are still small. The 3-5% that get out of control cause 95% of all wildfire-related costs and damages (Dodge 1972, Wilson 1985). There are two ways to deal with these problem fires. One practice is to limit fire by suppressing fires as soon as possible after they are detected. Increasing the capability of suppression...

  17. Transferability of habitat suitability models for nesting woodpeckers associated with wildfire

    Treesearch

    Quresh S. Latif; Vicki Saab; Jeff P. Hollenbeck; Jonathan G. Dudley

    2016-01-01

    Following wildfire, forest managers are challenged with meeting both socioeconomic demands (e.g., salvage logging) and mandates requiring habitat conservation for disturbance-associated wildlife (e.g., woodpeckers). Habitat suitability models for nesting woodpeckers can be informative, but tests of model transferability are needed to understand how broadly...

  18. Identifying Indicators of Behavior Change: Insights from Wildfire Education Programs

    ERIC Educational Resources Information Center

    Monroe, Martha C.; Agrawal, Shruti; Jakes, Pamela J.; Kruger, Linda E.; Nelson, Kristen C.; Sturtevant, Victoria

    2013-01-01

    Environmental educators are challenged to document behavior changes, because change rarely depends solely on outcomes of education programs, but on many factors. An analysis of 15 communities in the United States that have increased their preparedness for wildfire allowed us to explore how education programs encouraged individual and community…

  19. Modeling wildfire incident complexity dynamics

    Treesearch

    Matthew P. Thompson

    2013-01-01

    Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire...

  20. Atlas of climatic controls of wildfire in the western United States

    USGS Publications Warehouse

    Hostetler, S.W.; Bartlein, P.J.; Holman, J.O.

    2006-01-01

    Wildfire behavior depends on several factors including ecologic characteristics, near-term and antecedent climatic conditions,fuel availability and moisture level, weather, and sources of ignition (lightning or human). The variability and interplay of these factors over many spatial and temporal scales present an ongoing challenge to our ability to forecast a given wildfire season. Here we focus on one aspect of wildfire in the western US through a retrospective analysis of wildfire (starts and area burned) and climate over monthly time scales. We consider prefire conditions up to a year preceding fire outbreaks. For our analysis, we used daily and monthly wildfire records and a combination of observed and model-simulated atmospheric and surface climate data. The focus of this report is on monthly wildfire and climate for the period 1980-2000. Although a longer fire record is desirable, the 21-year record is the longest currently available and it is sufficient for the purpose of a first-order regional analysis. We present the main results in the form of a wildfire-climate atlas for 8 subregions of the West that can be used by resource managers to assess current wildfire conditions relative to high, normal, and low fire years in the historical record. Our results clearly demonstrate the link between wildfire conditions and a small set of climatic variables, and our methodology is a framework for providing near-real-time assessments of current wildfire conditions in the West.

  1. Wildfire exposure and fuel management on western US national forests

    Treesearch

    Alan A. Ager; Michelle A. Day; Charles W. McHugh; Karen Short; Julie Gilbertson-Day; Mark A. Finney; David E. Calkin

    2014-01-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes...

  2. Identifying indicators of behavior change: insights from wildfire education programs

    Treesearch

    Martha C. Monroe; Shruti Agrawal; Pamela J. Jakes; Linda E. Kruger; Kristen C. Nelson; Victoria Sturtevant

    2013-01-01

    Environmental educators are challenged to document behavior changes, because change rarely depends solely on outcomes of education programs, but on many factors. An analysis of 15 communities in the United States that have increased their preparedness for wildfire allowed us to explore how education programs encouraged individual and community change. Agency-sponsored...

  3. Ozone from Wildfires: Peering through the Smog

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.; Baylon, P.; Wigder, N. L.; Collier, S.; Zhou, S.; Zhang, Q.; Alvarado, M. J.

    2014-12-01

    In the western US, many areas are near the current air quality standard for O3. Yet there is substantial inter-annual variability (IAV) in the number of days that exceed the O3 air quality threshold (currently 75 ppbv for an 8-hour average). We propose that wildfires are the dominant cause for this IAV. However there are large uncertainties around O3 production from wildfires due to numerous complicating factors. Ozone formation in wildfire plumes differs substantially from urban O3 production in several ways: substantial variations in the emissions, much larger aerosol loadings, a much greater variety of reactive and oxygenated VOCs, rapid and substantial formation of PAN and very different sources of HOx in the plume. These factors make it challenging to model wildfire impacts on photochemistry in the usual way. In this presentation we will show examples of three common situations based on data from the Mt. Bachelor Observatory: Rapid O3 formation (within one day) in a wildfire plume. Slow, but substantial, O3 formation (over days to a week) in a wildfire plume. No detectable O3 formation in a wildfire plume. We will interpret these results with respect to the observed NOy mixing ratios, the photochemical environment, the combustion efficiency, the plume transport and other factors and suggest some key experiments and modeling studies that can help further our understanding of wildfire O3 production.

  4. Towards Data-Driven Simulations of Wildfire Spread using Ensemble-based Data Assimilation

    NASA Astrophysics Data System (ADS)

    Rochoux, M. C.; Bart, J.; Ricci, S. M.; Cuenot, B.; Trouvé, A.; Duchaine, F.; Morel, T.

    2012-12-01

    Real-time predictions of a propagating wildfire remain a challenging task because the problem involves both multi-physics and multi-scales. The propagation speed of wildfires, also called the rate of spread (ROS), is indeed determined by complex interactions between pyrolysis, combustion and flow dynamics, atmospheric dynamics occurring at vegetation, topographical and meteorological scales. Current operational fire spread models are mainly based on a semi-empirical parameterization of the ROS in terms of vegetation, topographical and meteorological properties. For the fire spread simulation to be predictive and compatible with operational applications, the uncertainty on the ROS model should be reduced. As recent progress made in remote sensing technology provides new ways to monitor the fire front position, a promising approach to overcome the difficulties found in wildfire spread simulations is to integrate fire modeling and fire sensing technologies using data assimilation (DA). For this purpose we have developed a prototype data-driven wildfire spread simulator in order to provide optimal estimates of poorly known model parameters [*]. The data-driven simulation capability is adapted for more realistic wildfire spread : it considers a regional-scale fire spread model that is informed by observations of the fire front location. An Ensemble Kalman Filter algorithm (EnKF) based on a parallel computing platform (OpenPALM) was implemented in order to perform a multi-parameter sequential estimation where wind magnitude and direction are in addition to vegetation properties (see attached figure). The EnKF algorithm shows its good ability to track a small-scale grassland fire experiment and ensures a good accounting for the sensitivity of the simulation outcomes to the control parameters. As a conclusion, it was shown that data assimilation is a promising approach to more accurately forecast time-varying wildfire spread conditions as new airborne-like observations of the fire front location get available. [*] Rochoux, M.C., Delmotte, B., Cuenot, B., Ricci, S., and Trouvé, A. (2012) "Regional-scale simulations of wildland fire spread informed by real-time flame front observations", Proc. Combust. Inst., 34, in press http://dx.doi.org/10.1016/j.proci.2012.06.090 EnKF-based tracking of small-scale grassland fire experiment, with estimation of wind and fuel parameters.

  5. Valuing morbidity from wildfire smoke exposure: A comparison of revealed and stated preference techniques

    Treesearch

    Leslie Richardson; John B. Loomis; Patricia A. Champ

    2013-01-01

    Estimating the economic benefits of reduced health damages due to improvements in environmental quality continues to challenge economists. We review welfare measures associated with reduced wildfire smoke exposure, and a unique dataset from California's Station Fire of 2009 allows for a comparison of cost of illness (COI) estimates with willingness to pay (WTP)...

  6. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US

    NASA Astrophysics Data System (ADS)

    Coco Liu, Jia; Mickley, Loretta J.; Sulprizio, Melissa P.; Yue, Xu; Peng, Roger D.; Dominici, Francesca; Bell, Michelle L.

    2016-12-01

    Background. Wildfires are anticipated to be more frequent and intense under climate change. As a result, wildfires may emit more air pollutants that can harm health in communities in the future. The health impacts of wildfire smoke under climate change are largely unknown. Methods. We linked projections of future levels of fine particulate matter (PM2.5) specifically from wildfire smoke under the A1B climate change scenario using the GEOS-Chem model for 2046-2051, present-day estimates of hospital admission impacts from wildfire smoke, and future population projections to estimate the change in respiratory hospital admissions for persons ≥65 years by county (n = 561) from wildfire PM2.5 under climate change in the Western US. Results. The increase in intense wildfire smoke days from climate change would result in an estimated 178 (95% confidence interval: 6.2, 361) additional respiratory hospital admissions in the Western US, accounting for estimated future increase in the elderly population. Climate change is estimated to impose an additional 4990 high-pollution smoke days. Central Colorado, Washington and southern California are estimated to experience the highest percentage increase in respiratory admissions from wildfire smoke under climate change. Conclusion. Although the increase in number of respiratory admissions from wildfire smoke seems modest, these results provide important scientific evidence of an often-ignored aspect of wildfire impact, and information on their anticipated spatial distribution. Wildfires can cause serious social burdens such as property damage and suppression cost, but can also raise health problems. The results provide information that can be incorporated into development of environmental and health policies in response to climate change. Climate change adaptation policies could incorporate scientific evidence on health risks from natural disasters such as wildfires.

  7. Improving reseeding success after catastrophic wildfire with surfactant seed coating technology

    USDA-ARS?s Scientific Manuscript database

    The application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We tested a potential solution to this problem that uses seed...

  8. Improving reseeding success after catastrophic wildfire - shifting the paradigm with surfactant seed coatings

    USDA-ARS?s Scientific Manuscript database

    The application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We tested a potential solution to this problem that uses seed...

  9. Airtankers and wildfire management in the US Forest Service: examining data availability and exploring usage and cost trends

    Treesearch

    Matthew P. Thompson; David E. Calkin; Jason Herynk; Charles W. McHugh; Karen C. Short

    2012-01-01

    Evaluating the effectiveness and efficiency of fixed- and rotary-wing aircraft is a crucial component of strategic wildfire management and planning. In this manuscript, we focus on the economics of fire and aviation management within the US Forest Service. Substantial uncertainties challenge comprehensive analysis of airtanker use, prompting calls from federal...

  10. The climate-wildfire-air quality system: interactions and feedbacks across spatial and temporal scales

    Treesearch

    E. Natasha Stavros; Donald McKenzie; Narasimhan Larkin

    2014-01-01

    Future climate change and its effects on social and ecological systems present challenges for preserving valued ecosystem services, including local and regional air quality. Wildfire is a major source of air-quality impact in some locations, and a substantial contributor to pollutants of concern, including nitrogen oxides and particulate matter, which are regulated to...

  11. Determining forest carbon stock losses due to wildfire disturbance in the Western United States

    Treesearch

    John M. Zobel; John W. Coulston

    2015-01-01

    Quantifying carbon stock losses after wildfire events is challenging due to the lack of detailed information before and after the disturbance. We propose to use the extensive Western FIA database (including periodic and annual inventories) to recreate pre- and post-fire conditions to better estimate actual carbon losses. Methods include using remeasurement date where...

  12. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat

    Treesearch

    Lindsay A. Chiono; Danny L. Fry; Brandon M. Collins; Andrea H. Chatfield; Scott L. Stephens

    2017-01-01

    Forest managers are challenged with meeting numerous demands that often include wildlife habitat and carbon (C) sequestration. We used a probabilistic framework of wildfire occurrence to (1) estimate the potential for fuel treatments to reduce fire risk and hazard across the landscape and within protected California spotted owl (Strix occidentalis...

  13. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Treesearch

    S. P. Urbanski

    2013-01-01

    In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF) are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate...

  14. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    USGS Publications Warehouse

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  15. Health impacts of wildfires.

    PubMed

    Finlay, Sarah Elise; Moffat, Andrew; Gazzard, Rob; Baker, David; Murray, Virginia

    2012-11-02

    Introduction Wildfires are common globally. Although there has been considerable work done on the health effects of wildfires in countries such as the USA where they occur frequently there has been relatively little work to investigate health effects in the United Kingdom. Climate change may increase the risk of increasing wildfire frequency, therefore there is an urgent need to further understand the health effects and public awareness of wildfires. This study was designed to review current evidence about the health effects of wildfires from the UK standpoint. Methods A comprehensive literature review of international evidence regarding wildfire related health effects was conducted in January 2012. Further information was gathered from authors' focus groups. Results A review of the published evidence shows that human health can be severely affected by wildfires. Certain populations are particularly vulnerable. Wood smoke has high levels of particulate matter and toxins. Respiratory morbidity predominates, but cardiovascular, ophthalmic and psychiatric problems can also result. In addition severe burns resulting from direct contact with the fire require care in special units and carry a risk of multi - organ complications. The wider health implications from spreading air, water and land pollution are of concern. Access to affected areas and communication with populations living within them is crucial in mitigating risk. Conclusion This study has identified factors that may reduce public health risk from wildfires. However more research is needed to evaluate longer term health effects from wildfires. An understanding of such factors is vital to ensure preparedness within health care services for such events.

  16. Health Impacts of Wildfires

    PubMed Central

    Finlay, Sarah Elise; Moffat, Andrew; Gazzard, Rob; Baker, David; Murray, Virginia

    2012-01-01

    Introduction Wildfires are common globally. Although there has been considerable work done on the health effects of wildfires in countries such as the USA where they occur frequently there has been relatively little work to investigate health effects in the United Kingdom. Climate change may increase the risk of increasing wildfire frequency, therefore there is an urgent need to further understand the health effects and public awareness of wildfires. This study was designed to review current evidence about the health effects of wildfires from the UK standpoint. Methods A comprehensive literature review of international evidence regarding wildfire related health effects was conducted in January 2012. Further information was gathered from authors’ focus groups. Results A review of the published evidence shows that human health can be severely affected by wildfires. Certain populations are particularly vulnerable. Wood smoke has high levels of particulate matter and toxins. Respiratory morbidity predominates, but cardiovascular, ophthalmic and psychiatric problems can also result. In addition severe burns resulting from direct contact with the fire require care in special units and carry a risk of multi – organ complications. The wider health implications from spreading air, water and land pollution are of concern. Access to affected areas and communication with populations living within them is crucial in mitigating risk. Conclusion This study has identified factors that may reduce public health risk from wildfires. However more research is needed to evaluate longer term health effects from wildfires. An understanding of such factors is vital to ensure preparedness within health care services for such events. PMID:23145351

  17. Protecting residences from wildfires: a guide for homeowners, lawmakers, and planners

    Treesearch

    Howard E. Moore

    1981-01-01

    This guide, based on a literature review and personal contacts, offers recommendations and standards for procedures in reducing losses of residences from wildfires. Possible solutions to the problem of fire protection are discussed in the broad areas of land-use planning and zoning, property development, structural design and construction, landscaping, accessories,...

  18. A mixed integer program to model spatial wildfire behavior and suppression placement decisions

    Treesearch

    Erin J. Belval; Yu Wei; Michael Bevers

    2015-01-01

    Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...

  19. The importance of economics in fire management analysis

    Treesearch

    Robert Mavsar; Armando González-Cabán; Verónica Farrera

    2010-01-01

    Wildfires are a societal problem that threatens many ecosystems, affects millions of people worldwide, and causes major ecosystem and economic impacts at local regional, national and global scales. In Europe, and especially in the Mediterranean countries (France, Greece, Italy, Portugal and Spain), wildfires continue to be a major environmental threat (Requardt et al....

  20. Fire weather technology for fire agrometeorology operations

    Treesearch

    Francis Fujioka

    2008-01-01

    Even as the magnitude of wildfire problems increases globally, United Nations agencies are acting to mitigate the risk of wildfire disasters to members. Fire management organizations worldwide may vary considerably in operational scope, depending on the number and type of resources an organization manages. In any case, good fire weather information is vital. This paper...

  1. Listening and learning from traditional knowledge and western science: A dialogue on contemporary challenges of forest health and wildfire

    Treesearch

    Larry Mason; Germaine White; Gary Morishima; Ernesto Alvarado; Louise Andrew; Fred Clark; Mike Durglo; Jim Durglo; John Eneas; Jim Erickson; Margaret Friedlander; Kathy Hamel; Colin Hardy; Tony Harwood; Faline Haven; Everett Isaac; Laurel James; Robert Kenning; Adrian Leighton; Pat Pierre; Carol Raish; Bodie Shaw; Steven Smallsalmon; Vernon Stearns; Howard Teasley; Matt Weingart; Spus Wilder

    2012-01-01

    Native Americans relied on fire to maintain a cultural landscape that sustained their lifeways for thousands of years. Within the past 100 years, however, policies of fire exclusion have disrupted ecological processes, elevating risk of wildfire, insects, and disease, affecting the health and availability of resources on which the tribes depend. On Indian Reservations...

  2. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission

    Treesearch

    Tiago M. Oliveira; Ana M. G. Barros; Alan A. Ager; Paulo M. Fernandes

    2016-01-01

    Wildfires pose complex challenges to policymakers and fire agencies. Fuel break networks and area-wide fuel treatments are risk-management options to reduce losses from large fires. Two fuel management scenarios covering 3% of the fire-prone Algarve region of Portugal and differing in the intensity of treatment in 120-m wide fuel breaks were examined and compared with...

  3. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range

    Treesearch

    Robert N. Addington; Gregory H. Aplet; Mike A. Battaglia; Jennifer S. Briggs; Peter M. Brown; Antony S. Cheng; Yvette Dickinson; Jonas A. Feinstein; Kristen A. Pelz; Claudia M. Regan; Jim Thinnes; Rick Truex; Paula J. Fornwalt; Benjamin Gannon; Chad W. Julian; Jeffrey L. Underhill; Brett Wolk

    2018-01-01

    Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks. The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest...

  4. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms

    PubMed Central

    Vilar, Lara; Gómez, Israel; Martínez-Vega, Javier; Echavarría, Pilar; Riaño, David; Martín, M. Pilar

    2016-01-01

    The socio-economic factors are of key importance during all phases of wildfire management that include prevention, suppression and restoration. However, modeling these factors, at the proper spatial and temporal scale to understand fire regimes is still challenging. This study analyses socio-economic drivers of wildfire occurrence in central Spain. This site represents a good example of how human activities play a key role over wildfires in the European Mediterranean basin. Generalized Linear Models (GLM) and machine learning Maximum Entropy models (Maxent) predicted wildfire occurrence in the 1980s and also in the 2000s to identify changes between each period in the socio-economic drivers affecting wildfire occurrence. GLM base their estimation on wildfire presence-absence observations whereas Maxent on wildfire presence-only. According to indicators like sensitivity or commission error Maxent outperformed GLM in both periods. It achieved a sensitivity of 38.9% and a commission error of 43.9% for the 1980s, and 67.3% and 17.9% for the 2000s. Instead, GLM obtained 23.33, 64.97, 9.41 and 18.34%, respectively. However GLM performed steadier than Maxent in terms of the overall fit. Both models explained wildfires from predictors such as population density and Wildland Urban Interface (WUI), but differed in their relative contribution. As a result of the urban sprawl and an abandonment of rural areas, predictors like WUI and distance to roads increased their contribution to both models in the 2000s, whereas Forest-Grassland Interface (FGI) influence decreased. This study demonstrates that human component can be modelled with a spatio-temporal dimension to integrate it into wildfire risk assessment. PMID:27557113

  5. Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms.

    PubMed

    Vilar, Lara; Gómez, Israel; Martínez-Vega, Javier; Echavarría, Pilar; Riaño, David; Martín, M Pilar

    2016-01-01

    The socio-economic factors are of key importance during all phases of wildfire management that include prevention, suppression and restoration. However, modeling these factors, at the proper spatial and temporal scale to understand fire regimes is still challenging. This study analyses socio-economic drivers of wildfire occurrence in central Spain. This site represents a good example of how human activities play a key role over wildfires in the European Mediterranean basin. Generalized Linear Models (GLM) and machine learning Maximum Entropy models (Maxent) predicted wildfire occurrence in the 1980s and also in the 2000s to identify changes between each period in the socio-economic drivers affecting wildfire occurrence. GLM base their estimation on wildfire presence-absence observations whereas Maxent on wildfire presence-only. According to indicators like sensitivity or commission error Maxent outperformed GLM in both periods. It achieved a sensitivity of 38.9% and a commission error of 43.9% for the 1980s, and 67.3% and 17.9% for the 2000s. Instead, GLM obtained 23.33, 64.97, 9.41 and 18.34%, respectively. However GLM performed steadier than Maxent in terms of the overall fit. Both models explained wildfires from predictors such as population density and Wildland Urban Interface (WUI), but differed in their relative contribution. As a result of the urban sprawl and an abandonment of rural areas, predictors like WUI and distance to roads increased their contribution to both models in the 2000s, whereas Forest-Grassland Interface (FGI) influence decreased. This study demonstrates that human component can be modelled with a spatio-temporal dimension to integrate it into wildfire risk assessment.

  6. Integrated wildfire risk assessment: framework development and application on the Lewis and Clark National Forest in Montana, USA.

    PubMed

    Thompson, Matthew P; Scott, Joe; Helmbrecht, Don; Calkin, Dave E

    2013-04-01

    The financial, socioeconomic, and ecological impacts of wildfire continue to challenge federal land management agencies in the United States. In recent years, policymakers and managers have increasingly turned to the field of risk analysis to better manage wildfires and to mitigate losses to highly valued resources and assets (HVRAs). Assessing wildfire risk entails the interaction of multiple components, including integrating wildfire simulation outputs with geospatial identification of HVRAs and the characterization of fire effects to HVRAs. We present an integrated and systematic risk assessment framework that entails 3 primary analytical components: 1) stochastic wildfire simulation and burn probability modeling to characterize wildfire hazard, 2) expert-based modeling to characterize fire effects, and 3) multicriteria decision analysis to characterize preference structures across at-risk HVRAs. We demonstrate application of this framework for a wildfire risk assessment performed on the Little Belts Assessment Area within the Lewis and Clark National Forest in Montana, United States. We devote particular attention to our approach to eliciting and encapsulating expert judgment, in which we: 1) adhered to a structured process for using expert judgment in ecological risk assessment, 2) used as our expert base local resource scientists and fire/fuels specialists who have a direct connection to the specific landscape and HVRAs in question, and 3) introduced multivariate response functions to characterize fire effects to HVRAs that consider biophysical variables beyond fire behavior. We anticipate that this work will further the state of wildfire risk science and will lead to additional application of risk assessment to inform land management planning. Copyright © 2012 SETAC.

  7. Land-use planning may reduce fire damage in the urban-wildland intermix

    Treesearch

    Carol L. Rice; James B. Davis

    1991-01-01

    The risk of wildfire associated with development in the urban-wildland intermix is nationwide. To wildland fire agencies, providing fire protection for wildland residential development can be an exercise in frustration. Much of the problem is that few convincing ties have been made between community planning and wildfire. For three counties in California, the following...

  8. Incentives and wildfire management in the United States

    Treesearch

    Geoffrey H. Donovan; Thomas C. Brown; Lisa Dale

    2008-01-01

    A recent series of severe fire seasons in the United States has contributed to sharply rising wildfire suppression costs. These increasing costs have caught the attention of policymakers, but so far the responses have not focused clearly on the incentive structures that allow or encourage rising costs. We analyze the problem of rising suppression costs by examining the...

  9. Evaluation of forest management systems under risk of wildfire

    Treesearch

    Kari Hyytiainen; Robert G. Haight

    2010-01-01

    We evaluate the economic efficiency of even- and uneven-aged management systems under risk of wildfire. The management problems are formulated for a mixed-conifer stand and approximations of the optimal solutions are obtained using simulation optimization. The Northern Idaho variant of the Forest Vegetation Simulator and its Fire and Fuels Extension is used to predict...

  10. Demographic trends, the wildland-urban interface, and wildfire management

    Treesearch

    Roger B. Hammer; Susan I. Stewart; Volker C. Radeloff

    2009-01-01

    In this article, we provide an overview of the demographic trends that have impacted and will continue to impact the "wicked" wildfire management problem in the United States, with particular attention to the emergence of the wildland-urban interface (WUI). Although population growth has had an impact on the emergence of the WUI, the deconcentration of...

  11. A burning problem: social dynamics of disaster risk reduction through wildfire mitigation

    Treesearch

    Susan Charnley; Melissa R. Poe; Alan A. Ager; Thomas A. Spies; Emily K. Platt; Keith A. Olsen

    2015-01-01

    Disasters result from hazards affecting vulnerable people. Most disasters research by anthropologists focuses on vulnerability; this article focuses on natural hazards. We use the case of wildfire mitigation on United States Forest Service lands in the northwestern United States to examine social, political, and economic variables at multiple scales that influence fire...

  12. A Legacy of Wildfire-associated Nutrient Releases to Drinking Water Supplies: Treatment Challenges and Adaptations Opportunities

    NASA Astrophysics Data System (ADS)

    Emelko, M.; Silins, U.; Stone, M.

    2016-12-01

    Wildfire remains the most catastrophic agent of landscape disturbance in many forested source water regions. Notably, while wildfire impacts on water have been well studied, little if any of that work has specifically focused on drinking water treatability impacts, which will have both significant regional differences and similarities. Wildfire effects on water quality, particularly nutrient concentrations and character/forms, can be significant. The longevity and downstream propagation of these effects, as well as the geochemical mechanisms regulating them have been largely undocumented at larger river basin scales. This work demonstrates that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability in some ecoregions. The short- and mid-term impacts include increases in primary productivity and dissolved organic carbon, associated changes in carbon character, and increased potential for the formation of disinfection byproducts during drinking water treatment. The longer term impacts also may include increases in potentially toxic algal blooms and the production of taste and odor compounds. These documented impacts, as well as strategies for assessing the risk of wildfire-associated water service disruptions and infrastructure and land management-associated opportunities for adaptation to and mitigation of wildfire risk to drinking water supply will be discussed.

  13. How wild is your model fire? Constraining WRF-Chem wildfire smoke simulations with satellite observations

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Ford, B.; Lassman, W.; Pierce, J. R.; Pfister, G.; Volckens, J.; Magzamen, S.; Gan, R.

    2015-12-01

    Exposure to high concentrations of particulate matter (PM) present during acute pollution events is associated with adverse health effects. While many anthropogenic pollution sources are regulated in the United States, emissions from wildfires are difficult to characterize and control. With wildfire frequency and intensity in the western U.S. projected to increase, it is important to more precisely determine the effect that wildfire emissions have on human health, and whether improved forecasts of these air pollution events can mitigate the health risks associated with wildfires. One of the challenges associated with determining health risks associated with wildfire emissions is that the low spatial resolution of surface monitors means that surface measurements may not be representative of a population's exposure, due to steep concentration gradients. To obtain better estimates of ambient exposure levels for health studies, a chemical transport model (CTM) can be used to simulate the evolution of a wildfire plume as it travels over populated regions downwind. Improving the performance of a CTM would allow the development of a new forecasting framework that could better help decision makers estimate and potentially mitigate future health impacts. We use the Weather Research and Forecasting model with online chemistry (WRF-Chem) to simulate wildfire plume evolution. By varying the model resolution, meteorology reanalysis initial conditions, and biomass burning inventories, we are able to explore the sensitivity of model simulations to these various parameters. Satellite observations are used first to evaluate model skill, and then to constrain the model results. These data are then used to estimate population-level exposure, with the aim of better characterizing the effects that wildfire emissions have on human health.

  14. Effectiveness of thinning and prescribed fire in reducing wildfire severity

    Treesearch

    Philip N. Omi; Erik J. Martinson

    2004-01-01

    The severity of recent fire seasons in the United States has provided dramatic evidence of the increasing complexity of wildfire problems. A wide variety of indicators suggest worsening dilemmas: extent of area burned, ecosystems at risk, funds expended, homes destroyed or evacuated, and human fatalities and injuries; all seem to be on the increase or have peaked in...

  15. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke.

    PubMed

    Liu, Jia C; Pereira, Gavin; Uhl, Sarah A; Bravo, Mercedes A; Bell, Michelle L

    2015-01-01

    Climate change is likely to increase the threat of wildfires, and little is known about how wildfires affect health in exposed communities. A better understanding of the impacts of the resulting air pollution has important public health implications for the present day and the future. We performed a systematic search to identify peer-reviewed scientific studies published since 1986 regarding impacts of wildfire smoke on health in exposed communities. We reviewed and synthesized the state of science of this issue including methods to estimate exposure, and identified limitations in current research. We identified 61 epidemiological studies linking wildfire and human health in communities. The U.S. and Australia were the most frequently studied countries (18 studies on the U.S., 15 on Australia). Geographic scales ranged from a single small city (population about 55,000) to the entire globe. Most studies focused on areas close to fire events. Exposure was most commonly assessed with stationary air pollutant monitors (35 of 61 studies). Other methods included using satellite remote sensing and measurements from air samples collected during fires. Most studies compared risk of health outcomes between 1) periods with no fire events and periods during or after fire events, or 2) regions affected by wildfire smoke and unaffected regions. Daily pollution levels during or after wildfire in most studies exceeded U.S. EPA regulations. Levels of PM10, the most frequently studied pollutant, were 1.2 to 10 times higher due to wildfire smoke compared to non-fire periods and/or locations. Respiratory disease was the most frequently studied health condition, and had the most consistent results. Over 90% of these 45 studies reported that wildfire smoke was significantly associated with risk of respiratory morbidity. Exposure measurement is a key challenge in current literature on wildfire and human health. A limitation is the difficulty of estimating pollution specific to wildfires. New methods are needed to separate air pollution levels of wildfires from those from ambient sources, such as transportation. The majority of studies found that wildfire smoke was associated with increased risk of respiratory and cardiovascular diseases. Children, the elderly and those with underlying chronic diseases appear to be susceptible. More studies on mortality and cardiovascular morbidity are needed. Further exploration with new methods could help ascertain the public health impacts of wildfires under climate change and guide mitigation policies. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke

    PubMed Central

    Liu, Jia C.; Pereira, Gavin; Uhl, Sarah A.; Bravo, Mercedes A.; Bell, Michelle L.

    2014-01-01

    Background Climate change is likely to increase threat of wildfires, and little is known about how wildfires affect health in exposed communities. A better understanding of the impacts of the resulting air pollution has important public health implications for the present day and the future. Method We performed a systematic search to identify peer-reviewed scientific studies published since 1986 regarding impacts of wildfire smoke on health in exposed communities. We reviewed and synthesized the state of science of this issue including methods to estimate exposure, and identified limitations in current research. Results We identified 61 epidemiological studies linking wildfire and human health in communities. The U.S. and Australia were the most frequently studied countries (18 studies on the U.S., 15 on Australia). Geographic scales ranged from a single small city (population about 55,000) to the entire globe. Most studies focused on areas close to fire events. Exposure was most commonly assessed with stationary air pollutant monitors (35 of 61 studies). Other methods included using satellite remote sensing and measurements from air samples collected during fires. Most studies compared risk of health outcomes between 1) periods with no fire events and periods during or after fire events, or 2) regions affected by wildfire smoke and unaffected regions. Daily pollution levels during or after wildfire in most studies exceeded U.S. EPA regulations. Levels of PM10, the most frequently studied pollutant, were 1.2 to 10 times higher due to wildfire smoke compared to non-fire periods and/or locations. Respiratory disease was the most frequently studied health condition, and had the most consistent results. Over 90% of these 45 studies reported that wildfire smoke was significantly associated with risk of respiratory morbidity. Conclusion Exposure measurement is a key challenge in current literature on wildfire and human health. A limitation is the difficulty of estimating pollution specific to wildfires. New methods are needed to separate air pollution levels of wildfires from those from ambient sources, such as transportation. The majority of studies found that wildfire smoke was associated with increased risk of respiratory and cardiovascular diseases. Children, the elderly and those with underlying chronic diseases appear to be susceptible. More studies on mortality and cardiovascular morbidity are needed. Further exploration with new methods could help ascertain the public health impacts of wildfires under climate change and guide mitigation policies. PMID:25460628

  17. Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error

    PubMed Central

    Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong

    2013-01-01

    A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526

  18. Wildfire disturbance impacts on streamflow from western USA watersheds

    NASA Astrophysics Data System (ADS)

    Cadol, D.; Wine, M.; Makhnin, O.

    2017-12-01

    Worldwide rapid changes in climate overlaid on changing land management paradigms have dramatically altered ecological disturbance regimes worldwide including in western North America. Ecological disturbances impacted include woody encroachment, pest pathogen complexes, riparian forest changes, and wildfire. These disturbances impact the hydrologic cycle, though the nature of these impacts has been difficult to quantify. Perhaps the greatest challenge is that most basins worldwide are ungauged. Taking wildfire as a globally relevant example of a key ecological disturbance, even within gauged basins, post-wildfire hydrologic response is spatially and temporally variable, affected by a host of variables including fire frequency, area burned, and recovery trajectory. Hydrologic response to wildfire is further understood to be a non-linear function of watershed characteristics and climate. Here we provide a framework that utilizes remote sensing, statistical modeling, field measurements, and geospatial methods to provide first-order estimates of ecological disturbance hydrologic impacts. We apply this framework to compare ecological disturbance hydrologic impacts amongst selected watersheds in the western USA. Here we show that ecological disturbance impacts on hydrology are highly variable, and in many cases have an effect magnitude similar to that modeled for temperature and precipitation changes.

  19. Rapid growth of the US wildland-urban interface raises wildfire risk

    Treesearch

    Volker C. Radeloff; David P. Helmers; H. Anu Kramer; Miranda H. Mockrin; Patricia M. Alexandre; Avi Bar-Massada; Van Butsic; Todd J. Hawbaker; Sebastián Martinuzzi; Alexandra D. Syphard; Susan I. Stewart

    2018-01-01

    The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2...

  20. Development of improved wildfire smoke exposure estimates for health studies in the western U.S.

    NASA Astrophysics Data System (ADS)

    Ivey, C.; Holmes, H.; Loria Salazar, S. M.; Pierce, A.; Liu, C.

    2016-12-01

    Wildfire smoke exposure is a significant health concern in the western U.S. because large wildfires have increased in size and frequency over the past four years due to drought conditions. The transport phenomena in complex terrain and timing of the wildfire emissions make the smoke plumes difficult to simulate using conventional air quality models. Monitoring data can be used to estimate exposure metrics, but in rural areas the monitoring networks are too sparse to calculate wildfire exposure metrics for the entire population in a region. Satellite retrievals provide global, spatiotemporal air quality information and are used to track pollution plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Particulate matter (PM) exposures can be estimated using columnar aerosol optical depth (AOD), where satellite AOD retrievals serve as a spatial surrogate to simulate surface PM gradients. These exposure models have been successfully used in health effects studies in the eastern U.S. where complex mountainous terrain and surface reflectance do not limit AOD retrival from satellites. Using results from a chemical transport model (CTM) is another effective method to determine spatial gradients of pollutants. However, the CTM does not adequately capture the temporal and spatial distribution of wildfire smoke plumes. By combining the spatiotemporal pollutant fields from both satellite retrievals and CTM results with ground based pollutant observations the spatial wildfire smoke exposure model can be improved. This work will address the challenge of understanding the spatiotemporal distributions of pollutant concentrations to model human exposures of wildfire smoke in regions with complex terrain, where meteorological conditions as well as emission sources significantly influence the spatial distribution of pollutants. The focus will be on developing models to enhance exposure estimates of elevated PM and ozone concentrations from wildfire smoke plumes in the western U.S.

  1. Wildfire Risk Management: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Calkin, D. E.; Hand, M. S.; Kreitler, J.

    2014-12-01

    In this presentation we address federal wildfire risk management largely through the lens of economics, targeting questions related to costs, effectiveness, efficiency, and tradeoffs. Beyond risks to resources and assets such as wildlife habitat, watersheds, and homes, wildfires present financial risk and budgetary instability for federal wildfire management agencies due to highly variable annual suppression costs. Despite its variability, the costs of wildfire management have continued to escalate and account for an ever-growing share of overall agency budgets, compromising abilities to attain other objectives related to forest health, recreation, timber management, etc. Trends associated with a changing climate and human expansion into fire-prone areas could lead to additional suppression costs in the future, only further highlighting the need for an ability to evaluate economic tradeoffs in investments across the wildfire management spectrum. Critically, these economic analyses need to accurately capture the complex spatial and stochastic aspects of wildfire, the inherent uncertainty associated with monetizing environmental impacts of wildfire, the costs and effectiveness of alternative management policies, and linkages between pre-fire investments and active incident management. Investing in hazardous fuels reduction and forest restoration in particular is a major policy lever for pre-fire risk mitigation, and will be a primary focus of our presentation. Evaluating alternative fuel management and suppression policies could provide opportunities for significant efficiency improvements in the development of risk-informed management fire management strategies. Better understanding tradeoffs of fire impacts and costs can help inform policy questions such as how much of the landscape to treat and how to balance investments in treating new areas versus maintaining previous investments. We will summarize current data needs, knowledge gaps, and other factors influencing research and development on this critically important topic. Specifically we will focus on how to embed simulation models within an economic framework, how to link fire models with models of wildfire management expenditures, how to evaluate alternative management policies, and how to measure cost-effectiveness.

  2. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the Canadian Fire Weather Index (FWI) which have been widely used for assessing wildfire potential in the U.S.A and Canada, respectively.

  3. Identifying Decision-Makers’ Science Needs for Adaptation to Climate-Related Impacts on Forest Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Gordon, E.; Lukas, J.

    2009-12-01

    Through the Western Water Assessment RISA program, we are conducting a research project that will produce science synthesis information to help local, state, and federal decision-makers in Colorado and Wyoming develop adaptation strategies to deal with climate-related threats to forest ecosystem services, in particular bark beetle infestations and stand-replacing wildfires. We begin by using the problem orientation framework, a policy sciences methodology, to understand how decision-makers can most effectively address policy problems that threaten the attainment of socially accepted goals. By applying this framework to the challenges facing decision-makers, we more accurately identify specific areas where scientific research can improve decision-making. WWA researchers will next begin to connect decision-makers with relevant scientific literature and identify specific areas of future scientific research that will be most effective at addressing their needs.

  4. Climate, Santa Ana Winds and Autumn Wildfires in Southern California

    NASA Astrophysics Data System (ADS)

    Westerling, Anthony L.; Cayan, Daniel R.; Brown, Timothy J.; Hall, Beth L.; Riddle, Laurence G.

    2004-08-01

    Wildfires periodically burn large areas of chaparral and adjacent woodlands in autumn and winter in southern California. These fires often occur in conjunction with Santa Ana weather events, which combine high winds and low humidity, and tend to follow a wet winter rainy season. Because conditions fostering large fall and winter wildfires in California are the result of large-scale patterns in atmospheric circulation, the same dangerous conditions are likely to occur over a wide area at the same time. Furthermore, over a century of watershed reserve management and fire suppression have promoted fuel accumulations, helping to shape one of the most conflagration-prone environments in the world. Combined with a complex topography and a large human population, southern Californian ecology and climate pose a considerable physical and societal challenge to fire management.

  5. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    PubMed

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (<10 yr post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even after a large, severe wildfire, underlying fire histories can contribute substantially to variation in vegetation structure. This highlights the importance of ensuring that efforts to reinstate variation in vegetation fire age after large wildfires do not inadvertently reduce variation in vegetation structure generated by the underlying invisible mosaic. © 2017 by the Ecological Society of America.

  6. Smoke exposure and associated health effects across several fire seasons and locations in the Western US

    NASA Astrophysics Data System (ADS)

    O'Dell, K.; Ford, B.; Gan, R.; Liu, J.; Lassman, W.; Burke, M.; Pfister, G.; Vaidyanathan, A.; Volckens, J.; Magzamen, S.; Fischer, E. V.; Pierce, J. R.

    2017-12-01

    Wildfires are a significant source of particulate matter in the western United States. Wildfire activity in this region has increased over the past few decades and is projected to continue to increase further due to warmer and drier conditions. Particulate matter with diameters smaller than or equal to 2.5 microns (PM2.5) has known adverse effects on human health. However, due to an inconsistent association of wildfire PM2.5 and several disease outcomes, it is unclear if wildfire PM exerts similar health impacts as anthropogenic PM. Improved wildfire smoke exposure estimates are needed to gain a clearer understanding of the health impacts of wildfire PM2.5. Characterizing PM2.5 concentrations from wildfire smoke is challenging due to the transient nature of smoke. Current methods of determining smoke exposure rely on satellite retrievals of aerosol optical depth (AOD), estimates from chemical transport models (CTMs), or values reported by surface monitoring sites; each of these data sources has some limitations. To improve the accuracy of our exposure estimates, we developed new methods to blend these data. Our results indicate that blending information from the above-mentioned data sources along with counts of wildfire-smoke-related social-media posts results in better characterization of smoke exposure than any individual tool. We link our daily smoke PM2.5 exposure estimates with hospitalization and urgent-care admission data from Washington, Oregon, and Colorado during several fire seasons as well as prescription filling data from Oregon. We find a robust relationship, where a 10 μg m-3 increase in smoke is significantly associated with a 9.5% (95% CI: 6.2, 12.9) increase in the rate of asthma admissions and a 7.7% increase (95% CI: 6.5. 8.8) in the risk for respiratory rescue medication prescription refills. There was no significant association between smoke exposure and any cardiovascular endpoints. Our findings support the association of wildfire smoke exposure with adverse respiratory events, including subclinical outcomes, but we did not find significant associations with any cardiovascular outcomes. Public health messaging should target vulnerable populations to avoid smoke exposure during wildfire events.

  7. Climatic Events and Historical Disturbances Control Acute and Chronic Water-Quality Impairment After Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2016-12-01

    Many studies have shown that surface water quality can be impaired after wildfire. The majority of these studies are typically conducted for short periods (1-2 years), and until recently, usually employed routine (fixed-interval) sampling. We monitored stream water quality for five years after a wildfire in the Colorado Front Range using a combination of routine sampling, storm sampling, and continuous sensors. This five-year study facilitated the measurement of post-wildfire water-quality response to a number of climatic events, including low- to moderate-intensity rain storms, drought, extreme rainfall (based on amount of rain that fell in a 7-day period), and the highest spring runoff recorded from the watershed during 23 years of record. Post-wildfire water quality was controlled by the hydrologic response to these climatic events, and by a legacy of historical disturbance from mining and related activities. Increased surface runoff during rain storms led to mobilization of sediment from hillslopes to stream channels. The sediment remained in stream channels during a drought that led to reduced (25% of mean) spring runoff, but this sediment, and associated constituents such as dissolved organic carbon and manganese, were remobilized into the water column and transported downstream during sustained high-flow spring runoff in the third year. We infer that the relative proportions of surface and subsurface runoff were altered by the wildfire and during the extreme rainfall, possibly leading to greater flow through abandoned mine adits and tunnels, and thus causing increased instream metal concentrations (such as arsenic and manganese). Post-wildfire water-quality issues were both acute, with significant water-quality impairment during storm events, and chronic, with elevated concentrations of sediment, nitrate, dissolved organic carbon, manganese, and arsenic for months to years after the wildfire. Such variable source water quality, in both contaminant type and concentration, presents a substantial challenge to water-treatment facilities. Climate change is projected to increase wildfire risk and possibly storm frequency and intensity, and thus the risk of wildfire impacts on water supplies is likely to worsen in the future.

  8. Factors related to building loss due to wildfires in the conterminous United States.

    PubMed

    Alexandre, Patricia M; Stewart, Susan I; Keuler, Nicholas S; Clayton, Murray K; Mockrin, Miranda H; Bar-Massada, Avi; Syphard, Alexandra D; Radeloff, Volker C

    2016-10-01

    Wildfire is globally an important ecological disturbance affecting biochemical cycles and vegetation composition, but also puts people and their homes at risk. Suppressing wildfires has detrimental ecological effects and can promote larger and more intense wildfires when fuels accumulate, which increases the threat to buildings in the wildland-urban interface (WUI). Yet, when wildfires occur, typically only a small proportion of the buildings within the fire perimeter are lost, and the question is what determines which buildings burn. Our goal was to examine which factors are related to building loss when a wildfire occurs throughout the United States. We were particularly interested in the relative roles of vegetation, topography, and the spatial arrangement of buildings, and how their respective roles vary among ecoregions. We analyzed all fires that occurred within the conterminous United States from 2000 to 2010 and digitized which buildings were lost and which survived according to Google Earth historical imagery. We modeled the occurrence as well as the percentage of buildings lost within clusters using logistic and linear regression. Overall, variables related to topography and the spatial arrangement of buildings were more frequently present in the best 20 regression models than vegetation-related variables. In other words, specific locations in the landscape have a higher fire risk, and certain development patterns can exacerbate that risk. Fire policies and prevention efforts focused on vegetation management are important, but insufficient to solve current wildfire problems. Furthermore, the factors associated with building loss varied considerably among ecoregions suggesting that fire policy applied uniformly across the United States will not work equally well in all regions and that efforts to adapt communities to wildfires must be regionally tailored. © 2016 by the Ecological Society of America.

  9. Airborne Deployment of a High Resolution PTR-ToF-MS to Characterize Non-methane Organic Gases in Wildfire Smoke: A Pilot Study During WE-CAN Test Flights

    NASA Astrophysics Data System (ADS)

    Permar, W.; Hu, L.; Fischer, E. V.

    2017-12-01

    Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.

  10. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  11. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems.

    PubMed

    Jensen, Daniel; Reager, John T; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission with the US Forest Service's historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25-degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This result is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship's utility for the future development of national-scale predictive capability.

  12. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Reager, John T.; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the USDA Forest Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25 degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for the future development of national-scale predictive capability.

  13. Predicting the occurrence of wildfires with binary structured additive regression models.

    PubMed

    Ríos-Pena, Laura; Kneib, Thomas; Cadarso-Suárez, Carmen; Marey-Pérez, Manuel

    2017-02-01

    Wildfires are one of the main environmental problems facing societies today, and in the case of Galicia (north-west Spain), they are the main cause of forest destruction. This paper used binary structured additive regression (STAR) for modelling the occurrence of wildfires in Galicia. Binary STAR models are a recent contribution to the classical logistic regression and binary generalized additive models. Their main advantage lies in their flexibility for modelling non-linear effects, while simultaneously incorporating spatial and temporal variables directly, thereby making it possible to reveal possible relationships among the variables considered. The results showed that the occurrence of wildfires depends on many covariates which display variable behaviour across space and time, and which largely determine the likelihood of ignition of a fire. The joint possibility of working on spatial scales with a resolution of 1 × 1 km cells and mapping predictions in a colour range makes STAR models a useful tool for plotting and predicting wildfire occurrence. Lastly, it will facilitate the development of fire behaviour models, which can be invaluable when it comes to drawing up fire-prevention and firefighting plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Chemical fields during Southeast Nexus (SENEX) field experiment and design of verification metrics for efficacy of capturing wild fire emissions

    NASA Astrophysics Data System (ADS)

    Lee, P.

    2016-12-01

    Wildfires are commonplace in North America. Air pollution resulted from wildfires pose a significant risk for human health and crop damage. The pollutants alter the vertical distribution of many atmospheric constituents including O3 and many fine particulate (PM) species. Compared to anthropogenic emissions of air pollutants, emissions from wildfires are largely uncontrolled and unpredictable. Therefore, quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for atmospheric modeler and air quality forecasters. In this study, we investigated the modification and redistribution of atmospheric composition within the Conterminous U.S (CONUS) by wild fire plumes originated within and outside of the CONUS. We used the National Air Quality Forecasting Capability (NAQFC) to conduct the investigation. NAQFC uses dynamic lateral chemical boundary conditions derived from the National Weather Service experimental global aerosol tracer model accounting for intrusion of fire-associated aerosol species. Within CONUS, the NAQFC derives both gaseous and aerosol wildfire associated species from the National Environmental Satellite, Data, and Information Service (NESDIS) hazard mapping system (HMS) hot-spot detection, and US Forestry Service Blue-sky protocol for quantifying fire characteristics, and the US EPA Sparse Matrix Object Kernel Emission (SMOKE) calculation for plume rise. Attributions of both of these wildfire influences inherently reflect the aged plumes intruded into the CONUS through the model boundaries as well as the fresher emissions from sources within the CONUS. Both emission sources contribute significantly to the vertical structure modification of the atmosphere. We conducted case studies within the fire active seasons to demonstrate some possible impacts on the vertical structures of O3 and PM species by the wildfire activities.

  15. Wildland fire management futures: insights from a foresight panel

    Treesearch

    Robert L. Olson; David N. Bengston; Leif A. DeVaney; Trevor A.C. Thompson

    2015-01-01

    Wildland fire management faces unprecedented challenges in the 21st century: the increasingly apparent effects of climate change, more people and structures in the wildland-urban interface, growing costs associated with wildfire management, and the rise of high-impact fires, to name a few. Given these significant and growing challenges, conventional fire management...

  16. Application of Recent Advances in Forward Modeling of Emissions from Boreal and Temperate Wildfires to Real-time Forecasting of Aerosol and Trace Gas Concentrations

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Kasischke, E. S.; Allen, D. J.

    2005-12-01

    The magnitude of trace gas and aerosol emissions from wildfires is a scientific problem with important implications for atmospheric composition, and is also integral to understanding carbon cycling in terrestrial ecosystems. Recent ecological research on modeling wildfire emissions has integrated theoretical advances derived from ecological fieldwork with improved spatial and temporal databases to produce "post facto" estimates of emissions with high spatial and temporal resolution. These advances have been shown to improve agreement with atmospheric observations at coarse scales, but can in principle be applied to applications, such as forecasting, at finer scales. However, several of the approaches employed in these forward models are incompatible with the requirements of real-time forecasting, requiring modification of data inputs and calculation methods. Because of the differences in data inputs used for real-time and "post-facto" emissions modeling, the key uncertainties in the forward problem are not necessarily the same for these two applications. However, adaptation of these advances in forward modeling to forecasting applications has the potential to improve air quality forecasts, and also to provide a large body of experimental data which can be used to constrain crucial uncertainties in current conceptual models of wildfire emissions. This talk describes a forward modeling method developed at the University of Maryland and its application to the Fire Locating and Modeling of Burning Emissions (FLAMBE) system at the Naval Research Laboratory. Methods for applying the outputs of the NRL aerosol forecasting system to the inverse problem of constraining emissions will also be discussed. The system described can use the feedback supplied by atmospheric observations to improve the emissions source description in the forecasting model, and can also be used for hypothesis testing regarding fire behavior and data inputs.

  17. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin

    USGS Publications Warehouse

    Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.

    2009-01-01

    The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.

  18. Creation a Geo Big Data Outreach and Training Collaboratory for Wildfire Community

    NASA Astrophysics Data System (ADS)

    Altintas, I.; Sale, J.; Block, J.; Cowart, C.; Crawl, D.

    2015-12-01

    A major challenge for the geoscience community is the training and education of current and next generation big data geoscientists. In wildfire research, there are an increasing number of tools, middleware and techniques to use for data science related to wildfires. The necessary computing infrastructures are often within reach and most of the software tools for big data are freely available. But what has been lacking is a transparent platform and training program to produce data science experts who can use these integrated tools effectively. Scientists well versed to take advantage of big data technologies in geoscience applications is of critical importance to the future of research and knowledge advancement. To address this critical need, we are developing learning modules to teach process-based thinking to capture the value of end-to-end systems of reusable blocks of knowledge and integrate the tools and technologies used in big data analysis in an intuitive manner. WIFIRE is an end-to-end cyberinfrastructure for dynamic data-driven simulation, prediction and visualization of wildfire behavior.To this end, we are openly extending an environment we have built for "big data training" (biobigdata.ucsd.edu) to similar MOOC-based approaches to the wildfire community. We are building an environment that includes training modules for distributed platforms and systems, Big Data concepts, and scalable workflow tools, along with other basics of data science including data management, reproducibility and sharing of results. We also plan to provide teaching modules with analytical and dynamic data-driven wildfire behavior modeling case studies which address the needs not only of standards-based K-12 science education but also the needs of a well-educated and informed citizenry.Another part our outreach mission is to educate our community on all aspects of wildfire research. One of the most successful ways of accomplishing this is through high school and undergraduate student internships. Students have worked closely with WIFIRE researchers on various projects including the development of statistical models of wildfire ignition probabilities for southern California, and the development of a smartphone app for crowd-sourced wildfire reporting through social networks such as Twitter and Facebook.

  19. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire?

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. L.; Moore, P. A.; Flannigan, M. D.; Wotton, B. M.; Waddington, J. M.

    2018-01-01

    Climate change mediated drying of boreal peatlands is expected to enhance peatland afforestation and wildfire vulnerability. The water table depth-afforestation feedback represents a positive feedback that can enhance peat drying and consolidation and thereby increase peat burn severity; exacerbating the challenges and costs of wildfire suppression efforts and potentially shifting the peatland to a persistent source of atmospheric carbon. To address this wildfire management challenge, we examined burn severity across a gradient of drying in a black spruce dominated peatland that was partially drained in 1975-1980 and burned in the 2016 Fort McMurray Horse River wildfire. We found that post-drainage black spruce annual ring width increased substantially with intense drainage. Average (±SD) basal diameter was 2.6 ± 1.2 cm, 3.2 ± 2.0 cm and 7.9 ± 4.7 cm in undrained (UD), moderately drained (MD) and heavily drained (HD) treatments, respectively. Depth of burn was significantly different between treatments (p < 0.001) and averaged (±SD) 2.5 ± 3.5 cm, 6.4 ± 5.0 cm and 36.9 ± 29.6 cm for the UD, MD and HD treatments, respectively. The high burn severity in the HD treatment included 38% of the treatment that experienced combustion of the entire peat profile, and we estimate that overall 51% of the HD pre-burn peat carbon stock was lost. We argue that the HD treatment surpassed an ecohydrological tipping point to high severity peat burn that may be identified using black spruce stand characteristics in boreal plains bogs. While further studies are needed, we believe that quantifying this threshold will aid in developing effective adaptive management techniques and protecting boreal peatland carbon stocks.

  20. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for "source water supply and protection" strategies.

    PubMed

    Emelko, Monica B; Silins, Uldis; Bladon, Kevin D; Stone, Micheal

    2011-01-01

    Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Monitoring burned and unburned hillslopes from North Carolina to southern California: insights into hydrologic and geomorphic controls on disturbance-recovery cycles

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Kean, J. W.; Smith, J. B.; Staley, D. M.; Wooten, R.; Cattanach, B.; Rengers, F. K.; McGuire, L.; Godt, J.; Lu, N.

    2017-12-01

    On steep hillslopes, vegetation often provides an important ecosystem function by preventing landsliding, debris flows, and floods, thereby protecting human lives and infrastructure. Disturbances that disrupt vegetation - from wildfire and forest clearing to landslides themselves - can abruptly alter hillslope hydrologic and geomorphic processes thereby increasing the threat of these natural hazards. Two major challenges from a hazard assessment perspective are: (1) quantifying disturbance impacts on near-surface hydrologic responses, and (2) understanding the relevant processes and timescales associated with disturbance-recovery cycles. These challenges are complicated by the limited availability of long-term monitoring in pre- and post-disturbance environments. Therefore, many tools designed to provide rapid situational awareness and improve disaster preparedness and response rely on temporally invariant parameterization or locally derived empirical relations that are not necessarily transferrable across different geologic or climatic settings. Here we examine hillslope hydrologic response in landslide-prone terrain across the continental US, from the West Coast to Appalachia, to explore these issues related to disturbance-recovery cycles. Wildfire is a recurring disturbance along the actively uplifting mountains in semi-arid southern California, and heavy winter storms arriving from the Pacific are frequently able to produce debris flows in recently burned areas. Although wildfire is less common in the much wetter Cascades and Coast Ranges of Oregon and Washington, frequent landslides and forest clearing disturbances also influence hillslope hydrology and slope stability. In contrast, the recent wildfires in Tennessee, Georgia, and North Carolina have highlighted critical knowledge gaps related to post-fire hydrology and natural hazards in the geologically stable and humid sub-tropical southeastern US, where severe wildfires are less common than other disturbances. Our continuous monitoring from several burned and unburned hillslopes across these diverse geologic and climatic settings reveals variations in the disturbance impacts and recovery timescales, as well as the need for further monitoring, modeling, and synthesis across regions and scales.

  2. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA.

    PubMed

    Reilly, Matthew J; Elia, Mario; Spies, Thomas A; Gregory, Matthew J; Sanesi, Giovanni; Lafortezza, Raffaele

    2018-03-01

    Wildfires pose a unique challenge to conservation in fire-prone regions, yet few studies quantify the cumulative effects of wildfires on forest dynamics (i.e., changes in structural conditions) across landscape and regional scales. We assessed the contribution of wildfire to forest dynamics in the eastern Cascade Mountains, USA from 1985 to 2010 using imputed maps of forest structure (i.e., tree size and canopy cover) and remotely sensed burn severity maps. We addressed three questions: (1) How do dynamics differ between the region as a whole and the unburned portion of the region? (2) How do dynamics vary among vegetation zones differing in biophysical setting and historical fire frequency? (3) How have forest structural conditions changed in a network of late successional reserves (LSRs)? Wildfires affected 10% of forests in the region, but the cumulative effects at this scale were primarily slight losses of closed-canopy conditions and slight gains in open-canopy conditions. In the unburned portion of the region (the remaining 90%), closed-canopy conditions primarily increased despite other concurrent disturbances (e.g., harvest, insects). Although the effects of fire were largely dampened at the regional scale, landscape scale dynamics were far more variable. The warm ponderosa pine and cool mixed conifer zones experienced less fire than the region as a whole despite experiencing the most frequent fire historically. Open-canopy conditions increased slightly in the mixed conifer zone, but declined across the ponderosa pine zone even with wildfires. Wildfires burned 30% of the cold subalpine zone, which experienced the greatest increase in open-canopy conditions and losses of closed-canopy conditions. LSRs were more prone to wildfire than the region as a whole, and experienced slight declines in late seral conditions. Despite losses of late seral conditions, wildfires contributed to some conservation objectives by creating open habitats (e.g., sparse early seral and woodland conditions) that otherwise generally decreased in unburned landscapes despite management efforts to increase landscape diversity. This study demonstrates the potential for wildfires to contribute to regional scale conservation objectives, but implications for management and biodiversity at landscape scales vary geographically among biophysical settings, and are contingent upon historical dynamics and individual species habitat preferences. © 2017 by the Ecological Society of America.

  3. Risk and Cooperation: Managing Hazardous Fuel in Mixed Ownership Landscapes

    NASA Astrophysics Data System (ADS)

    Fischer, A. Paige; Charnley, Susan

    2012-06-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.

  4. Risk and cooperation: managing hazardous fuel in mixed ownership landscapes.

    PubMed

    Fischer, A Paige; Charnley, Susan

    2012-06-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.

  5. Wildfire, timber salvage, and the economics of expediency

    Treesearch

    Jeffrey P. Prestemon; David N. Wear; Fred J. Stewart; Thomas P. Holmes

    2006-01-01

    Administrative planning rules and legal challenges can have significant economic impacts on timber salvage programs on public lands. This paper examines the costs of the delay in salvage caused by planning rules and the costs associated with the volume reductions forced by legal challenges in one case study. The fires on the Bitterroot National Forest in the northern...

  6. Working forests, forest health and management challenges in the redwood region

    Treesearch

    Ken Pimlott

    2017-01-01

    As California continues into a fifth year of drought, tree mortality enhanced by the unprecedented bark beetle epidemic contributes to wildfires that continue to increase in frequency and severity. Recent fires have posed increasing fire suppression challenges, life safety concerns, post fire watershed impacts and lasting damage to forested landscapes. The ability of...

  7. Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression

    PubMed Central

    Petrovic, Nada; Alderson, David L.; Carlson, Jean M.

    2012-01-01

    Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1) the disaster evolves on the same timescale as the response effort, and (2) delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy. PMID:22514605

  8. A framework for tracking post-wildfire trajectories and desired future conditions using NDVI time series

    NASA Astrophysics Data System (ADS)

    Norman, S. P.; Hargrove, W. W.; Lee, D. C.; Spruce, J.

    2013-12-01

    Wildfires could provide a cost-effective means to maintain or restore some aspects of fire-adapted landscapes. Yet with the added influence of climate change and invasives, wildfires may also facilitate or accelerate undesired type conversions. As megafires are becoming increasingly common across portions of the US West, managers require a framework for long-term monitoring that integrates the trajectories of fire-prone landscapes and objectives, not just conditions immediately after a burn. Systematic use of satellite data provides an efficient cross-jurisdictional solution to this problem. Since 2000, MODIS-technology has provided high frequency, 240m resolution observations of Earth. Using this data stream, the ForWarn system, developed through a partnership of the US Forest Service, NASA-Stennis and others, provides 46 estimates of the Normalized Difference Vegetation Index (NDVI) per year for the conterminous US. From this time series, a variety of secondary metrics have been derived including median annual NDVI, amplitude, and phenological spikiness. Each is both a fire and recovery sensitive measure that allows managers to systematically track conditions with respect to either the pre-fire baseline or desired future conditions more adaptively. In dry interior forests where wildfires could be used to thin stands, recovery to untreated conditions may not be desired given fuels objectives or climate change. In more mesic systems, fire effects may be monitored as staged succession. With both coarse filter monitoring and desired conditions in hand, managers can better recognize and prioritize problems in disturbance-prone landscapes.

  9. Wildland Fire Prevention: Today, Intuition--Tomorrow, Management

    Treesearch

    Albert J. Simard; Linda R. Donoghue

    1987-01-01

    Describes, from a historical perspective, methods used to characterize fire prevention problems and evaluate prevention programs and discusses past research efforts to bolster these analytical and management efforts. Highlights research on the sociological perspectives of the wildfire problem and on quantitative fire occurrence prediction and program evaluation systems...

  10. A Five- Year CMAQ Model Performance for Wildfires and ...

    EPA Pesticide Factsheets

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. Two components of the biomass burning inventory, wildfires and prescribed fires are routinely estimated in the national emissions inventory. However, there is a large amount of uncertainty in the development of these emission inventory sectors. We have completed a 5 year set of CMAQ model simulations (2008-2012) in which we have simulated regional air quality with and without the wildfire and prescribed fire inventory. We will examine CMAQ model performance over regions with significant PM2.5 and Ozone contribution from prescribed fires and wildfires. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  11. Wildfire and invasive species in the west: challenges that hinder current and furture management and protection of the sagebrush-steppe ecosystem

    USDA-ARS?s Scientific Manuscript database

    Western Association of Fish and Wildlife Agencies (WAFWA) to satisfy the 45-day report requirement identified in Cooperative Agreement (F13AC00353) between WAFWA and the U. S. Fish and Wildlife Service (FWS) submit this “Gap Report”. This report summarizes the policy, fiscal and science challenges t...

  12. Drinking water treatment response following a Colorado wildfire.

    PubMed

    Hohner, Amanda K; Cawley, Kaelin; Oropeza, Jill; Summers, R Scott; Rosario-Ortiz, Fernando L

    2016-11-15

    Wildfires can greatly alter the vegetation, soils, and hydrologic processes of watersheds serving as drinking water supplies, which may negatively influence source water quality and treatment. To address wildfire impacts on treatment, a drinking water intake below a burned watershed and an upstream, unburned reference site were monitored following the High Park wildfire (2012) in the Cache la Poudre watershed of northern Colorado, USA. Turbidity, nutrients, dissolved organic matter (DOM) character, coagulation treatability, and disinfection byproduct formation were evaluated and compared to pre-fire data. Post-fire paired spatial differences between the treatment plant intake and reference site for turbidity, nitrogen, and phosphorus increased by an order of magnitude compared to pre-fire differences. Fluorescence index (FI) values were significantly higher at the intake compared to the reference site (Δ = 0.04), and higher than pre-fire years, suggesting the wildfire altered the DOM character of the river. Total trihalomethane (TTHM) and haloacetonitrile (HAN4) formation at the intake were 10.1 μg L -1 and 0.91 μg L -1 higher than the reference site. Post-fire water was amenable to conventional treatment at a 10 mg L -1 higher average alum dose than reference samples. The intake was also monitored following rainstorms. Post-rainstorm samples showed the maximum observed FI values (1.52), HAN4 (3.4 μg mg C -1 ) and chloropicrin formation yields (3.6 μg mg C -1 ), whereas TTHM and haloacetic acid yields were not elevated. Several post-rainstorm samples presented treatment challenges, and even at high alum doses (65 mg L -1 ), showed minimal dissolved organic carbon removal (<10%). The degraded water quality of the post-rainstorm samples is likely attributed to the combined effects of runoff from precipitation and greater erosion following wildfire. Wildfire impacts cannot be separated from rainfall effects due to the lack of post-rainstorm samples from the reference site. Results suggest for this study region, wildfire may have consequences for influent water quality, coagulant dosing, and DBP speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Wildfire exposure and fuel management on western US national forests.

    PubMed

    Ager, Alan A; Day, Michelle A; McHugh, Charles W; Short, Karen; Gilbertson-Day, Julie; Finney, Mark A; Calkin, David E

    2014-12-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework. Published by Elsevier Ltd.

  14. Modeling wildfire incident complexity dynamics.

    PubMed

    Thompson, Matthew P

    2013-01-01

    Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of geographic and temporal variation in incident management team response to wildfires. The specific focus is incident complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the recognition that large wildfire management entails recurrent decisions across time in response to changing conditions, which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices and expected times until containment are presented at national and regional levels. Results of this analysis can help improve understanding of geographic variation in incident management and associated cost structures, and can be incorporated into future analyses examining the economic efficiency of wildfire management.

  15. Can post-wildfire Burned Area Emergency Response treatments mitigate watershed degradation?

    NASA Astrophysics Data System (ADS)

    Neary, D.; Ffolliott, P.; Bautista, S.; Wittenberg, L.

    2009-04-01

    Wildfire is a natural phenomenon that began with the development of terrestrial vegetation in a lightning-filled atmosphere 350 million years ago. As human populations developed in the Pleistocene and Holocene epochs, mankind transformed fire into one of its oldest tools. A negative impact of prime concern in the 21st Century is desertification. This term refers to land degradation, not the immediate creation of classical deserts. It is about the loss of the land's proper hydrologic function and biological productivity as a result of human activities and climate change. It affects 33% of the earth's surface and over a billion people. Fire-related desertification has a number of environmental, social, and economic consequences. The two key environmental consequences are soil erosion and exotic plant invasions. Wildfires typically have exotic plant species abundances ten times that of undisturbed forests (Neary et al. 2003). Seeding has been used for many years in the USA as a prime Burned Area Emergency Response (BAER) treatment. Until recently, this seeding contributed to exotic plant invasions since fast-growing, but non native plants seeds were used. The use of native plant seeds and sterile hybrids has reduced this problem somewhat. Erosion after wildfires documented in the USA can be in the range of <1 to 370 Mg/ha, depending on fire severity, degree of water repellency, slope, and post-fire rainfall events. Soil losses in the high end of that range definitely exceed soil loss tolerances and contribute to desertification. Soil disturbance and degradation after wildfires is a function of fire severity, and the impacts can range from the minimal to catastrophic and long-lasting. The most obvious impact is the loss of organic matter from combustion of the forest floor. Changes in soil physical and chemical properties with high-severity wildfire can produce water repellency, aggravating rainfall runoff and erosion. Since soils take long times to form (50 to 75,000 years), degradation as a result of wildfire-related erosion or soil property changes can result in severe and rapid desertification. Soil degradation is a "one-way street" not easily reversed. Although trees can be replanted on burned sites, soil lost in erosion is rarely replaced, just rehabilitated. There are techniques to rehabilitate these degraded soils but they are quite expensive. Disruptions to soil micro-fauna and micro-flora can also reduce post-fire site vegetation productivity. An environmental consequence of wildfire related to soil disturbance, is the loss of hydrologic function. Again, the level of hydrologic function loss is related to fire severity. Although this ecosystem function tends to recover within 5 - 10 years after wildfire as vegetation cover returns, the immediate impacts can be considerable. The removal of the protective layer of the forest floor by combustion, and the development of water repellent layers in the soil combine to aggrevate flood potentials. Flood peak flows after wildfires with high percentages of high severity wildfire (>30%) commonly have increases of 10-fold. Higher increases (20 to 2,000 fold) have been measured as the percentage of high-severity soil damage approaches 100%. The other side of high flood runoff is the reduction in baseflow that sustains stream flow due to the reduction in rainfall infiltration. This has water supply implications for forested watersheds that are sources for municipal water supplies. In addition, post-wildfire ash slurry flows can substantially degrade the quality of municipal water sources. Although this phenomenon is relatively short lived (<2 years), it can have serious supply impacts. This paper examines the capabilities of BAER treatments in dealing with this problem.

  16. Valuing morbidity from wildfire smoke exposure: a comparison of revealed and stated preference techniques

    USGS Publications Warehouse

    Richardson, Leslie; Loomis, John B.; Champ, Patricia A.

    2013-01-01

    Estimating the economic benefits of reduced health damages due to improvements in environmental quality continues to challenge economists. We review welfare measures associated with reduced wildfire smoke exposure, and a unique dataset from California’s Station Fire of 2009 allows for a comparison of cost of illness (COI) estimates with willingness to pay (WTP) measures. The WTP for one less symptom day is estimated to be $87 and $95, using the defensive behavior and contingent valuation methods, respectively. These WTP estimates are not statistically different but do differ from a $3 traditional daily COI estimate and $17 comprehensive daily COI estimate.

  17. A computer-based tutorial structure for teaching and applying a complex process

    Treesearch

    Daniel L. Schmoldt; William G Bradshaw

    1991-01-01

    Economic accountability concerns for wildfire prevention planning have led to the development of an ignition management approach to fire problems. The Fire Loss Prevention Planning Process (FLPPP) systematizes fire problem analyses and concomitantly establishes a means for evaluating prescribed prevention programs. However, new users of the FLPPP have experienced...

  18. Pine regeneration following wildland fire (P-53)

    Treesearch

    Katherine J. Elliott; James M. Vose; Alan S. White

    2008-01-01

    Pine regeneration following wildland fire continues to be a serious problem across the western and southeastern U.S. Frequency of large wildfires has increased over the last several decades and restoration of these burned areas is a major problem confronting land managers. Prescribed fires are used primarily to reduce heavy fuel loads and secondarily to reduce...

  19. Pine regeneration following wildland fire

    Treesearch

    Katherine J. Elliott; James M. Vose; Alan S. White

    2008-01-01

    Pine regeneration following wildland fire continues to be a serious problem across the western and southeastern U.S. Frequency of large wildfires has increased over the last several decades and restoration of these burned areas is a major problem confronting land managers. Prescribed fires are used primarily to reduce heavy fuel loads and secondarily to reduce...

  20. Smokey comes of age: Unmanned aerial systems for fire management

    USGS Publications Warehouse

    Twidwell, Dirac; Allen, Craig R.; Detweiler, Carrick; Higgins, James; Laney, Christian; Elbaum, Sebastian

    2016-01-01

    During the past century, fire management has focused on techniques both to protect human communities from catastrophic wildfire and to maintain fire-dependent ecological systems. However, despite a large and increasing allocation of resources and personnel to achieve these goals, fire management objectives at regional to global scales are not being met. Current fire management techniques are clearly inadequate for the challenges faced by fire managers, and technological innovations are needed. Advances in unmanned aerial systems (UAS) technology provide opportunities for innovation in fire management and science. In many countries, fire management organizations are beginning to explore the potential of UAS for monitoring fires. We have taken the next step and developed a prototype that can precisely ignite fires as part of wildfire suppression tactics or prescribed fires (fire intentionally ignited within predetermined conditions to reduce hazardous fuels, improve habitat, or mitigate for large wildfires). We discuss the potential for these technologies to benefit fire management activities, while acknowledging the sizeable sociopolitical barriers that prevent their immediate broad application.

  1. Optimization of the resources management in fighting wildfires.

    PubMed

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  2. Optimization of the Resources Management in Fighting Wildfires

    NASA Astrophysics Data System (ADS)

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J. Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  3. An Assessment of Climate Change Impacts on Los Angeles (California USA) Hospitals, Wildfires Highest Priority.

    PubMed

    Adelaine, Sabrina A; Sato, Mizuki; Jin, Yufang; Godwin, Hilary

    2017-10-01

    Introduction Although many studies have delineated the variety and magnitude of impacts that climate change is likely to have on health, very little is known about how well hospitals are poised to respond to these impacts. Hypothesis/Problem The hypothesis is that most modern hospitals in urban areas in the United States need to augment their current disaster planning to include climate-related impacts. Using Los Angeles County (California USA) as a case study, historical data for emergency department (ED) visits and projections for extreme-heat events were used to determine how much climate change is likely to increase ED visits by mid-century for each hospital. In addition, historical data about the location of wildfires in Los Angeles County and projections for increased frequency of both wildfires and flooding related to sea-level rise were used to identify which area hospitals will have an increased risk of climate-related wildfires or flooding at mid-century. Only a small fraction of the total number of predicted ED visits at mid-century would likely to be due to climate change. By contrast, a significant portion of hospitals in Los Angeles County are in close proximity to very high fire hazard severity zones (VHFHSZs) and would be at greater risk to wildfire impacts as a result of climate change by mid-century. One hospital in Los Angeles County was anticipated to be at greater risk due to flooding by mid-century as a result of climate-related sea-level rise. This analysis suggests that several Los Angeles County hospitals should focus their climate-change-related planning on building resiliency to wildfires. Adelaine SA , Sato M , Jin Y , Godwin H . An assessment of climate change impacts on Los Angeles (California USA) hospitals, wildfires highest priority. Prehosp Disaster Med. 2017;32(5):556-562.

  4. The Fort McMurray, Alberta wildfires: Emergency and recovery management of healthcare services.

    PubMed

    Matear, David

    2017-01-01

    One of the largest wildfires in Canadian history raged through northern Alberta in May to July 2016, and prompted the largest emergency air evacuation in Canadian history. Central to the challenges were the evacuation of a regional hospital, and the emergency and recovery management associated with healthcare services. This paper describes multiple phases of emergency and recovery management, which employed and adapted the Incident Command System to healthcare services. There were no injuries reported throughout the medical evacuation and recovery of medical services. The leadership and management of healthcare services achieved the goals of evacuating patients and staff effectively, supporting emergency first responders and the re-entry of the population to Fort McMurray.

  5. LANDFIRE 2010 - updated data to support wildfire and ecological management

    USGS Publications Warehouse

    Nelson, Kurtis J.; Connot, Joel A.; Peterson, Birgit E.; Picotte, Joshua J.

    2013-01-01

    Wildfire is a global phenomenon that affects human populations and ecosystems. Wildfire effects occur at local to global scales impacting many people in different ways (Figure 1). Ecological concerns due to land use, fragmentation, and climate change impact natural resource use, allocation, and conservation. Access to consistent and current environmental data is a constant challenge, yet necessary for understanding the complexities of wildfire and ecological management. Data products and tools from the LANDFIRE Program help decision-makers to clarify problems and identify possible solutions when managing fires and natural resources. LANDFIRE supports the reduction of risk from wildfire to human lives and property, monitoring of fire danger, prediction of fire behavior on active incidents, and assessment of fire severity and impacts on natural systems [1] [2] [3]. LANDFIRE products are unique in that they are nationally consistent and provide the only complete geospatial dataset describing vegetation and wildland fuel information for the entire U.S. As such, LANDFIRE data are useful for many ecological applications [3]. For example, LANDFIRE data were recently integrated into a decision-support system for resource management and conservation decision-making along the Appalachian Trail. LANDFIRE is a joint effort between the U.S. Department of the Interior Office of Wildland Fire, U.S. Department of Agriculture Forest Service Fire & Aviation Management, and The Nature Conservancy. To date, seven versions of LANDFIRE data have been released, with each successive version improving the quality of the data, adding additional features, and/or updating the time period represented by the data. The latest version, LANDFIRE 2010 (LF 2010), released mid-2013, represents circa 2010 landscape conditions and succeeds LANDFIRE 2008 (LF 2008), which represented circa 2008 landscape conditions. LF 2010 used many of the same processes developed for the LF 2008 effort [3]. Ongoing refinement of the LANDFIRE vegetation and fuel data is necessary to improve the quality and usability of the data and to capture landscape disturbance. LANDFIRE relies on Landsat multi-spectral imagery to produce and update vegetation and fuel data. The deep Landsat archive provides data needed for vegetation classification, change analysis, and historical disturbance characterization, for which LANDFIRE has used more than 24,000 image scenes since the program’s inception. In addition, LF 2010 used airborne and spaceborne lidar, and spaceborne synthetic aperture radar (SAR) to map vegetation structure in areas where ground-based field information was lacking, including Alaska and U.S.-affiliated islands in the Caribbean and the Pacific. The mapping of insular areas is new for the 2010 data release; previous versions of LANDFIRE were limited to the conterminous U.S., Alaska, and Hawaii.

  6. Wildland fire smoke and human health.

    PubMed

    Cascio, Wayne E

    2018-05-15

    The natural cycle of landscape fire maintains the ecological health of the land, yet adverse health effects associated with exposure to emissions from wildfire produce public health and clinical challenges. Systematic reviews conclude that a positive association exists between exposure to wildfire smoke or wildfire particulate matter (PM 2.5 ) and all-cause mortality and respiratory morbidity. Respiratory morbidity includes asthma, chronic obstructive pulmonary disease (COPD), bronchitis and pneumonia. The epidemiological data linking wildfire smoke exposure to cardiovascular mortality and morbidity is mixed, and inconclusive. More studies are needed to define the risk for common and costly clinical cardiovascular outcomes. Susceptible populations include people with respiratory and possibly cardiovascular diseases, middle-aged and older adults, children, pregnant women and the fetus. The increasing frequency of large wildland fires, the expansion of the wildland-urban interface, the area between unoccupied land and human development; and an increasing and aging U.S. population are increasing the number of people at-risk from wildfire smoke, thus highlighting the necessity for broadening stakeholder cooperation to address the health effects of wildfire. While much is known, many questions remain and require further population-based, clinical and occupational health research. Health effects measured over much wider geographical areas and for longer periods time will better define the risk for adverse health outcomes, identify the sensitive populations and assess the influence of social factors on the relationship between exposure and health outcomes. Improving exposure models and access to large clinical databases foreshadow improved risk analysis facilitating more effective risk management. Fuel and smoke management remains an important component for protecting population health. Improved smoke forecasting and translation of environmental health science into communication of actionable information for use by public health officials, healthcare professionals and the public is needed to motivate behaviors that lower exposure and protect public health, particularly among those at high risk. Published by Elsevier B.V.

  7. Size fractionation as a tool for separating charcoal of different fuel source and recalcitrance in the wildfire ash layer.

    PubMed

    Mastrolonardo, Giovanni; Hudspith, Victoria A; Francioso, Ornella; Rumpel, Cornelia; Montecchio, Daniela; Doerr, Stefan H; Certini, Giacomo

    2017-10-01

    Charcoal is a heterogeneous material exhibiting a diverse range of properties. This variability represents a serious challenge in studies that use the properties of natural charcoal for reconstructing wildfires history in terrestrial ecosystems. In this study, we tested the hypothesis that particle size is a sufficiently robust indicator for separating forest wildfire combustion products into fractions with distinct properties. For this purpose, we examined two different forest environments affected by contrasting wildfires in terms of severity: an eucalypt forest in Australia, which experienced an extremely severe wildfire, and a Mediterranean pine forest in Italy, which burned to moderate severity. We fractionated the ash/charcoal layers collected on the ground into four size fractions (>2, 2-1, 1-0.5, <0.5mm) and analysed them for mineral ash content, elemental composition, chemical structure (by IR spectroscopy), fuel source and charcoal reflectance (by reflected-light microscopy), and chemical/thermal recalcitrance (by chemical and thermal oxidation). At both sites, the finest fraction (<0.5mm) had, by far, the greatest mass. The C concentration and C/N ratio decreased with decreasing size fraction, while pH and the mineral ash content followed the opposite trend. The coarser fractions showed higher contribution of amorphous carbon and stronger recalcitrance. We also observed that certain fuel types were preferentially represented by particular size fractions. We conclude that the differences between ash/charcoal size fractions were most likely primarily imposed by fuel source and secondarily by burning conditions. Size fractionation can therefore serve as a valuable tool to characterise the forest wildfire combustion products, as each fraction displays a narrower range of properties than the whole sample. We propose the mineral ash content of the fractions as criterion for selecting the appropriate number of fractions to analyse. Copyright © 2016. Published by Elsevier B.V.

  8. Wildfire Danger Potential in California

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Myoung, B.; Kim, S. H.; Fujioka, F. M.; Kim, J.

    2015-12-01

    Wildfires are an important concern in California (CA) which is characterized by the semi-arid to arid climate and vegetation types. Highly variable winter precipitation and extended hot and dry warm season in the region challenge an effective strategic fire management. Climatologically, the fire season which is based on live fuel moisture (LFM) of generally below 80% in Los Angeles County spans 4 months from mid-July to mid-November, but it has lasted over 7 months in the past several years. This behavior is primarily due to the ongoing drought in CA during the last decade, which is responsible for frequent outbreaks of severe wildfires in the region. Despite their importance, scientific advances for the recent changes in wildfire risk and effective assessments of wildfire risk are lacking. In the present study, we show impacts of large-scale atmospheric circulations on an early start and then extended length of fire seasons. For example, the strong relationships of North Atlantic Oscillation (NAO) with springtime temperature and precipitation in the SWUS that was recently revealed by our team members have led to an examination of the possible impact of NAO on wildfire danger in the spring. Our results show that the abnormally warm and dry spring conditions associated with positive NAO phases can cause an early start of a fire season and high fire risks throughout the summer and fall. For an effective fire danger assessment, we have tested the capability of satellite vegetation indices (VIs) in replicating in situ LFM of Southern CA chaparral ecosystems by 1) comparing seasonal/interannual characteristics of in-situ LFM with VIs and 2) developing an empirical model function of LFM. Unlike previous studies attempting a point-to-point comparison, we attempt to examine the LFM relationship with VIs averaged over different areal coverage with chamise-dominant grids (i.e., 0.5 km to 25 km radius circles). Lastly, we discuss implications of the results for fire danger assessment and prediction.

  9. 78 FR 13373 - Notice of Availability of the Colorado Plateau Rapid Ecoregional Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... gauges the potential risks to these lands from four key environmental ``change agents:'' Climate change... strategies that can respond more effectively to climate change, wildfire, and other environmental challenges... of Availability of the Colorado Plateau Rapid Ecoregional Assessment AGENCY: Bureau of Land...

  10. Modeling Pre- and Post- Wildfire Hydrologic Response to Vegetation Change in the Valles Caldera National Preserve, NM

    NASA Astrophysics Data System (ADS)

    Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.

    2017-12-01

    Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space experimentation, data format transformation, looping, validation of models and containerization for enabling new analytic scenarios. The user interacts with the modules through Jupyter Notebooks which can be connected to an on-demand computing and HPC environment, and data services built as part of the VWP.

  11. Perils in the adaptation of fire management to a changing world

    Treesearch

    Armando González-Cabán; M.M. Fernández-Ramiro; Claudio Conese; Francesco Bosello; Jorge Núñez; Victor Otrachshenko; B.J. Orr

    2014-01-01

    Increased fire load and costs are anticipated under future scenarios of climate and other global changes. This requires increased efficiency in investments in wildfire management operations, and resolving the disconnect problem between science, policy and management.

  12. Southern Annular Mode drives multicentury wildfire activity in southern South America.

    PubMed

    Holz, Andrés; Paritsis, Juan; Mundo, Ignacio A; Veblen, Thomas T; Kitzberger, Thomas; Williamson, Grant J; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E; Grau, H Ricardo; Quezada, Juan M

    2017-09-05

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

  13. Social Networks and Adaptation to Environmental Change: The Case of Central Oregon's Fire-Prone Forest Landscape

    NASA Astrophysics Data System (ADS)

    Fischer, A.

    2012-12-01

    Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.

  14. Wildfire risk adaptation: propensity of forestland owners to purchase wildfire insurance in the southern United States

    Treesearch

    Jianbang Gan; Adam Jarrett; Cassandra Johnson Gaither

    2014-01-01

    Economic and ecological damages caused by wildfire are alarming, and such damages are expected to rise with changes in wildfire regimes, calling for more effective wildfire mitigation and adaptation strategies. Among wildfire adaptation options for forestland owners is purchasing wildfire insurance, which provides compensation to those insured if a wildfire damages...

  15. Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.

    USGS Publications Warehouse

    Falke, Jeffrey A.; Flitcroft, Rebecca L; Dunham, Jason B.; McNyset, Kristina M.; Hessburg, Paul F.; Reeves, Gordon H.

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River basin, Washington, USA, under current and future climate and fire scenarios. The BN was based on modeled estimates of wildfire, water temperature, and physical habitat prior to, and following, simulated fires throughout the basin. We found that bull trout population vulnerability depended on the extent to which climate effects can be at least partially offset by managing factors such as habitat connectivity and fire size. Moreover, our analysis showed that local management can significantly reduce the vulnerability of bull trout to climate change given appropriate management actions. Tools such as our BN that explicitly integrate the linked nature of climate and wildfire, and incorporate uncertainty in both input data and vulnerability estimates, will be vital in effective future management to conserve native coldwater fishes.

  16. Evaluation of indigenous Lotus species for the western USA for rangeland revegetation and restoration

    USDA-ARS?s Scientific Manuscript database

    Semiarid rangelands in the western USA are facing serious challenges related to past mismanagement, invasive weedy species, wildfires, and climatic change. Leguminous forbs that are native to the western USA are of interest for rangeland revegetation and restoration because they provide biologicall...

  17. Tending the Fire

    ERIC Educational Resources Information Center

    City, Elizabeth A.; Dolly, Danique A.

    2017-01-01

    Part of being an effective school leader is helping staff and students deal with situations related to inequity and race--helping the fire of emotion that accompanies such issues energize your school rather than becoming a wildfire. Danique Dolly faced this challenge as principal of Baltimore's City Neighbors High School during the time riots…

  18. The Changing Roles Professional Development Program

    Treesearch

    A. Hermansen-Baez; N. Wulff

    2010-01-01

    As populations and urbanization expand in the Southern United States, human influences on forests and other natural areas are increasing. As a result, natural resource professionals are faced with complex challenges, such as managing smaller forest parcels for multiple benefits, and wildfire prevention and management in the wildland-urban interface (areas where urban...

  19. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  20. Fire regime characterization in Mediterranean ecosystems of Southern Italy

    NASA Astrophysics Data System (ADS)

    Lanorte, A.; Lasaponara, R.

    2009-04-01

    This paper addresses the wildfire regime in Mediterranean ecosystems of Southern Italy. Fire regimes refer to average fire conditions (including fire size, fire density, fire frequency, fire seasonality, fire intensity, fire severity, fire thresholds, etc.) occurring over a long period of time. Information on spatial pattern of forest fire locations is a key point in the study of the dynamics of fire disturbance, and allows us to improve the knowledge of past and current role of fire. Historical evidence clearly shows what did happen and this can fruitfully help to understand what is happening and what could happen in the next future. Mapping fire regimes is very challenging, because fire ocurrence features are the expression of the interactions between climate, fire, vegetation, topography, social factors. The main objective of this work is to provide a comprehensive characterization of the fire regime in Italy based on a recently updated national wildfire database. Fire data were obtained from the Italian National Forestry Service. This national database is comprised of information contained in individual fire reports completed for every fire that occurs on public lands in the Italian peninsula. Complete data were only available for 1996-2006 at the time we accessed the database, which determined the years we analysed. The primary fire history variables that we reported were number of fires, area burned, burning time and duration, and fire size (average size of individual fires) The wildfire records (wildfire area, location, time, vegetation) were analysed with other environmental (fuel availability and type), topographic features, and meteorological/climatological data. Results of our analysis could help better understand the different factors on the wildfire regime in Mediterranean ecosystems of Southern Italy.

  1. Global trends in wildfire and its impacts: perceptions versus realities in a changing world

    PubMed Central

    2016-01-01

    Wildfire has been an important process affecting the Earth's surface and atmosphere for over 350 million years and human societies have coexisted with fire since their emergence. Yet many consider wildfire as an accelerating problem, with widely held perceptions both in the media and scientific papers of increasing fire occurrence, severity and resulting losses. However, important exceptions aside, the quantitative evidence available does not support these perceived overall trends. Instead, global area burned appears to have overall declined over past decades, and there is increasing evidence that there is less fire in the global landscape today than centuries ago. Regarding fire severity, limited data are available. For the western USA, they indicate little change overall, and also that area burned at high severity has overall declined compared to pre-European settlement. Direct fatalities from fire and economic losses also show no clear trends over the past three decades. Trends in indirect impacts, such as health problems from smoke or disruption to social functioning, remain insufficiently quantified to be examined. Global predictions for increased fire under a warming climate highlight the already urgent need for a more sustainable coexistence with fire. The data evaluation presented here aims to contribute to this by reducing misconceptions and facilitating a more informed understanding of the realities of global fire. This article is part of themed issue ‘The interaction of fire and mankind’. PMID:27216515

  2. Global trends in wildfire and its impacts: perceptions versus realities in a changing world.

    PubMed

    Doerr, Stefan H; Santín, Cristina

    2016-06-05

    Wildfire has been an important process affecting the Earth's surface and atmosphere for over 350 million years and human societies have coexisted with fire since their emergence. Yet many consider wildfire as an accelerating problem, with widely held perceptions both in the media and scientific papers of increasing fire occurrence, severity and resulting losses. However, important exceptions aside, the quantitative evidence available does not support these perceived overall trends. Instead, global area burned appears to have overall declined over past decades, and there is increasing evidence that there is less fire in the global landscape today than centuries ago. Regarding fire severity, limited data are available. For the western USA, they indicate little change overall, and also that area burned at high severity has overall declined compared to pre-European settlement. Direct fatalities from fire and economic losses also show no clear trends over the past three decades. Trends in indirect impacts, such as health problems from smoke or disruption to social functioning, remain insufficiently quantified to be examined. Global predictions for increased fire under a warming climate highlight the already urgent need for a more sustainable coexistence with fire. The data evaluation presented here aims to contribute to this by reducing misconceptions and facilitating a more informed understanding of the realities of global fire.This article is part of themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  3. Wildfire effects on source-water quality--Lessons from Fourmile Canyon fire, Colorado, and implications for drinking-water treatment

    USGS Publications Warehouse

    Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    Forested watersheds provide high-quality source water for many communities in the western United States. These watersheds are vulnerable to wildfires, and wildfire size, fire severity, and length of fire season have increased since the middle 1980s (Westerling and others, 2006). Burned watersheds are prone to increased flooding and erosion, which can impair water-supply reservoirs, water quality, and drinking-water treatment processes. Limited information exists on the degree, timing, and duration of the effects of wildfire on water quality, making it difficult for drinking-water providers to evaluate the risk and develop management options. In order to evaluate the effects of wildfire on water quality and downstream ecosystems in the Colorado Front Range, the U.S. Geological Survey initiated a study after the 2010 Fourmile Canyon fire near Boulder, Colorado. Hydrologists frequently sampled Fourmile Creek at monitoring sites upstream and downstream of the burned area to study water-quality changes during hydrologic conditions such as base flow, spring snowmelt, and summer thunderstorms. This fact sheet summarizes principal findings from the first year of research. Stream discharge and nitrate concentrations increased downstream of the burned area during snowmelt runoff, but increases were probably within the treatment capacity of most drinking-water plants, and limited changes were observed in downstream ecosystems. During and after high-intensity thunderstorms, however, turbidity, dissolved organic carbon, nitrate, and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. Increases of such magnitude can pose problems for water-supply reservoirs, drinking-water treatment plants, and downstream aquatic ecosystems.

  4. Integrating wildfire plume rises within atmospheric transport models

    NASA Astrophysics Data System (ADS)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically overestimated while free tropospheric concentrations of CO were underestimated, likely a result of STILT injecting the fire emissions strictly into the PBL. We show in this study to what degree coupling the STILT model with an external plume rise model can help mitigate these problems.

  5. Understory Herbicide as a Treatment For Reducing Hazardous Fuels and Extreme Fire Behavior in Slash Pine Plantations

    Treesearch

    Patrick H. Brose; Dale Wade

    2002-01-01

    The 1998 wildfires in Florida sparked a serious debate about the accumulation of hazardous forest fuels and the merits of prescribed fire and alternatives for mitigating that problem. One such alternative is application of understory herbicides and anecdotal evidence suggests they may either exacerbate or lessen the fuel accumulation problem. In 1998, a study was...

  6. Spanish Network on Effects of Wildfires on Soils. The view after 5 years of networking

    NASA Astrophysics Data System (ADS)

    Jordán, Antonio; Mataix-Solera, Jorge; Cerdà, Artemi

    2013-04-01

    1. WHAT IS FUEGORED? The Spanish Thematic Network "Effects of Wildfires on Soils" (FUEGORED, http://grupo.us.es/fuegored) has been working for over 5 years at becoming a point of reference for the study of fire-affected soils and restoration strategies. FUEGORED started in 2007, originally scheduled to run three years, as a result of the interest of Spanish researchers for developing better strategies and scientific interchange of ideas, people and collaboration between research groups. The first steps towards the establishment of a working group were a series of fieldtrips through Spain (2003), USA (2004) and Portugal (2005), where discussions about problems and research strategies arised. In its early years the network was supported by the former Ministry of Science and Innovation. This is a project to review scientific knowledge developed to date and discuss and propose future developments in scientific research about the effects of wildfires on soils. The objectives of the network are to promote and disseminate scientific research findings, provide technical and management information, and facilitate transference of knowledge between scientists, forest managers, students and society. 2. WHO IS IN THE NETWORK? The research group consists of the leading names of Spanish science in the topic and young talents, which are currently developing the most innovative research lines. Currently, the network is formed by 245 members, researchers from over 30 Spanish universities and research centers to provide the experience of decades of scientific and technical work in areas affected by forest fires and outstanding foreign researchers from Europe, Australia and America, including countries such as Australia, Italy, Lithuania, Portugal, UK, USA and others. Forest managers and technicians from various institutions are also present. 3. MAIN ACHIEVEMENTS Four international congresses have been promoted by the network in Valencia, 2008, Seville, 2009, Santiago de Compostela, 2010 and Tenerife, 2012 (the next meeting will be held in Barcelona in 2014). In addition, several contributions, courses and workshops have been celebrated in Spanish or international forums as the EGU General Assembly, the International Meeting of Fire Effects on Soil Properties (FESP2011 and forthcoming FESP2013) and the International Conference on Geomorphology have been also sponsored. Other activities include the publication of book series (two volumes have been published: Cerdá and Jordán, 2010; Cerdà and Mataix-Solera, 2009. The third one is currently in preparation), books of abstracts (Díaz-Raviña et al., 2010; Jordán et al., 2009), a series of technical reports (in preparation) and special issues in international journals (in, for example, Catena, Geoderma, Environmental Research or the International Journal of Wildland Fire). A four-monthly journal (FLAMMA; http://grupo.us.es/fuegored/flamma) is published regularly since 2010 with an increasing audience and issues scheduled until 2014. Also, the network has promoted voluntary environmental actions and educational activities. 4. MAIN CHALLENGES The next challenges are to continue promoting the interaction between scientists, decision makers, forest management staff and end-users and to establish new connections with European institutions and research groups. ACKNOWLEDGEMENTS The Spanish Thematic Network "Effects of Wildfires on Soils" was supported between 2007 and 2009 by the Spanish Ministry of Science and Innovation (projects CGL2007-28764-E 2007-2008 and CGL2008-01632-E 2009). REFERENCES Cerdà, A. Jordán, A. (Eds.). 2010. Actualización de Métodos y Técnicas para el Estudio de los Suelos Afectados por Incendios Forestales [Updated methods and techniques for the study of soils affected by wildfires; in Spanish]. Cátedra de Divulgació de la Ciència, Universitat de València, FUEGORED 2010. Valencia. 521 pp. ISBN: 978-84-370-7887-8. Cerdà, A., Mataix-Solera, J. (Eds). 2009. Efectos de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles [Effects of wildfires on soils in Spain. The state of the question as seen by Spanish scientists; in Spanish]. Càtedra de Divulgació de la Ciència. Universitat de Valencia. 529 pp. ISBN: 978-84-370-7653-9. Díaz Raviña, M., Benito, E., Carballas, T., Fontúrbel, M.T., Vega , J.A.(Eds.). 2010. Research and post-fire Management: Soil Protection and Rehabilitation Techniques for Burnt Forest Ecosystems. IIAG (CSIC). Santiago de Compostela. 326 pp. ISBN: 978-84-8408-583-6. Jordán, A., Zavala, L.M. de la Rosa, J.M., Knicker, H., González-Pérez, J.A., González-Vila, F.J. (Eds.). 2009. Advances in forest fire effects on soils 2009. IRNAS-CSIC-Universidad de Sevilla. Sevilla. 144 pp. URI: http://hdl.handle.net/10261/18162. FUEGORED INTERNATIONAL MEETINGS FUEGORED2008. I International Meeting Effects of Wildfires son Soils. 03-05 December 2008. Valencia/Enguera/Alcoi, Spain. FUEGORED2009. II International Meeting Effects of Wildfires son Soils. 04-06 November 2009. Sevilla/Cortegana, Spain. FUEGORED2010. III International Meeting Effects of Wildfires son Soils Research and post-fire Management: Soil Protection and Rehabilitation Techniques for Burnt Forest Ecosystems 06-08 October 2010. Santiago de Compostela, Spain. FUEGORED2012. IV International Meeting Effects of Wildfires son Soils 24-27 October 2012. Puerto de la Cruz, Spain.

  7. Using common gardens and AFLP analyses to identify metapopulations of indigenous plant materials for rangeland revegetation in western USA

    USDA-ARS?s Scientific Manuscript database

    Semiarid rangelands in the western USA are facing unprecedented challenges related to past mismanagement, invasive weedy species, wildfires, and climatic change. A diversity of plant species are needed to effectively revegetate these rangelands. Legumes indigenous to western North America are of p...

  8. Is seeing believing? Perceptions of wildfire risk over time

    Treesearch

    Patricia A. Champ; Hannah Brenkert-Smith

    2016-01-01

    Ongoing challenges to understanding how hazard exposure and disaster experiences influence perceived risk lead us to ask: Is seeing believing? We approach risk perception by attending to two components of overall risk perception: perceived probability of an event occurring and perceived consequences if an event occurs. Using a two-period longitudinal data set...

  9. Burning of forest materials under late Paleozoic high atmospheric oxygen levels

    Treesearch

    Richard A., Jr. Wildman; Leo J. Hickey; Matthew B. Dickinson; Robert A. Berner; Jennifer M. Robinson; Michael Dietrich; Robert H. Essenhigh; Craig B. Wildman

    2004-01-01

    Theoretical models suggest that atmospheric oxygen reached concentrations as high as 35% O2 during the past 550 m.y. Previous burning experiments using strips of paper have challenged this idea, concluding that ancient wildfires would have decimated plant life if O2 significantly exceeded its present level of 21%. New...

  10. California spotted owl, songbird, and small mammal responses to landscape fuel treatments

    Treesearch

    Scott L. Stephens; Seth W. Bigelow; Ryan D. Burnett; Brandon M. Collins; Claire. V. Gallagher; John Keane; Douglas A. Kelt; Malcolm P. North; Lance J. Roberts; Peter A. Stine; Dirk H. Van Vuren

    2014-01-01

    A principal challenge of federal forest management has been maintaining and improving habitat for sensitive species in forests adapted to frequent, low- to moderate-intensity fire regimes that have become increasingly vulnerable to uncharacteristically severe wildfires. To enhance forest resilience, a coordinated landscape fuel network was installed in the northern...

  11. Lessons learned on 50,000 acres of plantation in northern California

    Treesearch

    Jeff Webster; Ed Fredrickson

    2005-01-01

    Many lessons have been learned during reforestation of large wildfires and clearcuts in interior Northern California, a region of low rainfall and summer drought typical of a Mediterranean climate. Challenges appeared from time of establishment right up to commercial thinning. Establishment issues included procurement of improved seed, site preparation, soil mitigation...

  12. The science of firescapes: Achieving fire-resilient communities

    Treesearch

    Alistair M. S. Smith; Crystal A. Kolden; Travis B. Paveglio; Mark A. Cochrane; David MJS Bowman; Max A. Moritz; Andrew D. Kliskey; Lilian Alessa; Andrew T. Hudak; Chad M. Hoffman; James A. Lutz; Lloyd P. Queen; Scott J. Goetz; Philip E. Higuera; Luigi Boschetti; Mike Flannigan; Kara M. Yedinak; Adam C. Watts; Eva K. Strand; Jan W. van Wagtendonk; John W. Anderson; Brian J. Stocks; John T. Abatzoglou

    2016-01-01

    Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including...

  13. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others

    PubMed Central

    Penman, Trent D.; Price, Owen F.

    2016-01-01

    Many houses are at risk of being destroyed by wildfires. While previous studies have improved our understanding of how, when and why houses are destroyed by wildfires, little attention has been given to how these fires started. We compiled a dataset of wildfires that destroyed houses in New South Wales and Victoria and, by comparing against wildfires where no houses were destroyed, investigated the relationship between the distribution of ignition causes for wildfires that did and did not destroy houses. Powerlines, lightning and deliberate ignitions are the main causes of wildfires that destroyed houses. Powerlines were 6 times more common in the wildfires that destroyed houses data than in the wildfires where no houses were destroyed data and lightning was 2 times more common. For deliberate- and powerline-caused wildfires, temperature, wind speed, and forest fire danger index were all significantly higher and relative humidity significantly lower (P < 0.05) on the day of ignition for wildfires that destroyed houses compared with wildfires where no houses were destroyed. For all powerline-caused wildfires the first house destroyed always occurred on the day of ignition. In contrast, the first house destroyed was after the day of ignition for 78% of lightning-caused wildfires. Lightning-caused wildfires that destroyed houses were significantly larger (P < 0.001) in area than human-caused wildfires that destroyed houses. Our results suggest that targeting fire prevention strategies around ignition causes, such as improving powerline safety and targeted arson reduction programmes, and reducing fire spread may decrease the number of wildfires that destroy houses. PMID:27598325

  14. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others.

    PubMed

    Collins, Kathryn M; Penman, Trent D; Price, Owen F

    2016-01-01

    Many houses are at risk of being destroyed by wildfires. While previous studies have improved our understanding of how, when and why houses are destroyed by wildfires, little attention has been given to how these fires started. We compiled a dataset of wildfires that destroyed houses in New South Wales and Victoria and, by comparing against wildfires where no houses were destroyed, investigated the relationship between the distribution of ignition causes for wildfires that did and did not destroy houses. Powerlines, lightning and deliberate ignitions are the main causes of wildfires that destroyed houses. Powerlines were 6 times more common in the wildfires that destroyed houses data than in the wildfires where no houses were destroyed data and lightning was 2 times more common. For deliberate- and powerline-caused wildfires, temperature, wind speed, and forest fire danger index were all significantly higher and relative humidity significantly lower (P < 0.05) on the day of ignition for wildfires that destroyed houses compared with wildfires where no houses were destroyed. For all powerline-caused wildfires the first house destroyed always occurred on the day of ignition. In contrast, the first house destroyed was after the day of ignition for 78% of lightning-caused wildfires. Lightning-caused wildfires that destroyed houses were significantly larger (P < 0.001) in area than human-caused wildfires that destroyed houses. Our results suggest that targeting fire prevention strategies around ignition causes, such as improving powerline safety and targeted arson reduction programmes, and reducing fire spread may decrease the number of wildfires that destroy houses.

  15. Southern Annular Mode drives multicentury wildfire activity in southern South America

    PubMed Central

    Paritsis, Juan; Mundo, Ignacio A.; Veblen, Thomas T.; Kitzberger, Thomas; Williamson, Grant J.; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E.; Grau, H. Ricardo; Quezada, Juan M.

    2017-01-01

    The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531–2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37–54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665–1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century. PMID:28827329

  16. Modelling Carbon Emissions in Calluna vulgaris-Dominated Ecosystems when Prescribed Burning and Wildfires Interact.

    PubMed

    Santana, Victor M; Alday, Josu G; Lee, HyoHyeMi; Allen, Katherine A; Marrs, Rob H

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions.

  17. Trying not to get burned: understanding homeowners' wildfire risk-mitigation behaviors.

    PubMed

    Brenkert-Smith, Hannah; Champ, Patricia A; Flores, Nicholas

    2012-12-01

    Three causes have been identified for the spiraling cost of wildfire suppression in the United States: climate change, fuel accumulation from past wildfire suppression, and development in fire-prone areas. Because little is likely to be performed to halt the effects of climate on wildfire risk, and because fuel-management budgets cannot keep pace with fuel accumulation let alone reverse it, changing the behaviors of existing and potential homeowners in fire-prone areas is the most promising approach to decreasing the cost of suppressing wildfires in the wildland-urban interface and increasing the odds of homes surviving wildfire events. Wildfire education efforts encourage homeowners to manage their property to decrease wildfire risk. Such programs may be more effective with a better understanding of the factors related to homeowners' decisions to undertake wildfire risk-reduction actions. In this study, we measured whether homeowners had implemented 12 wildfire risk-mitigation measures in 2 Colorado Front Range counties. We found that wildfire information received from local volunteer fire departments and county wildfire specialists, as well as talking with neighbors about wildfire, were positively associated with higher levels of mitigation. Firsthand experience in the form of preparing for or undertaking an evacuation was also associated with a higher level of mitigation. Finally, homeowners who perceived higher levels of wildfire risk on their property had undertaken higher levels of wildfire-risk mitigation on their property.

  18. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015.

    PubMed

    Dreessen, Joel; Sullivan, John; Delgado, Ruben

    2016-09-01

    Canadian wildfire smoke impacted air quality across the northern Mid-Atlantic (MA) of the United States during June 9-12, 2015. A multiday exceedance of the new 2015 70-ppb National Ambient Air Quality Standard (NAAQS) for ozone (O3) followed, resulting in Maryland being incompliant with the Environmental Protection Agency's (EPA) revised 2015 O3 NAAQS. Surface in situ, balloon-borne, and remote sensing observations monitored the impact of the wildfire smoke at Maryland air quality monitoring sites. At peak smoke concentrations in Maryland, wildfire-attributable volatile organic compounds (VOCs) more than doubled, while non-NOx oxides of nitrogen (NOz) tripled, suggesting long range transport of NOx within the smoke plume. Peak daily average PM2.5 was 32.5 µg m(-3) with large fractions coming from black carbon (BC) and organic carbon (OC), with a synonymous increase in carbon monoxide (CO) concentrations. Measurements indicate that smoke tracers at the surface were spatially and temporally correlated with maximum 8-hr O3 concentrations in the MA, all which peaked on June 11. Despite initial smoke arrival late on June 9, 2015, O3 production was inhibited due to ultraviolet (UV) light attenuation, lower temperatures, and nonoptimal surface layer composition. Comparison of Community Multiscale Air Quality (CMAQ) model surface O3 forecasts to observations suggests 14 ppb additional O3 due to smoke influences in northern Maryland. Despite polluted conditions, observations of a nocturnal low-level jet (NLLJ) and Chesapeake Bay Breeze (BB) were associated with decreases in O3 in this case. While infrequent in the MA, wildfire smoke may be an increasing fractional contribution to high-O3 days, particularly in light of increased wildfire frequency in a changing climate, lower regional emissions, and tighter air quality standards. The presented event demonstrates how a single wildfire event associated with an ozone exceedance of the NAAQS can prevent the Baltimore region from complying with lower ozone standards. This relatively new problem in Maryland is due to regional reductions in NOx emissions that led to record low numbers of ozone NAAQS violations in the last 3 years. This case demonstrates the need for adequate means to quantify and justify ozone impacts from wildfires, which can only be done through the use of observationally based models. The data presented may also improve future air quality forecast models.

  19. Trial by fire: Community Wildfire Protection Plans put to the test

    Treesearch

    Pamela J. Jakes; Victoria Sturtevant

    2013-01-01

    Research has found that community wildfire protection planning can make significant contributions to wildfire mitigation and preparedness, but can the planning process and resulting Community Wildfire Protection Plans make a difference to wildfire response and recovery? In case studies conducted in four USA communities with Community Wildfire Protection Plans in place...

  20. The lost summer: Community experiences of large wildfires in Trinity County, California

    Treesearch

    Emily J. Davis; Cassandra Moseley; Pamela Jakes; Max Nielsen-Pincus

    2011-01-01

    As wildfires are increasing in scale and duration, and communities are increasingly located where these wildfires are occurring, we need a clearer understanding of how large wildfires affect economic and social well being. These wildfires can have complex impacts on rural public lands communities. They can threaten homes, public health, and livelihoods. Wildfires can...

  1. Characterizing Wildfire Regimes and Risk in the USA

    NASA Astrophysics Data System (ADS)

    Malamud, B. D.; Millington, J. D.; Perry, G. L.

    2004-12-01

    Over the last decade, high profile wildfires have resulted in numerous fatalities and loss of infrastructure. Wildfires also have a significant impact on climate and ecosystems, with recent authors emphasizing the need for regional-level examinations of wildfire-regime dynamics and change, and the factors driving them. With implications for hazard management, climate studies, and ecosystem research, there is therefore significant interest in appropriate analysis of historical wildfire databases. Insightful studies using wildfire database statistics exist, but are often hampered by the low spatial and/or temporal resolution of their datasets. In this paper, we use a high-resolution dataset consisting of 88,855 USFS wildfires over the time period 1970--2000, and consider wildfire occurrence across the conterminous USA as a function of ecoregion (land units classified by climate, vegetation, and topography), ignition source (anthropogenic vs. lightning), and decade (1970--1979, 1980--1989, 1990--1999). We find that for the conterminous USA (a) wildfires exhibit robust frequency-area power-law behavior in 17 different ecoregions, (b) normalized power-law exponents may be used to compare the scaling of wildfire burned areas between regions, (c) power-law exponents change systematically from east to west, (d) wildfires in 75% of the conterminous USA (particularly the east) have higher power-law exponents for anthropogenic vs. lightning ignition sources, and (e) recurrence intervals for wildfires of a given burned area or larger for each ecoregion can be assessed, allowing for the classification of wildfire regimes for probabilistic hazard estimation in the same vein as is now used for earthquakes. By examining wildfire statistics in a spatially and temporally explicit manner, we are able to present resultant wildfire regime summary statistics and conclusions, along with a probabilistic hazard assessment of wildfire risk at the ecoregion division level across the conterminous USA.

  2. Modeling Wildfire Hazard in the Western Hindu Kush-Himalayas

    NASA Astrophysics Data System (ADS)

    Bylow, D.

    2012-12-01

    Wildfire regimes are a leading driver of global environmental change affecting a diverse array of global ecosystems. Particulates and aerosols produced by wildfires are a primary source of air pollution making the early detection and monitoring of wildfires crucial. The objectives of this study were to model regional wildfire potential and identify environmental, topological, and sociological factors that contribute to the ignition of wildfire events in the Western Hindu Kush-Himalayas of South Asia. The environmental, topological, and sociological factors were used to model regional wildfire potential through multi-criteria evaluation using a method of weighted linear combination. Moderate Resolution Imaging Spectroradiometer (MODIS) and geographic information systems (GIS) data were integrated to analyze regional wildfires and construct the model. Model validation was performed using a holdout cross validation method. The study produced a significant model of wildfire potential in the Western Hindu Kush-Himalayas.; Western Hindu Kush-Himalayas ; Western Hindu Kush-Himalayas Wildfire Potential

  3. Modern Approaches to Wildfire Mitigation by Air and by Ground: An Interdisciplinary Perspective

    NASA Astrophysics Data System (ADS)

    Duffin, J.; Lindquist, E.; Pierce, J. L.; Wuerzer, T.; Lawless, B.; McCoy, J.

    2013-12-01

    In 2012, 1.7 million acres of land burned in Idaho--more than any other state. Boise, Idaho, is situated at the base of the Boise Foothills; this physiographic setting places the area at risk of not only fires along on the Wildland-Urban Interface (WUI), but also at risk for post-fire floods and debris flows in the lower lying neighborhoods adjacent to steep hillslopes. In 1959 and 1994, fires and post-fire debris flows devastated areas of the foothills, and inundated residences with water and mud. Anthropogenically-induced climate change is projected to increased summer temperatures and decrease summer precipitation; the associated increase in fire risk necessitates enhanced wildfire planning in Boise's WUI. Temporal uncertainty with varying weather and vegetation conditions poses problems in defining wildfire risk and requires new methods to address the WUI challenges. Unmanned aerial systems (UAS) could identify and characterize fire hazards to be mapped and used as a management tool. This technology would allow for repeat flights to update risk analysis as the hazards change both annually and multiple times within each fire season. With aerial photography obtained from flights, Structure from Motion software can be used to compile the images and render a 3D model to help quantify biomass. Aerial photographs would also allow for the ability to track seasonal changes in fire risk from vegetation height and inferred moisture content. Boise State University's departments of Geoscience, Community and Regional Planning, and the Public Policy Center are examining the risks and impacts of fire along the Boise WUI. The research integrates the perspectives of the geosciences and social sciences by combining physically-based fire hazards, effective fire management policies, and urban/regional planning in the WUI to provide better spatially-appropriate data and resources to the community and a common reference to assist in unifying the local efforts for fire mitigation. This presentation will introduce findings from a homeowner's survey of potentially at-risk residents regarding their perceptions of risk and uncertainty and their receptiveness to local mitigation, adaptation policies, and alternatives.

  4. A risk-based approach to wildland fire budgetary planning

    Treesearch

    Matthew P. Thompson; David E. Calkin; Mark A. Finney; Krista M. Gebert; Michael S. Hand

    2013-01-01

    The financial impact of wildfire management within the USDA Forest Service challenges the ability of the agency to meet societal demands and maintain forest health. The extent of this financial crisis has been attributed to historical and continuing fire management practices, changing climatic conditions, and increasing human development in fire-prone areas, as well as...

  5. Fuels treatments in the 21st century - do they matter?

    Treesearch

    Erik C. Christiansen

    2015-01-01

    Fuels treatments have long mattered, and are expected to into the future. Mangers are trying desperately to quantitatively answer the question "How much of the risk of wildfire to key values is being reduced through fuels management programs?" Serious challenges to continued implementation of fuels treatments persist, such as lack of sufficient resources to...

  6. Prescribed fire in North American forests and woodlands: history, current practice, and challenges

    Treesearch

    Kevin C. Ryan; Eric E. Knapp; J. Morgan Varner

    2013-01-01

    Whether ignited by lightning or by Native Americans, fire once shaped many North American ecosystems. Euro-American settlement and 20th-century fire suppression practices drastically altered historic fire regimes, leading to excessive fuel accumulation and uncharacteristically severe wildfires in some areas and diminished flammability resulting from shifts to more fire...

  7. Wildland fires and air pollution. Developments in Environmental Science 8

    Treesearch

    Andrzej Bytnerowicz; Michael Arbaugh; Christian Andersen; Allen Riebau

    2009-01-01

    The interaction between smoke and air pollution creates a public health challenge. Fuels treatments proposed for National Forests are intended to reduce fuel accumulations and wildfire frequency and severity, as well as to protect property located in the wild land-urban interface. However, prescribed fires produce gases and aerosols that have instantaneous and long-...

  8. Climate change and vulnerability of bull trout (Salvelinus confluentus ) in a fire-prone landscape

    Treesearch

    Jeffrey A. Falke; Rebecca L. Flitcroft; Jason B. Dunham; Kristina M. McNyset; Paul F. Hessburg; Gordon H. Reeves; C. Tara Marshall

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River...

  9. Restoration of southwestern ponderosa pine forests: Implications and opportunities for wildlife

    Treesearch

    Catherine S. Wightman; Steven S. Rosenstock

    2008-01-01

    (Please note, this is an abstract only) After a century of fire suppression, livestock grazing, and even-aged timber harvest practices, forest managers in the Southwest face an enormous challenge. Millions of acres of ponderosa pine forest are extremely susceptible to uncharacteristic, high intensity wildfires, the consequences of which were amply demonstrated by...

  10. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  11. Stewardship and fireshed assessment: a process for designing a landscape fuel treatment strategy.

    Treesearch

    Bernhard Bahro; Klaus H. Barber; Joseph W. Sherlock; Donald A. Yasuda

    2007-01-01

    Natural resource land managers today face a difficult challenge of developing a cohesive fuels and vegetation management strategy that addresses the widely acknowledged wildfire threat. Treatments must also be compatible with a wide variety of other land management goals, such as managing for wildlife habitat, watersheds, and forest health. In addition, funding will...

  12. Risk and cooperation: managing hazardous fuel in mixed ownership landscapes

    Treesearch

    A. Paige Fischer; Susan Charnley

    2012-01-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions...

  13. Israel wildfires: future trends, impacts and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea

    2017-04-01

    Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating potential risks and management strategic. Moreover, national agencies and local authorities must decide on a range of post-fire measures to mitigate risks quickly since most large fires occur late in summer shortly before the winter season. Possible climate changes, socio-economic trends, and intense land use pressures are contributing factors in a national challenge to deal with forest fires along the WUI. However, in order to support integrated fire preparedness, response, management and recovery at the national, regional and local scales, stronger research and planning effort are required. This includes long-term monitoring programs and a systematic, standardized data acquisition scheme, compiling fire history, landscape-fire spread, mitigation and assessment of the immediate fire effects, land use changes and weather data. Knowledge of both short and long-term impacts of wildfire is essential for effective risk assessment, policy formulation and wildfire management.

  14. ArcFuels10 system overview

    Treesearch

    Nicole M. Vaillant; Alan A. Ager; John Anderson

    2013-01-01

    Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be...

  15. The economic dimension of wildland fires

    Treesearch

    Armando Gonzalez-Caban

    2013-01-01

    The economic relevance of wildland fire management and protection programs is ever growing, particularly considering mounting wildfire costs and losses globally, and the justifications required for budget allocations to management and protection of forest ecosystems. However, there are major difficulties in grappling with the problem of rapidly increasing wildland fire...

  16. Restoration of southwestern ponderosa pine ecosystems with fire

    Treesearch

    Stephen S. Sackett; Sally M. Haase; Michael G. Harrington

    1994-01-01

    Heavy grazing and timbering during settlement by Europeans, and a policy of fire exclusion shortly after caused extensive structural and compositional changes to the southwestern ponderosa pine ecosystem. These changes have resulted in forest health problems, such as increased insect and disease epidemics, reduced wildlife habitat, and a serious wildfire hazard....

  17. A conceptual framework for coupling the biophysical and social dimensions of wildfire to improve fireshed planning and risk mitigation

    Treesearch

    Jeff Kline; Alan A. Ager; Paige Fischer

    2015-01-01

    The need for improved methods for managing wildfire risk is becoming apparent as uncharacteristically large wildfires in the western US and elsewhere exceed government capacities for their control and suppression. We propose a coupled biophysical-social framework to managing wildfire risk that relies on wildfire simulation to identify spatial patterns of wildfire risk...

  18. The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change

    PubMed Central

    Banks, Sam C.; Knight, Emma J.; McBurney, Lachlan; Blair, David; Lindenmayer, David B.

    2011-01-01

    Background Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. Methodology/Principal Findings We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. Conclusions/Significance Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation. PMID:21826221

  19. Does Wildfire Open a Policy Window? Local Government and Community Adaptation After Fire in the United States.

    PubMed

    Mockrin, Miranda H; Fishler, Hillary K; Stewart, Susan I

    2018-05-15

    Becoming a fire adapted community that can coexist with wildfire is envisioned as a continuous, iterative process of adaptation, but it is unclear how communities may pursue adaptation. Experience with wildfire and other natural hazards suggests that disasters may open a "window of opportunity" leading to local government policy changes. We examined how destructive wildfire affected progress toward becoming fire adapted in eight locations in the United States. We found that community-level adaptation following destructive fires is most common where destructive wildfire is novel and there is already government capacity and investment in wildfire regulation and land use planning. External funding, staff capacity, and the presence of issue champions combined to bring about change after wildfire. Locations with long histories of destructive wildfire, extensive previous investment in formal wildfire regulation and mitigation, or little government and community capacity to manage wildfire saw fewer changes. Across diverse settings, communities consistently used the most common tools and actions for wildfire mitigation and planning. Nearly all sites reported changes in wildfire suppression, emergency response, and hazard planning documents. Expansion in voluntary education and outreach programs to increase defensible space was also common, occurring in half of our sites, but land use planning and regulations remained largely unchanged. Adaptation at the community and local governmental level therefore may not axiomatically follow from each wildfire incident, nor easily incorporate formal approaches to minimizing land use and development in hazardous environments, but in many sites wildfire was a focusing event that inspired reflection and adaptation.

  20. Assessing influences on social vulnerability to wildfire using surveys, spatial data and wildfire simulations.

    PubMed

    Paveglio, Travis B; Edgeley, Catrin M; Stasiewicz, Amanda M

    2018-05-01

    A growing body of research focuses on identifying patterns among human populations most at risk from hazards such as wildfire and the factors that help explain performance of mitigations that can help reduce that risk. Emerging policy surrounding wildfire management emphasizes the need to better understand such social vulnerability-or human populations' potential exposure to and sensitivity from wildfire-related impacts, including their ability to reduce negative impacts from the hazard. Studies of social vulnerability to wildfire often pair secondary demographic data with a variety of vegetation and wildfire simulation models to map potential risk. However, many of the assumptions made by those researchers about the demographic, spatial or perceptual factors that influence social vulnerability to wildfire have not been fully evaluated or tested against objective measures of potential wildfire risk. The research presented here utilizes self-reported surveys, GIS data, and wildfire simulations to test the relationships between select perceptual, demographic, and property characteristics of property owners against empirically simulated metrics for potential wildfire related damages or exposure. We also evaluate how those characteristics relate to property owners' performance of mitigations or support for fire management. Our results suggest that parcel characteristics provide the most significant explanation of variability in wildfire exposure, sensitivity and overall wildfire risk, while the positive relationship between income or property values and components of social vulnerability stands in contrast to typical assumptions from existing literature. Respondents' views about agency or government management helped explain a significant amount of variance in wildfire sensitivity, while the importance of wildfire risk in selecting a residence was an important influence on mitigation action. We use these and other results from our effort to discuss updated considerations for determining social vulnerability to wildfire and articulate alternative means to collect such information. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Modelling Carbon Emissions in Calluna vulgaris–Dominated Ecosystems when Prescribed Burning and Wildfires Interact

    PubMed Central

    Santana, Victor M.; Alday, Josu G.; Lee, HyoHyeMi; Allen, Katherine A.; Marrs, Rob H.

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions. PMID:27880840

  2. 43 CFR 4190.1 - Effect of wildfire management decisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Effect of wildfire management decisions... ALASKA Effect of Wildfire Management Decisions § 4190.1 Effect of wildfire management decisions. (a... on the public lands are at substantial risk of wildfire due to drought, fuels buildup, or other...

  3. 43 CFR 4190.1 - Effect of wildfire management decisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Effect of wildfire management decisions... ALASKA Effect of Wildfire Management Decisions § 4190.1 Effect of wildfire management decisions. (a... on the public lands are at substantial risk of wildfire due to drought, fuels buildup, or other...

  4. 43 CFR 4190.1 - Effect of wildfire management decisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Effect of wildfire management decisions... ALASKA Effect of Wildfire Management Decisions § 4190.1 Effect of wildfire management decisions. (a... on the public lands are at substantial risk of wildfire due to drought, fuels buildup, or other...

  5. 43 CFR 4190.1 - Effect of wildfire management decisions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Effect of wildfire management decisions... ALASKA Effect of Wildfire Management Decisions § 4190.1 Effect of wildfire management decisions. (a... on the public lands are at substantial risk of wildfire due to drought, fuels buildup, or other...

  6. An early warning system to forecast the close of the spring burning window from satellite-observed greenness.

    PubMed

    Pickell, Paul D; Coops, Nicholas C; Ferster, Colin J; Bater, Christopher W; Blouin, Karen D; Flannigan, Mike D; Zhang, Jinkai

    2017-10-27

    Spring represents the peak of human-caused wildfire events in populated boreal forests, resulting in catastrophic loss of property and human life. Human-caused wildfire risk is anticipated to increase in northern forests as fuels become drier, on average, under warming climate scenarios and as population density increases within formerly remote regions. We investigated springtime human-caused wildfire risk derived from satellite-observed vegetation greenness in the early part of the growing season, a period of increased ignition and wildfire spread potential from snow melt to vegetation green-up with the aim of developing an early warning wildfire risk system. The initial system was developed for 392,856 km 2 of forested lands with satellite observations available prior to the start of the official wildfire season and predicted peak human-caused wildfire activity with 10-day accuracy for 76% of wildfire-protected lands by March 22. The early warning system could have significant utility as a cost-effective solution for wildfire managers to prioritize the deployment of wildfire protection resources in wildfire-prone landscapes across boreal-dominated ecosystems of North America, Europe, and Russia using open access Earth observations.

  7. Post-wildfire recovery of water yield in the Sydney Basin water supply catchments: An assessment of the 2001/2002 wildfires

    NASA Astrophysics Data System (ADS)

    Heath, J. T.; Chafer, C. J.; van Ogtrop, F. F.; Bishop, T. F. A.

    2014-11-01

    Wildfire is a recurring event which has been acknowledged by the literature to impact the hydrological cycle of a catchment. Hence, wildfire may have a significant impact on water yield levels within a catchment. In Australia, studies of the effect of fire on water yield have been limited to obligate seeder vegetation communities. These communities regenerate from seed banks in the ground or within woody fruits and are generally activated by fire. In contrast, the Sydney Basin is dominated by obligate resprouter communities. These communities regenerate from fire resistant buds found on the plant and are generally found in regions where wildfire is a regular occurrence. The 2001/2002 wildfires in the Sydney Basin provided an opportunity to investigate the impacts of wildfire on water yield in a number of catchments dominated by obligate resprouting communities. The overall aim of this study was to investigate whether there was a difference in water yield post-wildfire. Four burnt subcatchments and 3 control subcatchments were assessed. A general additive model was calibrated using pre-wildfire data and then used to predict post-wildfire water yield using post-wildfire data. The model errors were analysed and it was found that the errors for all subcatchments showed similar trends for the post-wildfire period. This finding demonstrates that wildfires within the Sydney Basin have no significant medium-term impact on water yield.

  8. Examining Atmospheric and Ecological Drivers of Wildfires, Modeling Wildfire Occurrence in the Southwest United States, and Using Atmospheric Sounding Observations to Verify National Weather Service Spot Forecasts

    NASA Astrophysics Data System (ADS)

    Nauslar, Nicholas J.

    This dissertation is comprised of three different papers that all pertain to wildland fire applications. The first paper performs a verification analysis on mixing height, transport winds, and Haines Index from National Weather Service spot forecasts across the United States. The final two papers, which are closely related, examine atmospheric and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and managers to make informed decisions on wildfire potential in this region. The verification analysis here utilizes NWS spot forecasts of mixing height, transport winds and Haines Index from 2009-2013 issued for a location within 50 km of an upper sounding location and valid for the day of the fire event. Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson methods. Transport wind speeds were determined by averaging the wind speed through the boundary layer as determined by the three mixing height methods from the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation based on the elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited large mean absolute errors and biased towards over forecasting. Forecasts of transport wind speeds and Haines Index outperformed mixing height forecasts with smaller errors relative to their respective means. The rainfall and lightning associated with the North American Monsoon (NAM) can vary greatly intra- and inter-annually and has a large impact on wildfire activity across the SWA by igniting or suppressing wildfires. NAM onset thresholds and subsequent dates are determined for the SWA and each Predictive Service Area (PSA), which are sub-regions used by operational fire meteorologists to predict wildfire potential within the SWA, April through September from 1995-2013. Various wildfire activity thresholds using the number of wildfires and large wildfires identified days or time periods with increased wildfire activity for each PSA and the SWA. Self-organizing maps utilizing 500 and 700 hPa geopotential heights and precipitable water were implemented to identify atmospheric patterns contributing to the NAM onset and busy days/periods for each PSA and the SWA. Resulting SOM map types also showed the transition to, during, and from the NAM. Northward and eastward displacements of the subtropical ridge (i.e., four-corners high) over the SWA were associated with NAM onset, and a suppressed subtropical ridge and breakdown of the subtropical ridge map types over the SWA were associated with increased wildfire activity. We implemented boosted regression trees (BRT) to model wildfire occurrence for all and large wildfires for different wildfire types (i.e., lightning, human) across the SWA by PSA. BRT models for all wildfires demonstrated relatively small mean and mean absolute errors and showed better predictability on days with wildfires. Cross-validated accuracy assessments for large wildfires demonstrated the ability to discriminate between large wildfire and non-large wildfire days across all wildfire types. Measurements describing fuel conditions (i.e., 100 and 1000-hour dead fuel moisture, energy release component) were the most important predictors when considering all wildfire types and sizes. However, a combination of fuels and atmospheric predictors (i.e., lightning, temperature) proved most predictive for large wildfire occurrence, and the number of relevant predictors increases for large wildfires indicating more conditions need to align to support large wildfires.

  9. Department of Defense 2014 Climate Change Adaptation Roadmap

    DTIC Science & Technology

    2014-06-01

    CREDIT: NANCY JONESBONBREST, PEO C3T HATCHLINGS FROM ENDANGERED SEA TURTLES ARE RELEASED INTO THE ATLANTIC OCEAN NEAR KENNEDY SPACE CENTER/CAPE...changing precipitation patterns, climbing sea levels, and more extreme weather events will intensify the challenges of global instability, hunger...disasters. Our coastal installations are vulnerable to rising sea levels and increased flooding, while droughts, wildfires, and more extreme temperatures

  10. Identifying policy target groups with qualitative and quantitative methods: the case of wildfire risk on nonindustrial private forest lands

    Treesearch

    A. Paige Fischer

    2012-01-01

    Designing policies to harness the potential of heterogeneous target groups such as nonindustrial private forest owners to contribute to public policy goals can be challenging. The behaviors of such groups are shaped by their diverse motivations and circumstances. Segmenting heterogeneous target groups into more homogeneous subgroups may improve the chances of...

  11. Chaparral growth-ring analysis as an indicator of stand biomass development

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; John F. O' Leary; Christina Tague; Philip J. Riggan

    2016-01-01

    Chaparral wildfires typically create even-aged stands of vegetation that grow quickly in the first 2 decades following a fire. Patterns of this growth are important for understanding ecosystem productivity and re-establishment success, but are logistically challenging to measure over long time periods. We tested the utility of a novel method of using shrub growth rings...

  12. The national fire and fire surrogate study: early results and future challenges

    Treesearch

    Thomas A. Waldrop; James McIver

    2006-01-01

    Fire-adapted ecosystems today have dense plant cover and heavy fuel loads as a result of fire exclusion and other changes in land use practices. Mechanical fuel treatments and prescribed fire are powerful tools for reducing wildfire potential, but the ecological consequences of their use is unknown. The National Fire and Fire Surrogate Study examines the effects of...

  13. Rebuilding and new housing development after wildfire

    Treesearch

    Patricia M. Alexandre; Miranda H. Mockrin; Susan I. Stewart; Roger B. Hammer; Volker C. Radeloff

    2015-01-01

    The number of wildland-urban interface communities affected by wildfire is increasing, and both wildfire suppression and losses are costly. However, little is known about post-wildfire response by homeowners and communities after buildings are lost. Our goal was to characterise rebuilding and new development after wildfires across the conterminous United States. We...

  14. Public Health Impact of Wildfire Emissions: Up-date on the Wildfire Smoke Guide, Public Health Information and Communications Research

    EPA Science Inventory

    EPA Tools and Resources Webinar: Public Health Impact of Wildfire Smoke Emissions Specific strategies to reduce smoke exposure and the Smoke Sense App As the start of the summer wildfire season approaches, public officials, communities and individuals need up-to-date wildfire smo...

  15. Living with wildfire in Telluride Fire Protection District, Colorado

    Treesearch

    James R. Meldrum; Lilia C. Falk; Jamie Gomez; Christopher M. Barth; Hannah Brenkert-Smith; Travis Warziniack; Patricia A. Champ

    2017-01-01

    Residents in the wildland-urban interface can play an important role in reducing wildfires’ negative effects by performing wildfire risk mitigation on their properties. This report offers insight into the wildfire risk mitigation activities and related considerations such as attitudes, experiences, and concern about wildfire, for residents of the Telluride Fire...

  16. Investigating the Impacts of Wildfires on Air Quality in the Western US

    NASA Astrophysics Data System (ADS)

    Yates, E. L.; Iraci, L. T.; Singh, H. B.; Ambrosia, V. G.; Clements, C. B.; Gore, W.; Lareau, N.; Quayle, B.; Ryoo, J. M.; Schroeder, W.; Tanaka, T.

    2015-12-01

    Wildfire emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires. However, limited sampling of wildfire emissions means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. Further, interactions of wildfire emissions with urban pollution, commonly the case with California wildfires, are complex and poorly understood. The Alpha Jet Atmospheric eXperiment (AJAX) sampled a variety of Californian wildfire plumes during 2013 and 2014. In addition to wildfire plumes, flights sample upwind, background conditions allowing for an assessment of enhancement ratios of trace gas species (carbon dioxide, methane and ozone). This paper presents airborne measurements of multiple trace constituents downwind of a variety of Californian wildfires, with a focus on the exceptionally large Yosemite Rim wildfire during summer 2013. During its intense burning phases, the Rim wildfire was sampled by AJAX on 29 August as well as by the NASA DC-8, as part of its SEAC4RS mission, on 26 and 27 August. AJAX revisited the wildfire on 10 September when it had reached its smoldering phase. The more extensive payload of the DC-8 helped to bridge key measurements that were not available as part of the AJAX payload (e. g. carbon monoxide). The emission ratios (ER), emission factors (EF) and combustion efficiency are compared with previous wildfire studies. Integration of AJAX data with other available datasets, such as SEAC4RS, Lidar data from the California State University Mobile Atmospheric Profiling System (CSU-MAPS), MODIS/VIIRS Fire Radiative Power (FRP) and surface ozone and meteorology measurements is explored to assess the impacts of wildfires on downwind air quality including the densely populated California central valley.

  17. Fuels planning: science synthesis and integration

    Treesearch

    Rachel White; Sarah McCaffrey

    2007-01-01

    A century of fire suppression has created heavy fuel loads in many U.S. forests, leading to increasingly intense wildfires. Addressing this problem will require widespread fuels treatments, yet fuels treatment planners do not always have access to the current scientific information that can help guide their planning process. The Fuels Planning: Science Synthesis and...

  18. Barriers to wildland fire use: A preliminary problem analysis

    Treesearch

    Dustin L. Doane; Jay O' Laughlin; Penelope Morgan; Carol Miller

    2006-01-01

    American society has a general cultural bias toward controlling nature (Glover 2000) and, in particular, a strong bias for suppressing wildfire, even in wilderness (Saveland et al. 1988). Nevertheless, the Federal Wildland Fire Management Policy directs managers to "allow lightning-caused fires to play, as nearly as possible, their natural ecological role in...

  19. Reducing stand densities in immature and mature stands, Applegate Watershed, Southwest Oregon.

    Treesearch

    Marty L. Main; Michael P. Amaranthus

    1996-01-01

    Abstract Throughout the Applegate watershed, dense, overstocked, immature stands of mixed conifers and hardwoods and declining stands of mature conifers present significant and complex silvicultural problems. Stand stagnation is common, as is loss of large-diameter conifers from insects and wildfire. Treatments designed to maintain or encourage development of large-...

  20. Modeling containment of large wildfires using generalized linear mixed-model analysis

    Treesearch

    Mark Finney; Isaac C. Grenfell; Charles W. McHugh

    2009-01-01

    Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...

  1. Regeneration and invasion of cottonwood riparian forest following wildfire

    USGS Publications Warehouse

    Wonkka, Carissa L.; Twidwell, Dirac; Bielski, Christine H.; Allen, Craig R.; Stambaugh, Michael C.

    2018-01-01

    Populus deltoides is considered to be a weak resprouter and highly susceptible to wildfire, but few post-wildfire studies have tracked P. deltoides response and resprouting within the Great Plains of North America. Following a wildfire in southwestern Kansas, U.S.A., we surveyed burned and unburned areas of a cottonwood riparian forest along the Cimarron River that included a major understory invader, tamarisk (Tamarix ramosissima Ledeb.). We tested the following hypotheses, which are consistent with the current understanding of P. deltoides response to wildfire in the Great Plains: (1) regeneration of P. deltoides will be low in areas burned by the wildfire; (2) the number of dead P. deltoides individuals will be greater in the wildfire than unburned areas; and (3) tamarisk regeneration will be higher than P. deltoides regeneration in the wildfire areas because tamarisk is considered a stronger resprouter. We found evidence contrary to two of our hypotheses 3 years following the wildfire. (1) P. deltoides regeneration was high following the wildfire, averaging 692 individuals/ha. (2) The number of dead mature cottonwood trees was greater in wildfire plots than in unburned plots. (3) There was more P. deltoides regeneration than tamarisk regeneration following wildfire. These findings, which diverge from the majority of studies examining P. deltoides regeneration in the Great Plains, suggest that differing local environmental and forest stand conditions, coupled with the timing and intensity of the fire, could be important determinants of riparian forest species' responses to wildfire.

  2. Early Detection of Lightning Caused Wildfires and Prediction of Wildfire Behavior through Energy Distribution, Atmospherics, Geophysics, the Sun's Azimuth, and Topology

    NASA Astrophysics Data System (ADS)

    Giesige, C.; Nava, E.

    2016-12-01

    In the midst of a changing climate we have seen extremes in weather events: lightning, wildfires, hurricanes, tornadoes, and earthquakes. All of these ride on an imbalance of magnetic and electrical distribution about the earth including what goes on from the atmospheric and geophysic levels. There is relevance to the important role the sun plays in developing and feeding of the extreme weather events along with the sun's role helping to create a separation of charges on earth furthering climactic extremes. Focusing attention in North America and on how the sun, atmospheric and geophysic winds come together producing lightning events, there are connections between energy distribution in the environment, lightning caused wildfires, and extreme wildfire behavior. Lightning caused wildfires and extreme fire behavior have become enhanced with the changing climate conditions. Even with strong developments in wildfire science, there remains a lack in full understanding of connections that create a lightning caused wildfire event and lack of monitoring advancements in predicting extreme fire behavior. Several connections have been made in our research allowing us to connect multiple facets of the environment in regards to electric and magnetic influences on wildfires. Among them include: irradiance, winds, pressure systems, humidity, and topology. The connections can be made to develop better detection systems of wildfires, establish with more accuracy areas of highest risk for wildfire and extreme wildfire behavior, and prediction of wildfire behavior. A platform found within the environment can also lead to further understanding and monitoring of other extreme weather events in the future.

  3. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    PubMed

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  4. Human-started wildfires expand the fire niche across the United States.

    PubMed

    Balch, Jennifer K; Bradley, Bethany A; Abatzoglou, John T; Nagy, R Chelsea; Fusco, Emily J; Mahood, Adam L

    2017-03-14

    The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal "fire niche" in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km 2 , the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km 2 , primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards.

  5. Human-started wildfires expand the fire niche across the United States

    PubMed Central

    Balch, Jennifer K.; Bradley, Bethany A.; Nagy, R. Chelsea; Fusco, Emily J.; Mahood, Adam L.

    2017-01-01

    The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal “fire niche” in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km2, the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km2, primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards. PMID:28242690

  6. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel

    NASA Astrophysics Data System (ADS)

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  7. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.

    PubMed

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  8. Unraveling the Complexity of Wildland Urban Interface Fires.

    PubMed

    Mahmoud, Hussam; Chulahwat, Akshat

    2018-06-18

    Recent wildland urban interface fires have demonstrated the unrelenting destructive nature of these events and have called for an urgent need to address the problem. The Wildfire paradox reinforces the ideology that forest fires are inevitable and are actually beneficial; therefore focus should to be shifted towards minimizing potential losses to communities. This requires the development of vulnerability-based frameworks that can be used to provide holistic understanding of risk. In this study, we devise a probabilistic approach for quantifying community vulnerability to wildfires by applying concepts of graph theory. A directed graph for community in question is developed to model wildfire inside a community by incorporating different fire propagation modes. The model accounts for relevant community-specific characteristics including wind conditions, community layout, individual structural features, and the surrounding wildland vegetation. We calibrate the framework to study the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires. We use traditional centrality measures to identify critical behavior patterns and to evaluate the effect of fire mitigation strategies. Unlike current practice, the results are shown to be community-specific with substantial dependency of risk on meteorological conditions, environmental factors, and community characteristics and layout.

  9. The national database of wildfire mitigation programs: state, county and local efforts reduce wildfire risk

    Treesearch

    Terry Haines; Cheryl Renner; Margaret Reams; James Granskog

    2005-01-01

    The growth of residential communities within forested areas has increased the danger to life and property from uncontrolled wildfire. In response, states, counties and local governments in the United States have dramatically increased their wildfire mitigation efforts. Policymakers and fire officials are employing a wide range of regulatory and voluntary wildfire risk...

  10. A spatial database of wildfires in the United States, 1992-2011

    Treesearch

    K. C. Short

    2014-01-01

    The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). However, there are multiple federal, state, and local entities with wildfire protection and reporting responsibilities in the US, and no single, unified system of wildfire record keeping exists. To conduct even the...

  11. A spatial database of wildfires in the United States, 1992-2011 [Discussions

    Treesearch

    K. C. Short

    2013-01-01

    The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). However, there are multiple federal, state, and local entities with wildfire protection and reporting responsibilities in the US, and no single, unified system of wildfire record-keeping exists. To conduct even the...

  12. Homebuyers and wildfire risk: a Colorado Springs case study

    Treesearch

    Patraicia Ann Champ; Geoffrey H. Donovan; Christopher M. Barth

    2010-01-01

    In recent years, the threat that wildfire poses to homes has received much attention in both the mainstream press and academic literature. However, little is known about how homebuyers consider wildfire risk during the home-purchase process. In the context of a unique wildfire education program, we consider two approaches to examining the relationship between wildfire...

  13. Homebuyers and wildfire risk: A Colorado Springs case study

    Treesearch

    Patricia Ann Champ; Geoffrey H. Donovan; Christopher M. Barth

    2010-01-01

    In recent years, the threat that wildfire poses to homes has received much attention in both the mainstream press and academic literature. However, little is known about how homebuyers consider wildfire risk during the home-purchase process. In the context of a unique wildfire education program, we consider two approaches to examining the relationship between wildfire...

  14. Defense.gov Special Report: California Wildfires

    Science.gov Websites

    Fight California Wildfires U.S. Marines and aircraft with 3rd Marine Aircraft Wing and fire crews on Wildfires CDC Emergency Preparedness - Wildfires Current California Fire Information (CA.gov) Official Camp

  15. Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model.

    PubMed

    Gong, Xi; Kaulfus, Aaron; Nair, Udaysankar; Jaffe, Daniel A

    2017-11-21

    Wildfires emit O 3 precursors but there are large variations in emissions, plume heights, and photochemical processing. These factors make it challenging to model O 3 production from wildfires using Eulerian models. Here we describe a statistical approach to characterize the maximum daily 8-h average O 3 (MDA8) for 8 cities in the U.S. for typical, nonfire, conditions. The statistical model represents between 35% and 81% of the variance in MDA8 for each city. We then examine the residual from the model under conditions with elevated particulate matter (PM) and satellite observed smoke ("smoke days"). For these days, the residuals are elevated by an average of 3-8 ppb (MDA8) compared to nonsmoke days. We found that while smoke days are only 4.1% of all days (May-Sept) they are 19% of days with an MDA8 greater than 75 ppb. We also show that a published method that does not account for transport patterns gives rise to large overestimates in the amount of O 3 from fires, particularly for coastal cities. Finally, we apply this method to a case study from August 2015, and show that the method gives results that are directly applicable to the EPA guidance on excluding data due to an uncontrollable source.

  16. Enhancement of the 1988 northern U.S. drought due to wildfires

    Treesearch

    Yongqiang Liu

    2005-01-01

    Drought provides a favourable environment for the ignition and spread of intense wildfires. This study examines the opposite relationship between the two natural disasters, that is, the role of wildfires in the development of drought. The case of the 1988 northern U.S. wildfires is investigated. Emissions of smoke particles from the wildfires and the resulting optical...

  17. The contemporary scale and context of wildfire in Hawai'i

    Treesearch

    Clay Trauernicht; Elizabeth Pickett; Christian Giardina; Creighton M. Litton; Susan Cordell; Andrew Beavers

    2015-01-01

    Wildfire is a major threat to natural resources and native species in Hawai'i, but the frequency and extent of wildfires across the archipelago has not been well quantified. Our objective was to summarize the available wildfire data for Hawai‘i and synthesize the social and ecological dimensions of wildfire drivers, impacts, and management responses. We...

  18. Measuring the efficacy of a wildfire education program in Colorado Springs

    Treesearch

    Geoffrey H. Donovan; Patricia A. Champ; David T. Butry

    2007-01-01

    Drought conditions in much of the West, increased residential development, and elevated fuels from a century of wildfire suppression have increased wildfire risk in the United States. In light of this increased risk, an innovative wildfire risk education program in Colorado Springs was examined, which rated the wildfire risk of 35,000 homes in the city's wildland-...

  19. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States

    Treesearch

    Jessica R. Haas; David E. Calkin; Matthew P. Thompson

    2013-01-01

    Ongoing human development into fire-prone areas contributes to increasing wildfire risk to human life. It is critically important, therefore, to have the ability to characterize wildfire risk to populated places, and to identify geographic areas with relatively high risk. A fundamental component of wildfire risk analysis is establishing the likelihood of wildfire...

  20. The Growing Public Health Impact of Wildfire Smoke Emissions Webinar

    EPA Pesticide Factsheets

    This is a brief discussion of wildfire smoke and its health effects along with tools available to provide public health guidance during wildfire events, including the Wildfire Smoke Guide for Public Health Officials

  1. 44 CFR 204.51 - Application and approval procedures for a fire management assistance grant.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... part 201 that addresses wildfire risks and mitigation measures; or (ii) Incorporate wildfire mitigation... wildfire risk and contains a wildfire mitigation strategy and related mitigation initiatives. [66 FR 57347...

  2. 44 CFR 204.51 - Application and approval procedures for a fire management assistance grant.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... part 201 that addresses wildfire risks and mitigation measures; or (ii) Incorporate wildfire mitigation... wildfire risk and contains a wildfire mitigation strategy and related mitigation initiatives. [66 FR 57347...

  3. 44 CFR 204.51 - Application and approval procedures for a fire management assistance grant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... part 201 that addresses wildfire risks and mitigation measures; or (ii) Incorporate wildfire mitigation... wildfire risk and contains a wildfire mitigation strategy and related mitigation initiatives. [66 FR 57347...

  4. 44 CFR 204.51 - Application and approval procedures for a fire management assistance grant.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... part 201 that addresses wildfire risks and mitigation measures; or (ii) Incorporate wildfire mitigation... wildfire risk and contains a wildfire mitigation strategy and related mitigation initiatives. [66 FR 57347...

  5. Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina.

    PubMed

    Argañaraz, J P; Radeloff, V C; Bar-Massada, A; Gavier-Pizarro, G I; Scavuzzo, C M; Bellis, L M

    2017-07-01

    Wildfires are a major threat to people and property in Wildland Urban Interface (WUI) communities worldwide, but while the patterns of the WUI in North America, Europe and Oceania have been studied before, this is not the case in Latin America. Our goals were to a) map WUI areas in central Argentina, and b) assess wildfire exposure for WUI communities in relation to historic fires, with special emphasis on large fires and estimated burn probability based on an empirical model. We mapped the WUI in the mountains of central Argentina (810,000 ha), after digitizing the location of 276,700 buildings and deriving vegetation maps from satellite imagery. The areas where houses and wildland vegetation intermingle were classified as Intermix WUI (housing density > 6.17 hu/km 2 and wildland vegetation cover > 50%), and the areas where wildland vegetation abuts settlements were classified as Interface WUI (housing density > 6.17 hu/km 2 , wildland vegetation cover < 50%, but within 600 m of a vegetated patch larger than 5 km 2 ). We generated burn probability maps based on historical fire data from 1999 to 2011; as well as from an empirical model of fire frequency. WUI areas occupied 15% of our study area and contained 144,000 buildings (52%). Most WUI area was Intermix WUI, but most WUI buildings were in the Interface WUI. Our findings suggest that central Argentina has a WUI fire problem. WUI areas included most of the buildings exposed to wildfires and most of the buildings located in areas of higher burn probability. Our findings can help focus fire management activities in areas of higher risk, and ultimately provide support for landscape management and planning aimed at reducing wildfire risk in WUI communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Wildfire contribution to world-wide desertification.

    NASA Astrophysics Data System (ADS)

    Neary, D.; Wittenberg, L.; Bautista, S.; Ffolliott, P.

    2009-04-01

    Wildfire is a natural phenomenon that began with the development of terrestrial vegetation in a lightning-filled atmosphere. Sediments from the Carboniferous Period (307-359 million years before the present) contain evidence of charcoal from post-fire ash slurry flows. As human populations developed in the Pleistocene and Holocene epochs, mankind transformed fire into one of its oldest tools. Human and natural ignited fires from lightning altered and steered the trajectories of ecosystem development in most parts of the world. Humans are now the primary source of forest and grass fire ignitions throughout the world. As human populations have increased and industrialized in the past two centuries, fire ignitions and burned areas have increased due to both sheer numbers of people and anthropogenic changes in the global climate. Recent scientific findings have bolstered the hypothesis that climate change is resulting in fire seasons starting earlier, lasting longer, burning greater areas, and being more severe Computer models point to the Western U.S., Mediterranean nations and Brazil as "hot spots" that will get extremes at their worst. The climatic change to drier and warmer conditions has the potential to aggravate wildfire conditions, resulting in burning over longer seasons, larger areas of vegetation conflagration, and higher fire severities. Wildfire is now driving desertification in some of the forest lands in the western United States. The areas of wildfire in the Southwest USA have increased dramatically in the past two decades from <10,000 ha yr-1 in the early 20th Century to over 230,000 ha yr-1 in the first decade of the 21st Century. Individual wildfires are now larger and produce higher severity burns than in the past. A combination of natural drought, climate change, excessive fuel loads, and increased ignition sources have produced the perfect conditions for fire-induced desertification. Portugal suffered the worst and second worst wildfire seasons in a three-year period (2003 - 2005). In 2005, 338,262 ha of forest land burned. This was a 77% increase over the 10-year burn average of 189,500 ha. Desertification is about the loss of the land's proper hydrologic function, biological productivity, and other ecosystem services as a result of human activities and climate change. It affects one third of the earth's surface and over a billion people. In the past, desertification was considered a problem of only arid, semi-arid, and dry sub-humid areas. However, humid zones can undergo desertification with the wrong combination of human impacts. The Amazon region is an example of where forest harvesting, shifting cut and burn agriculture, and large-scale grazing are producing desertification of a tropical rain forest on a large scale. Some of the environmental consequences of wildfires are vegetation destruction, plant species and type shifts, exotic plant invasions, wildlife habitat destruction, soil erosion, floods, watershed function decline, water supply disruption, and air pollution. All of these are immediate impacts. Some impacts will persist beyond the careers and lifetimes of individuals. Small, isolated areas do not produce noticeable desertification. But, the cumulative effect of multiple, large area, and adjacent fires can be landscape-level desertification. This paper examines wildfire contributions to desertification in regions of the world that are prone to wildfire and climate change.

  7. Why is particulate matter produced by wildfires toxic to lung macrophages?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzi, Lisa M.; Bratt, Jennifer M.; Williams, Keisha M.

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfiremore » PM in vitro. Our data implicate NF-{kappa}B signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and 'normal' PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. -- Highlights: Black-Right-Pointing-Pointer Wildfire coarse PM kills macrophages at lower doses than coarse. Black-Right-Pointing-Pointer Wildfire coarse PM activates the NF-kB pathway at lower doses than ambient. Black-Right-Pointing-Pointer Wildfire coarse PM in vitro and in vivo kill macrophages by oxidative stress.« less

  8. Remote optical observations of actively burning biomass fires using potassium line spectral emission

    NASA Astrophysics Data System (ADS)

    Magidimisha, Edwin; Griffith, Derek J.

    2016-02-01

    Wildland fires are a widespread, seasonal and largely man-made hazard which have a broad range of negative effects. These wildfires cause not only the destruction of homes, infrastructure, cultivated forests and natural habitats but also contribute to climate change through greenhouse gas emissions and aerosol particle production. Global satellite-based monitoring of biomass burning using thermal infrared sensors is currently a powerful tool to assist in finding ways to establish suppression strategies and to understand the role that fires play in global climate change. Advances in silicon-based camera technology present opportunities to resolve the challenge of ubiquitous wildfire early detection in a cost-effective manner. This study investigated several feasibility aspects of detecting wildland fires using near-infrared (NIR) spectral line emissions from electronically excited potassium (K) atoms at wavelengths of 766.5 and 769.9 nm, during biomass burning.

  9. Montana Wildfires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Montana Wildfires     View larger image ... in the early summer of 2012 has been on the destructive wildfires in Colorado, as of July 3, 2012, dozens of major wildfires were burning across the western United States, including six in ...

  10. The hidden cost of wildfires: Economic valuation of health effects of wildfire smoke exposure in southern California

    Treesearch

    Leslie A. Richardson; Patricia A. Champ; John B. Loomis

    2012-01-01

    There is a growing concern that human health impacts from exposure to wildfire smoke are ignored in estimates of monetized damages from wildfires. Current research highlights the need for better data collection and analysis of these impacts. Using unique primary data, this paper quantifies the economic cost of health effects from the largest wildfire in Los Angeles...

  11. Assessing the hydrologic response to wildfires in mountainous regions

    NASA Astrophysics Data System (ADS)

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a watershed are scale-dependent. Also, using full streamflow statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post-wildfire conditions.

  12. Status of native fishes in the western United States and issues for fire and fuels management

    Treesearch

    Bruce Rieman; Danny Lee; Dave Burns; Robert Gresswell; Michael Young; Rick Stowell; John Rinne; Philip Howell

    2003-01-01

    Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been...

  13. Evolving the policy framework: Budget strategies, legislative authorities, and management strategies to facilitate federal forest adaptation and collaborative partnerships

    Treesearch

    Christopher Topik; Paige Lewis

    2014-01-01

    Some of the greatest challenges to the management of federal forests in the Unites States result from inadequate public and private investment in proactive forest restoration projects. This situation has been exacerbated by the growing fiscal and logistical demands of wildfire suppression activities, which currently consume at least 40 percent of the U.S. Forest...

  14. Intercomparison of Fire Size, Fuel Loading, Fuel Consumption, and Smoke Emissions Estimates on the 2006 Tripod Fire, Washington, USA

    Treesearch

    Stacy A. Drury; Narasimhan Larkin; Tara T. Strand; ShihMing Huang; Scott J. Strenfel; Theresa E. O' Brien; Sean M. Raffuse

    2014-01-01

    Land managers rely on prescribed burning and naturally ignited wildfires for ecosystem management, and must balance trade-offs of air quality, carbon storage, and ecosystem health. A current challenge for land managers when using fire for ecosystem management is managing smoke production. Smoke emissions are a potential human health hazard due to the production of fine...

  15. Spread of common native and invasive grasses and ruderal trees following anthropogenic disturbances in a tropical dry forest

    Treesearch

    Xavier A. Jaime; Skip J. Van Bloem; Frank H. Koch; Stacy A. C. Nelson

    2017-01-01

    Introduction: A fundamental challenge to the integrity of tropical dry forest ecosystems is the invasion of nonnative grass species. These grasses compete for resources and fuel anthropogenic wildfires. In 2012, a bulldozer from the Puerto Rico Electric Power Authority cleared a 570-m trail from a state road into a mature dry forest section...

  16. Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel

    Treesearch

    Willem J.D. van Leeuwen; Grant M. Casady; Daniel G. Neary; Susana Bautista; Jose Antonio Alloza; Yohay Carmel; Lea Wittenberg; Dan Malkinson; Barron J. Orr

    2010-01-01

    Due to the challenges faced by resource managers in maintaining post-fire ecosystem health, there is a need for methods to assess the ecological consequences of disturbances. This research examines an approach for assessing changes in post-fire vegetation dynamics for sites in Spain, Israel and the USA that burned in 1998, 1999 and 2002 respectively. Moderate...

  17. Challenges to Sierra Nevada forests and their local communities: An observational and modeling perspective

    NASA Astrophysics Data System (ADS)

    Schmidt, Cynthia L.

    Global forests are experiencing dramatic changes due to changes in climate as well as anthropogenic activities. Increased warming is causing the advancement of some species upslope and northward, while it is also causing widespread mortality due to increased drought conditions. In addition, increasing human population in mountain regions is resulting in elevated risk of human life and property loss due to larger and more severe wildfires. My research focuses on assessing the current vulnerability of forests and their communities in the Sierra Nevada, and how forests are projected to change in the future based on different climate change scenarios. In the first chapter I use Landsat satellite imagery to identify and attribute cause of forest disturbance between 1985 and 2011, primarily focusing on disturbances due to insect, diseases and drought. The change-detection algorithm, Landtrendr, was successfully used to identify forest disturbance, but identifying cause of disturbance was challenging due to the spectral similarities between disturbance types. Landtrendr was most successful in identifying disturbance due to insect, disease and drought in the San Bernardino National Forest, where there is little forest management activity. In the second chapter, I assess whether state or local land use policies in high-fire prone regions exist to reduce the vulnerability of residential developments to wildfire. Three specific land-use tools associated with reducing wildfire vulnerability are identified: (1) buffers around developments; (2) clustered developments; (3) restricting construction on slopes greater than 25%. The study also determines whether demographic and physical characteristics of selected California counties were related to implementing land use policies related to reducing wildfire vulnerability. Results indicate that land use policies related to preventing wildfire-related losses focus on building materials, road access, water availability and vegetation management, not the three identified land-use tools. San Diego County, the county that has experienced the most devastating fires, had the highest percentage of residential developments with both clustering and buffering. The third chapter focuses on future forest conditions. I used a Dynamic Global Vegetation Model (DGVM) to assess future vegetation dynamics and productivity under changing climate and atmospheric CO2 concentrations in the Sierra Nevada. Model results suggest that Temperate Broadleaved Evergreen Plant Functional Types (PFTs) will move upslope and eastward, replacing Temperate Needleleaved PFTs. Boreal Needleleaved Evergreen PFTs, found primarily at higher elevations, will decline dramatically as temperatures continue to increase. Gross Primary Productivity (GPP) will increase as atmospheric CO2 concentration increases, due primarily to the increase in the more productive broadleaved PFTs. Forest ecosystems play an important role in maintaining climate stability at the regional and global scales as a vital carbon sink, so understanding the role of disturbance and climate change will be vital to both scientists and policy makers in the future.

  18. Risk preferences in strategic wildfire decision making: a choice experiment with U.S. wildfire managers.

    PubMed

    Wibbenmeyer, Matthew J; Hand, Michael S; Calkin, David E; Venn, Tyron J; Thompson, Matthew P

    2013-06-01

    Federal policy has embraced risa management as an appropriate paradigm for wildfire management. Economic theory suggests that over repeated wildfire events, potential economic costs and risas of ecological damage are optimally balanced when management decisions are free from biases, risa aversion, and risa seeking. Of primary concern in this article is how managers respond to wildfire risa, including the potential effect of wildfires (on ecological values, structures, and safety) and the likelihood of different fire outcomes. We use responses to a choice experiment questionnaire of U.S. federal wildfire managers to measure attitudes toward several components of wildfire risa and to test whether observed risa attitudes are consistent with the efficient allocation of wildfire suppression resources. Our results indicate that fire managers' decisions are consistent with nonexpected utility theories of decisions under risa. Managers may overallocate firefighting resources when the likelihood or potential magnitude of damage from fires is low, and sensitivity to changes in the probability of fire outcomes depends on whether probabilities are close to one or zero and the magnitude of the potential harm. © 2012 Society for Risk Analysis.

  19. Non-Accidental Health Impacts of Wildfire Smoke

    PubMed Central

    Youssouf, Hassani; Liousse, Catherine; Roblou, Laurent; Assamoi, Eric-Michel; Salonen, Raimo O.; Maesano, Cara; Banerjee, Soutrik; Annesi-Maesano, Isabella

    2014-01-01

    Wildfires take a heavy toll on human health worldwide. Climate change may increase the risk of wildfire frequency. Therefore, in view of adapted preventive actions, there is an urgent need to further understand the health effects and public awareness of wildfires. We conducted a systematic review of non-accidental health impacts of wildfire and incorporated lessons learned from recent experiences. Based on the literature, various studies have established the relationship between one of the major components of wildfire, particulate matter (particles with diameter less than 10 µm (PM10) and less than 2.5 µm (PM2.5)) and cardiorespiratory symptoms in terms of Emergency Rooms visits and hospital admissions. Associations between wildfire emissions and various subclinical effects have also been established. However, few relationships between wildfire emissions and mortality have been observed. Certain segments of the population may be particularly vulnerable to smoke-related health risks. Among them, people with pre-existing cardiopulmonary conditions, the elderly, smokers and, for professional reasons, firefighters. Potential action mechanisms have been highlighted. Overall, more research is needed to better understand health impact of wildfire exposure. PMID:25405597

  20. Non-accidental health impacts of wildfire smoke.

    PubMed

    Youssouf, Hassani; Liousse, Catherine; Roblou, Laurent; Assamoi, Eric-Michel; Salonen, Raimo O; Maesano, Cara; Banerjee, Soutrik; Annesi-Maesano, Isabella

    2014-11-14

    Wildfires take a heavy toll on human health worldwide. Climate change may increase the risk of wildfire frequency. Therefore, in view of adapted preventive actions, there is an urgent need to further understand the health effects and public awareness of wildfires. We conducted a systematic review of non-accidental health impacts of wildfire and incorporated lessons learned from recent experiences. Based on the literature, various studies have established the relationship between one of the major components of wildfire, particulate matter (particles with diameter less than 10 µm (PM10) and less than 2.5 µm (PM2.5)) and cardiorespiratory symptoms in terms of Emergency Rooms visits and hospital admissions. Associations between wildfire emissions and various subclinical effects have also been established. However, few relationships between wildfire emissions and mortality have been observed. Certain segments of the population may be particularly vulnerable to smoke-related health risks. Among them, people with pre-existing cardiopulmonary conditions, the elderly, smokers and, for professional reasons, firefighters. Potential action mechanisms have been highlighted. Overall, more research is needed to better understand health impact of wildfire exposure.

  1. How do Watershed Characteristics and Precipitation Influence Post-Wildfire Valley Sediment Storage and Delivery Over Time?

    NASA Astrophysics Data System (ADS)

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.

    2016-12-01

    Considerable advances have been made in understanding post-wildfire runoff, erosion, and mass wasting at the hillslope and small watershed scale, but the larger-scale effects on flooding, water quality, and sedimentation are often the most significant impacts. The problem is that we have virtually no watershed-specific tools to quantify the proportion of eroded sediment that is stored or delivered from watersheds larger than about 2-5 km2. In this study we are quantifying how channel and valley bottom characteristics affect post-wildfire sediment storage and delivery. Our research is based on intensive monitoring of sediment storage over time in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned in the 2012 High Park Fire using repeated cross section and longitudinal surveys from fall 2012 through summer 2016, five airborne laser scanning (ALS) datasets from fall 2012 through summer 2015, and both radar and ground-based precipitation measurements. We have computed changes in sediment storage by differencing successive cross sections, and computed spatially explicit changes in successive ALS point clouds using the multiscale model to model cloud comparison (M3C2) algorithm. These channel changes are being related to potential morphometric controls, including valley width, valley slope, confinement, contributing area, valley expansion or contraction, topographic curvature (planform and profile), and estimated sediment inputs. We hypothesize that maximum rainfall intensity and lateral confinement will be the primary independent variables that describe observed patterns of erosion and deposition, and that the results can help predict post-wildfire sediment delivery and identify high priority areas for restoration.

  2. Contemporary wood utilization research needs in the Western United States.

    Treesearch

    Robert A. Monserud; Eini C. Lowell; Dennis R. Becker; Susan Stevens Hummel; Ellen M. Donoghue; R. James Barbour; Kenneth A. Kilborn; David L. Nicholls; Joe Roos; Randall A. Cantrell

    2004-01-01

    Contemporary wood utilization research needs in the Western United States are examined in this problem analysis. Key focal areas include: A. Changes in forest management actions and policies affect forest conditions and people, which in turn affect wood quality and wood utilization opportunities. B. Effects of natural disturbances (e.g., wildfire, insect outbreaks) on...

  3. Direct seeding of pitch pine in southern New Jersey

    Treesearch

    S. Little; C. B. Cranmer; H. A. Somes

    1958-01-01

    There is not enough pine reproduction in the woodlands of southern New Jersey. This increasingly important problem, which plagues the state's Pine Region, is especially severe where seed sources for natural regeneration are poor. In some of these areas, pulpwood cuttings have removed all pines large enough to bear many cones. In other areas, wildfires have killed...

  4. The social costs of homeowner decisions in fire-prone communities: information, insurance, and amenities

    Treesearch

    Gwenlyn Busby; Gregory S. Amacher; Robert G. Haight

    2013-01-01

    In this article, we consider wildfire risk management decisions using a dynamic stochastic model of homeowner interaction in a setting where spatial externalities arise. Our central objective is to apply observations from the social science literature about homeowner preferences to this economic externality problem and determine how assumptions about insurance,...

  5. Basic principles of forest fuel reduction treatments

    Treesearch

    James K. Agee; Carl N. Skinner

    2005-01-01

    Successful fire exclusion in the 20th century has created severe fire problems across the West. Not every forest is at risk of uncharacteristically severe wildfire, but drier forests are in need of active management to mitigate fire hazard. We summarize a set of simple principles important to address in fuel reduction treatments: reduction of surface fuels, increasing...

  6. Wildfire management in the U.S. Forest Service: a brief history.

    Treesearch

    Geoffrey H. Donovan; Thomas C. Brown

    2005-01-01

    Forest and rangeland fire was once a common land management tool. Native Americans as well as early settlers and prospectors used fire for various purposes. But as the country gradually filled with more settlers, and as forest resources became more precious, fire began to be viewed as more of a problem than a tool.

  7. An integer programming model to optimize resource allocation for wildfire containment.

    Treesearch

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    Determining the specific mix of fire-fighting resources for a given fire is a necessary condition for identifying the minimum of the Cost Plus Net Value Change (C+NVC) function. Current wildland fire management models may not reliably do so. The problem of identifying the most efficient wildland fire organization is characterized mathematically using integer-...

  8. Southern Woods-Burners: A Descriptive Analysis

    Treesearch

    M.L. Doolittle; M.L. Lightsey

    1979-01-01

    About 40 percent of the South's nearly 60,000 wildfires yearly are set by woods-burners. A survey of 14 problem areas in four southern States found three distinct sets of woods-burners. Most active woods-burners are young, white males whose activities are supported by their peers. An older but less active group have probably retired from active participation but...

  9. A national cohesive wildland fire management strategy

    Treesearch

    Forest Service U.S. Department of Agriculture; Office of Wildland Fire Coordination Department of the Interior

    2011-01-01

    Addressing wildfire is not simply a fire management, fire operations, or wildland-urban interface problem - it is a larger, more complex land management and societal issue. The vision for the next century is to: Safely and effectively extinguish fire, when needed; use fire where allowable; manage our natural resources; and as a Nation, live with wildland fire. Three...

  10. Use of the 1990 census to defire wildland urban interface problems

    Treesearch

    James B. Davis

    1991-01-01

    Predicting the movement of people into rural wildlands previously has been limited to studies of population and housing growth in counties or other large geographical areas. In these studies, the areas of high fire danger that contain dispersed rural housing cannot be distinguished from the areas less vulnerable to wildfire (small towns and adjacent urban...

  11. Wildfire Perception and Community Change

    ERIC Educational Resources Information Center

    Gordon, Jason S.; Matarrita-Cascante, David; Stedman, Richard C.; Luloff, A. E.

    2010-01-01

    Given increasing political and financial commitments to wildfire preparedness, risk policy demands that risk identification, assessment, and mitigation activities are balanced among diverse resident groups. Essential for this is the understanding of residents' perceptions of wildfire risks. This study compares wildfire-risk perceptions of…

  12. Examining the influence of biophysical conditions on wildland-urban interface homeowners' wildfire risk mitigation activities in fire-prone landscapes

    Treesearch

    Christine S. Olsen; Jeffrey D. Kline; Alan A. Ager; Keith A. Olsen; Karen C. Short

    2017-01-01

    Expansion of the wildland–urban interface (WUI) and the increasing size and number of wildfires has policy-makers and wildfire managers seeking ways to reduce wildfire risk in communities located near fire-prone forests. It is widely acknowledged that homeowners can reduce their exposure to wildfire risk by using nonflammable building materials and reducing tree...

  13. Investigation of the decline in reported smoking-caused wildfires in the USA from 2000 to 2011

    Treesearch

    David T. Butry; Jeffrey P. Prestemon; Douglas S. Thomas

    2014-01-01

    The number of smoking-caused wildfires has been falling nationwide. In national forests in 2011, smoking-caused wildfires represented only 10% of their 1980 level. No other cause of wildfire has experienced this level of decline. For 12 states, we evaluate the rate of smoking-caused wildfires and find it is a function of weather, other ignitions, the number of adult...

  14. Is timber insurable? A study of wildfire Risks in the U.S. forest sector using spatio-temporal models.

    Treesearch

    Xuan Chen; Barry K. Goodwin; Jeffrey P. Prestemon

    2014-01-01

    In the U.S. forest products industry, wildfire is one of the leading causes of damage and economic losses. While individual wildfire behavior is well studied, new literature is emerging on broad-scale (e.g., county-level) wildfire risks. Our paper studies wildfire risks using crucial informational vari­ ables across both spatio units and time periods....

  15. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring.

    PubMed

    Westerling, Anthony LeRoy

    2016-06-05

    Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  16. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring

    PubMed Central

    2016-01-01

    Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216510

  17. Soil erosion influenced by wildfire and pre-fire plantation method in NW Spain

    NASA Astrophysics Data System (ADS)

    Fernández Filgueira, Cristina; Vega Hidalgo, José Antonio; Fonturbel Lliteras, Teresa

    2017-04-01

    Erosion is a major concern in areas affected by high-severity wildfires. Soil characteristics associated with past forestry management can play a significant role in post-wildfire soil loss through increments in soil erodibility or as a result of sediment exhaustion. In areas such as NW Spain where there is a long history of intensive land use, this factor may be critical for explaining soil loss after wildfire. The objective of this study was to determine whether plantation method can significantly influence soil loss in the first year after wildfire in a P. sylvestris plantation affected wildfire in NW Spain. For these purpose, we measured hillslope-scale sediment production rates and site characteristics during the first year after wildfire in 30 plots. Treatments consisted in pre-fire ploughing+ wildfire, plantation holes+ wildfire and no preparation method+wildfire. Soil burn severity was high as average. During the first year following fire, soil losses varied from 0.9 t/ha in the ploughed areas to 4.6 t/ha in the plantation wholes. The treatment with no terrain preparation yielded 3.0 t/ha during the same period of time. These results suggest that pre-fire ploughed areas are not a priority for soil erosion risk mitigation after wildfire. The study was funded by the National Institute of Agricultural Research of Spain (INIA) through project RTA2014-00011-C06-02, cofunded by FEDER and the Plan de Mejora e Innovación Forestal de Galicia (2010-2020) and INDITEX.

  18. The Effect of Prescribed Burns and Wildfire on Vegetation in Bastrop State Park, TX

    NASA Astrophysics Data System (ADS)

    Justice, C. J.

    2014-12-01

    In 2011, central Texas had its worst drought since the 1950's. This, in conjunction with the strong winds produced by Tropical Storm Lee created conditions that made possible the Bastrop County Complex Fire in September 2011. These record-breaking wildfires burned over 95% of the 6,565-acre Bastrop State Park (BSP). Since 2003, BSP had been using prescribed burns as a management practice to reduce fuel load and prevent high severity wildfires. Although these prescribed fires did not prevent the 2011 wildfires they may have mitigated their effects. This study considered the effect of prescribed burn history and wildfire burn severity on vegetation recovery in BSP since the 2011 wildfire. The hypotheses of this study are that prescribed burn history and wildfire burn severity separately and jointly have affected post wildfire vegetation. To test these hypotheses, data were collected in 2013 from 46 plots across BSP using the Fire Effects Monitoring and Inventory (FIREMON) protocol to determine herbaceous plant density, shrub density, overstory density, and midstory tree density. Data were analyzed using analyses of variance (ANOVA) to determine the effects of prescribed fire and wildfire severity on these vegetation measurements. It was found that more severely burned plots had more herbaceous plants, fewer midstory trees, and lower shrub densities than less severely burned plots. Contrary to an initial hypotheses, there were few relationships between prescribed burn history and wildfire effects. The only significant effect detected for prescribed burning was the positive effect of prescribed fire on midstory tree density, but only for plots that were not severely burned in the wildfire. In this system, burn severity had a greater effect on post-wildfire vegetation than prescribed burns.

  19. Why is particulate matter produced by wildfires toxic to lung macrophages?

    PubMed

    Franzi, Lisa M; Bratt, Jennifer M; Williams, Keisha M; Last, Jerold A

    2011-12-01

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-κB signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and "normal" PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests

    USGS Publications Warehouse

    Arkle, Robert S.; Pilliod, David S.; Welty, Justin L.

    2012-01-01

    We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30-m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in untreated areas and significantly lower than the potential wildfire severity of the treated areas had treatments not been implemented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the summer and supported greater vegetation volume. We found considerable evidence that prescribed fires have landscape-level influences within treatment boundaries; most notable was an interaction between distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to 66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinuity of fuels following treatment may influence wildfire severity and explain how even low severity treatments can be effective management tools in fire-prone landscapes.

  1. Why is Particulate Matter Produced by Wildfires Toxic To Lung Macrophages?

    PubMed Central

    Franzi, Lisa M.; Bratt, Jennifer M.; Williams, Keisha M.; Last, Jerold A.

    2011-01-01

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM are about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-kB signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and “normal” PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we can not rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. PMID:21945489

  2. Muted responses of streamflow and suspended sediment flux in a wildfire-affected watershed

    NASA Astrophysics Data System (ADS)

    Owens, P. N.; Giles, T. R.; Petticrew, E. L.; Leggat, M. S.; Moore, R. D.; Eaton, B. C.

    2013-11-01

    In August 2003 a severe wildfire burnt 62% of Fishtrap Creek, a 158 km2 watershed in central British Columbia, Canada. Streamflows were obtained for the period 1980-2010 and suspended sediment fluxes were determined for the period 2004-2010 for Fishtrap Creek and these were compared to data for nearby Jamieson Creek, which was not affected by the wildfire. Peak streamflows in Fishtrap Creek after the wildfire were not significantly higher than before the wildfire, although total annual runoff had increased. Perhaps the most important change in streamflows following the wildfire was that peak flows associated with the annual freshet occurred earlier in the year (by ca. 2 weeks). Following the wildfire, monthly total suspended sediment fluxes peaked in April in Fishtrap Creek and May in Jamieson Creek, which reflects the change in timing of peak streamflows in Fishtrap. Specific suspended sediment yields were low in the first year following the wildfire (2004), and peak values for the 2004-2010 monitoring period occurred in 2006. Average specific suspended sediment yields over the monitoring period were similar for both watersheds at 2.8 and 2.9 t km- 2 year- 1 for Fishtrap and Jamieson watersheds, respectively. The muted responses of streamflows and suspended sediment fluxes following this severe wildfire are due to the lack of winter precipitation and the low intensities of summer rainfall events in the first year following the wildfire. Greater winter precipitation and associated snowmelt in subsequent years coincided with vegetation recovery. The major changes in the wildfire-affected watershed were increased bank erosion and channel migration due to a loss of root strength and cohesion, which occurred 3-5 years after the fire. This work demonstrates that the hydrological and geomorphological responses of watersheds to wildfires are a function of the severity of the wildfire and the timing and nature of driving forces (i.e. rainfall intensity, winter precipitation and snowmelt) during the progression of vegetation recovery.

  3. Mitigation of wildfire risk by homeowners

    Treesearch

    Hannah Brenkert; Patricia Champ; Nicholas Flores

    2005-01-01

    In-depth interviews conducted with homeowners in Larimer County's Wildland-Urban Interface revealed that homeowners face difficult decisions regarding the implementation of wildfire mitigation measures. Perceptions of wildfire mitigation options may be as important as perceptions of wildfire risk in determining likelihood of implementation. These mitigation...

  4. An analysis of effects of San Diego wildfire on ambient air quality.

    PubMed

    Viswanathan, Shekar; Eria, Luis; Diunugala, Nimal; Johnson, Jeffrey; McClean, Christopher

    2006-01-01

    The impact of major gaseous and particulate pollutants emitted by the wildfire of October 2003 on ambient air quality and health of San Diego residents before, during, and after the fire are analyzed using data available from the San Diego County Air Pollution Control District and California Air Resources Board. It was found that fine particulate matter (PM) levels exceeded the federal daily 24-hr average standard during the fire. There was a slight increase in some of the gaseous pollutants, such as carbon monoxide, which exceeded federal standards. Ozone (O3) precursors, such as total hydrocarbons and methane gases, experienced elevated concentration during the fire. Fortunately, the absence of sunlight because of the cloud of thick smoke that covered most of the county during the fire appears to have prevented the photochemical conversion of the precursor gases to harmful concentrations of O3. Statistical analysis of the compiled medical surveillance data has been used to establish correlations between pollutant levels in the region and the resultant health problems experienced by the county citizens. The study shows that the increased PM concentration above the federal standard resulted in a significant increase in hospital emergency room visits for asthma, respiratory problems, eye irritation, and smoke inhalation. On the basis of the findings, it is recommended that hospitals and emergency medical facilities engage in pre-event planning that would ensure a rapid response to an impact on the healthcare system as a result of a large wildfire and appropriate agencies engage in the use of all available meteorological forecasting resources, including real-time satellite imaging assets, to accurately forecast air quality and assist firefighting efforts.

  5. Global trends in wildfire - perceptions and realities in a changing world

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Santin, Cristina

    2017-04-01

    Wildfire has been an important process affecting the Earth's surface and atmosphere for over 350 million years and human societies have coexisted with fire since their emergence. Many consider wildfire as an accelerating problem, with widely held perceptions both in the media and scientific papers of increasing fire occurrence, severity and resulting losses. Whilst fire and associated impacts have indeed increased in some regions, such parts of western North America, Canada and Russia, fire has been decreasing in other regions such as African savannas. Overall, global area burned appears to have changed little over past decades, and there is increasing evidence that there is less fire in the global landscape today than centuries ago. Regarding fire severity, limited data are available. For the western USA, they indicate little change overall, and also that area burned at high severity has overall declined compared to pre-European settlement. Direct fatalities from fire and economic losses also show no clear trends over the past three decades. Trends in indirect impacts, such as health problems from smoke or disruption to social functioning may indeed be on the rise, however, they remain insufficiently quantified to be thoroughly examined. Notwithstanding these general observations, the changes in global fire distribution are of concern due to, for example, their detrimental impacts on peat and soil carbon stores in boreal and some tropical regions, or air pollution levels in SE-Asia. These and other impacts are likely to accelerate in a future warmer climate. This presentation aims to contribute to reducing misconceptions in fire trends and to facilitating a more informed understanding of the realities of global fire.

  6. Rehabilitation and Cheatgrass Suppression Following Great Basin Wildfires

    USDA-ARS?s Scientific Manuscript database

    The occurrence of wildfires in Great Basin environments has become an annual event. The introduction and subsequent invasion of cheatgrass (Bromus tectorum) plays a very large role in the frequency and size of these wildfires. With each passing wildfire season, more and more habitats are converted...

  7. Evidence, exaggeration, and error in historical accounts of chaparral wildfires in California.

    PubMed

    Goforth, Brett R; Minnich, Richard A

    2007-04-01

    For more than half a century, ecologists and historians have been integrating the contemporary study of ecosystems with data gathered from historical sources to evaluate change over broad temporal and spatial scales. This approach is especially useful where ecosystems were altered before formal study as a result of natural resources management, land development, environmental pollution, and climate change. Yet, in many places, historical documents do not provide precise information, and pre-historical evidence is unavailable or has ambiguous interpretation. There are similar challenges in evaluating how the fire regime of chaparral in California has changed as a result of fire suppression management initiated at the beginning of the 20th century. Although the firestorm of October 2003 was the largest officially recorded in California (approximately 300,000 ha), historical accounts of pre-suppression wildfires have been cited as evidence that such a scale of burning was not unprecedented, suggesting the fire regime and patch mosaic in chaparral have not substantially changed. We find that the data do not support pre-suppression megafires, and that the impression of large historical wildfires is a result of imprecision and inaccuracy in the original reports, as well as a parlance that is beset with hyperbole. We underscore themes of importance for critically analyzing historical documents to evaluate ecological change. A putative 100 mile long by 10 mile wide (160 x 16 km) wildfire reported in 1889 was reconstructed to an area of chaparral approximately 40 times smaller by linking local accounts to property tax records, voter registration rolls, claimed insurance, and place names mapped with a geographical information system (GIS) which includes data from historical vegetation surveys. We also show that historical sources cited as evidence of other large chaparral wildfires are either demonstrably inaccurate or provide anecdotal information that is immaterial in the appraisal of pre-suppression fire size. Since historical evidence is inadequate for reconstructing a statistical distribution of pre-suppression fire sizes to compare with post-suppression data, other more propitious methods of evaluating change are discussed.

  8. Critical Review of Health Impacts of Wildfire Smoke Exposure.

    PubMed

    Reid, Colleen E; Brauer, Michael; Johnston, Fay H; Jerrett, Michael; Balmes, John R; Elliott, Catherine T

    2016-09-01

    Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure. We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations. We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings. Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular end points. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure. Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible. Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334-1343; http://dx.doi.org/10.1289/ehp.1409277.

  9. Net benefits of wildfire prevention education efforts

    Treesearch

    Jeffrey P. Prestemon; David T. Butry; Karen L. Abt; Ronda Sutphen

    2010-01-01

    Wildfire prevention education efforts involve a variety of methods, including airing public service announcements, distributing brochures, and making presentations, which are intended to reduce the occurrence of certain kinds of wildfires. A Poisson model of preventable Florida wildfires from 2002 to 2007 by fire management region was developed. Controlling for...

  10. Projecting wildfire emissions over the south-eastern United States to mid-century

    Treesearch

    Uma Shankar; Jeffrey Prestemon; Donald McKenzie; Kevin Talgo; Aijun Xiu; Mohammad Omary; Bok Haeng Baek; Dongmei Yang; William Vizuete

    2018-01-01

    Wildfires can impair human health because of the toxicity of emitted pollutants, and threaten communities, structures and the integrity of ecosystems sensitive to disturbance. Climate and socioeconomic factors (e.g. population and income growth) are known regional drivers of wildfires. Reflecting changes in these factors in wildfire...

  11. Living with wildfire in Colorado

    Treesearch

    Patricia A. Champ; Nicholas Flores; Hannah Brenkert-Smith

    2010-01-01

    In this presentation, we describe results of a survey to homeowners living in wildfire-prone areas of two counties along the Front Range of the Rocky Mountains in Colorado. The survey was designed to elicit information on homeowners' experience with wildfire, perceptions of wildfire risk on their property and neighboring properties, mitigation efforts undertaken...

  12. Estimating the avoided fuel-reatment costs of wildfire

    Treesearch

    Geoffrey H. Donovan; Thomas C. Brown

    2008-01-01

    Although the importance of wildfire to fire-adapted ecosystems is widely recognized, wildfire management has historically placed less emphasis on the beneficial effects of wildfire. We estimate the avoided fuel treatment cost for 10 ponderosa pine (Pinus ponderosa) stands on the Umatilla National Forest in the Pacific Northwest. Results show that...

  13. Human-ignited wildfire patterns and responses to policy shifts

    Treesearch

    M. L. Chas-Amil; J. P. Prestemon; C. J. McClean; J. Touza

    2015-01-01

    Development of efficient forest wildfire policies requires an understanding of the underlying reasons behind forest fire occurrences. Globally, there is a close relationship between forest wildfires and human activities; most wildfires are human events due to negligence (e.g., agricultural burning escapes) and deliberate actions (e.g., vandalism, pyromania, revenge,...

  14. The economic benefits of wildfire prevention education

    Treesearch

    L.A. Hermansen-Baez; J.P. Prestemon; D.T. Butry; K.L. Abt; R. Sutphen

    2011-01-01

    While there are many activities that can limit damages from wildfires, such as firefighting efforts and prescribed burning, wildfire prevention education programs can be particularly beneficial. This was confirmed through a study conducted by the Southern Research Station and the National Institute of Standards and Technology that demonstrated that wildfire prevention...

  15. Sagebrush wildfire effects on surface soil nutrient availability: A temporal and spatial study

    USDA-ARS?s Scientific Manuscript database

    Wildfires occurring in Artemisia (sagebrush) ecosystems can temporarily increase soil nutrient availability in surface soil. Less is known, however, on how soil nutrient availability changes over time and microsite location post-wildfire. In Oct., 2013 a wildfire approximately 30 km north of Reno, N...

  16. Adapting to wildfire: Rebuilding after home loss

    Treesearch

    Miranda H. Mockrin; Susan I. Stewart; Volker C. Radeloff; Roger B. Hammer; Patricia M. Alexandre

    2015-01-01

    Wildfire management now emphasizes fire-adapted communities that coexist with wildfires, although it is unclear how communities will progress to this goal. Hazards research suggests that response to wildfire - specifically, rebuilding after fire - may be a crucial opportunity for homeowner and community adaptation. We explore rebuilding after the 2010 Fourmile Canyon...

  17. Introduction to this special issue on statistics for wildfire processes

    Treesearch

    Marcia Gumpertz

    2009-01-01

    This special issue on statistics for wildfire processes brings together foresters, wildfire ecologists, statisticians, mathematicians, and economists. All of these disciplines bring different interests, approaches and expertise to the modeling of wildfire processes. It is not necessarily easy, however, to communicate across disciplines or follow the developments in a...

  18. The Biswell symposium: fire issues and solutions in urban interface and wildland ecosystems; February 15-17, 1994; Walnut Creek, California

    Treesearch

    David R. Weise; Robert E. Martin

    1995-01-01

    These proceedings summarize the results of a symposium designed to address current issues about wildfire and prescribed fire in both the wildland-urban interface and in wildlands. Thirty-eight invited oral papers and 23 poster papers describing the issues and state-of-the-art solutions to technical, biological, and social challenges currently facing land and fire...

  19. 2007 Western States Fire Mission

    NASA Technical Reports Server (NTRS)

    Howell, Kathleen

    2008-01-01

    A general overview of the Ikhana Uninhabited Air System (UAS) is presented. The contents include: 1) Ikhana UAS; 2) Ikhana UAS / Ground Control Station (GCS); 3) Ikhana UAS / Antennas; 4) Western States Fire Mission 2007 Partners; 5) FAA Certificate of Authorization (COA); 6) Western States Fire Missions (WSFM) 2007; 7) WSFM 1-4 2007; 8) California Wildfire Emergency Response 2007; 9) WSFM 5-8 Emergency Response 2007; 10) WSFM Achievements; and 11) WSFM Challenges.

  20. Streamwater Quality Data from the 2002 Hayman, Hinman, and Missionary Ridge Wildfires, Colorado, 2003

    USGS Publications Warehouse

    Ranalli, Anthony J.; Stevens, Michael R.

    2003-01-01

    Concern about water-quality issues related to wildfires in Colorado has intensified because of the wildfires that occurred in Colorado during the summer of 2002. In 2003, the U.S. Geological Survey (USGS) conducted water-quality sampling of burned and unburned watersheds in the areas affected by the Hayman, Hinman, and Missionary Ridge wildfires to provide information to scientists, watershed managers, and public-water suppliers regarding the extent to which wildfires may cause water-quality degradation.

  1. Smoke exposure among wildland firefighters: a review and discussion of current literature.

    Treesearch

    Timothy E. Reinhardt; Roger D. Ottmar

    1997-01-01

    This paper reviews and summarizes literature about smoke exposure and the resulting adverse health effects among wildland firefighters Many studies have been done on this problem between 1973 and 1995 Overall the data indicate that smoke exposure at wildfires and prescribed fires is usually no more than an inconvenience, but on occasion it approaches or exceeds legal...

  2. Emergency burn rehabilitation: cost, risk, effectiveness

    Treesearch

    Scott R. Miles; Donald M. Haskins; Darrel W. Ranken

    1989-01-01

    The fires of 1987 had a heavy impact on the Hayfork Ranger District. Over 50,000 acres were burned within the South Fork Trinity River watershed, which contains an important anadromous fishery. Major problems within the burned area were found to be: (1) slopes having highly erodible soils where intense wildfire resulted in a total loss of ground cover, and (2) burnout...

  3. Probabilistic assessment of wildfire hazard and municipal watershed exposure

    Treesearch

    Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille

    2012-01-01

    The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...

  4. Measuring the efficacy of a wildfire education program in Colorado Springs.

    Treesearch

    G.H. Donovan; P.A. Champ; D.T. Butry

    2007-01-01

    We examine an innovative wildfire risk education program in Colorado Springs, which rated the wildfire risk of 35,000 homes in the city's wildland urban interface. Evidence from home sales before and after the program's implementation suggests that the program was successful at changing homebuyers' attitudes toward wildfire risk, particularly preferences...

  5. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest

    Treesearch

    Ryan B. Walker; Jonathan D. Coop; Sean A. Parks; Laura Trader

    2018-01-01

    Extensive high-severity wildfires have driven major losses of ponderosa pine and mixed-conifer forests in the southwestern United States, in some settings catalyzing enduring conversions to nonforested vegetation types. Management interventions to reduce the probability of stand-replacing wildfire have included mechanical fuel treatments, prescribed fire, and wildfire...

  6. 43 CFR 5003.1 - Effect of decisions; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... risk of wildfire due to drought, fuels buildup, or other reasons, or at immediate risk of erosion or other damage due to wildfire, BLM may make a wildfire management decision made under this part and parts.... Wildfire management includes but is not limited to: (1) Fuel reduction or fuel treatment such as prescribed...

  7. 43 CFR 5003.1 - Effect of decisions; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... risk of wildfire due to drought, fuels buildup, or other reasons, or at immediate risk of erosion or other damage due to wildfire, BLM may make a wildfire management decision made under this part and parts.... Wildfire management includes but is not limited to: (1) Fuel reduction or fuel treatment such as prescribed...

  8. 43 CFR 5003.1 - Effect of decisions; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... risk of wildfire due to drought, fuels buildup, or other reasons, or at immediate risk of erosion or other damage due to wildfire, BLM may make a wildfire management decision made under this part and parts.... Wildfire management includes but is not limited to: (1) Fuel reduction or fuel treatment such as prescribed...

  9. 43 CFR 5003.1 - Effect of decisions; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... risk of wildfire due to drought, fuels buildup, or other reasons, or at immediate risk of erosion or other damage due to wildfire, BLM may make a wildfire management decision made under this part and parts.... Wildfire management includes but is not limited to: (1) Fuel reduction or fuel treatment such as prescribed...

  10. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy

    Treesearch

    Michele Salis; Alan A. Ager; Fermin J. Alcasena; Bachisio Arca; Mark A. Finney; Grazia Pellizzaro; Donatella Spano

    2015-01-01

    In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn...

  11. External charring and fire scarring in three western conifers

    Treesearch

    E. K. Sutherland; Josh Farella; David K Wright; Ian Hyp; K. T. Smith; Donald A. Falk; Estelle Arbellay; Markus Stoffel

    2013-01-01

    Fires that injure but do not kill trees cause scars used as proxies for the reconstruction of wildfire history. Understanding about these wildfires - and their relationship to vegetation dynamics and climate - has profoundly affected wildfire and land management policy globally. To better understand scarring in the context of wildfire behavior, landscape and biological...

  12. Economic optimisation of wildfire intervention activities

    Treesearch

    David T. Butry; Jeffrey P. Prestemon; Karen L. Abt; Ronda Sutphen

    2010-01-01

    We describe how two important tools of wildfire management, wildfire prevention education and prescribed fire for fuels management, can be coordinated to minimise the combination of management costs and expected societal losses resulting from wildland fire. We present a long-run model that accounts for the dynamics of wildfire, the effects of fuels management on...

  13. The Evolution of Smokey Bear: Environmental Education about Wildfire for Youth

    ERIC Educational Resources Information Center

    Ballard, Heidi L.; Evans, Emily; Sturtevant, Victoria E.; Jakes, Pamela

    2012-01-01

    Many environmental education programs in the United States educate youth about the prevention of wildfire and its role in ecosystems. We reviewed 50 wildfire education programs for youth (WEY) in the U.S. through an Internet search and interviews with program providers. We investigated whether they reflect current wildfire science, environmental…

  14. Wildfire-migration dynamics: Lessons from Colorado's Fourmile Canyon Fire

    Treesearch

    Raphael J. Nawrotzki; Hannah Brenkert-Smith; Lori M. Hunter; Patricia A. Champ

    2013-01-01

    The number of people living in wildfire-prone wildland-urban interface (WUI) communities is on the rise. However, no prior study has investigated wildfire-induced residential relocation from WUI areas after a major fire event. To provide insight into the association between sociodemographic and sociopsychological characteristics and wildfire-related intention to move,...

  15. The importance of considering external influences during presuppression wildfire planning

    Treesearch

    Marc R. Wiitala; Andrew E. Wilson

    2008-01-01

    Few administrative units involved in wildland fire protection are islands unto themselves when it comes to wildfire activity and suppression. If not directly affected by the wildfire workload of their neighbors, they are affected by the availability of nationally shared resources impacted by wildfire activity at the regional and national scale. These external...

  16. Citizen-agency interactions in planning and decisionmaking after large wildfires.

    Treesearch

    Christine S. Olsen; Bruce A. Shindler

    2007-01-01

    This report reviews the growing literature on the concept of agency-citizen interactions after large wildfires. Because large wildfires have historically occurred at irregular intervals, research from related fields has been reviewed where appropriate. This issue is particularly salient in the West where excess fuel conditions indicate that the large wildfires...

  17. Risk preferences, probability weighting, and strategy tradeoffs in wildfire management

    Treesearch

    Michael S. Hand; Matthew J. Wibbenmeyer; Dave Calkin; Matthew P. Thompson

    2015-01-01

    Wildfires present a complex applied risk management environment, but relatively little attention has been paid to behavioral and cognitive responses to risk among public agency wildfire managers. This study investigates responses to risk, including probability weighting and risk aversion, in a wildfire management context using a survey-based experiment administered to...

  18. Provision of a wildfire risk map: informing residents in the wildland urban interface.

    PubMed

    Mozumder, Pallab; Helton, Ryan; Berrens, Robert P

    2009-11-01

    Wildfires in the wildland urban interface (WUI) are an increasing concern throughout the western United States and elsewhere. WUI communities continue to grow and thus increase the wildfire risk to human lives and property. Information such as a wildfire risk map can inform WUI residents of potential risks and may help to efficiently sort mitigation efforts. This study uses the survey-based contingent valuation (CV) method to examine annual household willingness to pay (WTP) for the provision of a wildfire risk map. Data were collected through a mail survey of the East Mountain WUI area in the State of New Mexico (USA). The integrated empirical approach includes a system of equations that involves joint estimation of WTP values, along with measures of a respondent's risk perception and risk mitigation behavior. The median estimated WTP is around U.S. $12 for the annual wildfire risk map, which covers at least the costs of producing and distributing available risk information. Further, providing a wildfire risk map can help address policy goals emphasizing information gathering and sharing among stakeholders to mitigate the effects of wildfires.

  19. Wildfire exposure analysis on the national forests in the Pacific Northwest, USA.

    PubMed

    Ager, Alan A; Buonopane, Michelle; Reger, Allison; Finney, Mark A

    2013-06-01

    We analyzed wildfire exposure for key social and ecological features on the national forests in Oregon and Washington. The forests contain numerous urban interfaces, old growth forests, recreational sites, and habitat for rare and endangered species. Many of these resources are threatened by wildfire, especially in the east Cascade Mountains fire-prone forests. The study illustrates the application of wildfire simulation for risk assessment where the major threat is from large and rare naturally ignited fires, versus many previous studies that have focused on risk driven by frequent and small fires from anthropogenic ignitions. Wildfire simulation modeling was used to characterize potential wildfire behavior in terms of annual burn probability and flame length. Spatial data on selected social and ecological features were obtained from Forest Service GIS databases and elsewhere. The potential wildfire behavior was then summarized for each spatial location of each resource. The analysis suggested strong spatial variation in both burn probability and conditional flame length for many of the features examined, including biodiversity, urban interfaces, and infrastructure. We propose that the spatial patterns in modeled wildfire behavior could be used to improve existing prioritization of fuel management and wildfire preparedness activities within the Pacific Northwest region. © 2012 Society for Risk Analysis.

  20. Water-quality response to a high-elevation wildfire in the Colorado Front Range

    USGS Publications Warehouse

    Mast, M. Alisa; Murphy, Sheila F.; Clow, David W.; Penn, Colin A.; Sexstone, Graham A.

    2016-01-01

    Water quality of the Big Thompson River in the Front Range of Colorado was studied for 2 years following a high-elevation wildfire that started in October 2012 and burned 15% of the watershed. A combination of fixed-interval sampling and continuous water-quality monitors was used to examine the timing and magnitude of water-quality changes caused by the wildfire. Prefire water quality was well characterized because the site has been monitored at least monthly since the early 2000s. Major ions and nitrate showed the largest changes in concentrations; major ion increases were greatest in the first postfire snowmelt period, but nitrate increases were greatest in the second snowmelt period. The delay in nitrate release until the second snowmelt season likely reflected a combination of factors including fire timing, hydrologic regime, and rates of nitrogen transformations. Despite the small size of the fire, annual yields of dissolved constituents from the watershed increased 20–52% in the first 2 years following the fire. Turbidity data from the continuous sensor indicated high-intensity summer rain storms had a much greater effect on sediment transport compared to snowmelt. High-frequency sensor data also revealed that weekly sampling missed the concentration peak during snowmelt and short-duration spikes during rain events, underscoring the challenge of characterizing postfire water-quality response with fixed-interval sampling.

  1. Birth weight following pregnancy during the 2003 Southern California wildfires.

    PubMed

    Holstius, David M; Reid, Colleen E; Jesdale, Bill M; Morello-Frosch, Rachel

    2012-09-01

    In late October 2003, a series of wildfires exposed urban populations in Southern California to elevated levels of air pollution over several weeks. Previous research suggests that short-term hospital admissions for respiratory outcomes increased specifically as a result of these fires. We assessed the impact of a wildfire event during pregnancy on birth weight among term infants. Using records for singleton term births delivered to mothers residing in California's South Coast Air Basin (SoCAB) during 2001-2005 (n = 886,034), we compared birth weights from pregnancies that took place entirely before or after the wildfire event (n = 747,590) with those where wildfires occurred during the first (n = 60,270), second (n = 39,435), or third (n = 38,739) trimester. The trimester-specific effects of wildfire exposure were estimated using a fixed-effects regression model with several maternal characteristics included as covariates. Compared with pregnancies before and after the wildfires, mean birth weight was estimated to be 7.0 g lower [95% confidence interval (CI): -11.8, -2.2] when the wildfire occurred during the third trimester, 9.7 g lower when it occurred during the second trimester (95% CI: -14.5, -4.8), and 3.3 g lower when it occurred during the first trimester (95% CI: -7.2, 0.6). Pregnancy during the 2003 Southern California wildfires was associated with slightly reduced average birth weight among infants exposed in utero. The extent and increasing frequency of wildfire events may have implications for infant health and development.

  2. Assessment of multi-wildfire occurrence data for machine learning based risk modelling

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Kim, M.; Kim, S. J.; Yoo, S.; Lee, W. K.

    2017-12-01

    The occurrence of East Asian wildfires is mainly caused by human-activities, but the extreme drought increased due to the climate change caused wildfires and they spread to large-scale fires. Accurate occurrence location data is required for modelling wildfire probability and risk. In South Korea, occurrence data surveyed through KFS (Korea Forest Service) and MODIS (MODerate-resolution Imaging Spectroradiometer) satellite-based active fire data can be utilized. In this study, two sorts of wildfire occurrence data were applied to select suitable occurrence data for machine learning based wildfire risk modelling. MaxEnt (Maximum Entropy) model based on machine learning is used for wildfire risk modelling, and two types of occurrence data and socio-economic and climate-environment data are applied to modelling. In the results with KFS survey based data, the low relationship was shown with climate-environmental factors, and the uncertainty of coordinate information appeared. The MODIS-based active fire data were found outside the forests, and there were a lot of spots that did not match the actual wildfires. In order to utilize MODIS-based active fire data, it was necessary to extract forest area and utilize only high-confidence level data. In KFS data, it was necessary to separate the analysis according to the damage scale to improve the modelling accuracy. Ultimately, it is considered to be the best way to simulate the wildfire risk by constructing more accurate information by combining two sorts of wildfire occurrence data.

  3. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    USGS Publications Warehouse

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  4. In ecoregions across western USA streamflow increases during post-wildfire recovery

    NASA Astrophysics Data System (ADS)

    Wine, Michael L.; Cadol, Daniel; Makhnin, Oleg

    2018-01-01

    Continued growth of the human population on Earth will increase pressure on already stressed terrestrial water resources required for drinking water, agriculture, and industry. This stress demands improved understanding of critical controls on water resource availability, particularly in water-limited regions. Mechanistic predictions of future water resource availability are needed because non-stationary conditions exist in the form of changing climatic conditions, land management paradigms, and ecological disturbance regimes. While historically ecological disturbances have been small and could be neglected relative to climatic effects, evidence is accumulating that ecological disturbances, particularly wildfire, can increase regional water availability. However, wildfire hydrologic impacts are typically estimated locally and at small spatial scales, via disparate measurement methods and analysis techniques, and outside the context of climate change projections. Consequently, the relative importance of climate change driven versus wildfire driven impacts on streamflow remains unknown across the western USA. Here we show that considering wildfire in modeling streamflow significantly improves model predictions. Mixed effects modeling attributed 2%-14% of long-term annual streamflow to wildfire effects. The importance of this wildfire-linked streamflow relative to predicted climate change-induced streamflow reductions ranged from 20%-370% of the streamflow decrease predicted to occur by 2050. The rate of post-wildfire vegetation recovery and the proportion of watershed area burned controlled the wildfire effect. Our results demonstrate that in large areas of the western USA affected by wildfire, regional predictions of future water availability are subject to greater structural uncertainty than previously thought. These results suggest that future streamflows may be underestimated in areas affected by increased prevalence of hydrologically relevant ecological disturbances such as wildfire.

  5. Critical Review of Health Impacts of Wildfire Smoke Exposure

    PubMed Central

    Reid, Colleen E.; Brauer, Michael; Johnston, Fay H.; Jerrett, Michael; Balmes, John R.; Elliott, Catherine T.

    2016-01-01

    Background: Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure. Objectives: We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations. Methods: We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings. Discussion: Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular end points. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure. Conclusions: Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible. Citation: Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334–1343; http://dx.doi.org/10.1289/ehp.1409277 PMID:27082891

  6. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  7. Improving European Wildfire Emergency Information Services

    NASA Astrophysics Data System (ADS)

    Bielski, Conrad; Whitmore, Ceri; O'Brien, Victoria; Zeug, Gunter; Kalas, Milan; Porras, Ignasi; Solé, Josep Maria; Gálvez, Pedro; Navarro, Maria; Nurmi, Pertti; Kilpinen, Juha; Ylinen, Kaisa; Furllanelo, Cesare; Maggio, Valerio; Alikadic, Azra; Dolci, Claudia

    2017-04-01

    European wildfires are a seasonal natural hazard that many regions must battle regularly. However, as European urbanization continues to encroach on natural areas and the climate changes it is likely that the frequency of wildfires will increase likewise the number of areas prone to wildfires. It is therefore paramount not only to increase public awareness of this natural hazard but also to be prepared by improving wildfire hazard forecasting, monitoring, and mapping. As part of the H2020 funded project entitled Improving Resilience to Emergencies through Advanced Cyber Technologies: I-REACT (Grant Agreement #700256) , there is a task with the goal to develop models and implement technologies to improve the support around the entire emergency management cycle with respect to wildfire hazards. Based on operational weather forecasts, pan-European geospatial data as well as regularly acquired Earth Observation imagery through the Copernicus program, and other sources of information such as social media channels a European wildfire service is being developed. This will be achieved by improving on the successes of the European Forest Fire Information Service (EFFIS) and the guidance of emergency managers experienced in wildfire hazards. Part of the research will be to reduce the number of false alarms. However, once a wildfire has been identified, the system focuses on the disaster region to provide situational information to the decision makers applying state-of-the-art approaches to improve disaster response. Post-wildfire information will continue to be produced for damage and recovery assessments. Ultimately, I-REACT expects to reduce wildfire costs to life, property and livelihood. This work will improve wildfire disaster emergency management through the development and integration of new data and technologies respectively as well as the knowledge from emergency managers who not only understand the hazard itself but also can provide insights into the information that can help them do their jobs better.

  8. The Impact of CO2-Driven Vegetation Changes on Wildfire Risk

    NASA Astrophysics Data System (ADS)

    Skinner, C. B.; Poulsen, C. J.

    2017-12-01

    While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of the wildfire response to CO2-driven vegetation change with the Community Earth System Model will be presented. The results suggest that many atmosphere-centric statistical wildfire metrics do not capture the many processes that will shape future wildfire risk in a high CO2 world and highlight the need for process-based fire modeling.

  9. Carbon recovery rates following different wildfire risk mitigation treatments

    Treesearch

    M. Hurteau; M. North

    2010-01-01

    Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and...

  10. The Air National Guard’s Role in Wildfire Emergency Response

    DTIC Science & Technology

    2013-02-14

    destructive emergency situation faced. In January, 2012, the research think-tank organization Headwaters Economics, headquartered in Bozeman , Montana...Headwaters Economics. Evidence for the effect of homes on wildfire supression costs. Bozeman , MT: Headwaters Economics, 2011. 21 Headwaters...Economics. How Much do Homes Contribute to Wildfire Suppression Costs? Bozeman , MT: Headwaters Economics, 2012. Headwaters Economics. Montana Wildfire

  11. A review of state and local regulation for wildfire mitigation

    Treesearch

    Terry K. Haines; Cheryl R. Renner; Margaret A. Reams

    2008-01-01

    Wildfire may result from natural processes or as the result of human actions (Ffolliott 1988, Mees 1990). As a natural phenomenon, it is important in sustaining forest health in fire-dependent ecosystems. While some wildfire may be ecologically beneficial, it poses a threat to residential communities located within or adjacent to the forest. Wildfire is considered a...

  12. Managing saltcedar after a summer wildfire in the Texas Rolling Plains

    Treesearch

    Russell Fox; Rob Mitchell; Mike Davin

    2001-01-01

    Saltcedar (Tamarix spp) has invaded nearly one million acres of riparian ecosystems in the southwestern U.S., displacing many native species. The objectives of this study were to estimate saltcedar mortality to summer wildfire, summer wildfire followed by rollerchopping, and dormant season treatment with 25 percent triclopyr to regrowth following a summer wildfire at...

  13. North Pacific warming and intense northwestern U.S. wildfires

    Treesearch

    Yongqiang Liu

    2006-01-01

    The tropical Pacific sea surface temperature (SST) anomalies such as La Nina have been an important predictor for wildfires in the southeastern and southwestern U.S. This study seeks seasonal predictors for wildfires in the northwestern U.S., a region with the most intense wildfires among various continental U.S. regions. Singular value decomposition and regression...

  14. Factors related to building loss due to wildfires in the conterminous United States

    Treesearch

    Patricia M. Alexandre; Susan I. Stewart; Nicholas S. Keuler; Murray K. Clayton; Miranda H. Mockrin; Avi Bar-Massada; Alexandra D. Syphard; Volker C. Radeloff

    2016-01-01

    Wildfire is globally an important ecological disturbance affecting biochemical cycles and vegetation composition, but also puts people and their homes at risk. Suppressing wildfires has detrimental ecological effects and can promote larger and more intense wildfires when fuels accumulate, which increases the threat to buildings in the wildland- urban interface (WUI)....

  15. Wildfire Ignitions: A Review of the Science and Recommendations for Empirical Modeling

    Treesearch

    Jeffrey P. Prestemon; Todd J. Hawbaker; Michael Bowden; John Carpenter; Maureen T. Brooks; Karen L. Abt; Ronda Sutphen; Samuel Scranton

    2013-01-01

    Deriving from original work under the National Cohesive Wildland Fire Management Strategy completed in 2011, this report summarizes the state of knowledge regarding the underlying causes and the role of wildfire prevention efforts on all major categories of wildfires, including findings from research that have sought to model wildfire occurrences over fine and broad...

  16. Assessing exposure of human and ecological values to wildfire in Sardinia, Italy

    Treesearch

    Michele Salis; Alan A. Ager; Bachisio Arca; Mark A. Finney; Valentina Bacciu; Pierpaolo Duce; Donatella Spano

    2012-01-01

    We used simulation modelling to analyze spatial variation in wildfire exposure relative to key social and economic features on the island of Sardinia, Italy. Sardinia contains a high density of urban interfaces, recreational values and highly valued agricultural areas that are increasingly being threatened by severe wildfires. Historical fire data and wildfire...

  17. The evolution of Smokey Bear: Environmental education about wildfire for youth

    Treesearch

    Heidi L. Ballard; Emily Evans; Victoria E. Sturtevant; Pamela Jakes

    2012-01-01

    Many environmental education programs in the United States educate youth about the prevention of wildfire and its role in ecosystems.We reviewed 50 wildfire education programs for youth (WEY) in the U.S. through an Internet search and interviews with program providers. We investigated whether they reflect current wildfire science, environmental education (EE)...

  18. Community wildfire protection planning in the American West: homogeneity within diversity?

    Treesearch

    Jesse Abrams; Max Nielsen-Pincus; Travis Paveglio; Cassandra Moseley

    2016-01-01

    As large wildfires have become common across the American West, federal policies such as the Healthy Forests Restoration Act have empowered local communities to plan for their own wildfire protection. Here, we present an analysis of 113 community wildfire protection plans from 10 western states where large fires have recently occurred. These plans contain wide...

  19. Wildfire risk and housing prices: a case study from Colorado Springs.

    Treesearch

    G.H. Donovan; P.A. Champ; D.T. Butry

    2007-01-01

    Unlike other natural hazards such as floods, hurricanes, and earthquakes, wildfire risk has not previously been examined using a hedonic property value model. In this article, we estimate a hedonic model based on parcel-level wildfire risk ratings from Colorado Springs. We found that providing homeowners with specific information about the wildfire risk rating of their...

  20. Avian relationships with wildfire at two dry forest locations with different historical fire regimes

    Treesearch

    Quresh Latif; Jamie Sanderlin; Vicki Saab; William Block; Jonathan Dudley

    2016-01-01

    Wildfire is a key factor influencing bird community composition in western North American forests. We need to understand species and community responses to wildfire and how responses vary regionally to effectively manage dry conifer forests for maintaining biodiversity. We compared avian relationships with wildfire burn severity between two dry forest...

  1. Living with wildfire in Log Hill Mesa, Colorado

    Treesearch

    James R. Meldrum; Christopher M. Barth; Lilia Colter Falk; Hannah Brenkert-Smith; Travis Warziniack; Patricia Champ

    2013-01-01

    Over the past 50 years, Colorado has experienced an increase in the number and size of wildfires on its public and private lands. Nationwide, expenditures on wildfire suppression have increased for decades and now are measured in the billions of tax dollars. Current trends in climate changes, fuel accumulation from past wildfire suppression, and expansion of the...

  2. Places where wildfire potential and social vulnerability coincide in the coterminous United States

    Treesearch

    Gabriel Wigtil; Roger B. Hammer; Jeffrey D. Kline; Miranda H. Mockrin; Susan I. Stewart; Daniel Roper; Volker C. Radeloff

    2016-01-01

    The hazards-of-place model posits that vulnerability to environmental hazards depends on both biophysical and social factors. Biophysical factors determine where wildfire potential is elevated, whereas social factors determine where and how people are affected by wildfire. We evaluated place vulnerability to wildfire hazards in the coterminous US. We developed...

  3. Wildfire risk and home purchase decisions.

    Treesearch

    Patricia Champ; Geoffrey Donovan; Christopher Barth

    2008-01-01

    In the last 20 years, wildfire damages and the costs of wildfire suppression have risen dramatically. This trend has been attributed to three main factors: climate change, increased fuel loads from a century of wildfire suppression, and increased housing development in fire-prone areas., There is little that fire managers can do about climate change, and current fuel...

  4. Understanding public perspectives of wildfire risk

    Treesearch

    Sarah McCaffrey

    2008-01-01

    In recent years, heightened attention to the social dimensions of wildfire has led to increased discussion of wildfire risk. One focus has been on the need to enhance the wildfire risk perception among homeowners living in high fire hazard areas. The underlying supposition is that once they understand risk, homeowners will then take action to reduce their exposure....

  5. Emerging concepts in wildfire risk assessment and management (Publ.)

    Treesearch

    Joe H. Scott; Matthew P. Thompson

    2015-01-01

    A quantitative measure of wildfire risk across a landscape - expected net change in value of resources and assets exposed to wildfire - was established nearly a decade ago. Assessments made using that measure have been completed at spatial extents ranging from an individual county to the continental United States. The science of wildfire risk assessment and management...

  6. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M.; Robinson, C.; Gupta, N.

    2012-10-10

    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technicalmore » basis and calculations, and steps taken to verify its performance.« less

  7. Modeling and Prediction of Wildfire Hazard in Southern California, Integration of Models with Imaging Spectrometry

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)

    2001-01-01

    Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated into standard fuel models accessible to the FARSITE fire spread simulator. The FARSITE model and BEHAVE are considered industry standards for fire behavior analysis. Anderson level fuels map, generated using a binary decision tree classifier are available for multiple dates in the Santa Monica Mountains and at least one date for Santa Barbara. Fuel maps that will fill in the areas between Santa Barbara and the Santa Monica Mountains study sites are in progress, as part of a NASA Regional Earth Science Application Center, the Southern California Wildfire Hazard Center. Species-level maps, were supplied to fire managing agencies (Los Angeles County Fire, California Department of Forestry). Research results were published extensively in the refereed and non-refereed literature. Educational outreach included funding of several graduate students, undergraduate intern training and an article featured in the California Alliance for Minorities Program (CAMP) Quarterly Journal.

  8. Birth Weight following Pregnancy during the 2003 Southern California Wildfires

    PubMed Central

    Holstius, David M.; Reid, Colleen E.; Jesdale, Bill M.

    2012-01-01

    Background: In late October 2003, a series of wildfires exposed urban populations in Southern California to elevated levels of air pollution over several weeks. Previous research suggests that short-term hospital admissions for respiratory outcomes increased specifically as a result of these fires. Objective: We assessed the impact of a wildfire event during pregnancy on birth weight among term infants. Methods: Using records for singleton term births delivered to mothers residing in California’s South Coast Air Basin (SoCAB) during 2001–2005 (n = 886,034), we compared birth weights from pregnancies that took place entirely before or after the wildfire event (n = 747,590) with those where wildfires occurred during the first (n = 60,270), second (n = 39,435), or third (n = 38,739) trimester. The trimester-specific effects of wildfire exposure were estimated using a fixed-effects regression model with several maternal characteristics included as covariates. Results: Compared with pregnancies before and after the wildfires, mean birth weight was estimated to be 7.0 g lower [95% confidence interval (CI): –11.8, –2.2] when the wildfire occurred during the third trimester, 9.7 g lower when it occurred during the second trimester (95% CI: –14.5, –4.8), and 3.3 g lower when it occurred during the first trimester (95% CI: –7.2, 0.6). Conclusions: Pregnancy during the 2003 Southern California wildfires was associated with slightly reduced average birth weight among infants exposed in utero. The extent and increasing frequency of wildfire events may have implications for infant health and development. PMID:22645279

  9. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire.

    PubMed

    Tinling, Melissa A; West, J Jason; Cascio, Wayne E; Kilaru, Vasu; Rappold, Ana G

    2016-01-27

    Cardiovascular health effects of fine particulate matter (PM2.5) exposure from wildfire smoke are neither definitive nor consistent with PM2.5 from other air pollution sources. Non-comparability among wildfire health studies limits research conclusions. We examined cardiovascular and respiratory health outcomes related to peat wildfire smoke exposure in a population where strong associations were previously reported for the 2008 Evans Road peat wildfire. We conducted a population-based epidemiologic investigation of associations between daily county-level modeled wildfire PM2.5 and cardiopulmonary emergency department (ED) visits during the 2011 Pains Bay wildfire in eastern North Carolina. We estimated changes in the relative risk cumulative over 0-2 lagged days of wildfire PM2.5 exposure using a quasi-Poisson regression model adjusted for weather, weekends, and poverty. Relative risk associated with a 10 μg/m(3) increase in 24-h PM2.5 was significantly elevated in adults for respiratory/other chest symptoms 1.06 (1.00-1.13), upper respiratory infections 1.13 (1.05-1.22), hypertension 1.05 (1.00-1.09) and 'all-cause' cardiac outcomes 1.06 (1.00-1.13) and in youth for respiratory/other chest symptoms 1.18 (1.06-1.33), upper respiratory infections 1.14 (1.04-1.24) and 'all-cause' respiratory conditions 1.09 (1.01-1.17). Our results replicate evidence for increased risk of cardiovascular outcomes from wildfire PM2.5 and suggest that cardiovascular health should be considered when evaluating the public health burden of wildfire smoke.

  10. Developing an online tool for identifying at-risk populations to wildfire smoke hazards.

    PubMed

    Vaidyanathan, Ambarish; Yip, Fuyuen; Garbe, Paul

    2018-04-01

    Wildfire episodes pose a significant public health threat in the United States. Adverse health impacts associated with wildfires occur near the burn area as well as in places far downwind due to wildfire smoke exposures. Health effects associated with exposure to particulate matter arising from wildfires can range from mild eye and respiratory tract irritation to more serious outcomes such as asthma exacerbation, bronchitis, and decreased lung function. Real-time operational forecasts of wildfire smoke concentrations are available but they are not readily integrated with information on vulnerable populations necessary to identify at-risk communities during wildfire smoke episodes. Efforts are currently underway at the Centers for Disease Control and Prevention (CDC) to develop an online tool that utilizes short-term predictions and forecasts of smoke concentrations and integrates them with measures of population-level vulnerability for identifying at-risk populations to wildfire smoke hazards. The tool will be operationalized on a national scale, seeking input and assistance from several academic, federal, state, local, Tribal, and Territorial partners. The final product will then be incorporated into CDC's National Environmental Public Health Tracking Network (http://ephtracking.cdc.gov), providing users with access to a suite of mapping and display functionalities. A real-time vulnerability assessment tool incorporating standardized health and exposure datasets, and prevention guidelines related to wildfire smoke hazards is currently unavailable for public health practitioners and emergency responders. This tool could strengthen existing situational awareness competencies, and expedite future response and recovery efforts during wildfire episodes. Published by Elsevier B.V.

  11. Adapt to more wildfire in western North American forests as climate changes.

    PubMed

    Schoennagel, Tania; Balch, Jennifer K; Brenkert-Smith, Hannah; Dennison, Philip E; Harvey, Brian J; Krawchuk, Meg A; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A; Rasker, Ray; Turner, Monica G; Whitlock, Cathy

    2017-05-02

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are ( i ) recognizing that fuels reduction cannot alter regional wildfire trends; ( ii ) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; ( iii ) actively managing more wild and prescribed fires with a range of severities; and ( iv ) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.

  12. Adapt to more wildfire in western North American forests as climate changes

    PubMed Central

    Schoennagel, Tania; Balch, Jennifer K.; Brenkert-Smith, Hannah; Harvey, Brian J.; Mietkiewicz, Nathan; Morgan, Penelope; Moritz, Max A.; Rasker, Ray; Turner, Monica G.; Whitlock, Cathy

    2017-01-01

    Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are (i) recognizing that fuels reduction cannot alter regional wildfire trends; (ii) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; (iii) actively managing more wild and prescribed fires with a range of severities; and (iv) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland–urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire. PMID:28416662

  13. Erratum to ‘Identifying policy target groups with qualitative and quantitative methods: the case of wildfire risk on nonindustrial private forest lands’ [Forest Policy and Economics. 25: 62–71

    Treesearch

    A. Paige Fischer; Jeffrey D. Kline; Susan Charnley; Christine Olsen

    2013-01-01

    Designing policies to harness the potential of heterogeneous target groups such as nonindustrial private forest owners to contribute to public policy goals can be challenging. The behaviors of such groups are shaped by their diverse motivations and circumstances. Segmenting heterogeneous target groups into more homogeneous subgroups may improve the chances of...

  14. Impact of wildfires on the air quality of Mexico City, 1992-1999.

    PubMed

    Bravo, A H; Sosa, E R; Sánchez, A P; Jaimes, P M; Saavedra, R M I

    2002-01-01

    Wildfires in Mexico increased in 1998, compared to information for the last 6 years. The average number of wildfires in the Mexico City Metropolitan Area (MCMA) for this year (1998) were 58% (1916 events) more events than the 1992-1997 (average cases 1217 events). Mexico City affected area corresponds to 1.3% of the national affected area. The purpose of this paper is to evaluate the impact on the particles air quality due to the wildfire emissions at the MCMA and surrounding areas. Using the corresponding US EPA emission factors for wildfires, the tons of particulate matter, nitrogen oxides, carbon monoxide, and total hydrocarbons emitted by this source for the MCMA case were obtained. The calculated emissions during wildfires were correlated with the levels of particles present in the atmosphere. A comparison of the concentration levels of particles, both as PM10 as well as TSP, were made for the years 1992-1998, during wet and dry season, being March, April, and May the critical months due to the presence of wildfires. A good correlation is observed between particulate wildfire emissions and particulate air quality, being stronger for TSP. A clear impact on the particles air quality due to the increase of wildfires in 1998, is observed when this year is compared with 1997, presenting an increment of 200-300% for some monitoring stations.

  15. Improving Access to Military Aircraft During Civilian Wildfires

    DTIC Science & Technology

    2015-12-01

    Stafford acts ; DOD doctrine and instruction, such as Defense Support to (of) Civil Authorities and Immediate Response Authority; and civilian...civilian wildfires, and that (2) the Economy and Stafford acts be modified to improve the efficiency with which military aircraft respond to civilian...wildfires. 14. SUBJECT TERMS wildfire, aircraft, The Economy Act , The Stafford Act , Department of Defense, National Interagency Fire Center

  16. The 2002 Rodeo-Chediski Wildfire's impacts on southwestern ponderosa pine ecosystems, hydrology, and fuels

    Treesearch

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    The Rodeo-Chediski Wildfire burned nearly 462,600 acres in north-central Arizona in the summer of 2002. The wildfire damaged or destroyed ecosystem resources and disrupted the hydrologic functioning within the impacted ponderosa pine (Pinus ponderosa) forests in a largely mosaic pattern. Impacts of the wildfire on ecosystem resources, factors important to hydrologic...

  17. Trying not to get burned: Understanding homeowners' wildfire risk-mitigation behaviors

    Treesearch

    Hannah Brenkert-Smith; Patricia A. Champ; Nicholas Flores

    2012-01-01

    Three causes have been identified for the spiraling cost of wildfire suppression in the United States: climate change, fuel accumulation from past wildfire suppression, and development in fire-prone areas. Because little is likely to be performed to halt the effects of climate on wildfire risk, and because fuel-management budgets cannot keep pace with fuel accumulation...

  18. Projecting wildfire area burned in the south-eastern United States, 2011-60

    Treesearch

    Jeffrey P. Prestemon; Uma Shankar; Aijun Xiu; K. Talgo; D. Yang; Ernest Dixon; Donald McKenzie; Karen L. Abt

    2016-01-01

    Future changes in society and climate are expected to affect wildfire activity in the south-eastern United States. The objective of this research was to understand how changes in both climate and society may affect wildfire in the coming decades.We estimated a three-stage statistical model of wildfire area burned by ecoregion province for lightning and human causes (...

  19. Uncertainty and probability in wildfire management decision support: An example from the United States [Chapter 4

    Treesearch

    Matthew Thompson; David Calkin; Joe H. Scott; Michael Hand

    2017-01-01

    Wildfire risk assessment is increasingly being adopted to support federal wildfire management decisions in the United States. Existing decision support systems, specifically the Wildland Fire Decision Support System (WFDSS), provide a rich set of probabilistic and risk‐based information to support the management of active wildfire incidents. WFDSS offers a wide range...

  20. Fighting fire with fire: estimating the efficacy of wildfire mitigation programs using propensity scores

    Treesearch

    David T. Butry

    2009-01-01

    This paper examines the effect wildfire mitigation has on broad-scale wildfire behavior. Each year, hundreds of million of dollars are spent on fire suppression and fuels management applications, yet little is known, quantitatively, of the returns to these programs in terms of their impact on wildfire extent and intensity. This is especially true when considering that...

  1. Incorporating fine-scale drought information into an eastern US wildfire hazard model

    Treesearch

    Matthew P. Peters; Louis R. Iverson

    2017-01-01

    Wildfires in the eastern United States are generally caused by humans in locations where human development and natural vegetation intermingle, e.g. the wildland–urban interface (WUI). Knowing where wildfire hazards are elevated across the forested landscape may help land managers and property owners plan or allocate resources for potential wildfire threats. In an...

  2. Entiat Experimental Forest: catchment-scale runoff data before and after a 1970 wildfire.

    Treesearch

    Richard D. Woodsmith; Kellie B. Vache; Jeffrey J. McDonnell; J. David Helvey

    2004-01-01

    Effects of wildfire on water quantity and quality are issues of major concern. Much has been learned from previous research, although site specific data from both before and after wildfire are rare. The Entiat Experimental Forest (EEF) in central Washington State provides such a hydrologic record. In August 1970 a severe wildfire occurred following 10 years of stream...

  3. Wildfire risk and housing prices: a case study from colorado springs

    Treesearch

    Geoffrey H. Donovan; Patricia A. Champ; David T. Butry

    2007-01-01

    In 2000, concerned about the risks of wildfires to local homes, the Colorado Springs Fire Department rated the wildfire risk of 35,000 housing parcels within the wildland-urban interface and made its findings available online. We examine the effectiveness of this rating project by comparing the relationship between home price and wildfire risk before and after the...

  4. Are wildfire management resources in the United States efficiently allocated to protect resources at risk? A case study from Montana

    Treesearch

    Derek T. O' Donnell; Tyron J. Venna; David E. Calkin

    2014-01-01

    Federal wildfire management agencies in the United States are under substantial pressure to reduce and economically justify their expenditures. To support economically efficient management of wildfires, managers need better estimates of the resource benefits and avoided damage costs associated with alternative wildfire management strategies. This paper reports findings...

  5. Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA

    Treesearch

    Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer

    2012-01-01

    Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...

  6. Pathology of wildfire risk: A characterization of social and ecological dimensions

    Treesearch

    A. Paige Fischer; Thomas A Spies; Toddi A Steelman; Cassandra Moseley; Bart R Johnson; John D Bailey; Alan A Ager; Patrick Bourgeron; Susan Charnley; Brandon M Collins; Jeffrey D Kline; Jessica E Leahy; Jeremy S Littell; James DA Millington; Max Nielsen-Pincus; Christine S Olsen; Travis B Paveglio; Christopher I Roos; Michelle M Steen-Adams; Forrest R Stevens; Jelena Vukomanovic; Eric M White; David M. J. S. Bowman

    2016-01-01

    Despite dramatic increases in suppression spending, the risk of life and property loss associated with wildfire has continued to rise in recent decades. Economic losses from wildfires have doubled in the United States and suppression expenses have tripled between 2002 and 2012 compared to the decade prior. Loss of property to wildfire has outpaced efforts to reduce...

  7. Warming and earlier spring increase Western U.S. forest wildfire activity

    Treesearch

    A.L. Westerling; H.G. Hidalgo; D.R. Cayan; T.W. Swetnam

    2006-01-01

    Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on...

  8. Recovery and adaptation after wildfire on the Colorado Front Range (2010–12)

    Treesearch

    Miranda H. Mockrin; Susan I. Stewart; Volker C. Radeloff; Roger B. Hammer

    2016-01-01

    Following the loss of homes to wildfire, when risk has been made apparent, homeowners must decide whether to rebuild, and choose materials and vegetation, while local governments guide recovery and rebuilding. As wildfires are smaller and more localised than other disasters, it is unclear if recovery after wildfire results in policy change and adaptation, decreasing...

  9. A tale of two fires: The relative effectiveness of past wildfires in mitigating wildfire behavior and effects

    Treesearch

    Robert W. Gray; Susan J. Prichard

    2015-01-01

    The incidence of large, costly landscape-scale fires in western North America is increasing. To combat these fires, researchers and managers have expressed increased interest in investigating the effectiveness of past, stand-replacing wildfires as bottom-up controls on fire spread and severity. Specifically, how effective are past wildfires in mitigating the behavior...

  10. Risk preferences in strategic wildfire decision making: A choice experiment with U.S. wildfire managers

    Treesearch

    Matthew J. Wibbenmeyer; Michael S. Hand; David E. Calkin; Tyron J. Venn; Matthew P. Thompson

    2013-01-01

    Federal policy has embraced risk management as an appropriate paradigm for wildfire management. Economic theory suggests that over repeated wildfire events, potential economic costs and risks of ecological damage are optimally balanced when management decisions are free from biases, risk aversion, and risk seeking. Of primary concern in this article is how managers...

  11. The net benefits of human-ignited wildfire forecasting: the case of Tribal land units in the United States

    PubMed Central

    Prestemon, Jeffrey P.; Butry, David T.; Thomas, Douglas S.

    2017-01-01

    Research shows that some categories of human-ignited wildfires might be forecastable, due to their temporal clustering, with the possibility that resources could be pre-deployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the United States, evaluating their forecast skill out of sample. Analyses show that an Autoregressive Conditional Poisson (ACP) model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample compared to alternatives, and the simplest of the ACP models performed the best. Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire hotspot forecast models using all model types were evaluated in a simulation mode to assess the net benefits of forecasts in the context of law enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires. PMID:28769549

  12. Projected effects of climate and development on California wildfire emissions through 2100.

    PubMed

    Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P

    2014-02-18

    Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.

  13. The net benefits of human-ignited wildfire forecasting: the case of Tribal land units in the United States.

    PubMed

    Prestemon, Jeffrey P; Butry, David T; Thomas, Douglas S

    2016-01-01

    Research shows that some categories of human-ignited wildfires might be forecastable, due to their temporal clustering, with the possibility that resources could be pre-deployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the United States, evaluating their forecast skill out of sample. Analyses show that an Autoregressive Conditional Poisson (ACP) model of both incendiary and non-incendiary human-ignited wildfires is more accurate out of sample compared to alternatives, and the simplest of the ACP models performed the best. Additionally, an ensemble of these and simpler, less analytically intensive approaches performed even better. Wildfire hotspot forecast models using all model types were evaluated in a simulation mode to assess the net benefits of forecasts in the context of law enforcement resource reallocations. Our analyses show that such hotspot tools could yield large positive net benefits for the tribes in terms of suppression expenditures averted for incendiary wildfires but that the hotspot tools were less likely to be beneficial for addressing outbreaks of non-incendiary human-ignited wildfires.

  14. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.

    PubMed

    Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella

    2015-01-01

    In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.

  15. Black Carbon in the Arctic: Assessment of and efforts to reduce black carbon emissions from wildfires and agricultural burning in Russia

    NASA Astrophysics Data System (ADS)

    Kinder, B.; Hao, W. M.; Larkin, N. K.; McCarty, G.; O'neal, K. J.; Gonzalez, O.; Luxenberg, J.; Rosenblum, M.; Petkov, A.

    2011-12-01

    Black carbon and other short-lived climate forcers exert a warming effect on the climate but remain in the atmosphere for short time periods when compared to carbon dioxide. Black carbon is a significant contributor to increasing temperatures in the Arctic region, which has warmed at twice the global rate over the past 100 years. Black carbon warms the Arctic by absorbing incoming solar radiation while in the atmosphere and, when deposited onto Arctic ice, leading to increased atmospheric temperatures and snow and ice melt. Black carbon remains in the atmosphere for a short time period ranging from days to weeks; therefore, local atmospheric conditions at the time of burning determine the amount of black carbon transport to the Arctic. Most black carbon transport and deposition in the Arctic results from the occurrence of wildfires, prescribed forest fires, and agricultural burning at latitudes greater than 40 degrees north latitude. Wildfire affects some 10-15 million hectares of forest, forest steppe, and grasslands in Russia each year. In addition to wildfire, there is widespread cropland burning in Russia occurring in the fall following harvest and in the spring prior to tilling. Agricultural burning is common practice for crop residue removal as well as suppression of weeds, insects and residue-borne diseases. The goal of the United States Department of Agriculture (USDA) Black Carbon Initiative is to assess black carbon emissions from agricultural burning and wildfires in Russia and explore practical options and opportunities for reducing emissions from these two sources. The emissions assessment combines satellite-derived burned area measurements of forest and agricultural fires, burn severity information, ancillary geospatial data, vegetation and land cover maps, fuels data, fire emissions data, fire/weather relationship information, and smoke transport models to estimate black carbon transport and deposition in the Arctic. The assessment addresses necessary improvements to fire and burned area detection algorithms to improve agricultural burned area mapping accuracy. Efforts to explore practical options for reducing black carbon emissions from wildfires and agricultural burning in Russia have been focused on designing community-based fire prevention and education programs in Siberia and the Russia Far East, two regions prone to frequent human-caused fires. The initiative also seeks to identify practical alternatives to reduce black carbon emissions from agricultural burning and to help promote these alternatives through outreach to farmers and other agricultural organizations. This submission will explore the initial findings and results of the emissions assessment and discuss the progress and challenges associated with implementation of local-level fire prevention and mitigation efforts in Russia. The results of this initiative will help inform future policy and management tools to address black carbon emissions from wildfires and agricultural burning in Russia and perhaps additional interested countries.

  16. Scientists aim to smoke out wildfire impacts

    NASA Astrophysics Data System (ADS)

    Cornwall, Warren

    2018-06-01

    Scientists this summer are taking to the air in an ambitious effort to better understand the chemistry, behavior, and health impacts of wildfire smoke. The flights in an instrument-packed C-130 airplane belonging to the National Science Foundation will be followed in 2019 by flights on a NASA DC-8 research jet by scientists with NASA and the National Oceanic and Atmospheric Administration. The two planes will fly through plumes of wildfire smoke, with a focus on the western United States, where wildfires have grown bigger and more intense. Researchers are saying it's the most comprehensive effort ever to understand wildfire smoke.

  17. Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence With a New Active Normalized Burn Ratio for Wildfires

    NASA Astrophysics Data System (ADS)

    Chasmer, L. E.; Hopkinson, C. D.; Petrone, R. M.; Sitar, M.

    2017-12-01

    Accuracy of depth of burn (an indicator of consumption) in peatland soils using prefire and postfire airborne light detection and ranging (lidar) data is determined within a wetland-upland forest environment near Fort McMurray, Alberta, Canada. The relationship between peat soil burn depth and an "active" normalized burn ratio (ANBR) is also examined beneath partially and fully burned forest and understory canopies using state-of-the-art active reflectance from a multispectral lidar compared with normalized burn ratio (NBR) derived from Landsat 7 ETM+. We find significant correspondence between depth of burn, lidar-derived ANBR, and difference NBR (dNBR) from Landsat. However, low-resolution optical imagery excludes peatland burn losses in transition zones, which are highly sensitive to peat loss via combustion. The findings presented here illustrate the utility of this new remote sensing technology for expanding an area of research where it has previously been challenging to spatially detect and quantify such wildfire burn losses.

  18. Sources and Implications of Bias and Uncertainty in a Century of US Wildfire Activity Data

    NASA Astrophysics Data System (ADS)

    Short, K.

    2013-12-01

    The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). Wildfire activity data have been collected in the US for over a century. Yet, to this day, no single unified system of wildfire record-keeping exists. Data for analysis are generally harvested from archival summary reports from federal or interagency fire organizations; incident-level wildfire reporting systems of the federal, state, and local fire services; and, increasingly, remote-sensing programs. It is typical for research into wildfire activity patterns for all or part of the last century to require data from several of these sources and perhaps others. That work is complicated by the disunity of the various datasets and potentially compromised by inherent reporting biases, discussed here. The availability of wildfire records with the information content and geospatial precision generally sought for increasingly popular climatological analyses and the modeling of contemporary wildfire risk is limited to recent decades. We explain how the disunity and idiosyncrasies of US wildfire reporting have largely precluded true interagency, or all-lands, analyses of even recent wildfire activity and hamstrung some early risk modeling efforts. We then describe our efforts to acquire, standardize, error-check, compile, scrub, and evaluate the completeness of US federal, state, and local wildfire records from 1992-2011 for the national interagency Fire Program Analysis (FPA) application. The resulting FPA Fire-Occurrence Database (FPA FOD) includes nearly 1.6 million records from the 20-year period, with values for at least the following core data elements: location at least as precise as a Public Land Survey System section (2.6-km2 grid), discovery date, and final fire size. The FPA FOD is publicly available from the Research Data Archive of the US Department of Agriculture, Forest Service (http://dx.doi.org/10.2737/RDS-2013-0009). While necessarily incomplete in some aspects, the database is intended to facilitate fairly high-resolution geospatial analysis of wildfire activity over the past two decades, based on available information from the authoritative systems of record. Formal non-federal wildfire reporting has been on the rise over the past several decades, and users of national datasets like the FPA FOD must beware of state and local reporting biases to avoid drawing spurious conclusions when analysing the data. Apparent trends in the numbers and area burned by wildfires, for example, may be the result of multiple factors, including changes in climate, fuels, demographics (e.g. population density), fire-management policies, and - as we underscore here - levels of reporting.

  19. A review of fire and oak regeneration and overstory recruitment

    Treesearch

    Daniel C. Dey; Zhaofei Fan

    2009-01-01

    Fire has played a prominent role in the history of oak in eastern North America, and it is useful today for promoting oak regeneration where competition with other woody vegetation is a problem and for managing savannas and woodlands. We spent the last century extinguishing wildfire from forests for good reason, but now we must spend some time relearning how to use...

  20. Aerial wildland firefighting resources in fire suppression activities: an example USDA Forest Service

    Treesearch

    A. González-Cabán

    2011-01-01

    Wildfires are a significant social problem affecting millions of people worldwide and causing major economic impacts at all levels. In the US, the severe fires of 1910 in Idaho and Montana galvanized a fire policy excluding fire from the ecosystem by the U.S.Department of Agriculture Forest Service (USDAFS). Fire management policy changed in 1935, 1978,1995, and 2001....

  1. Forest fuels on organic and associated soils in the Coastal Plain of North Carolina

    Treesearch

    G. W. Wendel; T. G Storey; G. M. Byram

    1962-01-01

    The fire problem in the organic soil (pocosin) areas of eastern North Carolina centers a round the frequent and costly blowup wildfires occurring there and the use of fire as a management tool. Under certain combinations of fuel and weather, low intensity fires will suddenly and often unexpectedly multiply their rate of energy output many times . In almost all...

  2. Wildfire, wildlands, and people: understanding and preparing for wildfire in the wildland-urban interface - a Forests on the Edge report

    Treesearch

    S. M. Stein; J. Menakis; M. A. Carr; S. J. Comas; S. I. Stewart; H. Cleveland; L. Bramwell; V. C. Radeloff

    2013-01-01

    Fire has historically played a fundamental ecological role in many of America's wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become "fire-adapted." We present maps...

  3. Wildland fire potential: A tool for assessing wildfire risk and fuels management needs

    Treesearch

    Greg Dillon; James Menakis; Frank Fay

    2015-01-01

    Federal wildfire managers often want to know, over large landscapes, where wildfires are likely to occur and how intense they may be. To meet this need we developed a map that we call wildland fire potential (WFP) - a raster geospatial product that can help to inform evaluations of wildfire risk or prioritization of fuels management needs across very large spatial...

  4. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Treesearch

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  5. An analysis of wildfire prevention

    NASA Technical Reports Server (NTRS)

    Heineke, J. M.; Weissenberger, S.

    1974-01-01

    A model of the production of wildfire ignitions and damages is developed and used to determine wildland activity-regulation decisions, which minimize total expected cost-plus-loss due to wildfires. In this context, the implications of various policy decisions are considered. The resulting decision rules take a form that makes it possible for existing wildfire management agencies to readily adopt them upon collection of the required data.

  6. Using field data to assess model predictions of surface and ground fuel consumption by wildfire in coniferous forests of California

    Treesearch

    Jamie Lydersen; Brandon M. Collins; Carol Ewell; Alicia Reiner; Jo Ann Fites; Christopher Dow; Patrick Gonzalez; David Saah; John Battles

    2014-01-01

    Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire...

  7. Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire

    Treesearch

    Camille Stevens-Rumann; Kristen Shive; Peter Fule; Carolyn H. Sieg

    2013-01-01

    Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites...

  8. Comparing resource values at risk from wildfires with Forest Service fire suppression expenditures: Examples from 2003 western Montana wildfire season

    Treesearch

    David Calkin; Kevin Hyde; Krista Gebert; Greg Jones

    2005-01-01

    Determining the economic effectiveness of wildfire suppression activities is complicated by difficulties in identifying the area that would have burned and the associated resource value changes had suppression resources not been employed. We developed a case study using break-even analysis for two large wildfires from the 2003 fire season in western Montana -- the...

  9. Pre-wildfire management treatments interact with fire severity to have lasting effects on post-wildfire vegetation response

    Treesearch

    Kristen L. Shive; Carolyn H. Sieg; Peter Z. Fule

    2013-01-01

    Land managers are routinely applying fuel reduction treatments to mitigate the risk of severe, stand-replacing fire in ponderosa pine communities of the southwestern US. When these treatments are burned by wildfire they generally reduce fire severity, but less is known about how they influence post-wildfire vegetation recovery, as compared to pre-fire untreated areas....

  10. Public Response to Wildfire: Is the Australian "Stay and Defend or Leave Early" Approach an Option for Wildfire Management in the United States?

    Treesearch

    Sarah M. McCaffrey; Alan Rhodes

    2009-01-01

    In the United States, the increasing costs and negative impacts of wildfires are causing fire managers and policymakers to reexamine traditional approaches to fire management including whether mass evacuation of populations threatened by wildfire is always the most appropriate option. This article examines the Australian "stay and defend or leave early" (SDLE...

  11. Preliminary results from a survey of U.S. Forest Service wildfire managers' attitudes toward aviation personnel exposure and risk

    Treesearch

    Matthew Wibbenmeyer; Michael Hand; David Calkin

    2012-01-01

    The U.S. Department of Agriculture, Forest Service (USFS) has, in recent years, increasingly emphasized the importance of safety to its employees, but wildfire management remains a risky endeavor. While wildfire management decisions affecting safety and exposure of firefighters to the wildland fire environment may be aided by decision support tools such the Wildfire...

  12. Wildfires as collateral effects of wildlife electrocution: An economic approach to the situation in Spain in recent years.

    PubMed

    Guil, Francisco; Soria, Mª Ángeles; Margalida, Antoni; Pérez-García, Juan M

    2018-06-01

    The interaction between wildlife and power lines has collateral effects that include wildfires and Carbon Dioxide (CO 2 ) emissions. However, currently available information is scarce and so new approaches are needed to increase our understanding of this issue. Here, we present the first analysis of wildfires and their incidence as a result of this interaction in Spain during the period 2000-2012. Amongst the 2788 Power-Line Mediated Wildfires (PLMW recorded) during this period, 30 records of Fauna Mediated Wildfires (FMW) were found, with an average affected vegetation cover of 9.06ha. Our findings suggest that no significant differences were observed between the amount of affected surface area due to fauna mediated wildfires and power-line mediated wildfires. In both cases, a space-grouping trend was observed. In terms of changing trends over time, after the first incident detected in 2005, the number of incidents increased until 2008, year in which the percentage of wildfires caused by wildlife stabilized at approximately 2.4% of all power-line-induced wildfires. Population density and road abundance were variables that better explained PLMW whereas for FMW, the models that included land use and raptor abundance. In the multivariate model, FMW emergence was positively related with population density, percentage of grazing areas and Natura 2000 cover, and predatory abundance; and negatively with the percentage of forested area. No significant differences were observed between the species of birds that caused wildfires and the species of ringed birds killed by electrocution. The economic and environmental impact due to necessary repairs, the loss of biodiversity and CO 2 emissions represent an estimated net value of €7.6-12.4M for the period 2000-2012, which indicates the importance of the economic and environmental costs associated with wildfires. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Particulate Air Pollution from Wildfires in the Western US under Climate Change

    PubMed Central

    Liu, Jia Coco; Mickley, Loretta J.; Sulprizio, Melissa P.; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F. A.; Bravo, Mercedes A.; Bell, Michelle L.

    2016-01-01

    Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM2.5) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term “Smoke Wave,” defined as ≥2 consecutive days with high wildfire-specific PM2.5, to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM2.5 standards, wildfires contributed an average of 71.3% of total PM2.5. Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health. PMID:28642628

  14. Particulate Air Pollution from Wildfires in the Western US under Climate Change.

    PubMed

    Liu, Jia Coco; Mickley, Loretta J; Sulprizio, Melissa P; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F A; Bravo, Mercedes A; Bell, Michelle L

    2016-10-01

    Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM 2.5 ) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term "Smoke Wave," defined as ≥2 consecutive days with high wildfire-specific PM 2.5 , to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM 2.5 standards, wildfires contributed an average of 71.3% of total PM 2.5 . Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.

  15. 43 CFR 9212.0-6 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-6 Policy. It..., the public lands and the resources and improvements thereon through the prevention of wildfires... wildfire prevention actions. ...

  16. 43 CFR 9212.0-6 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-6 Policy. It..., the public lands and the resources and improvements thereon through the prevention of wildfires... wildfire prevention actions. ...

  17. 43 CFR 9212.0-6 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-6 Policy. It..., the public lands and the resources and improvements thereon through the prevention of wildfires... wildfire prevention actions. ...

  18. 43 CFR 9212.0-6 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.0-6 Policy. It..., the public lands and the resources and improvements thereon through the prevention of wildfires... wildfire prevention actions. ...

  19. Rapid increases and time-lagged declines in amphibian occupancy after wildfire.

    PubMed

    Hossack, Blake R; Lowe, Winsor H; Corn, Paul Stephen

    2013-02-01

    Climate change is expected to increase the frequency and severity of drought and wildfire. Aquatic and moisture-sensitive species, such as amphibians, may be particularly vulnerable to these modified disturbance regimes because large wildfires often occur during extended droughts and thus may compound environmental threats. However, understanding of the effects of wildfires on amphibians in forests with long fire-return intervals is limited. Numerous stand-replacing wildfires have occurred since 1988 in Glacier National Park (Montana, U.S.A.), where we have conducted long-term monitoring of amphibians. We measured responses of 3 amphibian species to fires of different sizes, severity, and age in a small geographic area with uniform management. We used data from wetlands associated with 6 wildfires that burned between 1988 and 2003 to evaluate whether burn extent and severity and interactions between wildfire and wetland isolation affected the distribution of breeding populations. We measured responses with models that accounted for imperfect detection to estimate occupancy during prefire (0-4 years) and different postfire recovery periods. For the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), occupancy was not affected for 6 years after wildfire. But 7-21 years after wildfire, occupancy for both species decreased ≥ 25% in areas where >50% of the forest within 500 m of wetlands burned. In contrast, occupancy of the boreal toad (Anaxyrus boreas) tripled in the 3 years after low-elevation forests burned. This increase in occupancy was followed by a gradual decline. Our results show that accounting for magnitude of change and time lags is critical to understanding population dynamics of amphibians after large disturbances. Our results also inform understanding of the potential threat of increases in wildfire frequency or severity to amphibians in the region. ©2012 Society for Conservation Biology.

  20. Physiological work demands of Spanish wildland firefighters during wildfire suppression.

    PubMed

    Rodríguez-Marroyo, Jose A; López-Satue, Jorge; Pernía, Raul; Carballo, Belén; García-López, Juan; Foster, Carl; Villa, José G

    2012-02-01

    The aim of this study was to analyze the physiological demands and thermal strain of wildland firefighters during real wildfire suppression. The response of core temperature and heart rate (HR) were analyzed in 200 wildland firefighters during wildfire suppression activities of different duration: <1 h (n = 52), 1-3 h (n = 70), 3-5 h (n = 44), and >5 h (n = 34). The exercise workload (TRIMP), the physiological strain index (PSI), and cumulative heat strain index (CHSI) were calculated using the time spent in different intensity zones, the HR, and core temperature. Mean HR was significantly higher (P < 0.05) in wildfires <1 h (133 ± 2 bpm) and 1-3 h (128 ± 1 bpm) versus 3-5 h (120 ± 3 bpm) and >5 h (116 ± 32 bpm). The time spent in higher intensity zones increased (P < 0.05) when wildfire duration increased. TRIMP accumulation increased with wildfire duration (54.9 ± 3.2, 167.4 ± 5.9, 296.0 ± 8.3, 511.7 ± 12.8 in <1, 1-3, 3-5, and >5 h, respectively). Neither core temperature (37.4 ± 0.1°C) nor PSI (4.5 ± 0.2) were influenced by wildfire duration. The CHSI increased (p < 0.05) in the following order: <1 h (104 ± 23), 1-3 h (1,396 ± 275), 3-5 h (4,586 ± 387), and >5 h (10,703 ± 710). The results demonstrate the high work strain sustained by Spanish wildland firefighters during wildfire suppression. Both workload and CHSI increased with the wildfires duration although the pace of work was faster in wildfires of a shorter duration.

  1. Rapid increases and time-lagged declines in amphibian occupancy after wildfire

    USGS Publications Warehouse

    Hossack, Blake R.; Lowe, Winsor H.; Corn, Paul Stephen

    2013-01-01

    Climate change is expected to increase the frequency and severity of drought and wildfire. Aquatic and moisture-sensitive species, such as amphibians, may be particularly vulnerable to these modified disturbance regimes because large wildfires often occur during extended droughts and thus may compound environmental threats. However, understanding of the effects of wildfires on amphibians in forests with long fire-return intervals is limited. Numerous stand-replacing wildfires have occurred since 1988 in Glacier National Park (Montana, U.S.A.), where we have conducted long-term monitoring of amphibians. We measured responses of 3 amphibian species to fires of different sizes, severity, and age in a small geographic area with uniform management. We used data from wetlands associated with 6 wildfires that burned between 1988 and 2003 to evaluate whether burn extent and severity and interactions between wildfire and wetland isolation affected the distribution of breeding populations. We measured responses with models that accounted for imperfect detection to estimate occupancy during prefire (0-4 years) and different postfire recovery periods. For the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), occupancy was not affected for 6 years after wildfire. But 7-21 years after wildfire, occupancy for both species decreased ≥ 25% in areas where >50% of the forest within 500 m of wetlands burned. In contrast, occupancy of the boreal toad (Anaxyrus boreas) tripled in the 3 years after low-elevation forests burned. This increase in occupancy was followed by a gradual decline. Our results show that accounting for magnitude of change and time lags is critical to understanding population dynamics of amphibians after large disturbances. Our results also inform understanding of the potential threat of increases in wildfire frequency or severity to amphibians in the region.

  2. Long-term Health and Socioeconomic Impacts of Landscape Fire Emissions in Indonesia

    NASA Astrophysics Data System (ADS)

    Jina, A.; Marlier, M. E.

    2013-12-01

    Among natural disasters, wildfires are perhaps the most complex case of a coupled human-natural system, with both direct and indirect costs to society. A major contributor to these indirect costs is the impact upon health in the short- and long-term. Air pollution from fires is associated with more deaths from cardio-pulmonary diseases, yet little or no research has looked beyond the short-term mortality and morbidity associated with wildfire pollution, particularly in developing countries where impacts may be greatest but monitoring presents a constant challenge. We address this by using an interdisciplinary approach combining modeled air pollution with econometric methods to identify the long-term effects of air pollution on health and cognitive ability. These impacts will persist in society, and can lead to decreased education, loss of earnings, and a suppression of economic activity. We take the case of Indonesia, which is prone to large, catastrophic fires during El Niño conditions. Satellite data partially compensate for the lack of monitoring data for air pollution, but there are still significant gaps in data availability and difficulty in retrieving surface concentrations. In this study, surface fine particulate matter (PM2.5) concentrations at 2x2.5° resolution are obtained from GISS-E2-Puccini (the new version of the NASA GISS ModelE General Circulation Model (GCM)), run with monthly fire emissions from the Global Fire Emissions Database version 3 (GFED3). 24-hour ambient PM2.5 concentrations across Indonesia are matched to geographically and socioeconomic surveys. We find that exposure to high levels of PM2.5 at birth (and in utero) has negative impacts upon physical development of infants. This is associated with health problems later in life, as well as lower educational and labor market outcomes. A one standard deviation increase in ambient air pollution exposure leads to effects comparable to those from indoor air pollution. We also find a negative effect on cognitive ability in adults. The unique data allows us to identify whether it is cumulative exposure, maximum exposure, or exceeding certain thresholds which lead to the largest effects on health. We also test for non-linearity in the response to exposure and for interactions with socioeconomic status. We see worse health outcomes in poorer households, which may contribute the large gradient in health status in Indonesia. Identifying and quantifying these long-term impacts has implications for disaster relief policy in Indonesia, as it demands including populations that may be physically remote from the wildfires themselves. It also changes the cost-benefit analysis of interventions to mitigate the impacts of wildfires. The extra costs associated with these impacts have not been considered in disaster policy, so this research has implications beyond this specific case. It is hoped that the strongly interdisciplinary approach presented herein, of combining physically derived datasets with socioeconomic data, may be applied to identify the effects of many natural hazards in many other settings.

  3. Deforestation as a result of wildfire incidence in the Worobong Forest Reserve in the Eastern Region of Ghana

    NASA Astrophysics Data System (ADS)

    Danquah, S.

    2009-04-01

    This submission captures report on the perennial occurrence of wildfires and their accompanying effects on the inhabitants and the fringe forest communities in the Worobong Forest Reserve within the Eastern part of Ghana. Wildfire continues to be the single serious threat to the sustainable development and management of forest and wildlife resources in Ghana, thus depriving indigenous fringe forest communities of enormous socio-economic benefit of the forest. Locally, fire is used in the preparation of farm lands, tapping of palm-wine, charcoal production, honey harvesting, etc. This paper identifies some of the effects of wildfires on the indigenous communities and various interventions made to address the wildfire menace in the area of study over the years. Keywords: Wildfire, Fringe Forest Communities, Sustainable Development Resources, Socio-Economic Benefits

  4. Cost shared wildfire risk mitigation in Log Hill Mesa, Colorado: Survey evidence on participation and willingness to pay

    Treesearch

    James R. Meldrum; Patricia A. Champ; Travis Warziniack; Hannah Brenkert-Smith; Christopher M. Barth; Lilia C. Falk

    2014-01-01

    Wildland-urban interface (WUI) homeowners who do not mitigate the wildfire risk on their properties impose a negative externality on society. To reduce the social costs of wildfire and incentivise homeowners to take action, cost sharing programs seek to reduce the barriers that impede wildfire risk mitigation. Using survey data from a WUI community in western Colorado...

  5. Projecting wildfire area burned in the south-eastern United States, 2011-60

    Treesearch

    Jeff Prestemon; Uma Shankar; Aijun Xiu; K. Talgo; D. Yang; Ernest Dixon IV; Donald McKenzie; Karen L. Abt

    2016-01-01

    Future changes in society and climate are expected to affect wildfire activity in the south-eastern United States. The objective of this research was to understand how changes in both climate and society may affect wildfire in the coming decades.Weestimated a three-stage statistical model of wildfire area burned by ecoregion province for lightning and human causes (...

  6. Is forest structure related to fire severity? Yes, no, and maybe: Methods and insights in quantifying the answer

    Treesearch

    Theresa Benavidez Jain; Russell T. Graham

    2004-01-01

    Wildfires in 2000 burned over 500,000 forested ha in the Northern Rocky Mountains. In 2001, National Fire Plan funding became available to evaluate the influence of pre-wildfire forest structure on post wildfire fire severity. Results from this study will provide information on forest structures that are resilient to wildfire. Three years of data (558 plots) have been...

  7. Post-wildfire summer greening depends on winter snowpack

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nolin, A. W.

    2017-12-01

    Forested, mountain landscapes in the Pacific Northwest (PNW) are changing at an unprecedented rate, largely due to shifts in the regional climate regime. Documented climatic trends include increasing wildfire frequency and intensity and an increasingly ephemeral snowpack, especially at moderate elevations. One relationship that has yet to be studied thoroughly is the dependence of post-wildfire forest recovery on winter snowpack. This study will correlate winter snowpack with summer greenness in the context of 15 recent severe wildfires across the PNW. Winter snow water equivalent will be estimated using a new Snow Cover Frequency (SCF) metric derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover product. Summer forest greenness will be assessed using the Enhanced Vegetation Index (EVI), also derived from daily MODIS reflectance data. Regression tree analysis will be employed to characterize the relative importance of snowpack, elevation, slope, aspect, soil texture, and summer precipitation to summer greenness. Using findings from the regression tree analysis, the most critical physiographic factors will frame a multivariate time series spanning the 5 years pre-wildfire and 5 years post-wildfire in an effort to illustrate how the snowpack-revegetation relationship persists over time. As northwestern mountainous forests become more vulnerable to wildfire activity, it will be vital to continue deepening our understanding of how snowpack matters to post-wildfire forest recovery.

  8. Mammals and habitat disturbance: the case of brown hare and wildfire.

    PubMed

    Sokos, Christos; Birtsas, Periklis; Papaspyropoulos, Konstantinos G; Tsachalidis, Efstathios; Giannakopoulos, Alexios; Milis, Chrysostomos; Spyrou, Vassiliki; Manolakou, Katerina; Valiakos, George; Iakovakis, Christos; Athanasiou, Labrini V; Sfougaris, Athanasios; Billinis, Charalambos

    2016-10-01

    Ecosystem disturbances, such as wildfires, are driving forces that determine ecology and conservation measures. Species respond differentially to wildfires, having diverse post-fire population evolution. This study reports, for first time, the responses of brown hare ( Lepus europaeus Pallas, 1778) to wildfires. Hare relative abundance, age ratio, diet quality, body condition, and diseases were studied. Fire influence on vegetation was calculated at a micro-scale level. Hare abundance was lower the first year after wildfires in burned relative to unburned areas. The reverse was found in the second year when hare abundance was higher in burned areas. Hare abundance in burned areas was also higher in the third and fourth years. In the fifth and sixth years after wildfire no significant difference was found in abundance. At a micro-scale level, higher numbers of hare feces were counted in places with greater wildfire influence on vegetation. Age ratio analysis revealed more juveniles in burned areas, but the same number of neonates in burned and unburned areas, indicating lower mortality of juveniles in burned areas. Reduced predation in burned areas provides the most plausible explanation for our findings.

  9. Improving Forest Wildfire Suppression Using Penetrating Reconnaissance And Real Time Data Transfer

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1990-02-01

    The suppression of a wildfire is analogous to a combat action. Fires, like battles, spread fast and suppression forces must be highly mobile. The enemy, (in this case) the wildfire, is lethal in that it kills or destroys forces, equipment, and natural resources left in its path. The suppression action must be carried on day and night until the "enemy" is contained. Both air operations and ground forces are used. Just as in a combat situation, wildfire suppression forces need penetrating reconnaissance with real time data transfer. This paper presents a review of the current system of intelligence gathering on a wildfire where aerial observers, infrared detectors, and ground intelligence officers gather data and either radio or carry the data to the command center. It then attempts to show how some current military reconnaissance systems might be applied to wildfire control processes. The payoffs would include improved safety for both air and ground forces and faster containment of the wildfire which would reduce forest resources lost and decrease the total monetary cost of the containment action.

  10. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific.

    PubMed

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires.

  11. Spatial Surface PM2.5 Concentration Estimates for Wildfire Smoke Plumes in the Western U.S. Using Satellite Retrievals and Data Assimilation Techniques

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.

    2015-12-01

    Health effects studies of aerosol pollution have been extended spatially using data assimilation techniques that combine surface PM2.5 concentrations and Aerosol Optical Depth (AOD) from satellite retrievals. While most of these models were developed for the dark-vegetated eastern U.S. they are being used in the semi-arid western U.S. to remotely sense atmospheric aerosol concentrations. These models are helpful to understand the spatial variability of surface PM2.5concentrations in the western U.S. because of the sparse network of surface monitoring stations. However, the models developed for the eastern U.S. are not robust in the western U.S. due to different aerosol formation mechanisms, transport phenomena, and optical properties. This region is a challenge because of complex terrain, anthropogenic and biogenic emissions, secondary organic aerosol formation, smoke from wildfires, and low background aerosol concentrations. This research concentrates on the use and evaluation of satellite remote sensing to estimate surface PM2.5 concentrations from AOD satellite retrievals over California and Nevada during the summer months of 2012 and 2013. The aim of this investigation is to incorporate a spatial statistical model that uses AOD from AERONET as well as MODIS, surface PM2.5 concentrations, and land-use regression to characterize spatial surface PM2.5 concentrations. The land use regression model uses traditional inputs (e.g. meteorology, population density, terrain) and non-traditional variables (e.g. FIre Inventory from NCAR (FINN) emissions and MODIS albedo product) to account for variability related to smoke plume trajectories and land use. The results will be used in a spatially resolved health study to determine the association between wildfire smoke exposure and cardiorespiratory health endpoints. This relationship can be used with future projections of wildfire emissions related to climate change and droughts to quantify the expected health impact.

  12. College's hot topics? Wildfire and Hazards' risk perception among university's population

    NASA Astrophysics Data System (ADS)

    Wuerzer, T.

    2014-12-01

    This research presents a novel perspective on college students and their risk perception in a fire prone US State; Idaho. Idaho was "top #1" in burned lands by acreage in 2012 with approximate 15% of all US burned lands; in 2013 "top #2". Past studies have conducted surveys on residents in high wildfire risk communities to learn what factors make homeowners more likely to engage in mitigation activities and therefore increase communities' resiliency. This research emphasis is on a population that deals with the threat of fire but is likely less invested through property ownership and other investment of risk; yet, equally threatened in quality of life. Are college students the left-out population in the 'planning for wildfires' and its communication process? Main hypothesis is that a college population will have a different perception and awareness (and therefore mitigation actions) than i.e. residents invested in the wild land urban interface (WUI). Dominant research methodologies in past studies are identified as surveys, focus groups, or interviews focusing on homeowners in fire prone areas that have witnessed wildfire or are exposed to increasing fire risk. Yet again, research on population that has no property ownership, investments at stake, and therefore no direct monetary values associated (but potentially non-monetary), is found little to none in these studies. The university population based study and its findings offers a contrast to current literature related to these traditional residents surveys/interviews. The study's survey and interactive spatial assessment of risk perception with allocation of perceived hazards zones promotes understanding of where risk is apparent for participants. Results are used to inform agencies such as campus emergency management, regional wild fire mitigation efforts, and to enhance public communication. Lessons learned include the challenges of a comprehensive inclusion process when mitigating for hazards and building resiliency in a region with development pressures.

  13. Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin

    USGS Publications Warehouse

    Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.

    2009-01-01

    The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.

  14. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific

    PubMed Central

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires. PMID:25691965

  15. The impact of fire suppression tasks on firefighter hydration: a critical review with consideration of the utility of reported hydration measures.

    PubMed

    Walker, Adam; Pope, Rodney; Orr, Robin Marc

    2016-01-01

    Firefighting is a highly stressful occupation with unique physical challenges, apparel and environments that increase the potential for dehydration. Dehydration leaves the firefighter at risk of harm to their health, safety and performance. The purpose of this review was to critically analyse the current literature investigating the impact of fighting 'live' fires on firefighter hydration. A systematic search was performed of four electronic databases for relevant published studies investigating the impact of live fire suppression on firefighter hydration. Study eligibility was assessed using strict inclusion and exclusion criteria. The included studies were critically appraised using the Downs and Black protocol and graded according to the Kennelly grading system. Ten studies met the eligibility criteria for this review. The average score for methodological quality was 55 %, ranging from 50 % ('fair' quality) to 61 % ('good' quality) with a 'substantial agreement' between raters ( k  = .772). Wildfire suppression was considered in five studies and structural fire suppression in five studies. Results varied across the studies, reflecting variations in outcome measures, hydration protocols and interventions. Three studies reported significant indicators of dehydration resulting from structural fire suppression, while two studies found mixed results, with some measures indicating dehydration and other measures an unchanged hydration status. Three studies found non-significant changes in hydration resulting from wildfire firefighting and two studies found significant improvements in markers of hydration. Ad libitum fluid intake was a common factor across the studies finding no, or less severe, dehydration. The evidence confirms that structural and wildfire firefighting can cause dehydration. Ad libitum drinking may be sufficient to maintain hydration in many wildfire environments but possibly not during intense, longer duration, hot structural fire operations. Future high quality research better quantifying the effects of these influences on the degree of dehydration is required to inform policies and procedures that ensure firefighter health and safety.

  16. Ecosystem and Food Security in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Field, C. B.

    2011-12-01

    Observed and projected impacts of climate change for ecosystem and food security tend to appear as changes in the risk of both desirable and undesirable outcomes. As a consequence, it is useful to frame the challenge of adaptation to a changing climate as a problem in risk management. For some kinds of impacts, the risks are relatively well characterized. For others, they are poorly known. Especially for the cases where the risks are poorly known, effective adaptation will need to consider approaches that build dynamic portfolios of options, based on learning from experience. Effective adaptation approaches also need to consider the risks of threshold-type responses, where opportunities for gradual adaptation based on learning may be limited. Finally, effective adaptation should build on the understanding that negative impacts on ecosystems and food security often result from extreme events, where a link to climate change may be unclear now and far into the future. Ecosystem and food security impacts that potentially require adaptation to a changing climate vary from region to region and interact strongly with actions not related to climate. In many ecosystems, climate change shifts the risk profile to increase risks of wildfire and biological invasions. Higher order risks from factors like pests and pathogens remain difficult to quantify. For food security, observational evidence highlights threshold-like behavior to high temperature in yields of a number of crops. But the risks to food security may be much broader, encompassing risks to availability of irrigation, degradation of topsoil, and challenges of storage and distribution. A risk management approach facilitates consideration of all these challenges with a unified framework.

  17. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    Treesearch

    Jason B. Dunham; Amanda E. Rosenberger; Charlie H. Luce; Bruce E. Rieman

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre­post fire comparison of temperatures between two sites (one...

  18. Dempster-Shafer theory of evidence: A new approach to spatially model wildfire risk potential in central Chile.

    PubMed

    González, Cristián; Castillo, Miguel; García-Chevesich, Pablo; Barrios, Juan

    2018-02-01

    A spatial modeling was applied to Chilean wildfire occurrence, through the Dempster-Shafer's evidence theory and considering the 2006-2010 period for the Valparaiso Region (central Chile), a representative area for this experiment. Results indicate strong spatial correlation between documented wildfires and cumulative evidence maps, resulting in a powerful tool for future wildfire risk prevention programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The net benefits of human-ignited wildfire forecasting: the case of tribal land units in the United States

    Treesearch

    Jeff Prestemon; David T. Butry; Douglas S. Thomas

    2016-01-01

    Research shows that some categories of human-ignited wildfires may be forecastable, owing to their temporal clustering, with the possibility that resources could be predeployed to help reduce the incidence of such wildfires. We estimated several kinds of incendiary and other human-ignited wildfire forecast models at the weekly time step for tribal land units in the...

  20. The hidden cost of wildfires: Economic valuation of health effects of wildfire smoke exposure in Southern California

    USGS Publications Warehouse

    Richardson, L.A.; Champ, P.A.; Loomis, J.B.

    2012-01-01

    There is a growing concern that human health impacts from exposure to wildfire smoke are ignored in estimates of monetized damages from wildfires. Current research highlights the need for better data collection and analysis of these impacts. Using unique primary data, this paper quantifies the economic cost of health effects from the largest wildfire in Los Angeles County's modern history. A cost of illness estimate is $9.50 per exposed person per day. However, theory and empirical research consistently find that this measure largely underestimates the true economic cost of health effects from exposure to a pollutant in that it ignores the cost of defensive actions taken as well as disutility. For the first time, the defensive behavior method is applied to calculate the willingness to pay for a reduction in one wildfire smoke induced symptom day, which is estimated to be $84.42 per exposed person per day. ?? 2011.

  1. Where you stand depends on where you sit: Qualitative inquiry into notions of fire adaptation

    USGS Publications Warehouse

    Brenkert-Smith, Hannah; Meldrum, James; Champ, Patricia A.; Barth, Christopher

    2017-01-01

    Wildfire and the threat it poses to society represents an example of the complex, dynamic relationship between social and ecological systems. Increasingly, wildfire adaptation is posited as a pathway to shift the approach to fire from a suppression paradigm that seeks to control fire to a paradigm that focuses on “living with” and “adapting to” wildfire. In this study, we seek insights into what it means to adapt to wildfire from a range of stakeholders whose efforts contribute to the management of wildfire. Study participants provided insights into the meaning, relevance, and use of the concept of fire adaptation as it relates to their wildfire-related activities. A key finding of this investigation suggests that social scale is of key importance in the conceptualization and understanding of adaptation for participating stakeholders. Indeed, where you stand in terms of understandings of fire adaptation depends in large part on where you sit.

  2. Impact of the 2015 wildfires on Malaysian air quality and exposure: a comparative study of observed and modeled data

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Castruccio, S.; Latif, M. T.; Nadzir, M. S. M.; Dominick, D.; Thota, A.; Crippa, P.

    2018-04-01

    In September and October 2015, Equatorial Asia experienced the most intense biomass burning episodes over the past two decades. These events, mostly enhanced by the extremely dry weather associated with the occurrence of strong El Niño conditions, resulted in the transnational transport of hazardous pollutants from the originating sources in Indonesian Borneo and Sumatra to the highly populated Malaysian Peninsula. Quantifying the population exposure form this event is a major challenge, and only two model-based studies have been performed to date, with limited evaluation against measurements. This manuscript presents a new data set of 49 monitoring stations across Peninsular Malaysia and Malaysian Borneo active during the 2015 haze event, and performs the first comparative study of PM10 (particulate matter with diameter < 10 µm) and carbon monoxide (CO) against the output of a state-of-the-art regional model (WRF-Chem). WRF-Chem presents high skills in describing the spatio-temporal patterns of both PM10 and CO and thus was applied to estimate the impact of the 2015 wildfires on population exposure. This study showed that more than 60% of the population living in the highly populated region of the Greater Klang Valley was systematically exposed to unhealthy/hazardous air quality conditions associated with the increased pollutant concentrations from wildfires and that almost 40% of the Malaysian population was on average exposed to PM10 concentrations higher than 100 µg m‑3 during September and October 2015.

  3. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A., E-mail: jalast@ucdavis.edu

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stressmore » in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving wildfire PM{sub 10-2.5} to mice. ► Wildfire PM{sub 10-2.5} rapidly kills lung macrophages in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits oxidative stress in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits Clara cell CCSP secretion in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits TNF-α secretion into BALF in mice.« less

  4. Influence of wildfires on the variability and trend of ozone concentrations in the U.S. Intermountain West

    NASA Astrophysics Data System (ADS)

    Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu

    2016-04-01

    Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with measured daily ozone concentrations exceeding 65(75) ppbv, indicating their significant influence on ozone exceptional events. We further compare the wildfire ozone enhancements estimated by the statistical and Lagrangian approach with those estimated from a Eulerian model (GEOS-Chem). Despite highly-correlated results, GEOS-Chem largely overestimates wildfire ozone influences near the source regions and fails to capture ozone production from wildfires at long distance, reflecting deficiencies in current Eulerian models to capture small-scale emissions.

  5. Early Life Wildfire Smoke Exposure Is Associated with Immune Dysregulation and Lung Function Decrements in Adolescence.

    PubMed

    Black, Carolyn; Gerriets, Joan E; Fontaine, Justin H; Harper, Richart W; Kenyon, Nicholas J; Tablin, Fern; Schelegle, Edward S; Miller, Lisa A

    2017-05-01

    The long-term health effects of wildfire smoke exposure in pediatric populations are not known. The objectives of this study were to determine if early life exposure to wildfire smoke can affect parameters of immunity and airway physiology that are detectable with maturity. We studied a mixed-sex cohort of rhesus macaque monkeys that were exposed as infants to ambient wood smoke from a series of Northern California wildfires in the summer of 2008. Peripheral blood mononuclear cells (PBMCs) and pulmonary function measures were obtained when animals were approximately 3 years of age. PBMCs were cultured with either LPS or flagellin, followed by measurement of secreted IL-8 and IL-6 protein. PBMCs from a subset of female animals were also evaluated by Toll-like receptor (TLR) pathway mRNA analysis. Induction of IL-8 protein synthesis with either LPS or flagellin was significantly reduced in PBMC cultures from wildfire smoke-exposed female monkeys. In contrast, LPS- or flagellin-induced IL-6 protein synthesis was significantly reduced in PBMC cultures from wildfire smoke-exposed male monkeys. Baseline and TLR ligand-induced expression of the transcription factor, RelB, was globally modulated in PBMCs from wildfire smoke-exposed monkeys, with additional TLR pathway genes affected in a ligand-dependent manner. Wildfire smoke-exposed monkeys displayed significantly reduced inspiratory capacity, residual volume, vital capacity, functional residual capacity, and total lung capacity per unit of body weight relative to control animals. Our findings suggest that ambient wildfire smoke exposure during infancy results in sex-dependent attenuation of systemic TLR responses and reduced lung volume in adolescence.

  6. WIFIRE Data Model and Catalog for Wildfire Data and Tools

    NASA Astrophysics Data System (ADS)

    Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.

    2014-12-01

    The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.

  7. Forest Service R&D — Invasive Insects: Visions for the Future

    Treesearch

    Kier D. Klepzig; Therese M. Poland; Nancy E. Gillette; Robert A. Haack; Melody A. Keena; Daniel R. Miller; Michael E. Montgomery; Steven J. Seybold; Patrick C. Tobin

    2009-01-01

    The Forest Service has identified invasive species as one of four significant threats to our Nation’s forest and rangeland ecosystems and likened the problem to a “catastrophic wildfire in slow motion.” Forest Service Research and Development (R&D) has a crucial role in providing insight and options to protect trees, forests, and ecosystems from the threat of...

  8. Prescribed Fire and Fire Suppression Training in the U.S. Fish and Wildlife Service for the Year 2010

    Treesearch

    James L. Murphy; Frank T. Cole

    1987-01-01

    The Fish and Wildlife Service, U.S. Department of the Interior, uses prescribed fire for habitat improvement on over 400 National Wildlife Refuges across the United States. Wildfire is a problem on some refuges. Escaped fires have resulted in fatalities and the loss of millions of dollars in natural and man-made resources. The Service recognized the critical need for...

  9. Generation BULLIED 2.0: Prevention and Intervention Strategies for Our Most Vulnerable Students. Gender and Sexualities in Education. Volume 1

    ERIC Educational Resources Information Center

    Miller, sj, Ed.; Burns, Leslie David, Ed.; Johnson, Tara Star, Ed.

    2013-01-01

    Bullying is a contemporary wildfire of a social problem that continues to burn, scar, and even kill U.S. schoolchildren on a daily basis. Not only do the targets of bullying suffer in their abilities to grow, learn and succeed; so do bystanders, and even the bullies themselves. "Generation BULLIED 2.0" details the nature of bullying as a…

  10. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  11. Idaho Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wildfires in Northwestern United States     ... (MISR) image of smoke plumes from devastating wildfires in the northwestern United States. This view of the Clearwater and ... at JPL August 5, 2000 - Smoke plumes from wildfires in Idaho. project:  MISR category:  ...

  12. Wildfire Smoke: Health Effects and Public Health Outreach

    EPA Science Inventory

    The content of the presentation provides a general discussion of the epidemiological data supporting a link between exposure to wildfire smoke and clinical health outcomes including adverse respiratory and cardiovascular effects and economic impacts. Exposure to wildfire emissio...

  13. Analyzing trade-offs between fuels management, suppression, and damages from wildfire

    Treesearch

    D. Evan Mercer; Robert G. Haight; Jeffrey P. Prestemon

    2008-01-01

    With expenditures to suppress wildfires in the United States increasing rapidly during the past couple of decades, fire managers, scientists, and policy makers have begun an intense effort to develop alternative approaches to managing wildfire.

  14. Wildfire Smoke Emissions webinar

    EPA Pesticide Factsheets

    This webinar presented by Wayne Cascio will highlight updates to the Wildfire Smoke Guide, as well as the Smoke Sense app, which is a mobile application that gets air quality information to people impacted by wildfire smoke, and helps those affected learn

  15. The application of prototype point processes for the summary and description of California wildfires

    USGS Publications Warehouse

    Nichols, K.; Schoenberg, F.P.; Keeley, J.E.; Bray, A.; Diez, D.

    2011-01-01

    A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and space-time point processes is extended here to include methods for computing prototypes with marks and the incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution of wildfires within each wildfire season. ?? 2011 Blackwell Publishing Ltd.

  16. Fuel treatments, fire suppression, and their interaction with wildfire and its impacts: the Warm Lake experience during the Cascade Complex of wildfires in central Idaho, 2007

    Treesearch

    Russell T. Graham; Theresa B. Jain; Mark Loseke

    2009-01-01

    Wildfires during the summer of 2007 burned over 500,000 acres within central Idaho. These fires burned around and through over 8,000 acres of fuel treatments designed to offer protection from wildfire to over 70 summer homes and other buildings located near Warm Lake. This area east of Cascade, Idaho, exemplifies the difficulty of designing and implementing fuel...

  17. Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression

    DTIC Science & Technology

    2012-04-13

    S, Martı́nez-Falero E, Pérez-González JM (2002) Optimiza- tion of the resources management in fighting wildfires . Environmental Management 30: 352...Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression Nada Petrovic1*, David L. Alderson2, Jean M. Carlson3 1Center for...inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of

  18. Wildfire seasonality and land use: when do wildfires prefer to burn?

    PubMed

    Bajocco, Sofia; Pezzatti, Gianni Boris; Mazzoleni, Stefano; Ricotta, Carlo

    2010-05-01

    Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

  19. Relationship between Climate Variability, Wildfire Risk, and Wildfire Occurrence in Wildland-Urban Interface of the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Jia, S.; Nghiem, S. V.

    2017-12-01

    As housing units in or near wildlands have grown, the wildland-urban interface (WUI) contain at present approximately one-third of all housing in the contiguous US. Wildfires are a part of the natural cycle in the Southwestern United States (SWUS) but the increasing trend of WUI has made wildfires a serious high-risk hazard. The expansion of WUI has elevated wildfire risks by increasing the chance of human caused ignitions and past fire suppression in the area. Previous studies on climate variability have shown that the SWUS region is prone to frequent droughts and has suffered from severe wildfires in the recent decade. Therefore, assessing the increased vulnerability to the wildfire in WUI is crucial for proactive adaptation under climate change. Our previous study has shown that a strong correlation between North Atlantic Oscillation (NAO) and temperature was found during March-June in the SWUS. The abnormally warm and dry spring conditions, combined with suppression of winter precipitation, can cause an early start of a fire season and high fire risk throughout the summer and fall. Therefore, it is crucial to investigate the connections between climate variability and wildfire danger characteristics. This study aims to identify climate variability using multiple climate indices such as NAO, El Niño-Southern Oscillation and the Pacific Decadal Oscillation closely related with droughts in the SWUS region. Correlation between the variability and fire frequency and severity in WUI were examined. Also, we investigated climate variability and its relationship on local wildfire potential using both Keetch-Byram Drought Index (KBDI) and Fire Weather Index (FWI) which have been used to assessing wildfire potential in the U.S.A and Canada, respectively. We examined the long-term variability of the fire potential indices and relationships between the indices and historical occurrence in WUI using multi-decadal reanalysis data sets. Following our analysis, we investigated joint impacts of multiple climate indices on droughts and human activities in the WUI for regional wildfire potential.

  20. Estimating wildfire response costs in Alaska's changing climate

    EPA Science Inventory

    Climate change is altering wildfire activity across Alaska, with increased area burned projected for the future. Changes in wildfire are expected to affect the need for management and suppression resources, however the potential economic implications of these needs have not been ...

  1. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula).

    PubMed

    Francos, Marcos; Úbeda, Xavier; Pereira, Paulo; Alcañiz, Meritxell

    2018-02-15

    Wildfires affect ecosystems depending on the fire regime. Long-term studies are needed to understand the ecological role played by fire, especially as regards its impact on soils. The aim of this study is to monitor the long-term effects (18years) of a wildfire on soil properties in two areas affected by low and high fire severity regimes. The properties studied were total nitrogen (TN), total carbon (TC), C/N ratio, soil organic matter (SOM) and extractable calcium (Ca), magnesium (Mg), sodium (Na) and potassium (K). The study was carried out in three phases: short- (immediately after the wildfire), medium- (seven years after the wildfire) and long-term (18years after the wildfire). The results showed that in both fire regimes TN decreased with time, TC and SOM were significantly lower in the burned plots than they were in the control in the medium- and long-terms. C/N ratio was significantly lower at short-term in low wildfire severity area. Extractable Ca and Mg were significantly higher in control plot than in the burned plots in the medium-term. In the long-term, extractable Ca and Mg were significantly lower in the area exposed to a high severity burning. No differences were identified in the case of extractable Na between plots on any of the sampling dates, while extractable K was significantly higher in the plot exposed to low wildfire than it was in the control. Some restoration measures may be required after the wildfire, especially in areas affected by high severity burning, to avoid the long-term impacts on the essential soil nutrients of TC, SOM, extractable Ca and Mg. This long-term nutrient depletion is attributable to vegetation removal, erosion, leaching and post-fire vegetation consumption. Soils clearly need more time to recover from wildfire disturbance, especially in areas affected by high severity fire regimes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Amphibian responses to wildfire in the western united states: Emerging patterns from short-term studies

    USGS Publications Warehouse

    Hossack, B.R.; Pilliod, D.S.

    2011-01-01

    The increased frequency and severity of large wildfires in the western United States is an important ecological and management issue with direct relevance to amphibian conservation. Although the knowledge of fire effects on amphibians in the region is still limited relative to most other vertebrate species, we reviewed the current literature to determine if there are evident patterns that might be informative for conservation or management strategies. Of the seven studies that compared pre- and post-wildfire data on a variety of metrics, ranging from amphibian occupancy to body condition, two reported positive responses and five detected negative responses by at least one species. Another seven studies used a retrospective approach to compare effects of wildfire on populations: two studies reported positive effects, three reported negative effects from wildfire, and two reported no effects. All four studies that included plethodontid salamanders reported negative effects on populations or individuals; these effects were greater in forests where fire had been suppressed and in areas that burned with high severity. Species that breed in streams are also vulnerable to post-wildfire changes in habitat, especially in the Southwest. Wildfire is also important for maintaining suitable habitat for diverse amphibian communities, although those results may not be evident immediately after an area burns. We expect that wildfire will extirpate few healthy amphibian populations, but it is still unclear how populations will respond to wildfire in the context of land management (including pre- and post-fire timber harvest) and fragmentation. Wildfire may also increase the risk of decline or extirpation for small, isolated, or stressed (e.g., from drought or disease) populations. Improved understanding of how these effects vary according to changes in fire frequency and severity are critical to form more effective conservation strategies for amphibians in the western United States.

  3. Fire and Fish: Using Radiocarbon And Stratigraphy To Discern The Impact Of Wildfire On Fish Metapopulations

    NASA Astrophysics Data System (ADS)

    Schaffrath, K. R.; Finch, C.; Belmont, P.; Budy, P.

    2015-12-01

    Wildfires have profound and variable impacts on erosion, channel morphology, and aquatic habitat. Previous research has quantified post-fire geomorphic response on event and millennial timescales. While these studies have informed our understanding of post-fire geomorphic response during the Holocene, we have yet to fully understand the variability of post-wildfire geomorphic response and how it might change in response to changing climate. Response of aquatic biota is just as variable as post-wildfire response yet we know very little about effects on metapopulations and how management decisions affect aquatic populations. Barriers to movement are installed to isolate native fish populations and prescribed fire and thinning are used to try to reduce future wildfire severity and extent. In order to improve understanding of the implications of management decisions, we evaluated geomorphic response and synchronicity of wildfires over the Holocene relative to the impact to the metapopulation of Bonneville cutthroat trout from a recent wildfire. The Twitchell Canyon fire burned 45,000 acres near Beaver, UT in July 2010. Over 30% of the area burned at high severity, which included two major headwater streams that sustained a trout population. In summer 2011, monsoonal thunderstorms caused massive debris flows and sheetflow erosion that altered channel morphology and aquatic habitat in the burned area. A previously robust, non-native trout fishery was nearly extirpated as a result of the geomorphic response to the wildfire. We used radiocarbon dating of burned material to determine how often headwater streams burned synchronously over the Holocene. Radiocarbon dates are associated with field observations of stratigraphy in order to infer geomorphic response to historic wildfires. Thirty samples were collected from sediment layers in 10 alluvial fans distributed among three watersheds (two burned and one unburned in the 2010 fire). Preliminary results suggest that we sampled 10-15 individual wildfires and radiocarbon ages range from 150-8,100 years.

  4. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties.

    PubMed

    Liu, Jia Coco; Wilson, Ander; Mickley, Loretta J; Dominici, Francesca; Ebisu, Keita; Wang, Yun; Sulprizio, Melissa P; Peng, Roger D; Yue, Xu; Son, Ji-Young; Anderson, G Brooke; Bell, Michelle L

    2017-01-01

    The health impacts of wildfire smoke, including fine particles (PM2.5), are not well understood and may differ from those of PM2.5 from other sources due to differences in concentrations and chemical composition. First, for the entire Western United States (561 counties) for 2004-2009, we estimated daily PM2.5 concentrations directly attributable to wildfires (wildfires-specific PM2.5), using a global chemical transport model. Second, we defined smoke wave as ≥2 consecutive days with daily wildfire-specific PM2.5 > 20 μg/m, with sensitivity analysis considering 23, 28, and 37 μg/m. Third, we estimated the risk of cardiovascular and respiratory hospital admissions associated with smoke waves for Medicare enrollees. We used a generalized linear mixed model to estimate the relative risk of hospital admissions on smoke wave days compared with matched comparison days without wildfire smoke. We estimated that about 46 million people of all ages were exposed to at least one smoke wave during 2004 to 2009 in the Western United States. Of these, 5 million are Medicare enrollees (≥65 years). We found a 7.2% (95% confidence interval: 0.25%, 15%) increase in risk of respiratory admissions during smoke wave days with high wildfire-specific PM2.5 (>37 μg/m) compared with matched non smoke wave days. We did not observe an association between smoke wave days with wildfire-specific PM2.5 ≤ 37 μg/mand respiratory or cardiovascular admissions. Respiratory effects of wildfire-specific PM2.5 may be stronger than that of PM2.5 from other sources. Short-term exposure to wildfire-specific PM2.5was associated with risk of respiratory diseases in the elderly population in the Western United States during severe smoke days. See video abstract at, http://links.lww.com/EDE/B137.

  5. Refining the cheatgrass-fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends.

    PubMed

    Pilliod, David S; Welty, Justin L; Arkle, Robert S

    2017-10-01

    Larger, more frequent wildfires in arid and semi-arid ecosystems have been associated with invasion by non-native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time-lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26-year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non-native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years' growth. Consequently, multiyear weather patterns, including precipitation in the previous 1-3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35-year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.

  6. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties

    PubMed Central

    Liu, Jia Coco; Wilson, Ander; Mickley, Loretta J; Dominici, Francesca; Ebisu, Keita; Wang, Yun; Sulprizio, Melissa P; Peng, Roger D; Yue, Xu; Son, Ji-Young; Anderson, G. Brooke; Bell, Michelle L.

    2016-01-01

    Background The health impacts of wildfire smoke, including fine particles (PM2.5), are not well understood and may differ from those of PM2.5 from other sources due to differences in concentrations and chemical composition. Methods First, for the entire Western US (561 counties) for 2004–2009, we estimated daily PM2.5 concentrations directly attributable to wildfires (wildfires-specific PM2.5), using a global chemical transport model. Second, we defined smoke wave as ≥2 consecutive days with daily wildfire-specific PM2.5>20µg/m3, with sensitivity analysis considering 23µg/m3, 28µg/m3, and 37µg/m3. Third, we estimated the risk of cardiovascular and respiratory hospital admissions associated with smoke waves for Medicare enrollees. We used a generalized linear mixed model to estimate the relative risk of hospital admissions on smoke wave days compared to matched comparison days without wildfire smoke. Results We estimated that about 46 million people of all ages were exposed to at least one smoke wave during 2004 to 2009 in the Western US. Of these, 5 million are Medicare enrollees (≥65y). We found a 7.2% (95% confidence interval: 0.25%, 15%) increase in risk of respiratory admissions during smoke wave days with high wildfire-specific PM2.5 (>37µg/m3) compared to matched non-smoke-wave days. We did not observe an association between smoke wave days with wildfire-PM2.5≤37µg/m3 and respiratory or cardiovascular admissions. Respiratory effects of wildfire-specific PM2.5 may be stronger than that of PM2.5 from other sources. Conclusion Short-term exposure to wildfire-specific PM2.5 was associated with risk of respiratory diseases in the elderly population in the Western US during severe smoke days. PMID:27648592

  7. Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin; Arkle, Robert

    2017-01-01

    Larger, more frequent wildfires in arid and semi-arid ecosystems have been associated with invasion by non-native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time-lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26-year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non-native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non-native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years’ growth. Consequently, multiyear weather patterns, including precipitation in the previous 1–3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35-year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.

  8. Mammals and habitat disturbance: the case of brown hare and wildfire

    PubMed Central

    Sokos, Christos; Birtsas, Periklis; Papaspyropoulos, Konstantinos G.; Tsachalidis, Efstathios; Giannakopoulos, Alexios; Milis, Chrysostomos; Spyrou, Vassiliki; Manolakou, Katerina; Valiakos, George; Iakovakis, Christos; Athanasiou, Labrini V.; Sfougaris, Athanasios; Billinis, Charalambos

    2016-01-01

    Abstract Ecosystem disturbances, such as wildfires, are driving forces that determine ecology and conservation measures. Species respond differentially to wildfires, having diverse post-fire population evolution. This study reports, for first time, the responses of brown hare (Lepus europaeus Pallas, 1778) to wildfires. Hare relative abundance, age ratio, diet quality, body condition, and diseases were studied. Fire influence on vegetation was calculated at a micro-scale level. Hare abundance was lower the first year after wildfires in burned relative to unburned areas. The reverse was found in the second year when hare abundance was higher in burned areas. Hare abundance in burned areas was also higher in the third and fourth years. In the fifth and sixth years after wildfire no significant difference was found in abundance. At a micro-scale level, higher numbers of hare feces were counted in places with greater wildfire influence on vegetation. Age ratio analysis revealed more juveniles in burned areas, but the same number of neonates in burned and unburned areas, indicating lower mortality of juveniles in burned areas. Reduced predation in burned areas provides the most plausible explanation for our findings. PMID:29491931

  9. Assessing Lightning and Wildfire Hazard by Land Properties and Cloud to Ground Lightning Data with Association Rule Mining in Alberta, Canada

    PubMed Central

    Cha, DongHwan; Wang, Xin; Kim, Jeong Woo

    2017-01-01

    Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) lightning strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual lightning occurred during warm months (June to August) and the daily lightning frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG lightning patterns, which were verified by similarity measurement to check the patterns’ consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that lightning and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of lightning, and frequent wild-fire regions with a low frequency of lightning. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG lightning hazard map and specific land use types. PMID:29065564

  10. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    PubMed

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  11. Assessing Lightning and Wildfire Hazard by Land Properties and Cloud to Ground Lightning Data with Association Rule Mining in Alberta, Canada.

    PubMed

    Cha, DongHwan; Wang, Xin; Kim, Jeong Woo

    2017-10-23

    Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) lightning strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual lightning occurred during warm months (June to August) and the daily lightning frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG lightning patterns, which were verified by similarity measurement to check the patterns' consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that lightning and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of lightning, and frequent wild-fire regions with a low frequency of lightning. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG lightning hazard map and specific land use types.

  12. Does Place Attachment Predict Wildfire Mitigation and Preparedness? A Comparison of Wildland-Urban Interface and Rural Communities.

    PubMed

    Anton, Charis E; Lawrence, Carmen

    2016-01-01

    Wildfires are a common occurrence in many countries and are predicted to increase as we experience the effects of climate change. As more people are expected to be affected by fires, it is important to increase people's wildfire mitigation and preparation. Place attachment has been theorized to be related to mitigation and preparation. The present study examined place attachment and wildfire mitigation and preparation in two Australian samples, one rural and one on the wildland-urban interface. The study consisted of 300 participants who responded to questionnaires about their place attachment to their homes and local areas, as well as describing their socio-demographic characteristics and wildfire mitigation and preparedness. Hierarchical regression showed that place attachment to homes predicted wildfire mitigation and preparedness in the rural sample but not in the wildland-urban interface sample. The results suggest that place attachment is a motivator for mitigation and preparation only for people living rurally. Reminding rural residents of their attachment to home at the beginning of wildfire season may result in greater mitigation and preparedness. Further research focusing on why attachment does not predict mitigation and preparedness in the wildland-urban interface is needed.

  13. California Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wildfires Rage in Southern California     ... Image Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, ... at JPL October 26, 2003 - Smoke from wildfires near Los Angeles and San Diego. project:  MISR ...

  14. Wildlife Habitat Improvement Using Range Improvement Practices

    USDA-ARS?s Scientific Manuscript database

    Wildfires in the Intermountain West are and annual event. The introduction and subsequent invasion of cheatgrass (Bromus tectorum) onto millions of hectares of rangelands throughout the West has resulted in devastating wildfires. With each passing wildfire season more and more critical wildlife habi...

  15. Wildfire, ryegrass seeding, and watershed rehabilitation

    Treesearch

    R. D. Taskey; C. L. Curtis; J. Stone

    1989-01-01

    Aerial seeding of Italian annual ryegrass (Lolium multiflorum) is a common, but controversial, emergency rehabilitation practice following wildfire in California. Replicated study plots, with and without ryegrass, established after a summertime chaparral wildfire on California's central coast revealed the following: 1. Ryegrass-seeded plots...

  16. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    PubMed

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Enhancing Pre- and Post-Wildfire Vegetation Recovery and Understanding Feedbacks of Cheatgrass invasion Using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.

    2017-12-01

    Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.

  18. Network analysis of wildfire transmission and implications for risk governance

    PubMed Central

    Ager, Alan A.; Evers, Cody R.; Day, Michelle A.; Preisler, Haiganoush K.; Barros, Ana M. G.; Nielsen-Pincus, Max

    2017-01-01

    We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments. PMID:28257416

  19. Who Among the Elderly Is Most Vulnerable to Exposure to and Health Risks of Fine Particulate Matter From Wildfire Smoke?

    PubMed

    Liu, Jia Coco; Wilson, Ander; Mickley, Loretta J; Ebisu, Keita; Sulprizio, Melissa P; Wang, Yun; Peng, Roger D; Yue, Xu; Dominici, Francesca; Bell, Michelle L

    2017-09-15

    Wildfires burn more than 7 million acres in the United States annually, according to the US Forest Service. Little is known about which subpopulations are more vulnerable to health risks from wildfire smoke, including those associated with fine particulate matter. We estimated exposure to fine particles specifically from wildfires, as well as the associations between the presence of wildfire-specific fine particles and the amount of hospital admissions for respiratory causes among subpopulations older than 65 years of age in the western United States (2004-2009). Compared with other populations, higher fractions of persons who were black, lived in urban counties, and lived in California were exposed to more than 1 smoke wave (high-pollution episodes from wildfire smoke). The risks of respiratory admissions on smoke-wave days compared with non-smoke-wave days increased 10.4% (95% confidence interval: 1.9, 19.6) for women and 21.7% (95% confidence interval: 0.4, 47.3) for blacks. Our findings suggest that increased risks of respiratory admissions from wildfire smoke was significantly higher for women than for men (10.4% vs. 3.7%), blacks than whites (21.7% vs. 6.9%), and, although associations were not statistically different, people in lower-education counties than higher-educated counties (12.7% vs. 6.1%). Our study raised important environmental justice issues that can inform public health programs and wildfire management. As climate change increases the frequency and intensity of wildfires, evidence on vulnerable subpopulations can inform disaster preparedness and the understanding of climate change consequences. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Effect of catastrophic wildfires on asthmatic outcomes in obese children

    PubMed Central

    Tse, Kevin; Chen, Lie; Tse, Mabel; Zuraw, Bruce; Christiansen, Sandra

    2015-01-01

    Background Air pollutants from wildfires and obesity independently exacerbate asthma, yet no study has determined the combined effects of these 2 variables on asthma outcomes. Objective To determine the effect of 2 catastrophic wildfires affecting the Southern California region (in 2003 and 2007) on several asthma outcomes in a cohort of children. Methods To investigate the association between wildfire exposure and asthma outcomes, we stratified our study population by body mass index categories (underweight, normal, overweight, and obese) and zip codes (to distinguish individuals who were closer to the fires vs farther away). The primary outcome was the prevalence of physician-dispensed short-acting β-agonist (SABAs). Secondary outcomes included the rate of emergency department visits and/or hospitalizations for asthma, the frequency of oral corticosteroid use for asthma, and number of new diagnoses of asthma. Results A total of 2,195 and 3,965 asthmatic children were analyzed as part of our retrospective cohort during the 2003 and 2007 wildfires, respectively. SABA dispensing increased the most in the obese group after the 2003 wildfires (P <.05). Increased prevalence of SABA dispensing was also noted in the obese group in 2007, but this was not statistically higher than the increases seen in other body mass index groups. There was no observed increase in emergency department and/or hospitalization rates, oral corticosteroid dispensing frequency, or new asthma diagnoses after either wildfire. Conclusion Catastrophic wildfires lead to worsening asthma outcomes, particularly in obese individuals. This study gives further evidence of a link between obesity and asthma severity and suggests that air pollutants released during wildfires can have substantial detrimental effects on asthma control. PMID:25747784

  1. Effect of catastrophic wildfires on asthmatic outcomes in obese children: breathing fire.

    PubMed

    Tse, Kevin; Chen, Lie; Tse, Mabel; Zuraw, Bruce; Christiansen, Sandra

    2015-04-01

    Air pollutants from wildfires and obesity independently exacerbate asthma, yet no study has determined the combined effects of these 2 variables on asthma outcomes. To determine the effect of 2 catastrophic wildfires affecting the Southern California region (in 2003 and 2007) on several asthma outcomes in a cohort of children. To investigate the association between wildfire exposure and asthma outcomes, we stratified our study population by body mass index categories (underweight, normal, overweight, and obese) and zip codes (to distinguish individuals who were closer to the fires vs farther away). The primary outcome was the prevalence of physician-dispensed short-acting β-agonist (SABAs). Secondary outcomes included the rate of emergency department visits and/or hospitalizations for asthma, the frequency of oral corticosteroid use for asthma, and number of new diagnoses of asthma. A total of 2,195 and 3,965 asthmatic children were analyzed as part of our retrospective cohort during the 2003 and 2007 wildfires, respectively. SABA dispensing increased the most in the obese group after the 2003 wildfires (P < .05). Increased prevalence of SABA dispensing was also noted in the obese group in 2007, but this was not statistically higher than the increases seen in other body mass index groups. There was no observed increase in emergency department and/or hospitalization rates, oral corticosteroid dispensing frequency, or new asthma diagnoses after either wildfire. Catastrophic wildfires lead to worsening asthma outcomes, particularly in obese individuals. This study gives further evidence of a link between obesity and asthma severity and suggests that air pollutants released during wildfires can have substantial detrimental effects on asthma control. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu

    2013-06-01

    Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.

  3. Early Life Wildfire Smoke Exposure Is Associated with Immune Dysregulation and Lung Function Decrements in Adolescence

    PubMed Central

    Black, Carolyn; Gerriets, Joan E.; Fontaine, Justin H.; Harper, Richart W.; Kenyon, Nicholas J.; Tablin, Fern; Schelegle, Edward S.

    2017-01-01

    The long-term health effects of wildfire smoke exposure in pediatric populations are not known. The objectives of this study were to determine if early life exposure to wildfire smoke can affect parameters of immunity and airway physiology that are detectable with maturity. We studied a mixed-sex cohort of rhesus macaque monkeys that were exposed as infants to ambient wood smoke from a series of Northern California wildfires in the summer of 2008. Peripheral blood mononuclear cells (PBMCs) and pulmonary function measures were obtained when animals were approximately 3 years of age. PBMCs were cultured with either LPS or flagellin, followed by measurement of secreted IL-8 and IL-6 protein. PBMCs from a subset of female animals were also evaluated by Toll-like receptor (TLR) pathway mRNA analysis. Induction of IL-8 protein synthesis with either LPS or flagellin was significantly reduced in PBMC cultures from wildfire smoke–exposed female monkeys. In contrast, LPS- or flagellin-induced IL-6 protein synthesis was significantly reduced in PBMC cultures from wildfire smoke–exposed male monkeys. Baseline and TLR ligand–induced expression of the transcription factor, RelB, was globally modulated in PBMCs from wildfire smoke–exposed monkeys, with additional TLR pathway genes affected in a ligand-dependent manner. Wildfire smoke–exposed monkeys displayed significantly reduced inspiratory capacity, residual volume, vital capacity, functional residual capacity, and total lung capacity per unit of body weight relative to control animals. Our findings suggest that ambient wildfire smoke exposure during infancy results in sex-dependent attenuation of systemic TLR responses and reduced lung volume in adolescence. PMID:28208028

  4. Network analysis of wildfire transmission and implications for risk governance.

    PubMed

    Ager, Alan A; Evers, Cody R; Day, Michelle A; Preisler, Haiganoush K; Barros, Ana M G; Nielsen-Pincus, Max

    2017-01-01

    We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.

  5. UAS Developments Supporting Wildfire Observations

    NASA Astrophysics Data System (ADS)

    Ambrosia, V. G.; Dahlgren, R. P.; Watts, A.; Reynolds, K. W.; Ball, T.

    2014-12-01

    Wildfires are regularly occurring emergency events that threaten life, property, and natural resources in every U.S. State and many countries around the world. Despite projections that $1.8 billion will be spent by U.S. Federal agencies alone on wildfires in 2014, the decades-long trend of increasing fire size, severity, and cost is expected to continue. Furthermore, the enormous potential for UAS (and concomitant sensor systems) to serve as geospatial intelligence tools to improve the safety and effectiveness of fire management, and our ability to forecast fire and smoke movements, remains barely tapped. Although orbital sensor assets are can provide the geospatial extent of wildfires, generally those resources are limited in use due to their spatial and temporal resolution limitations. These two critical elements make orbital assets of limited utility for tactical, real-time wildfire management, or for continuous scientific analysis of the temporal dynamics related to fire energy release rates and plume concentrations that vary significantly thru a fire's progression. Large UAS platforms and sensors can and have been used to monitor wildfire events at improved temporal, spatial and radiometric scales, but more focus is being placed on the use of small UAS (sUAS) and sensors to support wildfire observation strategies. The use of sUAS is therefore more critical for TACTICAL management purposes, rather than strategic observations, where small-scale fire developments are critical to understand. This paper will highlight the historical development and use of UAS for fire observations, as well as the current shift in focus to smaller, more affordable UAS for more rapid integration into operational use on wildfire events to support tactical observation strategies, and support wildfire science measurement inprovements.

  6. Current research issues related to post-wildfire runoff and erosion processes

    USGS Publications Warehouse

    Moody, John A.; Shakesby, Richard A.; Robichaud, Peter R.; Cannon, Susan H.; Martin, Deborah A.

    2013-01-01

    Research into post-wildfire effects began in the United States more than 70 years ago and only later extended to other parts of the world. Post-wildfire responses are typically transient, episodic, variable in space and time, dependent on thresholds, and involve multiple processes measured by different methods. These characteristics tend to hinder research progress, but the large empirical knowledge base amassed in different regions of the world suggests that it should now be possible to synthesize the data and make a substantial improvement in the understanding of post-wildfire runoff and erosion response. Thus, it is important to identify and prioritize the research issues related to post-wildfire runoff and erosion. Priority research issues are the need to: (1) organize and synthesize similarities and differences in post-wildfire responses between different fire-prone regions of the world in order to determine common patterns and generalities that can explain cause and effect relations; (2) identify and quantify functional relations between metrics of fire effects and soil hydraulic properties that will better represent the dynamic and transient conditions after a wildfire; (3) determine the interaction between burned landscapes and temporally and spatially variable meso-scale precipitation, which is often the primary driver of post-wildfire runoff and erosion responses; (4) determine functional relations between precipitation, basin morphology, runoff connectivity, contributing area, surface roughness, depression storage, and soil characteristics required to predict the timing, magnitudes, and duration of floods and debris flows from ungaged burned basins; and (5) develop standard measurement methods that will ensure the collection of uniform and comparable runoff and erosion data. Resolution of these issues will help to improve conceptual and computer models of post-wildfire runoff and erosion processes.

  7. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

    USGS Publications Warehouse

    Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.

    2017-01-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.

  8. Wildfire: It's Economic Impact on Grazing Livestock in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Honeycutt, S.

    2015-12-01

    As the climate changes and Nevada experiences long severe drought, a key understanding of the economic impacts of wildfire on grazing livestock is essential in the assurance of livestock production in future management of Nevada's rangeland. The focus of this research is to determine the economic impact in the reduction of rangeland available for livestock grazing due to wildfires. The datasets utilized in this research are from 2007 & 2012 and include Bureau of Land Management wildfire, grazing allotments and herd management area geospatial data along with USDA Census of Agriculture, Inventory & Sales Information for cattle & calves, sheep & lambs, and goats. Presented in the results will be the direct, indirect, and induced economic effects of wildfires on rangeland production.

  9. Wildfire Awareness.

    ERIC Educational Resources Information Center

    Wallace, Glenda

    2002-01-01

    Provides information about the Firewise Program whose goal is to assist people to become more fire-aware and better prepared for the effects of wildfire on property. Discusses why there are so many wildfires and what can be done. Includes the Wildland Fire Risk and Hazard Severity Assessment Form. (KHR)

  10. Protect Your Home from Wildfire!

    ERIC Educational Resources Information Center

    PTA Today, 1994

    1994-01-01

    Homes in wooded areas or in the wildland/urban interface are at special risk for wildfire. The article provides a checklist of what to keep on hand to make homes safer from wildfire, focusing on vegetation around the home and maintenance of the yard and home. (SM)

  11. Post-wildfire management

    Treesearch

    Jonathan W. Long; Carl Skinner; Susan Charnley; Ken Hubbert; Lenya Quinn-Davidson; Marc Meyer

    2014-01-01

    Wildfires, especially large, severe, and unmanageable events, exert major influences on socioecological systems, not only through risks to life and property, but also losses of important values associated with mature forest stands. These events prompt decisions about post-wildfire management interventions, including short-term emergency responses, salvage logging, and...

  12. Recent Increases in Wildfires in the Himalayas and Surrounding Regions Detected in Central Tibetan Ice Core Records

    NASA Astrophysics Data System (ADS)

    You, Chao; Yao, Tandong; Xu, Chao

    2018-03-01

    Changes in fire activity across regions around the Tibetan Plateau are poorly understood, especially under the recent warming and drying trends. In this work, we report records of the specific fire tracer levoglucosan in a central Tibetan ice core, indicating a rapid increase in wildfires across the Himalayas and surroundings at the beginning of the 21st century. The climate system, especially precipitation changes, modulates the annual variability of wildfires in regions around the Tibetan Plateau. Decreasing premonsoon precipitation has prolonged the dry seasons across Himalayan regions affected by the Indian summer monsoon; meanwhile, increasing precipitation over the arid and semiarid Indus River Plain promotes plant growth and thereby increases biofuel availability. These trends have therefore induced increased frequencies of strong wildfires in the Himalayas and surroundings. Increasing strong wildfire events can potentially enhance black carbon deposits on Himalayan glaciers, which would impact glacial melting during the premonsoon wildfire seasons in the near future.

  13. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke

    NASA Astrophysics Data System (ADS)

    Urmy, Samuel S.; Williamson, Craig E.; Leach, Taylor H.; Schladow, S. Geoffrey; Overholt, Erin P.; Warren, Joseph D.

    2016-04-01

    We used a natural experiment to test whether wildfire smoke induced changes in the vertical distribution of zooplankton in Lake Tahoe by decreasing incident ultraviolet radiation (UV). Fires have a variety of effects on aquatic ecosystems, but these impacts are poorly understood and have rarely been observed directly. UV is an important driver of zooplankton vertical migration, and wildfires may alter it over large spatial scales. We measured UV irradiance and the distribution of zooplankton on two successive days. On one day, smoke haze from a nearby wildfire reduced incident UV radiation by up to 9%, but not irradiance in the visible spectrum. Zooplankton responded by positioning themselves, on average, 4.1 m shallower in the lake. While a limited data set such as this requires cautious interpretation, our results suggest that smoke from wildfires can change the UV environment and distribution of zooplankton. This process may be important in drought-prone regions with increasingly frequent wildfires, and globally due to widespread biomass burning.

  14. Is Managed Wildfire Protecting Yosemite National Park from Drought?

    NASA Astrophysics Data System (ADS)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Kelly, M.; Tague, N.

    2016-12-01

    Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the Western US. This project explores the potential of managed wildfire - a forest management strategy in which fires caused by lightning are allowed to burn naturally as long as certain safety parameters are met - to reverse the effects of fire suppression. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover and increasing meadow and shrubland areas. We have collected evidence from field measurements and remote sensing which suggest that managed wildfire increases landscape and hydrologic heterogeneity, and likely improves resilience to disturbances such as fire and drought. Vegetation maps created from aerial photos show an increase in landscape heterogeneity following the introduction of managed wildfire. Soil moisture observations during the drought years of 2013-2016 suggest that transitions from dense forest to shrublands or meadows can increase summer soil moisture. In the winter of 2015-2016, snow depth measurements showed deeper spring snowpacks in burned areas compared to dense forests. Our study provides a unique view of relatively long-term effects of managed wildfire on vegetation change, ecohydrology, and drought resistance. Understanding these effects is increasingly important as the use of managed wildfire becomes more widely accepted, and as the likelihood of both drought and wildfire increases.

  15. Interactive effects of wildfire and permafrost thaw on peatland carbon cycling

    NASA Astrophysics Data System (ADS)

    Olefeldt, David; Heffernan, William; Gibson, Carolyn; Burd, Katheryn; Estop-Aragones, Cristian

    2017-04-01

    Boreal peatland complexes in western Canada are fine-scale mosaics of permafrost affected peat plateaus interspersed with Sphagnum dominated thermokarst bogs where permafrost is absent. Wildfire further affects landscape patterning of peatland complexes, where virtually all peat plateaus are in a stage of secondary succession following wildfire. With climate change we expect both permafrost thaw and wildfire activity to increase in these landscapes, and to have important impacts on carbon cycling. In a number of studies, we have used soil chamber techniques to assess the influence of both permafrost thaw and wildfire on soil respiration, net ecosystem exchange and methane emissions. We used chronosequences to assess the influence of time since both permafrost thaw (3 - 15 years) and wildfire (20 - 150 years). Radiocarbon signatures of soil respiration in both burned and thawed locations was used to determine the contribution of aged soil carbon to soil respiration. We furthermore characterized individual and interactive effects of fire and thaw on microbial and photochemical lability of dissolved organic matter. At many field sites it was clear that recent wildfire had accelerated permafrost thaw, and we combined field observations of soil thermal regimes with remote sensing approaches to assess the role of wildfire for accelerating permafrost thaw over the last 50 years at a regional scale. Overall, our results highlight the need to consider both individual and interacting effects of thaw and fire for projections of the future carbon cycling at the regional level.

  16. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  17. The way to a healthy future for National Forest ecosystems in the West : what role can silviculture and prescribed fire play?

    Treesearch

    Douglas W. MacCleery

    1995-01-01

    The 1994 wildfires in the U.S. West have highlighted a problem of forest health and fuel buildups that has been increasing for decades. In many Western forest ecosystems, forest biomass per acre has risen substantially since the 1940s and many forests have dense, fire-prone understories. If current trends continue, there will be: 1) increasing risks to National Forest...

  18. Optimal timing of wildfire prevention education

    Treesearch

    D. T. Butry; J. P. Prestemon; K. L. Abt

    2010-01-01

    Public outreach and wildfire education activities have been shown to limit the number of unintentional human-caused ignitions (i.e., 'accidental' wildfires). Such activities include the airing of public service announcements, visiting with homeowners in at-risk areas, distributing informative brochures and flyers, hosting of public forums (with presentations...

  19. Historical wildfires do not promote cheatgrass invasion in a western Great Plains steppe

    USDA-ARS?s Scientific Manuscript database

    Plant invasion and wildfire are often tightly linked. In western North America, positive feedbacks between wildfire and Bromus tectorum (cheatgrass) invasion have contributed to plant community conversion across millions of hectares of land. Impacts of this conversion include reduced biodiversity, w...

  20. 32 CFR 171.3 - Restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WILDFIRE SUPPRESSION AIRCRAFT TRANSFER ACT OF 1996 § 171.3 Restrictions. Aircraft and aircraft parts sold under the Act shall be used only for wildfire suppression purposes and shall not be flown or removed... agreement to assist in wildfire suppression, or for other purposes jointly approved in advance, in writing...

  1. 32 CFR 171.3 - Restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WILDFIRE SUPPRESSION AIRCRAFT TRANSFER ACT OF 1996 § 171.3 Restrictions. Aircraft and aircraft parts sold under the Act shall be used only for wildfire suppression purposes and shall not be flown or removed... agreement to assist in wildfire suppression, or for other purposes jointly approved in advance, in writing...

  2. 25 CFR 163.28 - Fire management measures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... wildfire protection needs and extinguish forest or range fires on Indian land. No expenses for fighting a... are currently in use by public and private wildfire protection agencies adjacent to Indian... mutual aid in wildfire protection. This section does not apply to the rendering of emergency aid, or...

  3. 32 CFR 171.3 - Restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WILDFIRE SUPPRESSION AIRCRAFT TRANSFER ACT OF 1996 § 171.3 Restrictions. Aircraft and aircraft parts sold under the Act shall be used only for wildfire suppression purposes and shall not be flown or removed... agreement to assist in wildfire suppression, or for other purposes jointly approved in advance, in writing...

  4. 32 CFR 171.3 - Restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WILDFIRE SUPPRESSION AIRCRAFT TRANSFER ACT OF 1996 § 171.3 Restrictions. Aircraft and aircraft parts sold under the Act shall be used only for wildfire suppression purposes and shall not be flown or removed... agreement to assist in wildfire suppression, or for other purposes jointly approved in advance, in writing...

  5. 25 CFR 163.28 - Fire management measures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... wildfire protection needs and extinguish forest or range fires on Indian land. No expenses for fighting a... are currently in use by public and private wildfire protection agencies adjacent to Indian... mutual aid in wildfire protection. This section does not apply to the rendering of emergency aid, or...

  6. 25 CFR 163.28 - Fire management measures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... wildfire protection needs and extinguish forest or range fires on Indian land. No expenses for fighting a... are currently in use by public and private wildfire protection agencies adjacent to Indian... mutual aid in wildfire protection. This section does not apply to the rendering of emergency aid, or...

  7. 25 CFR 163.28 - Fire management measures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... wildfire protection needs and extinguish forest or range fires on Indian land. No expenses for fighting a... are currently in use by public and private wildfire protection agencies adjacent to Indian... mutual aid in wildfire protection. This section does not apply to the rendering of emergency aid, or...

  8. 32 CFR 171.3 - Restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WILDFIRE SUPPRESSION AIRCRAFT TRANSFER ACT OF 1996 § 171.3 Restrictions. Aircraft and aircraft parts sold under the Act shall be used only for wildfire suppression purposes and shall not be flown or removed... agreement to assist in wildfire suppression, or for other purposes jointly approved in advance, in writing...

  9. 76 FR 44301 - Information Collection; Homeowner Risk Reduction Behaviors Concerning Wildfire Risks and Climate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Behaviors Concerning Wildfire Risks and Climate Change Impacts AGENCY: Forest Service, USDA. ACTION: Notice... collection, Homeowner Risk Reduction Behaviors Concerning Wildfire Risks and Climate Change Impacts. The... undertake, and factors that influence these choices, particularly factors related to climate change impacts...

  10. Selected 1966-69 interior Alaska wildfire statistics with long-term comparisons.

    Treesearch

    Richard J. Barney

    1971-01-01

    This paper presents selected interior Alaska forest and range wildfire statistics for the period 1966-69. Comparisons are made with the decade 1956-65 and the 30-year period 1940-69, which are essentially the total recorded statistical history on wildfires available for Alaska.

  11. Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Honda, K.; Kimura, K.; Honma, T.

    2008-12-01

    Early detection of wildfires is an issue for reduction of damage to environment and human. There are some attempts to detect wildfires by using satellite imagery, which are mainly classified into three methods: Dozier Method(1981-), Threshold Method(1986-) and Contextual Method(1994-). However, the accuracy of these methods is not enough: some commission and omission errors are included in the detected results. In addition, it is not so easy to analyze satellite imagery with high accuracy because of insufficient ground truth data. Kudoh and Hosoi (2003) developed the detection method by using three-dimensional (3D) histogram from past fire data with the NOAA-AVHRR imagery. But their method is impractical because their method depends on their handworks to pick up past fire data from huge data. Therefore, the purpose of this study is to collect fire points as hot spots efficiently from satellite imagery and to improve the method to detect wildfires with the collected data. As our method, we collect past fire data with the Alaska Fire History data obtained by the Alaska Fire Service (AFS). We select points that are expected to be wildfires, and pick up the points inside the fire area of the AFS data. Next, we make 3D histogram with the past fire data. In this study, we use Bands 1, 21 and 32 of MODIS. We calculate the likelihood to detect wildfires with the three-dimensional histogram. As our result, we select wildfires with the 3D histogram effectively. We can detect the troidally spreading wildfire. This result shows the evidence of good wildfire detection. However, the area surrounding glacier tends to rise brightness temperature. It is a false alarm. Burnt area and bare ground are sometimes indicated as false alarms, so that it is necessary to improve this method. Additionally, we are trying various combinations of MODIS bands as the better method to detect wildfire effectively. So as to adjust our method in another area, we are applying our method to tropical forest in Kalimantan, Indonesia and around Chiang Mai, Thailand. But the ground truth data in these areas is lesser than the one in Alaska. Our method needs lots of accurate observed data to make multi-dimensional histogram in the same area. In this study, we can show the system to select wildfire data efficiently from satellite imagery. Furthermore, the development of multi-dimensional histogram from past fire data makes it possible to detect wildfires accurately.

  12. Creating an Erosion Vulnerability Map for the Columbia River Basin to Determine Reservoir Susceptibility to Sedimentation Before and After Wildfires

    NASA Astrophysics Data System (ADS)

    Ren, J.; Robichaud, P. J. L.; Adam, J. C.

    2017-12-01

    Sedimentation is important issue to most rivers and reservoirs especially in watersheds with extensive agricultural or wildfire activity. These human and natural induced disturbances have the potential to increase runoff-induced erosion and sediment load to rivers; downstream sedimentation can decrease the life expectancy of reservoir and consequently the dam. This is particularly critical in snowmelt-dominant regions because, as rising temperatures reduce snowpack as a natural reservoir, humans will become more reliant on reservoir storage. In the Northwest U.S., the Columbia River Basin (CRB) has more than 60 dams, which were built for irrigation, hydropower, and flood control, all of which are affected by sediment to varying degrees. Determining what dams are most likely to be affected by sedimentation caused by post-fire erosion is important for future management of reservoirs, especially as climate change is anticipated to exacerbate wildfire and its impacts. The objective of this study is to create a sedimentation vulnerability map for reservoirs in the CRB. There are four attributes of a watershed that determine erosion potential; soil type, topography, vegetation (such as forests, shrubs, and grasslands), and precipitation (although precipitation was excluded in this analysis). In this study, a rating system was developed on a scale of 0-90 (with 90 having the greatest erosion potential). The different layers in a Graphical Information System were combined to create an erosion vulnerability map. Results suggest that areas with agriculture have more erosion without a wildfire but that forested areas are most vulnerable to erosion rates following a fire, particularly a high severity fire. Sedimentation in dams is a growing problem that needs to be addressed especially with the likely reduction in snowpack, this vulnerability map will help determine which reservoirs in the CRB are prone to high sedimentation. This information can inform managers where post-fire erosion mitigation efforts might be prioritized.

  13. Population exposure to fine particles and estimated excess mortality in Finland from an East European wildfire episode.

    PubMed

    Hänninen, Otto O; Salonen, Raimo O; Koistinen, Kimmo; Lanki, Timo; Barregard, Lars; Jantunen, Matti

    2009-05-01

    Long-range transported particulate matter (PM) air pollution episodes associated with wildfires in the Eastern Europe are relatively common in Southern and Southeastern Finland. In severe cases such as in August-September 2002, the reduced visibility and smell of the smoke, and symptoms such as irritation of eyes and airways experienced by the population raise the issue into the headlines. Because PM air pollution, in general, has been identified as a major health risk, and the exposures are of repeating nature, the issue warrants a risk assessment to estimate the magnitude of the problem. The current work uses the available air quality data in Finland to estimate population exposures caused by one of the worst episodes experienced in this decade. This episode originated from wildfires in Russia, Belarus, Ukraine, and the Baltic countries. The populations of 11 Southern Finnish provinces were exposed between 26 August and 8 September 2002, for 2 weeks to an additional population-weighted average PM(2.5) level of 15.7 microg/m(3). Assuming similar effect on mortality for these particles as observed in epidemiological time series studies on urban particles (0.5%-2% increase in mortality per 10 microg/m(3), central estimate 1%), this exposure level would be associated with 9-34 cases (17 cases central estimate) of additional mortality. Epidemiological evidence specific to particles from biomass combustion is scarce, affecting also the reliability of the current risk assessment. Do the wildfire aerosols exhibit the same level of toxicity as the urban particles? To shed light on this question, it is interesting to look at the exposure data in relationship to the observed daily mortality in Finland, even though the limited duration of the episode allows only for a weak statistical power. The percentage increases observed (0.8%-2.1% per 10 microg/m(3) of fine PM) are in line with the more general estimates for urban PM and those used in the current risk assessment.

  14. Economic analysis of fuel treatments

    Treesearch

    D. Evan Mercer; Jeffrey P. Prestemon

    2012-01-01

    The economics of wildfire is complicated because wildfire behavior depends on the spatial and temporal scale at which management decisions made, and because of uncertainties surrounding the results of management actions. Like the wildfire processes they seek to manage, interventions through fire prevention programs, suppression, and fuels management are scale dependent...

  15. Modeling spatio-temporal wildfire ignition point patterns

    Treesearch

    Amanda S. Hering; Cynthia L. Bell; Marc G. Genton

    2009-01-01

    We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-...

  16. Arizona Wildfire

    Atmospheric Science Data Center

    2013-04-23

    article title:  Wildfire in Arizona     View larger image A CALIPSO vertical profile from space shows the smoke plume on June 3, 2011 from the wildfires currently raging in Arizona. It ... nine hours later. The data shows that the Wallow Fire smoke plume reached heights of 5 kilometers (3 miles) high. CALIPSO and Terra ...

  17. Mapping the Relationship Between Wildfire and Poverty

    Treesearch

    Kathy Lynn; Wendy Gerlitz

    2006-01-01

    Wildfires and related government roles and responsibilities for federal wildland management are prominent in our national consciousness because of the increased severity in the last decade of fires on and around public lands. In recent years, laws, strategies, and implementation documents have been issued to direct federal efforts for wildfire prevention, firefighting...

  18. Understanding Broadscale Wildfire Risks in a Human-Dominated Landscape

    Treesearch

    Jeffrey P. Prestemon; John M. Pye; David T. Butry; Thomas P. Holmes; D. Evan Mercer

    2002-01-01

    Broadscale statistical evaluations of wildfire incidence can answer policy relevant questions about the effectiveness of microlevel vegetation management and can identify subjects needing further study. A dynamic time series cross-sectional model was used to evaluate the statistical links between forest wildfire and vegetation management, human land use, and climatic...

  19. 3 CFR 8732 - Proclamation 8732 of October 7, 2011. Fire Prevention Week, 2011

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to protect their neighborhood with a Community Wildfire Protection Plan. In 2011, Federal firefighting grants have been provided to 16 States to assist with wildfires that have caused destruction to families, farms, and businesses. Those living with the threat of wildfire can safeguard their houses by...

  20. 43 CFR 4.416 - Appeals of wildfire management decisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Appeals of wildfire management decisions. 4.416 Section 4.416 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT... Board of Land Appeals § 4.416 Appeals of wildfire management decisions. The Board must decide appeals...

Top